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1. Introduction  
 

Adaptive mesh methods are commonly used to improve the accuracy of numerical solution 
of problems without essential increase in the number of mesh nodes (Lebedev et al., 2002). 
Within the scope of all adaptive mesh methods, there is an important class of methods in 
which the mesh is an image under an appropriate mapping of a fixed mesh over a 
computational domain (Bern & Plassmann, 1999). 
Most of widely used conventional methods from the above class, such as equidistribution 
method (Shokina, 2001), Thompson’s method (Thompson et al., 1985), elliptic method 
(Liseikin, 1999), etc. determine the mapping by solving a complicated system of nonlinear 
partial differential equations (PDEs). This often leads to significant difficulties. First, the 
convergence of numerical solution of these PDEs highly depends on an initial mesh, 
requires fixing boundary mesh nodes beforehand and imposes quite strong limitations on 
the properties of mesh density function (Khakimzyanov et al., 2001). Second, efficient 
parallelization of solvers for the PDEs meets overwhelming difficulties. Finally, the PDEs for 
mesh construction are not universal and need to be proposed for 1D, 2D or 3D spaces 
specifically. The complexity of numerical solution of these PDEs essentially grows with 
increasing the dimensionalities (Khakimzyanov et al., 2001). Moreover, there is no methods 
and techniques in the above mentioned class that can provide a fully automatic adaptive 
mesh construction in 3D case. 
This chapter demonstrates the great ability of the Kohonen’s Self Organizing Maps (SOM) 
(Kohonen, 2001) to perform high quality adaptive mesh construction. Since the SOM model 
provides a topology preserving mapping of high-dimensional data onto a low-dimensional 
space with approximation of input data distribution, the proposed mesh construction 
method uses the same algorithms for different dimensionalities of a physical domain that 
proves its universality. 
In our investigation, the classical SOM model has been studied and modified in order to 
overcome border effect and provide topology preservation. Based on the ideas in 
(Nechaeva, 2006), the composition of SOM models of different dimensionalities has been 
proposed which alternates mesh construction on the border and inside a physical domain. It 
has been shown that the SOM learning algorithm can be used as a mesh smoothing tool. All 
the algorithms has been implemented using the GeomBox (Bessmeltsev, 2009) and 
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GeomRandom (Nechaeva, 2009) packages and tested on a number of physical domains. The 
quality of resulting meshes is acceptable according to the commonly used quality criteria. 
In order to support this alternative approach to mesh generation, a Theorem of 
Correspondence is proved, that states that goals of traditional PDE approach to construction 
of adaptive meshes from the considered class are equivalent to the goals of learning for Self 
Organizing Maps. 
The obtained results showed that the neural network approach provides us a highly 
parallelizable technique (Nechaeva, 2005) for automatic construction of qualitative adaptive 
meshes and possesses the following properties: (1) due to the self organizing principles the 
algorithm transforms the mesh automatically, starting with arbitrary initial nodes positions, 
and does not require to fix the boundary nodes beforehand; (2) stochastic nature of the 
algorithm enables us to illuminate any limitations on the mesh density function; (3) internal 
parallelism of the method allows us to parallelize the mesh construction process, taking into 
account the requirements on the parallel implementation of a problem to be solved on the 
mesh; (4) the method uses the same algorithms for different dimensionalities of a physical 
domain that proves the universality of the proposed method. 

 
2. Adaptive mesh construction: problem statement 

 

In order to emphasize that the neural network approach is universal from the point of view 
of space dimensionality, the problem statement, methods and algorithms are formulated 
here for arbitrary dimensionalities.  
Let G  be a physical domain in a Euclidean space n

GR  with physical coordinates 
 1( ,..., )nx x x . An adaptive mesh  1{ ,..., }N NG x x  is to be constructed over G, where 
 1( ,..., )n

i i ix x x G ,  1,...,i N  are the mesh nodes. Let Q be a computational domain in a 
Euclidean space k

QR , k n  with coordinates  1( ,..., )kq q q . A mesh  1{ ,..., }N NQ q q  is fixed 

over Q, where iq Q ,  1( ,..., )k
i i iq q q ,  1,...,i N . Let a minimal distance among all pairs of 

nodes in QN be equal to dQ . Usually, the fixed mesh QN is rectangular and uniform, then dQ 
is just the distance between neighboring nodes. Also, let us denote by  ( )B q  a bounded 
neighborhood of the point q in Q, where   is a radius of the neighborhood, i.e. 

   ( ) { | ( , ) }k
QB q p R d p q , where  ( , )d  is the Euclid distance. 

The desired density of an adaptive mesh is given by a mesh density function w : G  R+. 
Density of the mesh GN is to approximate the function w in a sense of the equidistribution 
principle (Shokina, 2001). According to this principle, the product of a mesh cell area and 
the value of w, associated with this cell, should be the same for all mesh cells. As the 
consequence, the greater the value of w, the smaller the corresponding cell area and, then, 
the higher the density of the adaptive mesh.   
The goal is to find a mapping of Q onto G which transforms the mesh QN into the adaptive 
one GN with the given mesh density. The method of mapping determination is required to 
ensure that the boundary nodes of QN are automatically transformed into the nodes 
distributed along the border of G. At this point, the proposed problem statement differs 
from the traditional one where one needs to have boundary nodes already distributed along 

 

the border (Shokina, 2001). Let Nb be the number of boundary nodes, and Nint be the 

number of the interior ones,  int {1,..., }bN N N  and  intbN N . 

 
3. Correspondence between adaptive meshes and Self Organizing Maps 

 

The SOM is a neural network model that is able to perform a mapping from input to output 
space with topology preservation and approximation of input data distribution. When 
applying the SOM model for adaptive mesh construction, the input space, which contains 
the physical domain, is n

GR  and the output space is k
QR . 

The SOM model can be considered as a triplet < M, H, Alg >: map of neurons (M), training 
set (H) and learning algorithm (Alg). The map of neurons is the set of neurons 

 1{ ,..., }NM e e  where each neuron has a location assigned by coordinates of the fixed node qi 
in the output space k

QR . The number of neurons in the map M is equal to the number of 
mesh nodes N. It means that each i-th mesh node corresponds to the neuron ei 
(Nechaeva, 2004). There is a weight vector associated with each neuron. Weight vector of the 
neuron ei is an element of input space and assigned by the coordinates of xi within the 
physical domain G. These coordinates can be found by the learning algorithm Alg. 
Therefore, the neuron is a pair ei = (qi, xi).   
In order to obtain the desired distribution of xi over G in a sense of equidistribution 
principle, a training set is to be a sample of the probability distribution p(x) being equal to 
the normalized mesh density function w(x): 

 




( )( )
( )

G

w xp x
w x dx

, (1) 

 

Let  1{ ,..., }TH y y  be a training set corresponding to (1), where T is the set size, ty G , 
 1,...,t T .  

A basic SOM learning algorithm proposed by Kohonen (Kohonen, 2001) (formulated in 
terms of “mesh nodes”), where  1stt  and fint T , is the following. 

The procedure Alg. 

1. Set arbitrary initial locations of mesh nodes xi(0) for all  1,...,i N . 
2. Repeat the following operations at each iteration  ,...,st fint t t : 

a. Take the next vector yt from the training set H. 
b. Calculate the Euclidean distances  ( , )d  between yt and all nodes xi(t) and 

choose the node xm(t) which is closest to yt, i.e. 
 


 

1,...,
( ) arg min ( , ( )).t t ii N

m m y d y x t  (2) 
 

The node xm(t) is called a winner. 
c. Adjust locations of mesh nodes using the following rule: 
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GeomRandom (Nechaeva, 2009) packages and tested on a number of physical domains. The 
quality of resulting meshes is acceptable according to the commonly used quality criteria. 
In order to support this alternative approach to mesh generation, a Theorem of 
Correspondence is proved, that states that goals of traditional PDE approach to construction 
of adaptive meshes from the considered class are equivalent to the goals of learning for Self 
Organizing Maps. 
The obtained results showed that the neural network approach provides us a highly 
parallelizable technique (Nechaeva, 2005) for automatic construction of qualitative adaptive 
meshes and possesses the following properties: (1) due to the self organizing principles the 
algorithm transforms the mesh automatically, starting with arbitrary initial nodes positions, 
and does not require to fix the boundary nodes beforehand; (2) stochastic nature of the 
algorithm enables us to illuminate any limitations on the mesh density function; (3) internal 
parallelism of the method allows us to parallelize the mesh construction process, taking into 
account the requirements on the parallel implementation of a problem to be solved on the 
mesh; (4) the method uses the same algorithms for different dimensionalities of a physical 
domain that proves the universality of the proposed method. 

 
2. Adaptive mesh construction: problem statement 

 

In order to emphasize that the neural network approach is universal from the point of view 
of space dimensionality, the problem statement, methods and algorithms are formulated 
here for arbitrary dimensionalities.  
Let G  be a physical domain in a Euclidean space n

GR  with physical coordinates 
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QR , k n  with coordinates  1( ,..., )kq q q . A mesh  1{ ,..., }N NQ q q  is fixed 

over Q, where iq Q ,  1( ,..., )k
i i iq q q ,  1,...,i N . Let a minimal distance among all pairs of 

nodes in QN be equal to dQ . Usually, the fixed mesh QN is rectangular and uniform, then dQ 
is just the distance between neighboring nodes. Also, let us denote by  ( )B q  a bounded 
neighborhood of the point q in Q, where   is a radius of the neighborhood, i.e. 

   ( ) { | ( , ) }k
QB q p R d p q , where  ( , )d  is the Euclid distance. 

The desired density of an adaptive mesh is given by a mesh density function w : G  R+. 
Density of the mesh GN is to approximate the function w in a sense of the equidistribution 
principle (Shokina, 2001). According to this principle, the product of a mesh cell area and 
the value of w, associated with this cell, should be the same for all mesh cells. As the 
consequence, the greater the value of w, the smaller the corresponding cell area and, then, 
the higher the density of the adaptive mesh.   
The goal is to find a mapping of Q onto G which transforms the mesh QN into the adaptive 
one GN with the given mesh density. The method of mapping determination is required to 
ensure that the boundary nodes of QN are automatically transformed into the nodes 
distributed along the border of G. At this point, the proposed problem statement differs 
from the traditional one where one needs to have boundary nodes already distributed along 

 

the border (Shokina, 2001). Let Nb be the number of boundary nodes, and Nint be the 

number of the interior ones,  int {1,..., }bN N N  and  intbN N . 

 
3. Correspondence between adaptive meshes and Self Organizing Maps 

 

The SOM is a neural network model that is able to perform a mapping from input to output 
space with topology preservation and approximation of input data distribution. When 
applying the SOM model for adaptive mesh construction, the input space, which contains 
the physical domain, is n

GR  and the output space is k
QR . 

The SOM model can be considered as a triplet < M, H, Alg >: map of neurons (M), training 
set (H) and learning algorithm (Alg). The map of neurons is the set of neurons 

 1{ ,..., }NM e e  where each neuron has a location assigned by coordinates of the fixed node qi 
in the output space k

QR . The number of neurons in the map M is equal to the number of 
mesh nodes N. It means that each i-th mesh node corresponds to the neuron ei 
(Nechaeva, 2004). There is a weight vector associated with each neuron. Weight vector of the 
neuron ei is an element of input space and assigned by the coordinates of xi within the 
physical domain G. These coordinates can be found by the learning algorithm Alg. 
Therefore, the neuron is a pair ei = (qi, xi).   
In order to obtain the desired distribution of xi over G in a sense of equidistribution 
principle, a training set is to be a sample of the probability distribution p(x) being equal to 
the normalized mesh density function w(x): 

 




( )( )
( )

G

w xp x
w x dx

, (1) 

 

Let  1{ ,..., }TH y y  be a training set corresponding to (1), where T is the set size, ty G , 
 1,...,t T .  

A basic SOM learning algorithm proposed by Kohonen (Kohonen, 2001) (formulated in 
terms of “mesh nodes”), where  1stt  and fint T , is the following. 

The procedure Alg. 

1. Set arbitrary initial locations of mesh nodes xi(0) for all  1,...,i N . 
2. Repeat the following operations at each iteration  ,...,st fint t t : 

a. Take the next vector yt from the training set H. 
b. Calculate the Euclidean distances  ( , )d  between yt and all nodes xi(t) and 
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
 

1,...,
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The node xm(t) is called a winner. 
c. Adjust locations of mesh nodes using the following rule: 
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xi(t +1) = xi(t) +  ( , )
mq it q  (yt – xi(t)), (3) 

 

for all  1,...,i N , where  ( , )
mq it q  [0, 1) is a learning rate.  

At each iteration t, mesh nodes move towards the random point yt. The magnitude of nodes 
displacements is controlled by the learning rate  ( , )

mq it q . 

 
4. Strategy of learning rate selection  

 

The learning rate  ( , )
mq it q  plays a crucial role in the SOM learning algorithm as it directly 

influences the quality of resulting adaptive meshes and speed of mesh construction.  
Unlike usual approach, according to which the algorithm terminates once mesh nodes 
displacements are small enough, we propose a new strategy where the number of iterations 
T is to be fixed beforehand proportional to N, and the learning rate is to be scaled in such a 
way that all nodes are frozen after T iterations. The fact that the number of iterations T 
should be a function of number N of mesh nodes follows from the point that we need to 
have enough vectors in the training set for providing each mesh node with a possibility to 
move several times. For example, we obtained an acceptable quality of adaptive meshes if 
the number of iterations is 10 times greater than N, i.e.  10T N . It also means that in 
average each mesh node becomes a winner about 10 times during the iteration process. 
Therefore, we think that it is incorrect to talk about the number of iterations without 
mentioning the number of mesh nodes. For example, for our learning rate:  4000T , if 

 20 * 20N ;  90000T , if  30 * 30 * 30N ; and so on.  
The above technique showed good results in 1D, 2D and 3D cases and is very convenient in 
use since we can directly control the speed of learning process. The learning rate proposed 
in this Section is independent of a physical domain and mesh density function.  
The learning rate  ( , )

mq it q  is a function, which takes its values from the interval [0, 1) and 
has a view of a product of two functions: learning step and learning neighborhood: 

 
  ( , ) ( ) ( , )

m mq i q it q t t q . (4) 
 

The learning step (t) is a decreasing function of time and it controls the overall size of 
nodes displacements at each iteration (Kohonen, 2001), (Fritzke, 1997), (Nechaeva, 2005). 
Based on experiments, we selected the following function for the learning step:  
(t) = t 0.2 (t), t = 1, ..., T, where    5( )/( ) 1 t T Tt e . The function (t) is used to make the 
power member of (t) go down to zero. 
Every two neurons qm and qi in the map M are connected by a lateral connection with a 
strength being assigned by the neighborhood function  ( , )

mq it q . This function has a shape of 
Gaussian but is transformed for convenience into the following view: 

 


 
  
 

2( , )
( )( , )
m i

m

d q q
r t

q it q s , (5) 

 

 

where a constant s(0,1) is close to zero and fixed beforehand, r(t) is a learning radius at the 
iteration t. The shape of the function (5) is shown in Fig. 1. 
The strength of lateral connections between the neuron em and all neurons ie M , located 
inside the neighborhood ( )( )r t mB q  of radius r(t), is less than s. The function for lateral 
connections (5) satisfies the following properties.  

Properties  
a.    ( )( ) ( , )

mi r t m q iq B q t q s . 
b.  ( , ) 1

mq mt q ;  
c. if ( , ) ( )m id q q r t , then  ( , )

mq it q s ;  
d. lateral connection is symmetric:  ( , ) ( , )

m iq i q mt q t q . 

e.  
 
  
  

2

( )( , ) ( )
m

d
r t

q it q d s  is a decreasing function of  ( , )m id d q q . 
 

  
Fig. 1. The shape of the function  ( , )

mq it q  for lateral connections between neurons. 
 
As a result, the winner takes the maximum displacement at each iteration. The greater the 
distance between i-th neuron and the winner in the computational domain, the less the 
displacement of this neuron within the physical domain. When implementing the SOM 
algorithm, if s is small enough, neurons for which ( , ) ( )m id q q r t  can be disregarded during 
adjustment step of the algorithm with preserving the accuracy, since sizes of the 
displacements are less than s(t).  
The function for lateral connections is responsible for the quality of mesh, e.g. mesh 
smoothness, shapes of mesh cells, etc. The learning radius r(t) is a decreasing function of t 
with fixed values at first and last iterations: r(1) and r(T), where (1) ( )r r T . Based on 

experiments, we selected the learning radius as     / 0,25( ) ( ) ( ) (1)0.05 ( )t Tr t r T t r r T t . 
The values r(1) and r(T) has to be selected in such a way that at first iteration all neurons fit 
into (1)( )r iB q  for any  1,...,i N  and at last iteration the neighborhood ( )( )r T mB q  contains 
only the node qm and its closest neighbors. 
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xi(t +1) = xi(t) +  ( , )
mq it q  (yt – xi(t)), (3) 

 

for all  1,...,i N , where  ( , )
mq it q  [0, 1) is a learning rate.  

At each iteration t, mesh nodes move towards the random point yt. The magnitude of nodes 
displacements is controlled by the learning rate  ( , )

mq it q . 

 
4. Strategy of learning rate selection  

 

The learning rate  ( , )
mq it q  plays a crucial role in the SOM learning algorithm as it directly 

influences the quality of resulting adaptive meshes and speed of mesh construction.  
Unlike usual approach, according to which the algorithm terminates once mesh nodes 
displacements are small enough, we propose a new strategy where the number of iterations 
T is to be fixed beforehand proportional to N, and the learning rate is to be scaled in such a 
way that all nodes are frozen after T iterations. The fact that the number of iterations T 
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have enough vectors in the training set for providing each mesh node with a possibility to 
move several times. For example, we obtained an acceptable quality of adaptive meshes if 
the number of iterations is 10 times greater than N, i.e.  10T N . It also means that in 
average each mesh node becomes a winner about 10 times during the iteration process. 
Therefore, we think that it is incorrect to talk about the number of iterations without 
mentioning the number of mesh nodes. For example, for our learning rate:  4000T , if 

 20 * 20N ;  90000T , if  30 * 30 * 30N ; and so on.  
The above technique showed good results in 1D, 2D and 3D cases and is very convenient in 
use since we can directly control the speed of learning process. The learning rate proposed 
in this Section is independent of a physical domain and mesh density function.  
The learning rate  ( , )

mq it q  is a function, which takes its values from the interval [0, 1) and 
has a view of a product of two functions: learning step and learning neighborhood: 
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The learning step (t) is a decreasing function of time and it controls the overall size of 
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where a constant s(0,1) is close to zero and fixed beforehand, r(t) is a learning radius at the 
iteration t. The shape of the function (5) is shown in Fig. 1. 
The strength of lateral connections between the neuron em and all neurons ie M , located 
inside the neighborhood ( )( )r t mB q  of radius r(t), is less than s. The function for lateral 
connections (5) satisfies the following properties.  
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Fig. 1. The shape of the function  ( , )

mq it q  for lateral connections between neurons. 
 
As a result, the winner takes the maximum displacement at each iteration. The greater the 
distance between i-th neuron and the winner in the computational domain, the less the 
displacement of this neuron within the physical domain. When implementing the SOM 
algorithm, if s is small enough, neurons for which ( , ) ( )m id q q r t  can be disregarded during 
adjustment step of the algorithm with preserving the accuracy, since sizes of the 
displacements are less than s(t).  
The function for lateral connections is responsible for the quality of mesh, e.g. mesh 
smoothness, shapes of mesh cells, etc. The learning radius r(t) is a decreasing function of t 
with fixed values at first and last iterations: r(1) and r(T), where (1) ( )r r T . Based on 

experiments, we selected the learning radius as     / 0,25( ) ( ) ( ) (1)0.05 ( )t Tr t r T t r r T t . 
The values r(1) and r(T) has to be selected in such a way that at first iteration all neurons fit 
into (1)( )r iB q  for any  1,...,i N  and at last iteration the neighborhood ( )( )r T mB q  contains 
only the node qm and its closest neighbors. 
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Thus, there are only few free parameters in the proposed learning rate, among them are 
(1)r , ( )r T  and T. In Fig. 2, diagrams of all functions are shown which take part in the 

learning rate.  

 
Fig.2. Diagrams of: a) function (t), b) function (t), c) function  (t). 

 
5. Ability of SOM algorithm to order mesh nodes 

 

The whole learning process can be divided into two stages: ordering stage and refining stage 
(Kohonen, 2001). During the ordering stage, the learning step and radius are large enough 
and all mesh nodes takes significant displacements. Therefore, even starting from random 
initial locations, the mesh nodes become ordered resembling the fixed mesh in the 
computational domain Q. During the refining stage, the learning step and radius slowly 
tend to zero and r(T) correspondingly. It leads to a mesh approximating the physical 
domain in more and more details of a border and density distribution. 
In Fig. 3 and Fig. 4, ability of the SOM algorithm to order neuron weights is demonstrated in 
2D and 3D cases. During the ordering stage the algorithm tends to reproduce a regular 
structure of the fixed mesh starting from random initial data. 

    
 1t   3t   7t   11t  

    
 15t   35t   151t (ordered)  8000t (final) 

Fig. 3. The ordering stage of SOM learning and final mesh in 2D case.  
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1t   5t   

 
 

20t  (ordered) 60000t   (final) 
Fig. 4. The ordering stage of SOM learning and final mesh in 3D case.  

 
6. Theorem of correspondence 

 

The SOM learning algorithm aims to find a mapping : n k
G Qm R R  (more specifically 

: Nm G Q ) by determining the set of weight vectors 1 ,..., Nx x . The mapping m has the 
following form:  
 

( ) arg min ( , )ii
m y d y x . (6) 

 

At best, this mapping has to satisfy the following conditions (goals of SOM learning 
(Fritzke, 1997)). 

(1) Topology preservation. If yi and yj are near each other in the input space, then neurons 
( )im ye and ( )jm ye are also nearby or ( ) ( )i jm y m y .  

(2) Equiwinning Percentage (EWP). For each i-th neuron in the map M, there are the 
same number of vectors yj in the training set H that are closer to the weight vector xi than to 
any other weight vector. This also means that each neuron at the end of learning process has 
the same probability to become a winner for a randomly chosen input vector from H. 
If these goals are satisfied, it is possible to proof that at the end of the learning process the 
resulting adaptive mesh reached desired approximation of mesh density function in a sense 
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Thus, there are only few free parameters in the proposed learning rate, among them are 
(1)r , ( )r T  and T. In Fig. 2, diagrams of all functions are shown which take part in the 

learning rate.  

 
Fig.2. Diagrams of: a) function (t), b) function (t), c) function  (t). 

 
5. Ability of SOM algorithm to order mesh nodes 

 

The whole learning process can be divided into two stages: ordering stage and refining stage 
(Kohonen, 2001). During the ordering stage, the learning step and radius are large enough 
and all mesh nodes takes significant displacements. Therefore, even starting from random 
initial locations, the mesh nodes become ordered resembling the fixed mesh in the 
computational domain Q. During the refining stage, the learning step and radius slowly 
tend to zero and r(T) correspondingly. It leads to a mesh approximating the physical 
domain in more and more details of a border and density distribution. 
In Fig. 3 and Fig. 4, ability of the SOM algorithm to order neuron weights is demonstrated in 
2D and 3D cases. During the ordering stage the algorithm tends to reproduce a regular 
structure of the fixed mesh starting from random initial data. 

    
 1t   3t   7t   11t  

    
 15t   35t   151t (ordered)  8000t (final) 

Fig. 3. The ordering stage of SOM learning and final mesh in 2D case.  
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same number of vectors yj in the training set H that are closer to the weight vector xi than to 
any other weight vector. This also means that each neuron at the end of learning process has 
the same probability to become a winner for a randomly chosen input vector from H. 
If these goals are satisfied, it is possible to proof that at the end of the learning process the 
resulting adaptive mesh reached desired approximation of mesh density function in a sense 
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of equidistribution principle. This theorem is called the Theorem of Correspondence, since it 
assigns the correspondence between goals of adaptive mesh construction in a traditional 
equidistribution sense (formulated in Section 2) and the goals of SOM learning algorithm. 
The theorem of correspondence has been formulated and proven in order to show principal 
possibility to obtain adaptive meshes with given mesh density using SOM. This theorem 
states that if the EWP goal is reached, then an analogue of equidistibution principle is 
satisfied for Voronoi cells of the adaptive mesh. 
The Voronoi cell Vi is the unbounded set of all point from G closer to xi than to any other 
mesh node, i.e.     { | ( , ) ( , ), 1,..., , }i i kV x G d x x d x x k N k i  (Okabe et al., 2000). The whole 
G then can be represented by closure of the union of disjoint Voronoi cells.  

Theorem of correspondence  
Let the EWP condition be satisfied for the map of neurons M. Then the product of the square 

of Voronoi cell Vi and the value of probability density p(xi) can be estimated by 1
N

 for all i, 

i.e.:  

 
1| | ( )i iV p x
N

,   1,...,i N . (7) 

Proof 
Let Pi be the number of elements in the sample  1{ ,..., }TH y y  which are closer to the node xi 
than to any other node, i.e.   |{ | ( ) }|i j jP y H m y i . If there are several closest nodes, the 
one from such nodes is to be chosen randomly.  
According to the definition of integral, the square of iV  can be represented as: 

 
 | | ( )

ii V
G

V x dx , (8) 

 where  ( )A x  is an indicator of a set А, i.e. 


  

1,
( )

0,A

x A
x

x A
. Let us calculate the square of Vi 

using the Monte Carlo methods (Mikhailov & Voitishek, 2006). After multiplication by the 
density ( )p x  of sample H distribution, the integral (8) has the following form: 
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i
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V x dx p x dx
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and can be considered as an expectation of the stochastic variable having the values 
 ( )

( )
iV x

p x
 

and being defined over the domain G. Using the sample H, the expectation (9) can be 
estimated by the finite sum: 
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1

( )( ) 1( )
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T

V jV

j jG

yx
p x dx

p x T p y
. (10) 

 

 

Among all items of the sum (10), there are some which correspond to the elements jy  with 
the indicator value  ( ) 0

iV jy . It just means that xi is not the closest to yj. The number of 
nonzero items in (10) is equal to Pi. After simplification, the sum (10) has the following view: 
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1 1
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V j
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y H V

y
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. (11) 

 

Further, the values ( )p y  can be approximated by the values p(xi), since ix  is close to a 
center of gravity of Vi for the majority of Voronoi cells. It is clear that with N  the error 
of such an approximation tends to zero. Finally, we have the following estimation:  
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   

  
1 1

1 1 1 1
( ) ( ) ( )

i i
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P P
i

i i
y H V y H V

P
T p y T p x Tp x

. (12) 

 

Since the EWP condition is satisfied, for each i-th neuron in the map M, there are the same 
number of vectors yj in the training set H which are closer to the weight vector xi than to any 

other weight vector. From this condition it follows that the fraction 
1iP

T N
 with T . 

Proceeding to limit in (12), we can get the following: 
 

 
1| |

( ) ( )
i

i
i i

PV
Tp x Np x

. (13) 

 

After multiplication by ( )ip x , we obtain the estimation: 
 


1| | ( )i iV p x
N

. (14) 

 

The estimation (12) is correct for all  1,...,i N . 
Now, after this theorem is proved, the traditional goals of adaptive mesh construction and 
ones of the SOM learning can be considered as equivalent. Unfortunately, there is no proof 
that the goals of SOM learning can always be reached. Moreover, if we apply the basic SOM 
algorithm, a number of notorious problems often occur leading to the failures of these goals. 
First, it is impossible to obtain an accurate approximation of border of a physical domain, as 
it can be seen from the example in Fig. 4 (c) and (d), because boundary nodes never reach 
the border and they are influenced by the border effect. Second, sometimes, boundary nodes 
can propagate into the interior of the domain, especially if the probability distribution p(x) is 
non uniform. That is the result of bad topology preservation as Fig. 6 (a) shows. Finally, the 
mesh may contain self-crossings (Fig. 6 (c)) that makes it entirely unusable for numerical 
simulations. In the next Sections, all these problems are considered in details and our 
solution to them in the form of the composite algorithm is introduced. 
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Further, the values ( )p y  can be approximated by the values p(xi), since ix  is close to a 
center of gravity of Vi for the majority of Voronoi cells. It is clear that with N  the error 
of such an approximation tends to zero. Finally, we have the following estimation:  
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Since the EWP condition is satisfied, for each i-th neuron in the map M, there are the same 
number of vectors yj in the training set H which are closer to the weight vector xi than to any 

other weight vector. From this condition it follows that the fraction 
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Proceeding to limit in (12), we can get the following: 
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After multiplication by ( )ip x , we obtain the estimation: 
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The estimation (12) is correct for all  1,...,i N . 
Now, after this theorem is proved, the traditional goals of adaptive mesh construction and 
ones of the SOM learning can be considered as equivalent. Unfortunately, there is no proof 
that the goals of SOM learning can always be reached. Moreover, if we apply the basic SOM 
algorithm, a number of notorious problems often occur leading to the failures of these goals. 
First, it is impossible to obtain an accurate approximation of border of a physical domain, as 
it can be seen from the example in Fig. 4 (c) and (d), because boundary nodes never reach 
the border and they are influenced by the border effect. Second, sometimes, boundary nodes 
can propagate into the interior of the domain, especially if the probability distribution p(x) is 
non uniform. That is the result of bad topology preservation as Fig. 6 (a) shows. Finally, the 
mesh may contain self-crossings (Fig. 6 (c)) that makes it entirely unusable for numerical 
simulations. In the next Sections, all these problems are considered in details and our 
solution to them in the form of the composite algorithm is introduced. 
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7. Border effect evaluation after applying the basic SOM model  
 

The border effect is closely connected with failure of the EWP condition. Thereby, in this 
section, the EWP condition is evaluated. According to the definition, if the EWP condition is 
satisfied, then each neuron has the same probability to become a winner. It is convenient to 
measure it statistically. In other words, the values of function ( )m y  can be recorded for all 
vectors of the training set H. 
Let a mesh be constructed by a basic SOM algorithm. For evaluation of the EWP condition, a 
winning statistics has been recorded for the constructed mesh, i.e. how many times each 
neuron became a winner. It has been found that equal winning percentage directly depends 
on the final learning radius ( )r T . If a mesh has been constructed with ( )r T  being such that 
the learning neighborhood ( )( )r T mB q  contains only the nearest neighbors of qm, then the 
winning percentage is almost the same for all neurons. But if ( )r T  is large, then the adaptive 
mesh collapses inside the physical domain and, then, boundary nodes become a winner 
more frequently. In Fig.5, the winning statistics for two different ( )r T  is shown at the mesh 
cut. On the other hand, the radius ( )r T essentially influences the mesh smoothness in such a 
way that small radius leads to unsmooth adaptive meshes, and this usually causes the 
decreasing of the accuracy of numerical simulations on these meshes. The larger the radius, 
the smoother the adaptive mesh as it is shown in Fig. 5. 

 

  
(a) (b) 

   
(c) (d) (e) 

Fig. 5. The winning statistics for the mesh constructed by the basic SOM, mesh size is 
 20 20 20 . (a) ( ) 1r T , (b) ( ) 10r T . The corresponding meshes: (c) ( ) 1r T , (d) 
( ) 10r T . The desired mesh (e) is constructed by the composite algorithm proposed in 

Section 9. 

 

In Section 9, the smoothing algorithm is proposed, which is based on SOM learning with 
large learning radius and with a technique handling the border effect.   
Let us study in details the origins of border effect in the basic SOM model. Being able to 
measure the border effect, we can handle it. To this end, the iteration number t is assumed to 
be fixed. Let us consider an interior neuron qi for which the distance to border of the 
computational domain is greater than the learning radius r. If the mesh QN is rectangular 
uniform, all neurons qj from Br(qi) as well as all strengths of lateral connections ( )

jq iq  are 

symmetrically located around qi. Therefore, as it follows from the EWP condition, the 
neuron qi has the same probability to be influenced by any other neuron qj. In the physical 
domain, it means that the node xi has the same probability to move symmetrically in all 
directions being guided by neurons from ( )r iB q . Since s is close to zero, then it is assumed 
that the mutual influence between neurons qi and ( )j r iq B q  is negligibly small.  
If the distance from qi to the border of the computational domain is less than r, then there are 
not enough neurons in ( )r iB q  for symmetry. In this case, most of the neurons in ( )r iB q  
make the neuron qi move mainly to the center of the physical domain. To balance the 
asymmetry, the neuron qi needs to move aside the border of G.  
To evaluate the asymmetry, let us consider the following characteristic of the neuron qi: 
 

1
( )

j

N

i q i
j

q 


 . (15) 

 

For each node, this characteristic is a sum of lateral connection strengths with all other 
nodes. If qi is near the border of Q, then there is not enough terms in the sum (15) 
corresponding to ( )r iB q . Therefore, i is decreasing near the border of Q. It can be clearly 
seen from the diagram in Fig. 6. All the nodes located at a distance greater than r from the 
border have the same value of this characteristic.  
Obviously, to handle the border effect, it is necessary to balance the asymmetry of lateral 
connections. It is still an opened question, how the diagrams in Fig. 5 and Fig. 6 are 
correlated with each other. In the future, this question is going to be answered in order to 
improve the EWP condition fulfillment. 
 

 
Fig. 6. Characteristic of lateral connections symmetry - values of i for the mesh cut, mesh 
size is 40 40 40  . 
 

www.intechopen.com



Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 133

 

7. Border effect evaluation after applying the basic SOM model  
 

The border effect is closely connected with failure of the EWP condition. Thereby, in this 
section, the EWP condition is evaluated. According to the definition, if the EWP condition is 
satisfied, then each neuron has the same probability to become a winner. It is convenient to 
measure it statistically. In other words, the values of function ( )m y  can be recorded for all 
vectors of the training set H. 
Let a mesh be constructed by a basic SOM algorithm. For evaluation of the EWP condition, a 
winning statistics has been recorded for the constructed mesh, i.e. how many times each 
neuron became a winner. It has been found that equal winning percentage directly depends 
on the final learning radius ( )r T . If a mesh has been constructed with ( )r T  being such that 
the learning neighborhood ( )( )r T mB q  contains only the nearest neighbors of qm, then the 
winning percentage is almost the same for all neurons. But if ( )r T  is large, then the adaptive 
mesh collapses inside the physical domain and, then, boundary nodes become a winner 
more frequently. In Fig.5, the winning statistics for two different ( )r T  is shown at the mesh 
cut. On the other hand, the radius ( )r T essentially influences the mesh smoothness in such a 
way that small radius leads to unsmooth adaptive meshes, and this usually causes the 
decreasing of the accuracy of numerical simulations on these meshes. The larger the radius, 
the smoother the adaptive mesh as it is shown in Fig. 5. 

 

  
(a) (b) 

   
(c) (d) (e) 

Fig. 5. The winning statistics for the mesh constructed by the basic SOM, mesh size is 
 20 20 20 . (a) ( ) 1r T , (b) ( ) 10r T . The corresponding meshes: (c) ( ) 1r T , (d) 
( ) 10r T . The desired mesh (e) is constructed by the composite algorithm proposed in 

Section 9. 

 

In Section 9, the smoothing algorithm is proposed, which is based on SOM learning with 
large learning radius and with a technique handling the border effect.   
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symmetrically located around qi. Therefore, as it follows from the EWP condition, the 
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directions being guided by neurons from ( )r iB q . Since s is close to zero, then it is assumed 
that the mutual influence between neurons qi and ( )j r iq B q  is negligibly small.  
If the distance from qi to the border of the computational domain is less than r, then there are 
not enough neurons in ( )r iB q  for symmetry. In this case, most of the neurons in ( )r iB q  
make the neuron qi move mainly to the center of the physical domain. To balance the 
asymmetry, the neuron qi needs to move aside the border of G.  
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It has to be noted that there are some cases when the border effect does not appear. If a map 
of neurons is closed in such a way that it is not possible to pick out boundary neurons, then 
this map does not suffer from border effect. Examples of such a maps are: map of neurons 
forming a ring, map of boundary neurons belonging to a rectangular uniform 2D and 3D 
grid, a map in the form of torus, and so on. In Fig 5(e), a 3D surface mesh is constructed 
without border effect.   
As a conclusion of this Section, let us point out that even if the EWP condition is fulfilled, 
the nodes of mesh, obtained by the basic SOM model, still do not reach the border. The 
explanation of this can be given as follows. Trying to meet the EWP condition, mesh nodes 
are getting close to the center of gravity of the corresponding Voronoi cell. Since a Voronoi 
cell is convex, then it is not possible for mesh nodes to appear on the border, at least for 
convex physical domains. It follows from this that the basic SOM model can be applied only 
for interior nodes when constructing an adaptive mesh. Therefore, in Section 9, the composite 
algorithm is proposed which is based on the alternative application of the basic SOM 
models separately to a border and to interior of the domain. 

 
8. Topology preservation after applying the basic SOM model  

 

According to the definition in Section 6, the topology preservation condition is when input 
vectors that are near to each other in the input space are mapped into nearby or the same 
neuron locations. As a measure of topology preservation at level   the quantity    can 
be used, which is defined as follows. Let us consider (together with the winning function 
( )m y ) the function of second winner: 

1,...,
( )

( ) arg min ( , )ii N
i m y

m y d y x



  . Given 2N   and   , 

the function ( )y  is defined, which answers the question whether the second winner is in 
the neighborhood of the first one in Q or not: 
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m y m yq B q

y
иначе
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Thus, the measure of topology preservation at level   is a quantity which is equal to the 
number of training vectors in H, for which the second winner is outside the neighborhood 
of the first one: | { | ( ) 1} |y H y     . It is appropriate to take the value   in such a 

way that for each node the neighborhood ( )iB q  contains the nearest neighbors of iq . A 

nonzero value of   indicates the failure of topology preservation, and non zero values of 

( )y  can help to find locations of this failures. 
In 3D space, there are a number of typical cases of topology preservation failures when 
applying the basic SOM model. These cases have equivalents in 2D space too. 

1. If the mesh density function is non uniform, then boundary nodes can propagate 
inside the physical domain being attracted by the high density of input vectors. Usually, 
such a boundary nodes never leave the attractor and it leads to undesirable bends of the 
mesh as it is shown in Fig. 7 (a). At this bands, the values of ( )y  are nonzero. 

 

2. If initial locations of mesh nodes are random, there is a probability to obtain a mesh 
with self-crossings, as it is shown in Fig. 7 (c). But the larger the learning radius (1)r , the less 
the probability of self-crossings. Just because of this at the beginning of the learning process 
the radius (1)r  should cover all the nodes. To further decrease this probability, one can use 
an initial mesh without self-crossings, for example, rectangular uniform, located somewhere 
inside the physical domain. 

3. When the configuration of physical domain is highly complex, the topology 
preservation failure can be caused by the inappropriate mesh layout, since its formation is 
based on self organization. To handle this, the coloring technique can be used, which is 
described in (Nechaeva, 2007).  
All the above cases can be overcome by the composite algorithm.  
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Fig. 7. Topology preservation failures when using the basic SOM model and the desired 
adaptive meshes constructed by the composite algorithm proposed in Section 9; (a) mesh 
nodes propagating inside the domain when the mesh density function is non uniform; 
(c) mesh self crossings. 
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It has to be noted that there are some cases when the border effect does not appear. If a map 
of neurons is closed in such a way that it is not possible to pick out boundary neurons, then 
this map does not suffer from border effect. Examples of such a maps are: map of neurons 
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( )y  can help to find locations of this failures. 
In 3D space, there are a number of typical cases of topology preservation failures when 
applying the basic SOM model. These cases have equivalents in 2D space too. 

1. If the mesh density function is non uniform, then boundary nodes can propagate 
inside the physical domain being attracted by the high density of input vectors. Usually, 
such a boundary nodes never leave the attractor and it leads to undesirable bends of the 
mesh as it is shown in Fig. 7 (a). At this bands, the values of ( )y  are nonzero. 

 

2. If initial locations of mesh nodes are random, there is a probability to obtain a mesh 
with self-crossings, as it is shown in Fig. 7 (c). But the larger the learning radius (1)r , the less 
the probability of self-crossings. Just because of this at the beginning of the learning process 
the radius (1)r  should cover all the nodes. To further decrease this probability, one can use 
an initial mesh without self-crossings, for example, rectangular uniform, located somewhere 
inside the physical domain. 

3. When the configuration of physical domain is highly complex, the topology 
preservation failure can be caused by the inappropriate mesh layout, since its formation is 
based on self organization. To handle this, the coloring technique can be used, which is 
described in (Nechaeva, 2007).  
All the above cases can be overcome by the composite algorithm.  
 

  

(a) (b) 

        
(c) (d) 

Fig. 7. Topology preservation failures when using the basic SOM model and the desired 
adaptive meshes constructed by the composite algorithm proposed in Section 9; (a) mesh 
nodes propagating inside the domain when the mesh density function is non uniform; 
(c) mesh self crossings. 

www.intechopen.com



Self-Organizing Maps136

 

9. Composite algorithm for adaptive mesh construction  
 

The idea of the composite algorithm (Nechaeva, 2006) is to combine a number of SOM 
models interacting between each other in a special way and self-organizing over their own 
set of input data. For example, all neurons in the 3D map M can be divided into two subsets: 
Mint is the set of neurons which correspond to interior nodes and form a 3D volume mesh, 
and Mb is a set of neurons which correspond to boundary ones and form a 3D surface mesh. 
In addition, the physical domain G can be divided into a border and interior. Let Hint be a 
training set consisting of vectors only from the interior of G, and Hb is a training set 
consisting of vectors from the border of G. Taking into account the SOM learning algorithm 
Alg, we have two SOM models: SOMint = < Mint, Hint, Alg > and SOMb = < Mb, Hb, Alg >. This 
kind of division seems to be the most convenient for the majority of physical domains which 
have been studied.  
The composite algorithm is based on special alternation of training for each SOM model. 
The main requirement for the composite algorithm is to provide the consistency between 
boundary and interior mesh nodes.  
Each alternation stage of the composite algorithm consists in training of all SOM models 
during a given number of iterations, is referred to as a macroiteration, and is denoted by s. 
For each map Mk, k = int, b, there is a private counter of iterations tk, and the maximum 
number of iterations Tk is given in such a way that Tk is proportional to |Mk|, i.e. to the 
number of neurons in the map Mk. Let  ( )k s  be the number of iterations at the 
macroiteration s during which the learning procedure is to be applied to the k-th SOM 
model.  

 
Composite algorithm 

(0) Set arbitrary initial weights of all neurons (0)ix ,  1,...,i N . 
(1) At the first macroiteration (s = 1), apply the procedure Alg to the general map M with 

input vectors taken from H and (1) 1stt ,  0(1)fint T , where T0 is a given number of 
iterations. 

(2) Repeat the following operations at each macroiteration s > 1 until the maximum 
number of iteration is reached:  

(a) Training of SOMb. Apply the procedure Alg to the map Mb with input vectors 
taken from Hb and   ( ) ( 1) 1b b

st fint s t s ,   ( ) ( ) ( ) 1b b
fin st bt s t s s . 

(b) Training of SOMint. Apply the procedure Alg to the map Mint , but with winner 
selection from the whole map M. Input vectors are taken from Hint. If the 
winner em is from Mb, then replace the input vector intty  by the weight vector 

xm;   int int( ) ( 1) 1st fint s t s ,   int int( ) ( ) ( ) 1fin st bt s t s s . 
 
The step (1) of the composite algorithm is an ordering stage. Application of Alg to all mesh 
nodes makes the mesh become ordered and take roughly the form of G. The number of 
iterations T0 depends on the physical domain configuration. Typically, T0 is varying from 
0.005T to 0.01T. After this step, boundary nodes are located near their appropriate border 
positions.  
The step (2) is a refining stage. Both Mint and Mb consistently fit more and more fine details 
of the interior and border of G. At this stage, at substep (a), boundary nodes have a leading 

 

role. It has been noted that boundary nodes more easily approximate the border than 
interior nodes approximate the interior of G, because in most cases the map Mb is closed 
(does not have borders). This is true for 3D space as well as 2D space. Therefore, boundary 
nodes can move within the domain even independently of the interior nodes. At substep (b), 
interior nodes always follow the boundary ones by means of special winner selection. Since 
the winner is selected among all the neurons, time to time the winning neuron is a boundary 
one. In this case, an input vector is replacing by a winner weight vector and all interior 
nodes move towards the boundary winner. This technique, first, does not let boundary 
nodes and their interior neighbors propagate inside the physical domain even if there is a 
subdomain of high density of input vectors; second, keeps a topological connection between 
interior nodes and their nearest boundary neighbors; and third, excludes mesh self 
crossings, if there is no self crossings among boundary nodes (that is easy to handle).  
We found that the form of functions  ( )k s  for defining the number of iterations at each 
macroiteration is not crucial for the composite algorithm. The resulting mesh is quite the 
same for different functions  ( )k s . For example, these functions can be assigned as 
 ( ) /k ks T S  for  1s  and   0(1)k T , where S is the maximum number of macroiterations. 
But sometimes, it is possible to accelerate the mesh construction by appropriate selection of 
 ( )k s . For example, good results could be obtained if  ( )b s increases and int( )s  decreases 
(Fig. 8). The acceleration is achieved because the boundary nodes quickly take correct 
distribution along the border of G and then get frozen giving the interior nodes an 
advantage until the termination of the composite algorithm. The functions  ( )k s  also can be 
chosen depending on the physical domain configuration.  

 

Fig. 8. Diagrams of the functions ( )k  and  ( )k . 
  
In Fig. 9, some examples of adaptive meshes constructed by the composite algorithm in 2D 
and 3D cases are shown. 
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9. Composite algorithm for adaptive mesh construction  
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consisting of vectors from the border of G. Taking into account the SOM learning algorithm 
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kind of division seems to be the most convenient for the majority of physical domains which 
have been studied.  
The composite algorithm is based on special alternation of training for each SOM model. 
The main requirement for the composite algorithm is to provide the consistency between 
boundary and interior mesh nodes.  
Each alternation stage of the composite algorithm consists in training of all SOM models 
during a given number of iterations, is referred to as a macroiteration, and is denoted by s. 
For each map Mk, k = int, b, there is a private counter of iterations tk, and the maximum 
number of iterations Tk is given in such a way that Tk is proportional to |Mk|, i.e. to the 
number of neurons in the map Mk. Let  ( )k s  be the number of iterations at the 
macroiteration s during which the learning procedure is to be applied to the k-th SOM 
model.  
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(0) Set arbitrary initial weights of all neurons (0)ix ,  1,...,i N . 
(1) At the first macroiteration (s = 1), apply the procedure Alg to the general map M with 

input vectors taken from H and (1) 1stt ,  0(1)fint T , where T0 is a given number of 
iterations. 

(2) Repeat the following operations at each macroiteration s > 1 until the maximum 
number of iteration is reached:  

(a) Training of SOMb. Apply the procedure Alg to the map Mb with input vectors 
taken from Hb and   ( ) ( 1) 1b b

st fint s t s ,   ( ) ( ) ( ) 1b b
fin st bt s t s s . 

(b) Training of SOMint. Apply the procedure Alg to the map Mint , but with winner 
selection from the whole map M. Input vectors are taken from Hint. If the 
winner em is from Mb, then replace the input vector intty  by the weight vector 

xm;   int int( ) ( 1) 1st fint s t s ,   int int( ) ( ) ( ) 1fin st bt s t s s . 
 
The step (1) of the composite algorithm is an ordering stage. Application of Alg to all mesh 
nodes makes the mesh become ordered and take roughly the form of G. The number of 
iterations T0 depends on the physical domain configuration. Typically, T0 is varying from 
0.005T to 0.01T. After this step, boundary nodes are located near their appropriate border 
positions.  
The step (2) is a refining stage. Both Mint and Mb consistently fit more and more fine details 
of the interior and border of G. At this stage, at substep (a), boundary nodes have a leading 

 

role. It has been noted that boundary nodes more easily approximate the border than 
interior nodes approximate the interior of G, because in most cases the map Mb is closed 
(does not have borders). This is true for 3D space as well as 2D space. Therefore, boundary 
nodes can move within the domain even independently of the interior nodes. At substep (b), 
interior nodes always follow the boundary ones by means of special winner selection. Since 
the winner is selected among all the neurons, time to time the winning neuron is a boundary 
one. In this case, an input vector is replacing by a winner weight vector and all interior 
nodes move towards the boundary winner. This technique, first, does not let boundary 
nodes and their interior neighbors propagate inside the physical domain even if there is a 
subdomain of high density of input vectors; second, keeps a topological connection between 
interior nodes and their nearest boundary neighbors; and third, excludes mesh self 
crossings, if there is no self crossings among boundary nodes (that is easy to handle).  
We found that the form of functions  ( )k s  for defining the number of iterations at each 
macroiteration is not crucial for the composite algorithm. The resulting mesh is quite the 
same for different functions  ( )k s . For example, these functions can be assigned as 
 ( ) /k ks T S  for  1s  and   0(1)k T , where S is the maximum number of macroiterations. 
But sometimes, it is possible to accelerate the mesh construction by appropriate selection of 
 ( )k s . For example, good results could be obtained if  ( )b s increases and int( )s  decreases 
(Fig. 8). The acceleration is achieved because the boundary nodes quickly take correct 
distribution along the border of G and then get frozen giving the interior nodes an 
advantage until the termination of the composite algorithm. The functions  ( )k s  also can be 
chosen depending on the physical domain configuration.  

 

Fig. 8. Diagrams of the functions ( )k  and  ( )k . 
  
In Fig. 9, some examples of adaptive meshes constructed by the composite algorithm in 2D 
and 3D cases are shown. 

 
 

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40

t 

k 

(k) 

(k) 

www.intechopen.com



Self-Organizing Maps138

 

  
 

 

  
 

Fig. 9. Examples of meshes constructed by the composite algorithm.  

 
10. Topology preservation after applying the basic SOM model 
 

The composite algorithm overcomes the border effect for small values of learning radius. 
However, a small radius leads to unsmooth adaptive meshes, and this usually causes the 
decreasing of the accuracy of numerical simulations on these meshes. The aim of this Section 
is to propose the technique that allows us to use large learning radius for obtaining the 
smooth enough adaptive meshes but without the border effect. 
Let us consider the case when QN is a rectangular uniform mesh. It means that each node of 
QN has four neighbors, and distances between neighboring nodes are equal to dQ. To 
measure the smoothness of a quadrilateral adaptive mesh, let us consider a notion of a mesh 
line which is a set of nodes being the image of a line of the fixed uniform mesh QN. 
Smoothness of a mesh line can be measured by the sine values of angles between two 
segments, connecting the neighboring nodes in the mesh line, in a sense that the less the 
quantity of sign inversions and the amplitude of these values, the smoother the line.  
Our experiments showed that the mesh smoothness depends on the relation between 
learning step and radius. Given a fixed learning step, the larger the radius, the smoother the 
mesh. It can be clearly seen from the example below. In Fig. 10(a), the mesh constructed by 
the composite algorithm with artificially small final radius r(T) is shown. This mesh is 
unsmooth even visually. For comparison, in Fig 10(b), the mesh is shown which has been 
constructed with the final radius 2 times greater. Boundary nodes did not move in this 
experiment, but they were allowed to become a winner. As it is shown in Fig. 10(c), the 
smoothness of the last mesh is much better because the sine values are comparatively small 

 

and have less sign inversions. But the resulting mesh is inappropriate for numerical 
simulations because of bad approximation of the border of the physical domain. 

 

  
(a) 

 
(b) 

 

 

(c) 

Fig. 10. Measure of mesh smoothness; (a) the mesh obtained by the composite algorithm 
with the artificially small final radius r(T) = 0.5; (b) the mesh with final radius r(T) = 6; 
(c) diagrams of sine values for the meshes (a) and (b) respectively.    

 
This experiment is a bright demonstration of the border effect in the SOM, which appears 
when the learning radius is large. The necessary condition for obtaining a smooth enough 
adaptive mesh is a large learning radius. Therefore, the main problem while smoothing is to 
handle the border effect. 
The general scheme of adaptive mesh construction with employment of the smoothing 
technique proposed below is as follows. The composite algorithm constructs adaptive mesh 
with the learning radius being suitable for proper mesh nodes distribution and for 
fulfillment of the EWP condition. Boundary nodes of this mesh are distributed along the 
border of G. Starting from this mesh, a SOM-like procedure is applied during the a fixed 
number of iterations with the constant learning rate, i.e. ( )r t r ,  ( )t ,  ( , ) ( )

m mq i q it q q , 
where the learning radius r is comparatively large and the learning step  is small. This 
procedure adjusts locations only of the interior mesh nodes and can be regarded as the last 
stage of the composite algorithm. 

0
0 ,05

0 ,1
0 ,15

0 ,2
0 ,25

0 ,3
0 ,35

0 ,4
0 ,45

1 3 5 7 9 11 13 15 17 19 21 23 25 27

(a) 

(b) 

www.intechopen.com



Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 139

 

  
 

 

  
 

Fig. 9. Examples of meshes constructed by the composite algorithm.  

 
10. Topology preservation after applying the basic SOM model 
 

The composite algorithm overcomes the border effect for small values of learning radius. 
However, a small radius leads to unsmooth adaptive meshes, and this usually causes the 
decreasing of the accuracy of numerical simulations on these meshes. The aim of this Section 
is to propose the technique that allows us to use large learning radius for obtaining the 
smooth enough adaptive meshes but without the border effect. 
Let us consider the case when QN is a rectangular uniform mesh. It means that each node of 
QN has four neighbors, and distances between neighboring nodes are equal to dQ. To 
measure the smoothness of a quadrilateral adaptive mesh, let us consider a notion of a mesh 
line which is a set of nodes being the image of a line of the fixed uniform mesh QN. 
Smoothness of a mesh line can be measured by the sine values of angles between two 
segments, connecting the neighboring nodes in the mesh line, in a sense that the less the 
quantity of sign inversions and the amplitude of these values, the smoother the line.  
Our experiments showed that the mesh smoothness depends on the relation between 
learning step and radius. Given a fixed learning step, the larger the radius, the smoother the 
mesh. It can be clearly seen from the example below. In Fig. 10(a), the mesh constructed by 
the composite algorithm with artificially small final radius r(T) is shown. This mesh is 
unsmooth even visually. For comparison, in Fig 10(b), the mesh is shown which has been 
constructed with the final radius 2 times greater. Boundary nodes did not move in this 
experiment, but they were allowed to become a winner. As it is shown in Fig. 10(c), the 
smoothness of the last mesh is much better because the sine values are comparatively small 

 

and have less sign inversions. But the resulting mesh is inappropriate for numerical 
simulations because of bad approximation of the border of the physical domain. 

 

  
(a) 

 
(b) 

 

 

(c) 

Fig. 10. Measure of mesh smoothness; (a) the mesh obtained by the composite algorithm 
with the artificially small final radius r(T) = 0.5; (b) the mesh with final radius r(T) = 6; 
(c) diagrams of sine values for the meshes (a) and (b) respectively.    

 
This experiment is a bright demonstration of the border effect in the SOM, which appears 
when the learning radius is large. The necessary condition for obtaining a smooth enough 
adaptive mesh is a large learning radius. Therefore, the main problem while smoothing is to 
handle the border effect. 
The general scheme of adaptive mesh construction with employment of the smoothing 
technique proposed below is as follows. The composite algorithm constructs adaptive mesh 
with the learning radius being suitable for proper mesh nodes distribution and for 
fulfillment of the EWP condition. Boundary nodes of this mesh are distributed along the 
border of G. Starting from this mesh, a SOM-like procedure is applied during the a fixed 
number of iterations with the constant learning rate, i.e. ( )r t r ,  ( )t ,  ( , ) ( )

m mq i q it q q , 
where the learning radius r is comparatively large and the learning step  is small. This 
procedure adjusts locations only of the interior mesh nodes and can be regarded as the last 
stage of the composite algorithm. 

0
0 ,05

0 ,1
0 ,15

0 ,2
0 ,25

0 ,3
0 ,35

0 ,4
0 ,45

1 3 5 7 9 11 13 15 17 19 21 23 25 27

(a) 

(b) 

www.intechopen.com



Self-Organizing Maps140

 

After the termination of the composite algorithm, all mesh nodes are distributed over the 
physical domain according to the given mesh density function. We assume here that the 
EWP condition is satisfied for this mesh. Therefore, the probability to be a winner is equal 
to 1/N.  
As it has been shown in Section 7, to eliminate the border effect, it is necessary to balance the 
asymmetry of lateral connections and to achieve the same value of i defined in (15) for all 
neurons. We propose the technique that allows us to use the boundary nodes as 
representatives of missing neurons near the border of Q. 
Let us imagine that for each boundary neuron, there are K virtual neurons located outside 
the computational domain. These virtual neurons do not exist in the algorithm but they will 
help to understand the underlying idea of the proposed technique. The exact locations of 
virtual neurons are unknown. The only available information is that the distance between k-
th virtual neuron and the corresponding boundary neuron qm is equal to kdQ,  1,...,k K , 
where    / QK r d  and 


    

arg min( )
n

a a n  is the smallest integer no less than a. 

To involve virtual neurons into learning process, the following questions are to be resolved: 
(1) in what conditions a virtual neuron becomes a winner? (2) what are the strengths of 
lateral connections between neurons qi,  1,...,i N , and virtual ones? (3) what are the 
directions and magnitudes of mesh nodes displacements in the physical domain when the 
winner is a virtual neuron? 

Answer to the question (1) 
In the case of presence of virtual neurons, winner selection can not be based only on the 
closeness to the random point, because there are no points outside the physical domain. 
Therefore, at each iteration, first of all, it is necessary to decide from which kind of neurons 
the winner is to be selected. Since the EWP condition is satisfied, virtual neurons have the 
same probability to become a winner as all the other neurons. The probability of virtual 
neurons to become a winner is equal to  int/( )b bN K N K N , and hence, an interior neuron 
can be a winner with the probability   int1 /( )b bN K N K N . To select the winner among 
virtual neurons, an input vector y is selected from the boundary training set Hb, a boundary 
node which is closest to y is determined, and then the k-th virtual neuron randomly selected 
(with uniform probability) from the set of virtual neurons, which correspond to the 
determined boundary node, is assigned to be a winner. 

Answer to the question (2) 
To define lateral connections strengths between virtual and ordinary neurons, it is necessary 
to know distances between them in the computational domain. The distance between k-th 
virtual neuron and the neuron qi is assumed to be equal to ( , )m i Qd q q kd , where qm is the 
boundary neuron corresponding to the virtual neuron. This distance is approximate, 
because the exact location of this virtual neuron in the computational domain is unknown. 
The lateral connection between k-th virtual neuron related to the boundary neuron qm and 
the neuron qi is taken as follows. 
 


 

  
 

2( , )

, ( )
m i Q

m

d q q kd
r

q k iq s . 
 

 

Answer to the question (3) 
To specify the directions and magnitudes of the mesh nodes displacements in the physical 
domain when the winner is a virtual neuron, it is proposed to use the random point y on the 
border of G, which has been generated for winner selection from the virtual neurons. Let us 
remind that only interior mesh nodes can move during the smoothing stage. For each 
interior node xi, the direction of its displacement is given by the vector  ( )iy x t , i.e. the 
node xi moves toward the point y located on the border of G. The magnitude of the 
displacement is equal to   , ( ) ( ) ( , ( ))

mq k i i iq v t d y x t , where  ( ) 1 / ( , )i Q m iv t kd d q q  and qm is 
the boundary neuron which corresponds to the virtual winner. This value has been found 
on the ground of assumption that the ratio between ( , )m id q q  and ( , ( ))id y x t  is equal to the 
ratio between ( , )m i Qd q q kd  and ( ) ( , ( ))i iv t d y x t . Since the rule is applied only to interior 
nodes, then ( , ) 0m id q q . 
Taking into account virtual neurons, the characteristic (15) changes and is equal to: 

 

  
  

   ,
1 1 1

( ) ( )
b

j m

NN K

i q i q k i
j k m

q q , (16) 

 

where  1,..., bm N  is an index of a boundary node. In Fig. 11(c), the diagrams of  i  and  i  
for a mesh cut are shown. It can be seen that  i is almost constant for all neurons in this cut. 
Therefore, the proposed technique balances the asymmetry of lateral connection near the 
border.  
 

   
(a) (b) (c) 

Fig. 11. Characteristic of lateral connections symmetry; (a) values of i  without virtual 
neurons; (b) values of  i with virtual neurons; (c) the cut of diagrams (a) and (b) where 
dashed grey line is correspond to (a) and solid black line is correspond to (b). 

 
The algorithm of the smoothing stage is a SOM-like procedure with constant learning 
parameters. The learning radius r is chosen to be comparatively large, but it is bounded by 
the curvature of the border of G. The learning step  is to be small, because fine tuning is 
needed for smoothing and it does not impair essentially the mesh density approximation. 
Besides, when a virtual neuron is a winner, an imaginary random point is outside the 
physical domain, which can lead to the mesh nodes crossing the border of G. To exclude this 
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After the termination of the composite algorithm, all mesh nodes are distributed over the 
physical domain according to the given mesh density function. We assume here that the 
EWP condition is satisfied for this mesh. Therefore, the probability to be a winner is equal 
to 1/N.  
As it has been shown in Section 7, to eliminate the border effect, it is necessary to balance the 
asymmetry of lateral connections and to achieve the same value of i defined in (15) for all 
neurons. We propose the technique that allows us to use the boundary nodes as 
representatives of missing neurons near the border of Q. 
Let us imagine that for each boundary neuron, there are K virtual neurons located outside 
the computational domain. These virtual neurons do not exist in the algorithm but they will 
help to understand the underlying idea of the proposed technique. The exact locations of 
virtual neurons are unknown. The only available information is that the distance between k-
th virtual neuron and the corresponding boundary neuron qm is equal to kdQ,  1,...,k K , 
where    / QK r d  and 


    

arg min( )
n

a a n  is the smallest integer no less than a. 

To involve virtual neurons into learning process, the following questions are to be resolved: 
(1) in what conditions a virtual neuron becomes a winner? (2) what are the strengths of 
lateral connections between neurons qi,  1,...,i N , and virtual ones? (3) what are the 
directions and magnitudes of mesh nodes displacements in the physical domain when the 
winner is a virtual neuron? 

Answer to the question (1) 
In the case of presence of virtual neurons, winner selection can not be based only on the 
closeness to the random point, because there are no points outside the physical domain. 
Therefore, at each iteration, first of all, it is necessary to decide from which kind of neurons 
the winner is to be selected. Since the EWP condition is satisfied, virtual neurons have the 
same probability to become a winner as all the other neurons. The probability of virtual 
neurons to become a winner is equal to  int/( )b bN K N K N , and hence, an interior neuron 
can be a winner with the probability   int1 /( )b bN K N K N . To select the winner among 
virtual neurons, an input vector y is selected from the boundary training set Hb, a boundary 
node which is closest to y is determined, and then the k-th virtual neuron randomly selected 
(with uniform probability) from the set of virtual neurons, which correspond to the 
determined boundary node, is assigned to be a winner. 

Answer to the question (2) 
To define lateral connections strengths between virtual and ordinary neurons, it is necessary 
to know distances between them in the computational domain. The distance between k-th 
virtual neuron and the neuron qi is assumed to be equal to ( , )m i Qd q q kd , where qm is the 
boundary neuron corresponding to the virtual neuron. This distance is approximate, 
because the exact location of this virtual neuron in the computational domain is unknown. 
The lateral connection between k-th virtual neuron related to the boundary neuron qm and 
the neuron qi is taken as follows. 
 


 

  
 

2( , )

, ( )
m i Q

m

d q q kd
r

q k iq s . 
 

 

Answer to the question (3) 
To specify the directions and magnitudes of the mesh nodes displacements in the physical 
domain when the winner is a virtual neuron, it is proposed to use the random point y on the 
border of G, which has been generated for winner selection from the virtual neurons. Let us 
remind that only interior mesh nodes can move during the smoothing stage. For each 
interior node xi, the direction of its displacement is given by the vector  ( )iy x t , i.e. the 
node xi moves toward the point y located on the border of G. The magnitude of the 
displacement is equal to   , ( ) ( ) ( , ( ))

mq k i i iq v t d y x t , where  ( ) 1 / ( , )i Q m iv t kd d q q  and qm is 
the boundary neuron which corresponds to the virtual winner. This value has been found 
on the ground of assumption that the ratio between ( , )m id q q  and ( , ( ))id y x t  is equal to the 
ratio between ( , )m i Qd q q kd  and ( ) ( , ( ))i iv t d y x t . Since the rule is applied only to interior 
nodes, then ( , ) 0m id q q . 
Taking into account virtual neurons, the characteristic (15) changes and is equal to: 

 

  
  

   ,
1 1 1

( ) ( )
b

j m

NN K

i q i q k i
j k m

q q , (16) 

 

where  1,..., bm N  is an index of a boundary node. In Fig. 11(c), the diagrams of  i  and  i  
for a mesh cut are shown. It can be seen that  i is almost constant for all neurons in this cut. 
Therefore, the proposed technique balances the asymmetry of lateral connection near the 
border.  
 

   
(a) (b) (c) 

Fig. 11. Characteristic of lateral connections symmetry; (a) values of i  without virtual 
neurons; (b) values of  i with virtual neurons; (c) the cut of diagrams (a) and (b) where 
dashed grey line is correspond to (a) and solid black line is correspond to (b). 

 
The algorithm of the smoothing stage is a SOM-like procedure with constant learning 
parameters. The learning radius r is chosen to be comparatively large, but it is bounded by 
the curvature of the border of G. The learning step  is to be small, because fine tuning is 
needed for smoothing and it does not impair essentially the mesh density approximation. 
Besides, when a virtual neuron is a winner, an imaginary random point is outside the 
physical domain, which can lead to the mesh nodes crossing the border of G. To exclude this 
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situation, the learning step should satisfy the following condition:   (1 / ( , )) 1Q m ikd d q q  
for any boundary neuron qm and interior neuron qi. From this the following condition can be 
obtained. 


 

       , ,

( , ) 1min
( , ) 1

Qm i

m i k
m i Q Q Q

dd q q
d q q kd d Kd K

. (17) 

 
Smoothing Stage Algorithm 
Repeat the following operations during the fixed number of iterations.  

1. Generate a random number   from [0,1] with uniform probability distribution. 
2. If    int int0, /( )bN N K N , then perform a SOM-like procedure which consists in 

the following: 
a) Take randomly an input vector y from G using the probability distribution ( )p x . 
b) Select a winning node ( )mx t  among all the neurons. If ( )mx t  is a boundary 

neuron, then replace an input vector with the weights of the winning neuron: 
: ( )my x t . 

c) Adjust the weights only of the interior neurons according to the rule: 
 

   ( 1) ( ) ( )( ( ))
mi i q i ix t x t q y x t  

 

3. If    int int/( ), 1bN N K N , then perform the following operations: 
a) Take randomly an input vector y from the border of G with the probability 

distribution 


( )
G

p x . 
b) Select the boundary node ( )mx t  which is closest to the point y.  
c) Choose randomly the number k from {1,..., }K . 
d) Adjust the weights only of the interior neurons according to the rule: 
 

     ,( 1) ( ) ( ) 1 / ( , ) ( ( ) ( ))
mi i q k i Q m i m ix t x t q kd d q q x t x t . 

 

It has to be again pointed out that virtual neurons do not exist, and thus, there is no need to 
change the structure of the fixed mesh when counteracting the border effect. Additionally, 
our efforts have been directed towards the making of the learning rule as simple as possible 
because of the following reasons: (1) to safe an inherent parallelism of the SOM algorithm 
which consists in that all neurons are processed according to the same rule independently of 
each other; (2) to avoid problems when constructing the mesh on a complex multiply-
connected domain, i.e. the ones with a single or multiple holes, since the border effect is to 
be controlled at each of the borders. 

 
10. Quality of resulting adaptive meshes  
 

There are generally accepted quality criteria for quadrilateral 2D and 3D meshes such as the 
criteria of cell convexity and oblongness, the criterion of mesh lines 
orthogonality (Prokopov, 1989). In Table 1, possible and admissible values of these criteria 

 

are shown. Also, Table 1 contains the values of criteria for the constructed adaptive mesh, 
shown in Fig. 9 (b). The values are in the admissible range. Negative values of convexity and 
orthogonality criteria indicate that there are some non convex cells in the mesh.  
 

Quality criterion Values 
Possible/Admissible/Best 

Values for Fig. 8(b) 
Average/Min 

Cell convexity ( ;1] /[0;1] / 1  

before smoothing 
0.825896 / -0.072630 

after smoothing 
0.927001 / 0.112040 

Mesh planes 
orthogonality 

(min value of the sin of 
cell angles) 

[ 1;1] /[0;1] / 1  

before smoothing 
0.810640 / -0.034921 

after smoothing 
0.871268 / 0.158070 

Cell oblongness 
(ratio between max and 

min edges of a cell) 

(0;1] / depending on a 
problem / 1 

before smoothing 
0.532211 / 0.000375 

after smoothing 
0.584676 / 0.098801 

Table 1. Mesh quality evaluation. 

 
11. Conclusion  
 

The main result of this investigation is that we proposed an efficient method of adaptive 
regular mesh construction in 2D and 3D space based on Self Organizing Maps, which does 
not require solving complicated partial differential equations in order to achieve an 
acceptable quality of adaptive meshes. The principal possibility of construction adaptive 
meshes using the SOM models has been proved in the theorem of correspondence.  
We believe that the proposed approach to efficient and automatic adaptive mesh 
construction will contribute to the theory and algorithms of mesh methods. In the future, the 
neural network approach will be extended to construction of moving structured adaptive 
meshes based on SOM-like models and unstructured adaptive meshes (Bohn, 1997) based 
on other self organizing models like Growing Neural Gas and Growing Cell Structures 
(Fritzke, 1997). The approach seems to be useful especially for building real life geometrical 
models from point clouds measured by lazer scanners, tomography devices, echo sounding, 
etc. 
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