
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 123

Using Self Organizing Maps for 3D surface and volume adaptive mesh
generation

Olga Nechaeva

x

Using Self Organizing Maps for 3D surface and
volume adaptive mesh generation

Olga Nechaeva

Novosibirsk State University, NSU-Intel Laboratory
Russia

1. Introduction

Adaptive mesh methods are commonly used to improve the accuracy of numerical solution
of problems without essential increase in the number of mesh nodes (Lebedev et al., 2002).
Within the scope of all adaptive mesh methods, there is an important class of methods in
which the mesh is an image under an appropriate mapping of a fixed mesh over a
computational domain (Bern & Plassmann, 1999).
Most of widely used conventional methods from the above class, such as equidistribution
method (Shokina, 2001), Thompson’s method (Thompson et al., 1985), elliptic method
(Liseikin, 1999), etc. determine the mapping by solving a complicated system of nonlinear
partial differential equations (PDEs). This often leads to significant difficulties. First, the
convergence of numerical solution of these PDEs highly depends on an initial mesh,
requires fixing boundary mesh nodes beforehand and imposes quite strong limitations on
the properties of mesh density function (Khakimzyanov et al., 2001). Second, efficient
parallelization of solvers for the PDEs meets overwhelming difficulties. Finally, the PDEs for
mesh construction are not universal and need to be proposed for 1D, 2D or 3D spaces
specifically. The complexity of numerical solution of these PDEs essentially grows with
increasing the dimensionalities (Khakimzyanov et al., 2001). Moreover, there is no methods
and techniques in the above mentioned class that can provide a fully automatic adaptive
mesh construction in 3D case.
This chapter demonstrates the great ability of the Kohonen’s Self Organizing Maps (SOM)
(Kohonen, 2001) to perform high quality adaptive mesh construction. Since the SOM model
provides a topology preserving mapping of high-dimensional data onto a low-dimensional
space with approximation of input data distribution, the proposed mesh construction
method uses the same algorithms for different dimensionalities of a physical domain that
proves its universality.
In our investigation, the classical SOM model has been studied and modified in order to
overcome border effect and provide topology preservation. Based on the ideas in
(Nechaeva, 2006), the composition of SOM models of different dimensionalities has been
proposed which alternates mesh construction on the border and inside a physical domain. It
has been shown that the SOM learning algorithm can be used as a mesh smoothing tool. All
the algorithms has been implemented using the GeomBox (Bessmeltsev, 2009) and

9

www.intechopen.com

Self-Organizing Maps124

GeomRandom (Nechaeva, 2009) packages and tested on a number of physical domains. The
quality of resulting meshes is acceptable according to the commonly used quality criteria.
In order to support this alternative approach to mesh generation, a Theorem of
Correspondence is proved, that states that goals of traditional PDE approach to construction
of adaptive meshes from the considered class are equivalent to the goals of learning for Self
Organizing Maps.
The obtained results showed that the neural network approach provides us a highly
parallelizable technique (Nechaeva, 2005) for automatic construction of qualitative adaptive
meshes and possesses the following properties: (1) due to the self organizing principles the
algorithm transforms the mesh automatically, starting with arbitrary initial nodes positions,
and does not require to fix the boundary nodes beforehand; (2) stochastic nature of the
algorithm enables us to illuminate any limitations on the mesh density function; (3) internal
parallelism of the method allows us to parallelize the mesh construction process, taking into
account the requirements on the parallel implementation of a problem to be solved on the
mesh; (4) the method uses the same algorithms for different dimensionalities of a physical
domain that proves the universality of the proposed method.

2. Adaptive mesh construction: problem statement

In order to emphasize that the neural network approach is universal from the point of view
of space dimensionality, the problem statement, methods and algorithms are formulated
here for arbitrary dimensionalities.
Let G be a physical domain in a Euclidean space n

GR with physical coordinates
 1(,...,)nx x x . An adaptive mesh  1{ ,..., }N NG x x is to be constructed over G, where
 1(,...,)n

i i ix x x G ,  1,...,i N are the mesh nodes. Let Q be a computational domain in a
Euclidean space k

QR , k n with coordinates  1(,...,)kq q q . A mesh  1{ ,..., }N NQ q q is fixed

over Q, where iq Q ,  1(,...,)k
i i iq q q ,  1,...,i N . Let a minimal distance among all pairs of

nodes in QN be equal to dQ . Usually, the fixed mesh QN is rectangular and uniform, then dQ
is just the distance between neighboring nodes. Also, let us denote by  ()B q a bounded
neighborhood of the point q in Q, where  is a radius of the neighborhood, i.e.

   () { | (,) }k
QB q p R d p q , where  (,)d is the Euclid distance.

The desired density of an adaptive mesh is given by a mesh density function w : G  R+.
Density of the mesh GN is to approximate the function w in a sense of the equidistribution
principle (Shokina, 2001). According to this principle, the product of a mesh cell area and
the value of w, associated with this cell, should be the same for all mesh cells. As the
consequence, the greater the value of w, the smaller the corresponding cell area and, then,
the higher the density of the adaptive mesh.
The goal is to find a mapping of Q onto G which transforms the mesh QN into the adaptive
one GN with the given mesh density. The method of mapping determination is required to
ensure that the boundary nodes of QN are automatically transformed into the nodes
distributed along the border of G. At this point, the proposed problem statement differs
from the traditional one where one needs to have boundary nodes already distributed along

the border (Shokina, 2001). Let Nb be the number of boundary nodes, and Nint be the

number of the interior ones,  int {1,..., }bN N N and  intbN N .

3. Correspondence between adaptive meshes and Self Organizing Maps

The SOM is a neural network model that is able to perform a mapping from input to output
space with topology preservation and approximation of input data distribution. When
applying the SOM model for adaptive mesh construction, the input space, which contains
the physical domain, is n

GR and the output space is k
QR .

The SOM model can be considered as a triplet < M, H, Alg >: map of neurons (M), training
set (H) and learning algorithm (Alg). The map of neurons is the set of neurons

 1{ ,..., }NM e e where each neuron has a location assigned by coordinates of the fixed node qi
in the output space k

QR . The number of neurons in the map M is equal to the number of
mesh nodes N. It means that each i-th mesh node corresponds to the neuron ei
(Nechaeva, 2004). There is a weight vector associated with each neuron. Weight vector of the
neuron ei is an element of input space and assigned by the coordinates of xi within the
physical domain G. These coordinates can be found by the learning algorithm Alg.
Therefore, the neuron is a pair ei = (qi, xi).
In order to obtain the desired distribution of xi over G in a sense of equidistribution
principle, a training set is to be a sample of the probability distribution p(x) being equal to
the normalized mesh density function w(x):




()()
()

G

w xp x
w x dx

, (1)

Let  1{ ,..., }TH y y be a training set corresponding to (1), where T is the set size, ty G ,
 1,...,t T .

A basic SOM learning algorithm proposed by Kohonen (Kohonen, 2001) (formulated in
terms of “mesh nodes”), where  1stt and fint T , is the following.

The procedure Alg.

1. Set arbitrary initial locations of mesh nodes xi(0) for all  1,...,i N .
2. Repeat the following operations at each iteration  ,...,st fint t t :

a. Take the next vector yt from the training set H.
b. Calculate the Euclidean distances  (,)d between yt and all nodes xi(t) and

choose the node xm(t) which is closest to yt, i.e.


 

1,...,
() arg min (, ()).t t ii N

m m y d y x t (2)

The node xm(t) is called a winner.
c. Adjust locations of mesh nodes using the following rule:

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 125

GeomRandom (Nechaeva, 2009) packages and tested on a number of physical domains. The
quality of resulting meshes is acceptable according to the commonly used quality criteria.
In order to support this alternative approach to mesh generation, a Theorem of
Correspondence is proved, that states that goals of traditional PDE approach to construction
of adaptive meshes from the considered class are equivalent to the goals of learning for Self
Organizing Maps.
The obtained results showed that the neural network approach provides us a highly
parallelizable technique (Nechaeva, 2005) for automatic construction of qualitative adaptive
meshes and possesses the following properties: (1) due to the self organizing principles the
algorithm transforms the mesh automatically, starting with arbitrary initial nodes positions,
and does not require to fix the boundary nodes beforehand; (2) stochastic nature of the
algorithm enables us to illuminate any limitations on the mesh density function; (3) internal
parallelism of the method allows us to parallelize the mesh construction process, taking into
account the requirements on the parallel implementation of a problem to be solved on the
mesh; (4) the method uses the same algorithms for different dimensionalities of a physical
domain that proves the universality of the proposed method.

2. Adaptive mesh construction: problem statement

In order to emphasize that the neural network approach is universal from the point of view
of space dimensionality, the problem statement, methods and algorithms are formulated
here for arbitrary dimensionalities.
Let G be a physical domain in a Euclidean space n

GR with physical coordinates
 1(,...,)nx x x . An adaptive mesh  1{ ,..., }N NG x x is to be constructed over G, where
 1(,...,)n

i i ix x x G ,  1,...,i N are the mesh nodes. Let Q be a computational domain in a
Euclidean space k

QR , k n with coordinates  1(,...,)kq q q . A mesh  1{ ,..., }N NQ q q is fixed

over Q, where iq Q ,  1(,...,)k
i i iq q q ,  1,...,i N . Let a minimal distance among all pairs of

nodes in QN be equal to dQ . Usually, the fixed mesh QN is rectangular and uniform, then dQ
is just the distance between neighboring nodes. Also, let us denote by  ()B q a bounded
neighborhood of the point q in Q, where  is a radius of the neighborhood, i.e.

   () { | (,) }k
QB q p R d p q , where  (,)d is the Euclid distance.

The desired density of an adaptive mesh is given by a mesh density function w : G  R+.
Density of the mesh GN is to approximate the function w in a sense of the equidistribution
principle (Shokina, 2001). According to this principle, the product of a mesh cell area and
the value of w, associated with this cell, should be the same for all mesh cells. As the
consequence, the greater the value of w, the smaller the corresponding cell area and, then,
the higher the density of the adaptive mesh.
The goal is to find a mapping of Q onto G which transforms the mesh QN into the adaptive
one GN with the given mesh density. The method of mapping determination is required to
ensure that the boundary nodes of QN are automatically transformed into the nodes
distributed along the border of G. At this point, the proposed problem statement differs
from the traditional one where one needs to have boundary nodes already distributed along

the border (Shokina, 2001). Let Nb be the number of boundary nodes, and Nint be the

number of the interior ones,  int {1,..., }bN N N and  intbN N .

3. Correspondence between adaptive meshes and Self Organizing Maps

The SOM is a neural network model that is able to perform a mapping from input to output
space with topology preservation and approximation of input data distribution. When
applying the SOM model for adaptive mesh construction, the input space, which contains
the physical domain, is n

GR and the output space is k
QR .

The SOM model can be considered as a triplet < M, H, Alg >: map of neurons (M), training
set (H) and learning algorithm (Alg). The map of neurons is the set of neurons

 1{ ,..., }NM e e where each neuron has a location assigned by coordinates of the fixed node qi
in the output space k

QR . The number of neurons in the map M is equal to the number of
mesh nodes N. It means that each i-th mesh node corresponds to the neuron ei
(Nechaeva, 2004). There is a weight vector associated with each neuron. Weight vector of the
neuron ei is an element of input space and assigned by the coordinates of xi within the
physical domain G. These coordinates can be found by the learning algorithm Alg.
Therefore, the neuron is a pair ei = (qi, xi).
In order to obtain the desired distribution of xi over G in a sense of equidistribution
principle, a training set is to be a sample of the probability distribution p(x) being equal to
the normalized mesh density function w(x):




()()
()

G

w xp x
w x dx

, (1)

Let  1{ ,..., }TH y y be a training set corresponding to (1), where T is the set size, ty G ,
 1,...,t T .

A basic SOM learning algorithm proposed by Kohonen (Kohonen, 2001) (formulated in
terms of “mesh nodes”), where  1stt and fint T , is the following.

The procedure Alg.

1. Set arbitrary initial locations of mesh nodes xi(0) for all  1,...,i N .
2. Repeat the following operations at each iteration  ,...,st fint t t :

a. Take the next vector yt from the training set H.
b. Calculate the Euclidean distances  (,)d between yt and all nodes xi(t) and

choose the node xm(t) which is closest to yt, i.e.


 

1,...,
() arg min (, ()).t t ii N

m m y d y x t (2)

The node xm(t) is called a winner.
c. Adjust locations of mesh nodes using the following rule:

www.intechopen.com

Self-Organizing Maps126

xi(t +1) = xi(t) +  (,)
mq it q (yt – xi(t)), (3)

for all  1,...,i N , where  (,)
mq it q  [0, 1) is a learning rate.

At each iteration t, mesh nodes move towards the random point yt. The magnitude of nodes
displacements is controlled by the learning rate  (,)

mq it q .

4. Strategy of learning rate selection

The learning rate  (,)
mq it q plays a crucial role in the SOM learning algorithm as it directly

influences the quality of resulting adaptive meshes and speed of mesh construction.
Unlike usual approach, according to which the algorithm terminates once mesh nodes
displacements are small enough, we propose a new strategy where the number of iterations
T is to be fixed beforehand proportional to N, and the learning rate is to be scaled in such a
way that all nodes are frozen after T iterations. The fact that the number of iterations T
should be a function of number N of mesh nodes follows from the point that we need to
have enough vectors in the training set for providing each mesh node with a possibility to
move several times. For example, we obtained an acceptable quality of adaptive meshes if
the number of iterations is 10 times greater than N, i.e.  10T N . It also means that in
average each mesh node becomes a winner about 10 times during the iteration process.
Therefore, we think that it is incorrect to talk about the number of iterations without
mentioning the number of mesh nodes. For example, for our learning rate:  4000T , if

 20 * 20N ;  90000T , if  30 * 30 * 30N ; and so on.
The above technique showed good results in 1D, 2D and 3D cases and is very convenient in
use since we can directly control the speed of learning process. The learning rate proposed
in this Section is independent of a physical domain and mesh density function.
The learning rate  (,)

mq it q is a function, which takes its values from the interval [0, 1) and
has a view of a product of two functions: learning step and learning neighborhood:

  (,) () (,)

m mq i q it q t t q . (4)

The learning step (t) is a decreasing function of time and it controls the overall size of
nodes displacements at each iteration (Kohonen, 2001), (Fritzke, 1997), (Nechaeva, 2005).
Based on experiments, we selected the following function for the learning step:
(t) = t 0.2 (t), t = 1, ..., T, where    5()/() 1 t T Tt e . The function (t) is used to make the
power member of (t) go down to zero.
Every two neurons qm and qi in the map M are connected by a lateral connection with a
strength being assigned by the neighborhood function  (,)

mq it q . This function has a shape of
Gaussian but is transformed for convenience into the following view:


 
  
 

2(,)
()(,)
m i

m

d q q
r t

q it q s , (5)

where a constant s(0,1) is close to zero and fixed beforehand, r(t) is a learning radius at the
iteration t. The shape of the function (5) is shown in Fig. 1.
The strength of lateral connections between the neuron em and all neurons ie M , located
inside the neighborhood ()()r t mB q of radius r(t), is less than s. The function for lateral
connections (5) satisfies the following properties.

Properties
a.    ()() (,)

mi r t m q iq B q t q s .
b.  (,) 1

mq mt q ;
c. if (,) ()m id q q r t , then  (,)

mq it q s ;
d. lateral connection is symmetric:  (,) (,)

m iq i q mt q t q .

e.  
 
  
  

2

()(,) ()
m

d
r t

q it q d s is a decreasing function of  (,)m id d q q .

Fig. 1. The shape of the function  (,)

mq it q for lateral connections between neurons.

As a result, the winner takes the maximum displacement at each iteration. The greater the
distance between i-th neuron and the winner in the computational domain, the less the
displacement of this neuron within the physical domain. When implementing the SOM
algorithm, if s is small enough, neurons for which (,) ()m id q q r t can be disregarded during
adjustment step of the algorithm with preserving the accuracy, since sizes of the
displacements are less than s(t).
The function for lateral connections is responsible for the quality of mesh, e.g. mesh
smoothness, shapes of mesh cells, etc. The learning radius r(t) is a decreasing function of t
with fixed values at first and last iterations: r(1) and r(T), where (1) ()r r T . Based on

experiments, we selected the learning radius as     / 0,25() () () (1)0.05 ()t Tr t r T t r r T t .
The values r(1) and r(T) has to be selected in such a way that at first iteration all neurons fit
into (1)()r iB q for any  1,...,i N and at last iteration the neighborhood ()()r T mB q contains
only the node qm and its closest neighbors.

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 127

xi(t +1) = xi(t) +  (,)
mq it q (yt – xi(t)), (3)

for all  1,...,i N , where  (,)
mq it q  [0, 1) is a learning rate.

At each iteration t, mesh nodes move towards the random point yt. The magnitude of nodes
displacements is controlled by the learning rate  (,)

mq it q .

4. Strategy of learning rate selection

The learning rate  (,)
mq it q plays a crucial role in the SOM learning algorithm as it directly

influences the quality of resulting adaptive meshes and speed of mesh construction.
Unlike usual approach, according to which the algorithm terminates once mesh nodes
displacements are small enough, we propose a new strategy where the number of iterations
T is to be fixed beforehand proportional to N, and the learning rate is to be scaled in such a
way that all nodes are frozen after T iterations. The fact that the number of iterations T
should be a function of number N of mesh nodes follows from the point that we need to
have enough vectors in the training set for providing each mesh node with a possibility to
move several times. For example, we obtained an acceptable quality of adaptive meshes if
the number of iterations is 10 times greater than N, i.e.  10T N . It also means that in
average each mesh node becomes a winner about 10 times during the iteration process.
Therefore, we think that it is incorrect to talk about the number of iterations without
mentioning the number of mesh nodes. For example, for our learning rate:  4000T , if

 20 * 20N ;  90000T , if  30 * 30 * 30N ; and so on.
The above technique showed good results in 1D, 2D and 3D cases and is very convenient in
use since we can directly control the speed of learning process. The learning rate proposed
in this Section is independent of a physical domain and mesh density function.
The learning rate  (,)

mq it q is a function, which takes its values from the interval [0, 1) and
has a view of a product of two functions: learning step and learning neighborhood:

  (,) () (,)

m mq i q it q t t q . (4)

The learning step (t) is a decreasing function of time and it controls the overall size of
nodes displacements at each iteration (Kohonen, 2001), (Fritzke, 1997), (Nechaeva, 2005).
Based on experiments, we selected the following function for the learning step:
(t) = t 0.2 (t), t = 1, ..., T, where    5()/() 1 t T Tt e . The function (t) is used to make the
power member of (t) go down to zero.
Every two neurons qm and qi in the map M are connected by a lateral connection with a
strength being assigned by the neighborhood function  (,)

mq it q . This function has a shape of
Gaussian but is transformed for convenience into the following view:


 
  
 

2(,)
()(,)
m i

m

d q q
r t

q it q s , (5)

where a constant s(0,1) is close to zero and fixed beforehand, r(t) is a learning radius at the
iteration t. The shape of the function (5) is shown in Fig. 1.
The strength of lateral connections between the neuron em and all neurons ie M , located
inside the neighborhood ()()r t mB q of radius r(t), is less than s. The function for lateral
connections (5) satisfies the following properties.

Properties
a.    ()() (,)

mi r t m q iq B q t q s .
b.  (,) 1

mq mt q ;
c. if (,) ()m id q q r t , then  (,)

mq it q s ;
d. lateral connection is symmetric:  (,) (,)

m iq i q mt q t q .

e.  
 
  
  

2

()(,) ()
m

d
r t

q it q d s is a decreasing function of  (,)m id d q q .

Fig. 1. The shape of the function  (,)

mq it q for lateral connections between neurons.

As a result, the winner takes the maximum displacement at each iteration. The greater the
distance between i-th neuron and the winner in the computational domain, the less the
displacement of this neuron within the physical domain. When implementing the SOM
algorithm, if s is small enough, neurons for which (,) ()m id q q r t can be disregarded during
adjustment step of the algorithm with preserving the accuracy, since sizes of the
displacements are less than s(t).
The function for lateral connections is responsible for the quality of mesh, e.g. mesh
smoothness, shapes of mesh cells, etc. The learning radius r(t) is a decreasing function of t
with fixed values at first and last iterations: r(1) and r(T), where (1) ()r r T . Based on

experiments, we selected the learning radius as     / 0,25() () () (1)0.05 ()t Tr t r T t r r T t .
The values r(1) and r(T) has to be selected in such a way that at first iteration all neurons fit
into (1)()r iB q for any  1,...,i N and at last iteration the neighborhood ()()r T mB q contains
only the node qm and its closest neighbors.

www.intechopen.com

Self-Organizing Maps128

Thus, there are only few free parameters in the proposed learning rate, among them are
(1)r , ()r T and T. In Fig. 2, diagrams of all functions are shown which take part in the

learning rate.

Fig.2. Diagrams of: a) function (t), b) function (t), c) function  (t).

5. Ability of SOM algorithm to order mesh nodes

The whole learning process can be divided into two stages: ordering stage and refining stage
(Kohonen, 2001). During the ordering stage, the learning step and radius are large enough
and all mesh nodes takes significant displacements. Therefore, even starting from random
initial locations, the mesh nodes become ordered resembling the fixed mesh in the
computational domain Q. During the refining stage, the learning step and radius slowly
tend to zero and r(T) correspondingly. It leads to a mesh approximating the physical
domain in more and more details of a border and density distribution.
In Fig. 3 and Fig. 4, ability of the SOM algorithm to order neuron weights is demonstrated in
2D and 3D cases. During the ordering stage the algorithm tends to reproduce a regular
structure of the fixed mesh starting from random initial data.

 1t  3t  7t  11t

 15t  35t  151t (ordered)  8000t (final)

Fig. 3. The ordering stage of SOM learning and final mesh in 2D case.

0

0.2

0.4

0.6

0.8

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

0.2

0.4

0.6

0.8

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

5

10

15

20

25

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00T T T

a) b) c)

1t  5t 

20t  (ordered) 60000t  (final)
Fig. 4. The ordering stage of SOM learning and final mesh in 3D case.

6. Theorem of correspondence

The SOM learning algorithm aims to find a mapping : n k
G Qm R R (more specifically

: Nm G Q) by determining the set of weight vectors 1 ,..., Nx x . The mapping m has the
following form:

() arg min (,)ii
m y d y x . (6)

At best, this mapping has to satisfy the following conditions (goals of SOM learning
(Fritzke, 1997)).

(1) Topology preservation. If yi and yj are near each other in the input space, then neurons
()im ye and ()jm ye are also nearby or () ()i jm y m y .

(2) Equiwinning Percentage (EWP). For each i-th neuron in the map M, there are the
same number of vectors yj in the training set H that are closer to the weight vector xi than to
any other weight vector. This also means that each neuron at the end of learning process has
the same probability to become a winner for a randomly chosen input vector from H.
If these goals are satisfied, it is possible to proof that at the end of the learning process the
resulting adaptive mesh reached desired approximation of mesh density function in a sense

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 129

Thus, there are only few free parameters in the proposed learning rate, among them are
(1)r , ()r T and T. In Fig. 2, diagrams of all functions are shown which take part in the

learning rate.

Fig.2. Diagrams of: a) function (t), b) function (t), c) function  (t).

5. Ability of SOM algorithm to order mesh nodes

The whole learning process can be divided into two stages: ordering stage and refining stage
(Kohonen, 2001). During the ordering stage, the learning step and radius are large enough
and all mesh nodes takes significant displacements. Therefore, even starting from random
initial locations, the mesh nodes become ordered resembling the fixed mesh in the
computational domain Q. During the refining stage, the learning step and radius slowly
tend to zero and r(T) correspondingly. It leads to a mesh approximating the physical
domain in more and more details of a border and density distribution.
In Fig. 3 and Fig. 4, ability of the SOM algorithm to order neuron weights is demonstrated in
2D and 3D cases. During the ordering stage the algorithm tends to reproduce a regular
structure of the fixed mesh starting from random initial data.

 1t  3t  7t  11t

 15t  35t  151t (ordered)  8000t (final)

Fig. 3. The ordering stage of SOM learning and final mesh in 2D case.

0

0.2

0.4

0.6

0.8

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

0.2

0.4

0.6

0.8

1

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

5

10

15

20

25

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00T T T

a) b) c)

1t  5t 

20t  (ordered) 60000t  (final)
Fig. 4. The ordering stage of SOM learning and final mesh in 3D case.

6. Theorem of correspondence

The SOM learning algorithm aims to find a mapping : n k
G Qm R R (more specifically

: Nm G Q) by determining the set of weight vectors 1 ,..., Nx x . The mapping m has the
following form:

() arg min (,)ii
m y d y x . (6)

At best, this mapping has to satisfy the following conditions (goals of SOM learning
(Fritzke, 1997)).

(1) Topology preservation. If yi and yj are near each other in the input space, then neurons
()im ye and ()jm ye are also nearby or () ()i jm y m y .

(2) Equiwinning Percentage (EWP). For each i-th neuron in the map M, there are the
same number of vectors yj in the training set H that are closer to the weight vector xi than to
any other weight vector. This also means that each neuron at the end of learning process has
the same probability to become a winner for a randomly chosen input vector from H.
If these goals are satisfied, it is possible to proof that at the end of the learning process the
resulting adaptive mesh reached desired approximation of mesh density function in a sense

www.intechopen.com

Self-Organizing Maps130

of equidistribution principle. This theorem is called the Theorem of Correspondence, since it
assigns the correspondence between goals of adaptive mesh construction in a traditional
equidistribution sense (formulated in Section 2) and the goals of SOM learning algorithm.
The theorem of correspondence has been formulated and proven in order to show principal
possibility to obtain adaptive meshes with given mesh density using SOM. This theorem
states that if the EWP goal is reached, then an analogue of equidistibution principle is
satisfied for Voronoi cells of the adaptive mesh.
The Voronoi cell Vi is the unbounded set of all point from G closer to xi than to any other
mesh node, i.e.     { | (,) (,), 1,..., , }i i kV x G d x x d x x k N k i (Okabe et al., 2000). The whole
G then can be represented by closure of the union of disjoint Voronoi cells.

Theorem of correspondence
Let the EWP condition be satisfied for the map of neurons M. Then the product of the square

of Voronoi cell Vi and the value of probability density p(xi) can be estimated by 1
N

 for all i,

i.e.:

 
1| | ()i iV p x
N

,  1,...,i N . (7)

Proof
Let Pi be the number of elements in the sample  1{ ,..., }TH y y which are closer to the node xi
than to any other node, i.e.   |{ | () }|i j jP y H m y i . If there are several closest nodes, the
one from such nodes is to be chosen randomly.
According to the definition of integral, the square of iV can be represented as:

 | | ()

ii V
G

V x dx , (8)

 where  ()A x is an indicator of a set А, i.e. 


  

1,
()

0,A

x A
x

x A
. Let us calculate the square of Vi

using the Monte Carlo methods (Mikhailov & Voitishek, 2006). After multiplication by the
density ()p x of sample H distribution, the integral (8) has the following form:


  

()
| | () ()

()
i

i

V
i V

G G

x
V x dx p x dx

p x
, (9)

and can be considered as an expectation of the stochastic variable having the values
 ()

()
iV x

p x

and being defined over the domain G. Using the sample H, the expectation (9) can be
estimated by the finite sum:





 
1

()() 1()
() ()

ii
T

V jV

j jG

yx
p x dx

p x T p y
. (10)

Among all items of the sum (10), there are some which correspond to the elements jy with
the indicator value  () 0

iV jy . It just means that xi is not the closest to yj. The number of
nonzero items in (10) is equal to Pi. After simplification, the sum (10) has the following view:



 



 
 

 
1 1

()1 1 1
() ()

i
i

i

PT
V j

j j
y H V

y
T p y T p y

. (11)

Further, the values ()p y can be approximated by the values p(xi), since ix is close to a
center of gravity of Vi for the majority of Voronoi cells. It is clear that with N the error
of such an approximation tends to zero. Finally, we have the following estimation:

 

  
   

  
1 1

1 1 1 1
() () ()

i i

i i

P P
i

i i
y H V y H V

P
T p y T p x Tp x

. (12)

Since the EWP condition is satisfied, for each i-th neuron in the map M, there are the same
number of vectors yj in the training set H which are closer to the weight vector xi than to any

other weight vector. From this condition it follows that the fraction 
1iP

T N
 with T .

Proceeding to limit in (12), we can get the following:

 
1| |

() ()
i

i
i i

PV
Tp x Np x

. (13)

After multiplication by ()ip x , we obtain the estimation:


1| | ()i iV p x
N

. (14)

The estimation (12) is correct for all  1,...,i N .
Now, after this theorem is proved, the traditional goals of adaptive mesh construction and
ones of the SOM learning can be considered as equivalent. Unfortunately, there is no proof
that the goals of SOM learning can always be reached. Moreover, if we apply the basic SOM
algorithm, a number of notorious problems often occur leading to the failures of these goals.
First, it is impossible to obtain an accurate approximation of border of a physical domain, as
it can be seen from the example in Fig. 4 (c) and (d), because boundary nodes never reach
the border and they are influenced by the border effect. Second, sometimes, boundary nodes
can propagate into the interior of the domain, especially if the probability distribution p(x) is
non uniform. That is the result of bad topology preservation as Fig. 6 (a) shows. Finally, the
mesh may contain self-crossings (Fig. 6 (c)) that makes it entirely unusable for numerical
simulations. In the next Sections, all these problems are considered in details and our
solution to them in the form of the composite algorithm is introduced.

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 131

of equidistribution principle. This theorem is called the Theorem of Correspondence, since it
assigns the correspondence between goals of adaptive mesh construction in a traditional
equidistribution sense (formulated in Section 2) and the goals of SOM learning algorithm.
The theorem of correspondence has been formulated and proven in order to show principal
possibility to obtain adaptive meshes with given mesh density using SOM. This theorem
states that if the EWP goal is reached, then an analogue of equidistibution principle is
satisfied for Voronoi cells of the adaptive mesh.
The Voronoi cell Vi is the unbounded set of all point from G closer to xi than to any other
mesh node, i.e.     { | (,) (,), 1,..., , }i i kV x G d x x d x x k N k i (Okabe et al., 2000). The whole
G then can be represented by closure of the union of disjoint Voronoi cells.

Theorem of correspondence
Let the EWP condition be satisfied for the map of neurons M. Then the product of the square

of Voronoi cell Vi and the value of probability density p(xi) can be estimated by 1
N

 for all i,

i.e.:

 
1| | ()i iV p x
N

,  1,...,i N . (7)

Proof
Let Pi be the number of elements in the sample  1{ ,..., }TH y y which are closer to the node xi
than to any other node, i.e.   |{ | () }|i j jP y H m y i . If there are several closest nodes, the
one from such nodes is to be chosen randomly.
According to the definition of integral, the square of iV can be represented as:

 | | ()

ii V
G

V x dx , (8)

 where  ()A x is an indicator of a set А, i.e. 


  

1,
()

0,A

x A
x

x A
. Let us calculate the square of Vi

using the Monte Carlo methods (Mikhailov & Voitishek, 2006). After multiplication by the
density ()p x of sample H distribution, the integral (8) has the following form:


  

()
| | () ()

()
i

i

V
i V

G G

x
V x dx p x dx

p x
, (9)

and can be considered as an expectation of the stochastic variable having the values
 ()

()
iV x

p x

and being defined over the domain G. Using the sample H, the expectation (9) can be
estimated by the finite sum:





 
1

()() 1()
() ()

ii
T

V jV

j jG

yx
p x dx

p x T p y
. (10)

Among all items of the sum (10), there are some which correspond to the elements jy with
the indicator value  () 0

iV jy . It just means that xi is not the closest to yj. The number of
nonzero items in (10) is equal to Pi. After simplification, the sum (10) has the following view:



 



 
 

 
1 1

()1 1 1
() ()

i
i

i

PT
V j

j j
y H V

y
T p y T p y

. (11)

Further, the values ()p y can be approximated by the values p(xi), since ix is close to a
center of gravity of Vi for the majority of Voronoi cells. It is clear that with N the error
of such an approximation tends to zero. Finally, we have the following estimation:

 

  
   

  
1 1

1 1 1 1
() () ()

i i

i i

P P
i

i i
y H V y H V

P
T p y T p x Tp x

. (12)

Since the EWP condition is satisfied, for each i-th neuron in the map M, there are the same
number of vectors yj in the training set H which are closer to the weight vector xi than to any

other weight vector. From this condition it follows that the fraction 
1iP

T N
 with T .

Proceeding to limit in (12), we can get the following:

 
1| |

() ()
i

i
i i

PV
Tp x Np x

. (13)

After multiplication by ()ip x , we obtain the estimation:


1| | ()i iV p x
N

. (14)

The estimation (12) is correct for all  1,...,i N .
Now, after this theorem is proved, the traditional goals of adaptive mesh construction and
ones of the SOM learning can be considered as equivalent. Unfortunately, there is no proof
that the goals of SOM learning can always be reached. Moreover, if we apply the basic SOM
algorithm, a number of notorious problems often occur leading to the failures of these goals.
First, it is impossible to obtain an accurate approximation of border of a physical domain, as
it can be seen from the example in Fig. 4 (c) and (d), because boundary nodes never reach
the border and they are influenced by the border effect. Second, sometimes, boundary nodes
can propagate into the interior of the domain, especially if the probability distribution p(x) is
non uniform. That is the result of bad topology preservation as Fig. 6 (a) shows. Finally, the
mesh may contain self-crossings (Fig. 6 (c)) that makes it entirely unusable for numerical
simulations. In the next Sections, all these problems are considered in details and our
solution to them in the form of the composite algorithm is introduced.

www.intechopen.com

Self-Organizing Maps132

7. Border effect evaluation after applying the basic SOM model

The border effect is closely connected with failure of the EWP condition. Thereby, in this
section, the EWP condition is evaluated. According to the definition, if the EWP condition is
satisfied, then each neuron has the same probability to become a winner. It is convenient to
measure it statistically. In other words, the values of function ()m y can be recorded for all
vectors of the training set H.
Let a mesh be constructed by a basic SOM algorithm. For evaluation of the EWP condition, a
winning statistics has been recorded for the constructed mesh, i.e. how many times each
neuron became a winner. It has been found that equal winning percentage directly depends
on the final learning radius ()r T . If a mesh has been constructed with ()r T being such that
the learning neighborhood ()()r T mB q contains only the nearest neighbors of qm, then the
winning percentage is almost the same for all neurons. But if ()r T is large, then the adaptive
mesh collapses inside the physical domain and, then, boundary nodes become a winner
more frequently. In Fig.5, the winning statistics for two different ()r T is shown at the mesh
cut. On the other hand, the radius ()r T essentially influences the mesh smoothness in such a
way that small radius leads to unsmooth adaptive meshes, and this usually causes the
decreasing of the accuracy of numerical simulations on these meshes. The larger the radius,
the smoother the adaptive mesh as it is shown in Fig. 5.

(a) (b)

(c) (d) (e)

Fig. 5. The winning statistics for the mesh constructed by the basic SOM, mesh size is
 20 20 20 . (a) () 1r T , (b) () 10r T . The corresponding meshes: (c) () 1r T , (d)
() 10r T . The desired mesh (e) is constructed by the composite algorithm proposed in

Section 9.

In Section 9, the smoothing algorithm is proposed, which is based on SOM learning with
large learning radius and with a technique handling the border effect.
Let us study in details the origins of border effect in the basic SOM model. Being able to
measure the border effect, we can handle it. To this end, the iteration number t is assumed to
be fixed. Let us consider an interior neuron qi for which the distance to border of the
computational domain is greater than the learning radius r. If the mesh QN is rectangular
uniform, all neurons qj from Br(qi) as well as all strengths of lateral connections ()

jq iq are

symmetrically located around qi. Therefore, as it follows from the EWP condition, the
neuron qi has the same probability to be influenced by any other neuron qj. In the physical
domain, it means that the node xi has the same probability to move symmetrically in all
directions being guided by neurons from ()r iB q . Since s is close to zero, then it is assumed
that the mutual influence between neurons qi and ()j r iq B q is negligibly small.
If the distance from qi to the border of the computational domain is less than r, then there are
not enough neurons in ()r iB q for symmetry. In this case, most of the neurons in ()r iB q
make the neuron qi move mainly to the center of the physical domain. To balance the
asymmetry, the neuron qi needs to move aside the border of G.
To evaluate the asymmetry, let us consider the following characteristic of the neuron qi:

1
()

j

N

i q i
j

q 


 . (15)

For each node, this characteristic is a sum of lateral connection strengths with all other
nodes. If qi is near the border of Q, then there is not enough terms in the sum (15)
corresponding to ()r iB q . Therefore, i is decreasing near the border of Q. It can be clearly
seen from the diagram in Fig. 6. All the nodes located at a distance greater than r from the
border have the same value of this characteristic.
Obviously, to handle the border effect, it is necessary to balance the asymmetry of lateral
connections. It is still an opened question, how the diagrams in Fig. 5 and Fig. 6 are
correlated with each other. In the future, this question is going to be answered in order to
improve the EWP condition fulfillment.

Fig. 6. Characteristic of lateral connections symmetry - values of i for the mesh cut, mesh
size is 40 40 40  .

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 133

7. Border effect evaluation after applying the basic SOM model

The border effect is closely connected with failure of the EWP condition. Thereby, in this
section, the EWP condition is evaluated. According to the definition, if the EWP condition is
satisfied, then each neuron has the same probability to become a winner. It is convenient to
measure it statistically. In other words, the values of function ()m y can be recorded for all
vectors of the training set H.
Let a mesh be constructed by a basic SOM algorithm. For evaluation of the EWP condition, a
winning statistics has been recorded for the constructed mesh, i.e. how many times each
neuron became a winner. It has been found that equal winning percentage directly depends
on the final learning radius ()r T . If a mesh has been constructed with ()r T being such that
the learning neighborhood ()()r T mB q contains only the nearest neighbors of qm, then the
winning percentage is almost the same for all neurons. But if ()r T is large, then the adaptive
mesh collapses inside the physical domain and, then, boundary nodes become a winner
more frequently. In Fig.5, the winning statistics for two different ()r T is shown at the mesh
cut. On the other hand, the radius ()r T essentially influences the mesh smoothness in such a
way that small radius leads to unsmooth adaptive meshes, and this usually causes the
decreasing of the accuracy of numerical simulations on these meshes. The larger the radius,
the smoother the adaptive mesh as it is shown in Fig. 5.

(a) (b)

(c) (d) (e)

Fig. 5. The winning statistics for the mesh constructed by the basic SOM, mesh size is
 20 20 20 . (a) () 1r T , (b) () 10r T . The corresponding meshes: (c) () 1r T , (d)
() 10r T . The desired mesh (e) is constructed by the composite algorithm proposed in

Section 9.

In Section 9, the smoothing algorithm is proposed, which is based on SOM learning with
large learning radius and with a technique handling the border effect.
Let us study in details the origins of border effect in the basic SOM model. Being able to
measure the border effect, we can handle it. To this end, the iteration number t is assumed to
be fixed. Let us consider an interior neuron qi for which the distance to border of the
computational domain is greater than the learning radius r. If the mesh QN is rectangular
uniform, all neurons qj from Br(qi) as well as all strengths of lateral connections ()

jq iq are

symmetrically located around qi. Therefore, as it follows from the EWP condition, the
neuron qi has the same probability to be influenced by any other neuron qj. In the physical
domain, it means that the node xi has the same probability to move symmetrically in all
directions being guided by neurons from ()r iB q . Since s is close to zero, then it is assumed
that the mutual influence between neurons qi and ()j r iq B q is negligibly small.
If the distance from qi to the border of the computational domain is less than r, then there are
not enough neurons in ()r iB q for symmetry. In this case, most of the neurons in ()r iB q
make the neuron qi move mainly to the center of the physical domain. To balance the
asymmetry, the neuron qi needs to move aside the border of G.
To evaluate the asymmetry, let us consider the following characteristic of the neuron qi:

1
()

j

N

i q i
j

q 


 . (15)

For each node, this characteristic is a sum of lateral connection strengths with all other
nodes. If qi is near the border of Q, then there is not enough terms in the sum (15)
corresponding to ()r iB q . Therefore, i is decreasing near the border of Q. It can be clearly
seen from the diagram in Fig. 6. All the nodes located at a distance greater than r from the
border have the same value of this characteristic.
Obviously, to handle the border effect, it is necessary to balance the asymmetry of lateral
connections. It is still an opened question, how the diagrams in Fig. 5 and Fig. 6 are
correlated with each other. In the future, this question is going to be answered in order to
improve the EWP condition fulfillment.

Fig. 6. Characteristic of lateral connections symmetry - values of i for the mesh cut, mesh
size is 40 40 40  .

www.intechopen.com

Self-Organizing Maps134

It has to be noted that there are some cases when the border effect does not appear. If a map
of neurons is closed in such a way that it is not possible to pick out boundary neurons, then
this map does not suffer from border effect. Examples of such a maps are: map of neurons
forming a ring, map of boundary neurons belonging to a rectangular uniform 2D and 3D
grid, a map in the form of torus, and so on. In Fig 5(e), a 3D surface mesh is constructed
without border effect.
As a conclusion of this Section, let us point out that even if the EWP condition is fulfilled,
the nodes of mesh, obtained by the basic SOM model, still do not reach the border. The
explanation of this can be given as follows. Trying to meet the EWP condition, mesh nodes
are getting close to the center of gravity of the corresponding Voronoi cell. Since a Voronoi
cell is convex, then it is not possible for mesh nodes to appear on the border, at least for
convex physical domains. It follows from this that the basic SOM model can be applied only
for interior nodes when constructing an adaptive mesh. Therefore, in Section 9, the composite
algorithm is proposed which is based on the alternative application of the basic SOM
models separately to a border and to interior of the domain.

8. Topology preservation after applying the basic SOM model

According to the definition in Section 6, the topology preservation condition is when input
vectors that are near to each other in the input space are mapped into nearby or the same
neuron locations. As a measure of topology preservation at level  the quantity   can
be used, which is defined as follows. Let us consider (together with the winning function
()m y) the function of second winner:

1,...,
()

() arg min (,)ii N
i m y

m y d y x



  . Given 2N  and   ,

the function ()y is defined, which answers the question whether the second winner is in
the neighborhood of the first one in Q or not:

() ()0, ()
()

1,
m y m yq B q

y
иначе




  


Thus, the measure of topology preservation at level  is a quantity which is equal to the
number of training vectors in H, for which the second winner is outside the neighborhood
of the first one: | { | () 1} |y H y     . It is appropriate to take the value  in such a

way that for each node the neighborhood ()iB q contains the nearest neighbors of iq . A

nonzero value of  indicates the failure of topology preservation, and non zero values of

()y can help to find locations of this failures.
In 3D space, there are a number of typical cases of topology preservation failures when
applying the basic SOM model. These cases have equivalents in 2D space too.

1. If the mesh density function is non uniform, then boundary nodes can propagate
inside the physical domain being attracted by the high density of input vectors. Usually,
such a boundary nodes never leave the attractor and it leads to undesirable bends of the
mesh as it is shown in Fig. 7 (a). At this bands, the values of ()y are nonzero.

2. If initial locations of mesh nodes are random, there is a probability to obtain a mesh
with self-crossings, as it is shown in Fig. 7 (c). But the larger the learning radius (1)r , the less
the probability of self-crossings. Just because of this at the beginning of the learning process
the radius (1)r should cover all the nodes. To further decrease this probability, one can use
an initial mesh without self-crossings, for example, rectangular uniform, located somewhere
inside the physical domain.

3. When the configuration of physical domain is highly complex, the topology
preservation failure can be caused by the inappropriate mesh layout, since its formation is
based on self organization. To handle this, the coloring technique can be used, which is
described in (Nechaeva, 2007).
All the above cases can be overcome by the composite algorithm.

(a) (b)

(c) (d)

Fig. 7. Topology preservation failures when using the basic SOM model and the desired
adaptive meshes constructed by the composite algorithm proposed in Section 9; (a) mesh
nodes propagating inside the domain when the mesh density function is non uniform;
(c) mesh self crossings.

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 135

It has to be noted that there are some cases when the border effect does not appear. If a map
of neurons is closed in such a way that it is not possible to pick out boundary neurons, then
this map does not suffer from border effect. Examples of such a maps are: map of neurons
forming a ring, map of boundary neurons belonging to a rectangular uniform 2D and 3D
grid, a map in the form of torus, and so on. In Fig 5(e), a 3D surface mesh is constructed
without border effect.
As a conclusion of this Section, let us point out that even if the EWP condition is fulfilled,
the nodes of mesh, obtained by the basic SOM model, still do not reach the border. The
explanation of this can be given as follows. Trying to meet the EWP condition, mesh nodes
are getting close to the center of gravity of the corresponding Voronoi cell. Since a Voronoi
cell is convex, then it is not possible for mesh nodes to appear on the border, at least for
convex physical domains. It follows from this that the basic SOM model can be applied only
for interior nodes when constructing an adaptive mesh. Therefore, in Section 9, the composite
algorithm is proposed which is based on the alternative application of the basic SOM
models separately to a border and to interior of the domain.

8. Topology preservation after applying the basic SOM model

According to the definition in Section 6, the topology preservation condition is when input
vectors that are near to each other in the input space are mapped into nearby or the same
neuron locations. As a measure of topology preservation at level  the quantity   can
be used, which is defined as follows. Let us consider (together with the winning function
()m y) the function of second winner:

1,...,
()

() arg min (,)ii N
i m y

m y d y x



  . Given 2N  and   ,

the function ()y is defined, which answers the question whether the second winner is in
the neighborhood of the first one in Q or not:

() ()0, ()
()

1,
m y m yq B q

y
иначе




  


Thus, the measure of topology preservation at level  is a quantity which is equal to the
number of training vectors in H, for which the second winner is outside the neighborhood
of the first one: | { | () 1} |y H y     . It is appropriate to take the value  in such a

way that for each node the neighborhood ()iB q contains the nearest neighbors of iq . A

nonzero value of  indicates the failure of topology preservation, and non zero values of

()y can help to find locations of this failures.
In 3D space, there are a number of typical cases of topology preservation failures when
applying the basic SOM model. These cases have equivalents in 2D space too.

1. If the mesh density function is non uniform, then boundary nodes can propagate
inside the physical domain being attracted by the high density of input vectors. Usually,
such a boundary nodes never leave the attractor and it leads to undesirable bends of the
mesh as it is shown in Fig. 7 (a). At this bands, the values of ()y are nonzero.

2. If initial locations of mesh nodes are random, there is a probability to obtain a mesh
with self-crossings, as it is shown in Fig. 7 (c). But the larger the learning radius (1)r , the less
the probability of self-crossings. Just because of this at the beginning of the learning process
the radius (1)r should cover all the nodes. To further decrease this probability, one can use
an initial mesh without self-crossings, for example, rectangular uniform, located somewhere
inside the physical domain.

3. When the configuration of physical domain is highly complex, the topology
preservation failure can be caused by the inappropriate mesh layout, since its formation is
based on self organization. To handle this, the coloring technique can be used, which is
described in (Nechaeva, 2007).
All the above cases can be overcome by the composite algorithm.

(a) (b)

(c) (d)

Fig. 7. Topology preservation failures when using the basic SOM model and the desired
adaptive meshes constructed by the composite algorithm proposed in Section 9; (a) mesh
nodes propagating inside the domain when the mesh density function is non uniform;
(c) mesh self crossings.

www.intechopen.com

Self-Organizing Maps136

9. Composite algorithm for adaptive mesh construction

The idea of the composite algorithm (Nechaeva, 2006) is to combine a number of SOM
models interacting between each other in a special way and self-organizing over their own
set of input data. For example, all neurons in the 3D map M can be divided into two subsets:
Mint is the set of neurons which correspond to interior nodes and form a 3D volume mesh,
and Mb is a set of neurons which correspond to boundary ones and form a 3D surface mesh.
In addition, the physical domain G can be divided into a border and interior. Let Hint be a
training set consisting of vectors only from the interior of G, and Hb is a training set
consisting of vectors from the border of G. Taking into account the SOM learning algorithm
Alg, we have two SOM models: SOMint = < Mint, Hint, Alg > and SOMb = < Mb, Hb, Alg >. This
kind of division seems to be the most convenient for the majority of physical domains which
have been studied.
The composite algorithm is based on special alternation of training for each SOM model.
The main requirement for the composite algorithm is to provide the consistency between
boundary and interior mesh nodes.
Each alternation stage of the composite algorithm consists in training of all SOM models
during a given number of iterations, is referred to as a macroiteration, and is denoted by s.
For each map Mk, k = int, b, there is a private counter of iterations tk, and the maximum
number of iterations Tk is given in such a way that Tk is proportional to |Mk|, i.e. to the
number of neurons in the map Mk. Let  ()k s be the number of iterations at the
macroiteration s during which the learning procedure is to be applied to the k-th SOM
model.

Composite algorithm

(0) Set arbitrary initial weights of all neurons (0)ix ,  1,...,i N .
(1) At the first macroiteration (s = 1), apply the procedure Alg to the general map M with

input vectors taken from H and (1) 1stt ,  0(1)fint T , where T0 is a given number of
iterations.

(2) Repeat the following operations at each macroiteration s > 1 until the maximum
number of iteration is reached:

(a) Training of SOMb. Apply the procedure Alg to the map Mb with input vectors
taken from Hb and   () (1) 1b b

st fint s t s ,   () () () 1b b
fin st bt s t s s .

(b) Training of SOMint. Apply the procedure Alg to the map Mint , but with winner
selection from the whole map M. Input vectors are taken from Hint. If the
winner em is from Mb, then replace the input vector intty by the weight vector

xm;   int int() (1) 1st fint s t s ,   int int() () () 1fin st bt s t s s .

The step (1) of the composite algorithm is an ordering stage. Application of Alg to all mesh
nodes makes the mesh become ordered and take roughly the form of G. The number of
iterations T0 depends on the physical domain configuration. Typically, T0 is varying from
0.005T to 0.01T. After this step, boundary nodes are located near their appropriate border
positions.
The step (2) is a refining stage. Both Mint and Mb consistently fit more and more fine details
of the interior and border of G. At this stage, at substep (a), boundary nodes have a leading

role. It has been noted that boundary nodes more easily approximate the border than
interior nodes approximate the interior of G, because in most cases the map Mb is closed
(does not have borders). This is true for 3D space as well as 2D space. Therefore, boundary
nodes can move within the domain even independently of the interior nodes. At substep (b),
interior nodes always follow the boundary ones by means of special winner selection. Since
the winner is selected among all the neurons, time to time the winning neuron is a boundary
one. In this case, an input vector is replacing by a winner weight vector and all interior
nodes move towards the boundary winner. This technique, first, does not let boundary
nodes and their interior neighbors propagate inside the physical domain even if there is a
subdomain of high density of input vectors; second, keeps a topological connection between
interior nodes and their nearest boundary neighbors; and third, excludes mesh self
crossings, if there is no self crossings among boundary nodes (that is easy to handle).
We found that the form of functions  ()k s for defining the number of iterations at each
macroiteration is not crucial for the composite algorithm. The resulting mesh is quite the
same for different functions  ()k s . For example, these functions can be assigned as
 () /k ks T S for  1s and   0(1)k T , where S is the maximum number of macroiterations.
But sometimes, it is possible to accelerate the mesh construction by appropriate selection of
 ()k s . For example, good results could be obtained if  ()b s increases and int()s decreases
(Fig. 8). The acceleration is achieved because the boundary nodes quickly take correct
distribution along the border of G and then get frozen giving the interior nodes an
advantage until the termination of the composite algorithm. The functions  ()k s also can be
chosen depending on the physical domain configuration.

Fig. 8. Diagrams of the functions ()k and  ()k .

In Fig. 9, some examples of adaptive meshes constructed by the composite algorithm in 2D
and 3D cases are shown.

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40

t

k

(k)

(k)

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 137

9. Composite algorithm for adaptive mesh construction

The idea of the composite algorithm (Nechaeva, 2006) is to combine a number of SOM
models interacting between each other in a special way and self-organizing over their own
set of input data. For example, all neurons in the 3D map M can be divided into two subsets:
Mint is the set of neurons which correspond to interior nodes and form a 3D volume mesh,
and Mb is a set of neurons which correspond to boundary ones and form a 3D surface mesh.
In addition, the physical domain G can be divided into a border and interior. Let Hint be a
training set consisting of vectors only from the interior of G, and Hb is a training set
consisting of vectors from the border of G. Taking into account the SOM learning algorithm
Alg, we have two SOM models: SOMint = < Mint, Hint, Alg > and SOMb = < Mb, Hb, Alg >. This
kind of division seems to be the most convenient for the majority of physical domains which
have been studied.
The composite algorithm is based on special alternation of training for each SOM model.
The main requirement for the composite algorithm is to provide the consistency between
boundary and interior mesh nodes.
Each alternation stage of the composite algorithm consists in training of all SOM models
during a given number of iterations, is referred to as a macroiteration, and is denoted by s.
For each map Mk, k = int, b, there is a private counter of iterations tk, and the maximum
number of iterations Tk is given in such a way that Tk is proportional to |Mk|, i.e. to the
number of neurons in the map Mk. Let  ()k s be the number of iterations at the
macroiteration s during which the learning procedure is to be applied to the k-th SOM
model.

Composite algorithm

(0) Set arbitrary initial weights of all neurons (0)ix ,  1,...,i N .
(1) At the first macroiteration (s = 1), apply the procedure Alg to the general map M with

input vectors taken from H and (1) 1stt ,  0(1)fint T , where T0 is a given number of
iterations.

(2) Repeat the following operations at each macroiteration s > 1 until the maximum
number of iteration is reached:

(a) Training of SOMb. Apply the procedure Alg to the map Mb with input vectors
taken from Hb and   () (1) 1b b

st fint s t s ,   () () () 1b b
fin st bt s t s s .

(b) Training of SOMint. Apply the procedure Alg to the map Mint , but with winner
selection from the whole map M. Input vectors are taken from Hint. If the
winner em is from Mb, then replace the input vector intty by the weight vector

xm;   int int() (1) 1st fint s t s ,   int int() () () 1fin st bt s t s s .

The step (1) of the composite algorithm is an ordering stage. Application of Alg to all mesh
nodes makes the mesh become ordered and take roughly the form of G. The number of
iterations T0 depends on the physical domain configuration. Typically, T0 is varying from
0.005T to 0.01T. After this step, boundary nodes are located near their appropriate border
positions.
The step (2) is a refining stage. Both Mint and Mb consistently fit more and more fine details
of the interior and border of G. At this stage, at substep (a), boundary nodes have a leading

role. It has been noted that boundary nodes more easily approximate the border than
interior nodes approximate the interior of G, because in most cases the map Mb is closed
(does not have borders). This is true for 3D space as well as 2D space. Therefore, boundary
nodes can move within the domain even independently of the interior nodes. At substep (b),
interior nodes always follow the boundary ones by means of special winner selection. Since
the winner is selected among all the neurons, time to time the winning neuron is a boundary
one. In this case, an input vector is replacing by a winner weight vector and all interior
nodes move towards the boundary winner. This technique, first, does not let boundary
nodes and their interior neighbors propagate inside the physical domain even if there is a
subdomain of high density of input vectors; second, keeps a topological connection between
interior nodes and their nearest boundary neighbors; and third, excludes mesh self
crossings, if there is no self crossings among boundary nodes (that is easy to handle).
We found that the form of functions  ()k s for defining the number of iterations at each
macroiteration is not crucial for the composite algorithm. The resulting mesh is quite the
same for different functions  ()k s . For example, these functions can be assigned as
 () /k ks T S for  1s and   0(1)k T , where S is the maximum number of macroiterations.
But sometimes, it is possible to accelerate the mesh construction by appropriate selection of
 ()k s . For example, good results could be obtained if  ()b s increases and int()s decreases
(Fig. 8). The acceleration is achieved because the boundary nodes quickly take correct
distribution along the border of G and then get frozen giving the interior nodes an
advantage until the termination of the composite algorithm. The functions  ()k s also can be
chosen depending on the physical domain configuration.

Fig. 8. Diagrams of the functions ()k and  ()k .

In Fig. 9, some examples of adaptive meshes constructed by the composite algorithm in 2D
and 3D cases are shown.

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40

t

k

(k)

(k)

www.intechopen.com

Self-Organizing Maps138

Fig. 9. Examples of meshes constructed by the composite algorithm.

10. Topology preservation after applying the basic SOM model

The composite algorithm overcomes the border effect for small values of learning radius.
However, a small radius leads to unsmooth adaptive meshes, and this usually causes the
decreasing of the accuracy of numerical simulations on these meshes. The aim of this Section
is to propose the technique that allows us to use large learning radius for obtaining the
smooth enough adaptive meshes but without the border effect.
Let us consider the case when QN is a rectangular uniform mesh. It means that each node of
QN has four neighbors, and distances between neighboring nodes are equal to dQ. To
measure the smoothness of a quadrilateral adaptive mesh, let us consider a notion of a mesh
line which is a set of nodes being the image of a line of the fixed uniform mesh QN.
Smoothness of a mesh line can be measured by the sine values of angles between two
segments, connecting the neighboring nodes in the mesh line, in a sense that the less the
quantity of sign inversions and the amplitude of these values, the smoother the line.
Our experiments showed that the mesh smoothness depends on the relation between
learning step and radius. Given a fixed learning step, the larger the radius, the smoother the
mesh. It can be clearly seen from the example below. In Fig. 10(a), the mesh constructed by
the composite algorithm with artificially small final radius r(T) is shown. This mesh is
unsmooth even visually. For comparison, in Fig 10(b), the mesh is shown which has been
constructed with the final radius 2 times greater. Boundary nodes did not move in this
experiment, but they were allowed to become a winner. As it is shown in Fig. 10(c), the
smoothness of the last mesh is much better because the sine values are comparatively small

and have less sign inversions. But the resulting mesh is inappropriate for numerical
simulations because of bad approximation of the border of the physical domain.

(a)

(b)

(c)

Fig. 10. Measure of mesh smoothness; (a) the mesh obtained by the composite algorithm
with the artificially small final radius r(T) = 0.5; (b) the mesh with final radius r(T) = 6;
(c) diagrams of sine values for the meshes (a) and (b) respectively.

This experiment is a bright demonstration of the border effect in the SOM, which appears
when the learning radius is large. The necessary condition for obtaining a smooth enough
adaptive mesh is a large learning radius. Therefore, the main problem while smoothing is to
handle the border effect.
The general scheme of adaptive mesh construction with employment of the smoothing
technique proposed below is as follows. The composite algorithm constructs adaptive mesh
with the learning radius being suitable for proper mesh nodes distribution and for
fulfillment of the EWP condition. Boundary nodes of this mesh are distributed along the
border of G. Starting from this mesh, a SOM-like procedure is applied during the a fixed
number of iterations with the constant learning rate, i.e. ()r t r ,  ()t ,  (,) ()

m mq i q it q q ,
where the learning radius r is comparatively large and the learning step  is small. This
procedure adjusts locations only of the interior mesh nodes and can be regarded as the last
stage of the composite algorithm.

0
0 ,05

0 ,1
0 ,15

0 ,2
0 ,25

0 ,3
0 ,35

0 ,4
0 ,45

1 3 5 7 9 11 13 15 17 19 21 23 25 27

(a)

(b)

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 139

Fig. 9. Examples of meshes constructed by the composite algorithm.

10. Topology preservation after applying the basic SOM model

The composite algorithm overcomes the border effect for small values of learning radius.
However, a small radius leads to unsmooth adaptive meshes, and this usually causes the
decreasing of the accuracy of numerical simulations on these meshes. The aim of this Section
is to propose the technique that allows us to use large learning radius for obtaining the
smooth enough adaptive meshes but without the border effect.
Let us consider the case when QN is a rectangular uniform mesh. It means that each node of
QN has four neighbors, and distances between neighboring nodes are equal to dQ. To
measure the smoothness of a quadrilateral adaptive mesh, let us consider a notion of a mesh
line which is a set of nodes being the image of a line of the fixed uniform mesh QN.
Smoothness of a mesh line can be measured by the sine values of angles between two
segments, connecting the neighboring nodes in the mesh line, in a sense that the less the
quantity of sign inversions and the amplitude of these values, the smoother the line.
Our experiments showed that the mesh smoothness depends on the relation between
learning step and radius. Given a fixed learning step, the larger the radius, the smoother the
mesh. It can be clearly seen from the example below. In Fig. 10(a), the mesh constructed by
the composite algorithm with artificially small final radius r(T) is shown. This mesh is
unsmooth even visually. For comparison, in Fig 10(b), the mesh is shown which has been
constructed with the final radius 2 times greater. Boundary nodes did not move in this
experiment, but they were allowed to become a winner. As it is shown in Fig. 10(c), the
smoothness of the last mesh is much better because the sine values are comparatively small

and have less sign inversions. But the resulting mesh is inappropriate for numerical
simulations because of bad approximation of the border of the physical domain.

(a)

(b)

(c)

Fig. 10. Measure of mesh smoothness; (a) the mesh obtained by the composite algorithm
with the artificially small final radius r(T) = 0.5; (b) the mesh with final radius r(T) = 6;
(c) diagrams of sine values for the meshes (a) and (b) respectively.

This experiment is a bright demonstration of the border effect in the SOM, which appears
when the learning radius is large. The necessary condition for obtaining a smooth enough
adaptive mesh is a large learning radius. Therefore, the main problem while smoothing is to
handle the border effect.
The general scheme of adaptive mesh construction with employment of the smoothing
technique proposed below is as follows. The composite algorithm constructs adaptive mesh
with the learning radius being suitable for proper mesh nodes distribution and for
fulfillment of the EWP condition. Boundary nodes of this mesh are distributed along the
border of G. Starting from this mesh, a SOM-like procedure is applied during the a fixed
number of iterations with the constant learning rate, i.e. ()r t r ,  ()t ,  (,) ()

m mq i q it q q ,
where the learning radius r is comparatively large and the learning step  is small. This
procedure adjusts locations only of the interior mesh nodes and can be regarded as the last
stage of the composite algorithm.

0
0 ,05

0 ,1
0 ,15

0 ,2
0 ,25

0 ,3
0 ,35

0 ,4
0 ,45

1 3 5 7 9 11 13 15 17 19 21 23 25 27

(a)

(b)

www.intechopen.com

Self-Organizing Maps140

After the termination of the composite algorithm, all mesh nodes are distributed over the
physical domain according to the given mesh density function. We assume here that the
EWP condition is satisfied for this mesh. Therefore, the probability to be a winner is equal
to 1/N.
As it has been shown in Section 7, to eliminate the border effect, it is necessary to balance the
asymmetry of lateral connections and to achieve the same value of i defined in (15) for all
neurons. We propose the technique that allows us to use the boundary nodes as
representatives of missing neurons near the border of Q.
Let us imagine that for each boundary neuron, there are K virtual neurons located outside
the computational domain. These virtual neurons do not exist in the algorithm but they will
help to understand the underlying idea of the proposed technique. The exact locations of
virtual neurons are unknown. The only available information is that the distance between k-
th virtual neuron and the corresponding boundary neuron qm is equal to kdQ,  1,...,k K ,
where    / QK r d and


    

arg min()
n

a a n is the smallest integer no less than a.

To involve virtual neurons into learning process, the following questions are to be resolved:
(1) in what conditions a virtual neuron becomes a winner? (2) what are the strengths of
lateral connections between neurons qi,  1,...,i N , and virtual ones? (3) what are the
directions and magnitudes of mesh nodes displacements in the physical domain when the
winner is a virtual neuron?

Answer to the question (1)
In the case of presence of virtual neurons, winner selection can not be based only on the
closeness to the random point, because there are no points outside the physical domain.
Therefore, at each iteration, first of all, it is necessary to decide from which kind of neurons
the winner is to be selected. Since the EWP condition is satisfied, virtual neurons have the
same probability to become a winner as all the other neurons. The probability of virtual
neurons to become a winner is equal to  int/()b bN K N K N , and hence, an interior neuron
can be a winner with the probability   int1 /()b bN K N K N . To select the winner among
virtual neurons, an input vector y is selected from the boundary training set Hb, a boundary
node which is closest to y is determined, and then the k-th virtual neuron randomly selected
(with uniform probability) from the set of virtual neurons, which correspond to the
determined boundary node, is assigned to be a winner.

Answer to the question (2)
To define lateral connections strengths between virtual and ordinary neurons, it is necessary
to know distances between them in the computational domain. The distance between k-th
virtual neuron and the neuron qi is assumed to be equal to (,)m i Qd q q kd , where qm is the
boundary neuron corresponding to the virtual neuron. This distance is approximate,
because the exact location of this virtual neuron in the computational domain is unknown.
The lateral connection between k-th virtual neuron related to the boundary neuron qm and
the neuron qi is taken as follows.


 

  
 

2(,)

, ()
m i Q

m

d q q kd
r

q k iq s .

Answer to the question (3)
To specify the directions and magnitudes of the mesh nodes displacements in the physical
domain when the winner is a virtual neuron, it is proposed to use the random point y on the
border of G, which has been generated for winner selection from the virtual neurons. Let us
remind that only interior mesh nodes can move during the smoothing stage. For each
interior node xi, the direction of its displacement is given by the vector  ()iy x t , i.e. the
node xi moves toward the point y located on the border of G. The magnitude of the
displacement is equal to   , () () (, ())

mq k i i iq v t d y x t , where  () 1 / (,)i Q m iv t kd d q q and qm is
the boundary neuron which corresponds to the virtual winner. This value has been found
on the ground of assumption that the ratio between (,)m id q q and (, ())id y x t is equal to the
ratio between (,)m i Qd q q kd and () (, ())i iv t d y x t . Since the rule is applied only to interior
nodes, then (,) 0m id q q .
Taking into account virtual neurons, the characteristic (15) changes and is equal to:

  
  

   ,
1 1 1

() ()
b

j m

NN K

i q i q k i
j k m

q q , (16)

where  1,..., bm N is an index of a boundary node. In Fig. 11(c), the diagrams of  i and  i
for a mesh cut are shown. It can be seen that  i is almost constant for all neurons in this cut.
Therefore, the proposed technique balances the asymmetry of lateral connection near the
border.

(a) (b) (c)

Fig. 11. Characteristic of lateral connections symmetry; (a) values of i without virtual
neurons; (b) values of  i with virtual neurons; (c) the cut of diagrams (a) and (b) where
dashed grey line is correspond to (a) and solid black line is correspond to (b).

The algorithm of the smoothing stage is a SOM-like procedure with constant learning
parameters. The learning radius r is chosen to be comparatively large, but it is bounded by
the curvature of the border of G. The learning step  is to be small, because fine tuning is
needed for smoothing and it does not impair essentially the mesh density approximation.
Besides, when a virtual neuron is a winner, an imaginary random point is outside the
physical domain, which can lead to the mesh nodes crossing the border of G. To exclude this

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 141

After the termination of the composite algorithm, all mesh nodes are distributed over the
physical domain according to the given mesh density function. We assume here that the
EWP condition is satisfied for this mesh. Therefore, the probability to be a winner is equal
to 1/N.
As it has been shown in Section 7, to eliminate the border effect, it is necessary to balance the
asymmetry of lateral connections and to achieve the same value of i defined in (15) for all
neurons. We propose the technique that allows us to use the boundary nodes as
representatives of missing neurons near the border of Q.
Let us imagine that for each boundary neuron, there are K virtual neurons located outside
the computational domain. These virtual neurons do not exist in the algorithm but they will
help to understand the underlying idea of the proposed technique. The exact locations of
virtual neurons are unknown. The only available information is that the distance between k-
th virtual neuron and the corresponding boundary neuron qm is equal to kdQ,  1,...,k K ,
where    / QK r d and


    

arg min()
n

a a n is the smallest integer no less than a.

To involve virtual neurons into learning process, the following questions are to be resolved:
(1) in what conditions a virtual neuron becomes a winner? (2) what are the strengths of
lateral connections between neurons qi,  1,...,i N , and virtual ones? (3) what are the
directions and magnitudes of mesh nodes displacements in the physical domain when the
winner is a virtual neuron?

Answer to the question (1)
In the case of presence of virtual neurons, winner selection can not be based only on the
closeness to the random point, because there are no points outside the physical domain.
Therefore, at each iteration, first of all, it is necessary to decide from which kind of neurons
the winner is to be selected. Since the EWP condition is satisfied, virtual neurons have the
same probability to become a winner as all the other neurons. The probability of virtual
neurons to become a winner is equal to  int/()b bN K N K N , and hence, an interior neuron
can be a winner with the probability   int1 /()b bN K N K N . To select the winner among
virtual neurons, an input vector y is selected from the boundary training set Hb, a boundary
node which is closest to y is determined, and then the k-th virtual neuron randomly selected
(with uniform probability) from the set of virtual neurons, which correspond to the
determined boundary node, is assigned to be a winner.

Answer to the question (2)
To define lateral connections strengths between virtual and ordinary neurons, it is necessary
to know distances between them in the computational domain. The distance between k-th
virtual neuron and the neuron qi is assumed to be equal to (,)m i Qd q q kd , where qm is the
boundary neuron corresponding to the virtual neuron. This distance is approximate,
because the exact location of this virtual neuron in the computational domain is unknown.
The lateral connection between k-th virtual neuron related to the boundary neuron qm and
the neuron qi is taken as follows.


 

  
 

2(,)

, ()
m i Q

m

d q q kd
r

q k iq s .

Answer to the question (3)
To specify the directions and magnitudes of the mesh nodes displacements in the physical
domain when the winner is a virtual neuron, it is proposed to use the random point y on the
border of G, which has been generated for winner selection from the virtual neurons. Let us
remind that only interior mesh nodes can move during the smoothing stage. For each
interior node xi, the direction of its displacement is given by the vector  ()iy x t , i.e. the
node xi moves toward the point y located on the border of G. The magnitude of the
displacement is equal to   , () () (, ())

mq k i i iq v t d y x t , where  () 1 / (,)i Q m iv t kd d q q and qm is
the boundary neuron which corresponds to the virtual winner. This value has been found
on the ground of assumption that the ratio between (,)m id q q and (, ())id y x t is equal to the
ratio between (,)m i Qd q q kd and () (, ())i iv t d y x t . Since the rule is applied only to interior
nodes, then (,) 0m id q q .
Taking into account virtual neurons, the characteristic (15) changes and is equal to:

  
  

   ,
1 1 1

() ()
b

j m

NN K

i q i q k i
j k m

q q , (16)

where  1,..., bm N is an index of a boundary node. In Fig. 11(c), the diagrams of  i and  i
for a mesh cut are shown. It can be seen that  i is almost constant for all neurons in this cut.
Therefore, the proposed technique balances the asymmetry of lateral connection near the
border.

(a) (b) (c)

Fig. 11. Characteristic of lateral connections symmetry; (a) values of i without virtual
neurons; (b) values of  i with virtual neurons; (c) the cut of diagrams (a) and (b) where
dashed grey line is correspond to (a) and solid black line is correspond to (b).

The algorithm of the smoothing stage is a SOM-like procedure with constant learning
parameters. The learning radius r is chosen to be comparatively large, but it is bounded by
the curvature of the border of G. The learning step  is to be small, because fine tuning is
needed for smoothing and it does not impair essentially the mesh density approximation.
Besides, when a virtual neuron is a winner, an imaginary random point is outside the
physical domain, which can lead to the mesh nodes crossing the border of G. To exclude this

www.intechopen.com

Self-Organizing Maps142

situation, the learning step should satisfy the following condition:   (1 / (,)) 1Q m ikd d q q
for any boundary neuron qm and interior neuron qi. From this the following condition can be
obtained.


 

       , ,

(,) 1min
(,) 1

Qm i

m i k
m i Q Q Q

dd q q
d q q kd d Kd K

. (17)

Smoothing Stage Algorithm
Repeat the following operations during the fixed number of iterations.

1. Generate a random number  from [0,1] with uniform probability distribution.
2. If    int int0, /()bN N K N , then perform a SOM-like procedure which consists in

the following:
a) Take randomly an input vector y from G using the probability distribution ()p x .
b) Select a winning node ()mx t among all the neurons. If ()mx t is a boundary

neuron, then replace an input vector with the weights of the winning neuron:
: ()my x t .

c) Adjust the weights only of the interior neurons according to the rule:

   (1) () ()(())
mi i q i ix t x t q y x t

3. If    int int/(), 1bN N K N , then perform the following operations:
a) Take randomly an input vector y from the border of G with the probability

distribution


()
G

p x .
b) Select the boundary node ()mx t which is closest to the point y.
c) Choose randomly the number k from {1,..., }K .
d) Adjust the weights only of the interior neurons according to the rule:

     ,(1) () () 1 / (,) (() ())
mi i q k i Q m i m ix t x t q kd d q q x t x t .

It has to be again pointed out that virtual neurons do not exist, and thus, there is no need to
change the structure of the fixed mesh when counteracting the border effect. Additionally,
our efforts have been directed towards the making of the learning rule as simple as possible
because of the following reasons: (1) to safe an inherent parallelism of the SOM algorithm
which consists in that all neurons are processed according to the same rule independently of
each other; (2) to avoid problems when constructing the mesh on a complex multiply-
connected domain, i.e. the ones with a single or multiple holes, since the border effect is to
be controlled at each of the borders.

10. Quality of resulting adaptive meshes

There are generally accepted quality criteria for quadrilateral 2D and 3D meshes such as the
criteria of cell convexity and oblongness, the criterion of mesh lines
orthogonality (Prokopov, 1989). In Table 1, possible and admissible values of these criteria

are shown. Also, Table 1 contains the values of criteria for the constructed adaptive mesh,
shown in Fig. 9 (b). The values are in the admissible range. Negative values of convexity and
orthogonality criteria indicate that there are some non convex cells in the mesh.

Quality criterion Values
Possible/Admissible/Best

Values for Fig. 8(b)
Average/Min

Cell convexity (;1] /[0;1] / 1

before smoothing
0.825896 / -0.072630

after smoothing
0.927001 / 0.112040

Mesh planes
orthogonality

(min value of the sin of
cell angles)

[1;1] /[0;1] / 1

before smoothing
0.810640 / -0.034921

after smoothing
0.871268 / 0.158070

Cell oblongness
(ratio between max and

min edges of a cell)

(0;1] / depending on a
problem / 1

before smoothing
0.532211 / 0.000375

after smoothing
0.584676 / 0.098801

Table 1. Mesh quality evaluation.

11. Conclusion

The main result of this investigation is that we proposed an efficient method of adaptive
regular mesh construction in 2D and 3D space based on Self Organizing Maps, which does
not require solving complicated partial differential equations in order to achieve an
acceptable quality of adaptive meshes. The principal possibility of construction adaptive
meshes using the SOM models has been proved in the theorem of correspondence.
We believe that the proposed approach to efficient and automatic adaptive mesh
construction will contribute to the theory and algorithms of mesh methods. In the future, the
neural network approach will be extended to construction of moving structured adaptive
meshes based on SOM-like models and unstructured adaptive meshes (Bohn, 1997) based
on other self organizing models like Growing Neural Gas and Growing Cell Structures
(Fritzke, 1997). The approach seems to be useful especially for building real life geometrical
models from point clouds measured by lazer scanners, tomography devices, echo sounding,
etc.

12. References

Bern, M. & Plassmann, P. (1999) Mesh Generation, Handbook of Computational Geometry, J.-R.
Sack and J. Urrutia eds., Chapter 6, Elsevier Science, 1999.

www.intechopen.com

Using Self Organizing Maps for 3D surface and volume adaptive mesh generation 143

situation, the learning step should satisfy the following condition:   (1 / (,)) 1Q m ikd d q q
for any boundary neuron qm and interior neuron qi. From this the following condition can be
obtained.


 

       , ,

(,) 1min
(,) 1

Qm i

m i k
m i Q Q Q

dd q q
d q q kd d Kd K

. (17)

Smoothing Stage Algorithm
Repeat the following operations during the fixed number of iterations.

1. Generate a random number  from [0,1] with uniform probability distribution.
2. If    int int0, /()bN N K N , then perform a SOM-like procedure which consists in

the following:
a) Take randomly an input vector y from G using the probability distribution ()p x .
b) Select a winning node ()mx t among all the neurons. If ()mx t is a boundary

neuron, then replace an input vector with the weights of the winning neuron:
: ()my x t .

c) Adjust the weights only of the interior neurons according to the rule:

   (1) () ()(())
mi i q i ix t x t q y x t

3. If    int int/(), 1bN N K N , then perform the following operations:
a) Take randomly an input vector y from the border of G with the probability

distribution


()
G

p x .
b) Select the boundary node ()mx t which is closest to the point y.
c) Choose randomly the number k from {1,..., }K .
d) Adjust the weights only of the interior neurons according to the rule:

     ,(1) () () 1 / (,) (() ())
mi i q k i Q m i m ix t x t q kd d q q x t x t .

It has to be again pointed out that virtual neurons do not exist, and thus, there is no need to
change the structure of the fixed mesh when counteracting the border effect. Additionally,
our efforts have been directed towards the making of the learning rule as simple as possible
because of the following reasons: (1) to safe an inherent parallelism of the SOM algorithm
which consists in that all neurons are processed according to the same rule independently of
each other; (2) to avoid problems when constructing the mesh on a complex multiply-
connected domain, i.e. the ones with a single or multiple holes, since the border effect is to
be controlled at each of the borders.

10. Quality of resulting adaptive meshes

There are generally accepted quality criteria for quadrilateral 2D and 3D meshes such as the
criteria of cell convexity and oblongness, the criterion of mesh lines
orthogonality (Prokopov, 1989). In Table 1, possible and admissible values of these criteria

are shown. Also, Table 1 contains the values of criteria for the constructed adaptive mesh,
shown in Fig. 9 (b). The values are in the admissible range. Negative values of convexity and
orthogonality criteria indicate that there are some non convex cells in the mesh.

Quality criterion Values
Possible/Admissible/Best

Values for Fig. 8(b)
Average/Min

Cell convexity (;1] /[0;1] / 1

before smoothing
0.825896 / -0.072630

after smoothing
0.927001 / 0.112040

Mesh planes
orthogonality

(min value of the sin of
cell angles)

[1;1] /[0;1] / 1

before smoothing
0.810640 / -0.034921

after smoothing
0.871268 / 0.158070

Cell oblongness
(ratio between max and

min edges of a cell)

(0;1] / depending on a
problem / 1

before smoothing
0.532211 / 0.000375

after smoothing
0.584676 / 0.098801

Table 1. Mesh quality evaluation.

11. Conclusion

The main result of this investigation is that we proposed an efficient method of adaptive
regular mesh construction in 2D and 3D space based on Self Organizing Maps, which does
not require solving complicated partial differential equations in order to achieve an
acceptable quality of adaptive meshes. The principal possibility of construction adaptive
meshes using the SOM models has been proved in the theorem of correspondence.
We believe that the proposed approach to efficient and automatic adaptive mesh
construction will contribute to the theory and algorithms of mesh methods. In the future, the
neural network approach will be extended to construction of moving structured adaptive
meshes based on SOM-like models and unstructured adaptive meshes (Bohn, 1997) based
on other self organizing models like Growing Neural Gas and Growing Cell Structures
(Fritzke, 1997). The approach seems to be useful especially for building real life geometrical
models from point clouds measured by lazer scanners, tomography devices, echo sounding,
etc.

12. References

Bern, M. & Plassmann, P. (1999) Mesh Generation, Handbook of Computational Geometry, J.-R.
Sack and J. Urrutia eds., Chapter 6, Elsevier Science, 1999.

www.intechopen.com

Self-Organizing Maps144

Bessmeltsev, M. (2008) Geometry processing and visualization in scientific applications using
GeomBox package, Electronic publication, http://aitricks.com/geombox/about.htm,
SB RAS, Novosibirsk, Russia, 2009

Bohn, Ch.-A. (1997) Finite Element Mesh Generation using Growing Cell Structures
Networks, Neural Networks in Engineering Systems, Turku, Finland, 1997.

Fritzke, B. (1997) Some competitive learning methods, Technical report, Systems Biophysics,
Inst. for Neural Comp., Ruhr-Universität Bochum, April 1997

Khakimzyanov, G.S.; Shokin, Yu.I.; Barakhnin, V.B. & Shokina, N.Yu. Numerical Modelling of
Fluid Flows with Surface Waves, SB RAS, Novosibirsk, 2001, 394 p.

Kohonen, T. (2001) Self-organizing Maps, Springer Series in Information Sciences, V.30,
Springer, Berlin, Heidelberg, New York, 2001, 501 p.

Lebedev, A.S.; Liseikin, V.D. & Khakimzyanov, G.S. (2002) Development of methods for
generating adaptive grids, Vychislitelnye tehnologii, Vol. 7, No. 3, 2002, pp. 29-43

Liseikin, V.D. (1999) Grid Generation Methods, Springer-Verlag, Berlin, Heidelberg, New
York, 1999, 362 p.

Mikhailov, N.A. & Voitishek, A.V. (2006) Numerical statistical modeling. Monte Carlo methods,
Publisher: Academia, 2006, 368 p.

Nechaeva, O. (2005) Neural Network Approach for Parallel Construction of Adaptive
Meshes, Lecture Notes in Computer Science, PaCT 2005, Vol. 3606, Springer, Berlin
Heidelberg, 2005, pp. 446-451

Nechaeva, O. (2006) Composite Algorithm for Adaptive Mesh Construction Based on Self-
Organizing Maps, Lecture Notes in Computer Science, ICANN 2006, Springer
Berlin/Heidelberg, Vol. 4131, 2006, p. 445-454

Nechaeva, O. (2007) Composition of Self Organizing Maps for Adaptive Mesh Construction
on Complex-shaped Domains, Proceedings of the 6th International Workshop on Self-
Organizing Maps (WSOM 2007), Bielefeld University, ISBN: 978-3-00-022473-7, 2007,
6 p.

Nechaeva, O. (2008) GeomRandom package for efficient random nonuniform distribution
modeling on a surface and inside complex 3D shapes, Electronic publication,
http://aitricks.com/geomrandom/about.htm, SB RAS, Novosibirsk, Russia, 2008

Nechaeva, O. I. (2004) Adaptive curvilinear mesh construction on arbitrary two-dimensional
convex area with applying of Kohonen’s Self Organizing Map, Neuroinformatics and
its applications: The XII National Workshop, ICM SB RAS, Krasnoyarsk, 2004, pp. 101-
102

Okabe, A.; Boots, B.; Sugihara, K. & Sung, N.Ch. (2000) Spatial Tessellations – Concepts and
Applications of Voronoi Diagrams, 2nd edition, John Wiley, 2000, 671 p.

Prokopov, G. P. (1989) About organization of comparison of algorithms and programs for
2D regular difference mesh construction, Preprint, Keldysh Institute for Applied
Mathematics, No. 18, Moscow, 1989

Shokina, N. Yu. (2001) Equidistribution Method For Adaptive Grid Generation, Proceedings
of 10th International Meshing Roundtable, Sandia National Laboratories, 2001, pp.121-
133

Thompson, J.F.; Warsi Z.U.A. & Mastin C.W. (1985) Numerical grid generation, foundations and
applications, North-Holland, Amsterdam, 1985

www.intechopen.com

Self-Organizing Maps

Edited by George K Matsopoulos

ISBN 978-953-307-074-2

Hard cover, 430 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The Self-Organizing Map (SOM) is a neural network algorithm, which uses a competitive learning technique to

train itself in an unsupervised manner. SOMs are different from other artificial neural networks in the sense

that they use a neighborhood function to preserve the topological properties of the input space and they have

been used to create an ordered representation of multi-dimensional data which simplifies complexity and

reveals meaningful relationships. Prof. T. Kohonen in the early 1980s first established the relevant theory and

explored possible applications of SOMs. Since then, a number of theoretical and practical applications of

SOMs have been reported including clustering, prediction, data representation, classification, visualization, etc.

This book was prompted by the desire to bring together some of the more recent theoretical and practical

developments on SOMs and to provide the background for future developments in promising directions. The

book comprises of 25 Chapters which can be categorized into three broad areas: methodology, visualization

and practical applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Olga Nechaeva (2010). Using Self Organizing Maps for 3D surface and volume adaptive mesh generation,

Self-Organizing Maps, George K Matsopoulos (Ed.), ISBN: 978-953-307-074-2, InTech, Available from:

http://www.intechopen.com/books/self-organizing-maps/using-self-organizing-maps-for-3d-surface-and-

volume-adaptive-mesh-generation

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

