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1. Introduction    
 

Remote sensing involves the collection of information about an object from a distance. Often 
remote-sensing instruments are mounted onboard an air- or space-borne platform and 
typically record electromagnetic energy in specific wavelength intervals, or bands. The 
electromagnetic energy recorded over a given area contains information about surfaces 
reflecting or emitting energy. This information can be used for a variety of applications; for 
example, remote-sensing image analysis can extract thematic information such as land-cover 
types (Jensen, 2005).  
Artificial neural network (ANN) techniques have increasingly been employed in the 
analysis of remotely-sensed images. ANNs can be advantageous in digital image processing 
in that no assumption is made about the statistical properties of the images, and they are 
thus widely applicable to a variety of dataset types. In addition, ANNs learn adaptively 
through examples and have a high tolerance to noisy or incomplete data (Jensen, 2005). 
ANN model development can proceed via either supervised or unsupervised means, and if 
adequate training data are available, supervised training may be readily performed. 
However, obtaining reliable training data in remote-sensing applications is often 
problematic (Congalton and Green, 1999), as a remote sensor image typically covers a large 
area, and only a limited number of training locations can be sampled in the field due to cost, 
time, personnel requirements, and various other logistical constraints, including potential 
restrictions on access to the study area. Unsupervised image-processing methods—
including unsupervised ANNs—can be of significant utility in such circumstances (Filippi et 
al., 2009). Unsupervised ANNs are used in situations where the correct outputs may not be 
known, or if it is desired that the network discover or categorize regularities or features in 
the training data on its own. There is no teacher signal (Hassoun, 1995). 
The unsupervised Kohonen self-organizing map (SOM) is a two-layer network, with an 
input fan-out layer, and an output layer (known as the Kohonen or competitive layer), and 
the method is based upon competitive learning. The Kohonen layer is comprised of a 
physical net of neurons located at fixed positions (i.e., intersections in a grid of square 
meshes). Adjacent neurons are assumed to have a Euclidean distance of unity. The input 
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layer has the same dimensionality as the pattern (feature) vector. The primary goal of the 
SOM is to capture the topology and model the probability distribution of the input vectors 
around the unit circle or hypersphere. The weight vectors act as a model for the probability 
distribution function. In an adaptive and topologically-ordered manner, the SOM converts 
patterns of arbitrary dimensionality (the pattern space) into the responses of one- or two-
dimensional virtual arrays of self-organizing neurons (feature space), which are essentially 
probability distribution maps. This feature-mapping component reduces the dimensionality. 
It is a topology-preserving map, as it preserves the neighborhood relations of the input 
pattern. Input and output neurons are fully connected via the synaptic weights (Kohonen, 
1988; Lin and Lee, 1996; Haykin, 2009). 
Self-organization involves adaptively modifying the synaptic weights as a result of input 
excitations while abiding by a learning rule until a useful configuration is produced. In the 
output layer, or lattice, output neurons become selectively tuned to the presented input 
patterns during a competitive-learning procedure. The topologically-ordered output space 
entails neurons close to one another representing similar input patterns. Learning is 
accomplished by first choosing an output neuron that most closely matches the presented 
input pattern, then determining a neighborhood of excited neurons around the winner, and 
finally, updating all of the excited neurons (Haykin, 2009). Learning decreases with 
intercellular distance; the nearest neighbors to the primary classifying cell learn the pattern 
very well, while more distant cells learn the pattern less well (Hassoun, 1995). 
Supervised learning may also be incorporated through a related technique referred to as 
Learning Vector Quantization (LVQ). Similar to SOM, all output nodes compete and the 
winning node is selected according to its similarity with the presented input pattern. Unlike 
SOM though, only the winning neuron is updated, and thus, the resulting output feature 
space is not topologically ordered (Kohonen, 2001). If training data are available, often the 
SOM analysis is performed first, and then LVQ is applied to fine-tune the feature map. 
This chapter provides a brief overview of the applications of SOM-based techniques and 
related self-organizing methods used in remote sensing, and it demonstrates the use of 
SOMs in remote sensing through a case study involving the classification of a Landsat 
Enhanced Thematic Mapper Plus (ETM+) surface reflectance image. 

 
2. Overview of SOM-based and SOM-related Applications in Remote Sensing 
 

The basic unsupervised SOM algorithm has been applied in various remote-sensing studies 
(Table 1). For example, it has been used for identifying characteristics ocean current patterns 
over semidiurnal, diurnal and sub-tidal time scales (Liu et al., 2006) and for identifying 
synoptic-scale wind patterns and sea surface temperature patterns (Richardson et al., 2003). 
In another oceanographic remote-sensing study, Marques and Chen (2003) proposed a 
Kohonen SOM-based approach for detecting the borders of eddies in the Mediterranean. 
These Mediterranean Water Eddies strongly affect Atlantic Ocean hydrodynamics and are 
important in the transport of particles, live organisms, and suspended material. The 
objective was to discover image pixels on cluster boundaries, rather than the clusters 
themselves. Compared with a conventional Canny gradient edge-detector, the SOM 
detected the more significant and continuous borders. The Canny algorithm did not detect 
all borders at high threshold values and generated excessive noise at low threshold values. 
The SOM was thus more robust to noise and ill-defined/amorphous borders (Marques and 

 

Chen, 2003). SOMs have also been used in synoptic climatology to locate archetypal points 
describing the multi-dimensional distribution function of gridded sea level pressure data. In 
Hewitson and Crane (2002), the SOM nodes represented important regional-scale 
circulatory features. Boekaerts et al. (1995) used an unsupervised, one-dimensional SOM in 
an autoadaptive mono-spectral cloud identification scheme employing Meteosat imagery. In 
terrestrial remote sensing, atmospheric features often constitute a source of noise, and 
minimizing such effects are typically desirable. For instance, monitoring vegetation cover 
and bare agricultural soils during the intercrop season is important for soil and water 
quality-management purposes, particularly in agriculture-intensive areas. Latif et al. (2008) 
identified and monitored bare soil interannual spatial variation at the regional scale using 
low-resolution satellite time-series data; however, such images are often adversely affected 
by clouds and shadows. The SOM was used to predict spectral values of pixels 
contaminated by weather conditions (i.e., clouds and cloud shadows) for posterior bare-soil 
mapping (Latif et al., 2008). In other terrestrial applications, the SOM algorithm has also 
been applied to detecting and characterizing yardangs, which are streamlined, elongated, 
wind-abraded ridges (Ehsani and Quiel, 2008), as well as to land-cover classification in an 
agricultural region and mapping fire-damaged forests (Furrer et al., 1994). Additionally, 
Kohonen’s SOM has been used for automatically generating texture-based visual thesauri of 
massive archives remote-sensor images (e.g., aerial photographs and Advanced Very-High 
Resolution Radiometer (AVHRR) images) (Ramsey et al., 1999). 
 

Authors Year Application 

Ehsani and 
Quiel 2008 Detecting and characterizing yardangs 

Latif et al. 2008 
Predicting spectral values of data contaminated by 
weather conditions 

Liu et al. 2006 
Identifying ocean current patterns over semidiurnal, 
diurnal and sub-tidal time scales 

Marques and 
Chen 2003 Detecting Mediterranean Water Eddy borders 
Richardson et 
al. 2003 

Identifying synoptic-scale wind patterns and sea surface 
temperature patterns 

Hewitson and 
Crane 2002 Synoptic climatology 

Ramsey et al. 1999 
Creating texture-based visual thesauri of image 
collections 

Boekaerts et al. 1995 Cloud identification 

Furrer et al. 1994 
Mapping fire-damaged forests; agricultural/land-cover 
classification 

Table 1. Basic SOM used in various example remote-sensing application domains 
 
Applications of SOM variants in remote sensing have also been demonstrated (Table 2), and 
such SOM variants have been prompted by SOM limitations. For example, although the 
SOM has been a stable ANN model in high-dimensional data analysis, its utility is limited 

www.intechopen.com



Self-Organizing Map-based Applications in Remote Sensing 233

 

layer has the same dimensionality as the pattern (feature) vector. The primary goal of the 
SOM is to capture the topology and model the probability distribution of the input vectors 
around the unit circle or hypersphere. The weight vectors act as a model for the probability 
distribution function. In an adaptive and topologically-ordered manner, the SOM converts 
patterns of arbitrary dimensionality (the pattern space) into the responses of one- or two-
dimensional virtual arrays of self-organizing neurons (feature space), which are essentially 
probability distribution maps. This feature-mapping component reduces the dimensionality. 
It is a topology-preserving map, as it preserves the neighborhood relations of the input 
pattern. Input and output neurons are fully connected via the synaptic weights (Kohonen, 
1988; Lin and Lee, 1996; Haykin, 2009). 
Self-organization involves adaptively modifying the synaptic weights as a result of input 
excitations while abiding by a learning rule until a useful configuration is produced. In the 
output layer, or lattice, output neurons become selectively tuned to the presented input 
patterns during a competitive-learning procedure. The topologically-ordered output space 
entails neurons close to one another representing similar input patterns. Learning is 
accomplished by first choosing an output neuron that most closely matches the presented 
input pattern, then determining a neighborhood of excited neurons around the winner, and 
finally, updating all of the excited neurons (Haykin, 2009). Learning decreases with 
intercellular distance; the nearest neighbors to the primary classifying cell learn the pattern 
very well, while more distant cells learn the pattern less well (Hassoun, 1995). 
Supervised learning may also be incorporated through a related technique referred to as 
Learning Vector Quantization (LVQ). Similar to SOM, all output nodes compete and the 
winning node is selected according to its similarity with the presented input pattern. Unlike 
SOM though, only the winning neuron is updated, and thus, the resulting output feature 
space is not topologically ordered (Kohonen, 2001). If training data are available, often the 
SOM analysis is performed first, and then LVQ is applied to fine-tune the feature map. 
This chapter provides a brief overview of the applications of SOM-based techniques and 
related self-organizing methods used in remote sensing, and it demonstrates the use of 
SOMs in remote sensing through a case study involving the classification of a Landsat 
Enhanced Thematic Mapper Plus (ETM+) surface reflectance image. 

 
2. Overview of SOM-based and SOM-related Applications in Remote Sensing 
 

The basic unsupervised SOM algorithm has been applied in various remote-sensing studies 
(Table 1). For example, it has been used for identifying characteristics ocean current patterns 
over semidiurnal, diurnal and sub-tidal time scales (Liu et al., 2006) and for identifying 
synoptic-scale wind patterns and sea surface temperature patterns (Richardson et al., 2003). 
In another oceanographic remote-sensing study, Marques and Chen (2003) proposed a 
Kohonen SOM-based approach for detecting the borders of eddies in the Mediterranean. 
These Mediterranean Water Eddies strongly affect Atlantic Ocean hydrodynamics and are 
important in the transport of particles, live organisms, and suspended material. The 
objective was to discover image pixels on cluster boundaries, rather than the clusters 
themselves. Compared with a conventional Canny gradient edge-detector, the SOM 
detected the more significant and continuous borders. The Canny algorithm did not detect 
all borders at high threshold values and generated excessive noise at low threshold values. 
The SOM was thus more robust to noise and ill-defined/amorphous borders (Marques and 

 

Chen, 2003). SOMs have also been used in synoptic climatology to locate archetypal points 
describing the multi-dimensional distribution function of gridded sea level pressure data. In 
Hewitson and Crane (2002), the SOM nodes represented important regional-scale 
circulatory features. Boekaerts et al. (1995) used an unsupervised, one-dimensional SOM in 
an autoadaptive mono-spectral cloud identification scheme employing Meteosat imagery. In 
terrestrial remote sensing, atmospheric features often constitute a source of noise, and 
minimizing such effects are typically desirable. For instance, monitoring vegetation cover 
and bare agricultural soils during the intercrop season is important for soil and water 
quality-management purposes, particularly in agriculture-intensive areas. Latif et al. (2008) 
identified and monitored bare soil interannual spatial variation at the regional scale using 
low-resolution satellite time-series data; however, such images are often adversely affected 
by clouds and shadows. The SOM was used to predict spectral values of pixels 
contaminated by weather conditions (i.e., clouds and cloud shadows) for posterior bare-soil 
mapping (Latif et al., 2008). In other terrestrial applications, the SOM algorithm has also 
been applied to detecting and characterizing yardangs, which are streamlined, elongated, 
wind-abraded ridges (Ehsani and Quiel, 2008), as well as to land-cover classification in an 
agricultural region and mapping fire-damaged forests (Furrer et al., 1994). Additionally, 
Kohonen’s SOM has been used for automatically generating texture-based visual thesauri of 
massive archives remote-sensor images (e.g., aerial photographs and Advanced Very-High 
Resolution Radiometer (AVHRR) images) (Ramsey et al., 1999). 
 

Authors Year Application 

Ehsani and 
Quiel 2008 Detecting and characterizing yardangs 

Latif et al. 2008 
Predicting spectral values of data contaminated by 
weather conditions 

Liu et al. 2006 
Identifying ocean current patterns over semidiurnal, 
diurnal and sub-tidal time scales 

Marques and 
Chen 2003 Detecting Mediterranean Water Eddy borders 
Richardson et 
al. 2003 

Identifying synoptic-scale wind patterns and sea surface 
temperature patterns 

Hewitson and 
Crane 2002 Synoptic climatology 

Ramsey et al. 1999 
Creating texture-based visual thesauri of image 
collections 

Boekaerts et al. 1995 Cloud identification 

Furrer et al. 1994 
Mapping fire-damaged forests; agricultural/land-cover 
classification 

Table 1. Basic SOM used in various example remote-sensing application domains 
 
Applications of SOM variants in remote sensing have also been demonstrated (Table 2), and 
such SOM variants have been prompted by SOM limitations. For example, although the 
SOM has been a stable ANN model in high-dimensional data analysis, its utility is limited 
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by its static network architecture and its limited ability to represent hierarchical relations in 
the data (Hong et al., 2006). Thus, a growing hierarchical SOM (GHSOM) has been proposed 
that employs a hierarchical structure comprised of multiple layers, where each layer is 
composed of one or more SOMs. Based on the input data distributions, the size of the sub-
layers dynamically adapts during network learning, and feature maps are added as needed. 
This layered architecture explicitly represents hierarchical relations between input data 
(Hong et al., 2006). The GHSOM is advantageous for processing large remote-sensor data 
sets and increasing image classification accuracy (Liu et al., 2006). GHSOM has been applied 
to the problem of cloud classification in satellite images (Hong et al., 2006) and the analysis 
of sea surface temperature patterns (Liu et al., 2006). Growing SOM (GSOM) changes its 
structure during the learning process by adding neurons to the output space, and it was 
successfully applied to the problem of unsupervised classification of a multispectral Landsat 
Thematic Mapper (TM) image (acquired over Colorado, USA, with multiple vegetation and 
soil classes) and a hyperspectral Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
scene (acquired over the Lunar Crater Volcanic Field (LCVF), Nevada, USA, which is 
dominated by mineralogic/geologic materials) (Vilmann et al., 2003). Another SOM variant 
involves magnification control through the use of an additional magnification control 
parameter, and the technique was applied to the same Landsat TM and AVIRIS scenes as 
GSOM (Vilmann et al., 2003). Another SOM variant, Multiple SOMs (MSOMs), fuse several 
small feature maps, each explicitly representing different cluster regions, thus better 
approximating each region, and thus better dealing with region borders (Wan and Fraser, 
1999; Wan and Fraser, 2000). MSOMs vary in the type of SOM used and in the way the small 
feature maps are fused, which can be performed in accordance with unsupervised, 
supervised, or hybrid methods. MSOMs have been used for multisource data fusion and 
compound classification of a bitemporal, agricultural remote-sensor image data set (Wan 
and Fraser, 1999). In Wan and Fraser (2000), the applicability of MSOMs was demonstrated 
through land-cover classification of an AVIRIS image and a joint spatio-temporal 
classification of two Landsat TM images. A modified SOM based on the work of Hillermeier 
et al. (1994), which introduced self-organized lateral network connections, has also been 
used to perform land-cover classification, including mapping fire-damaged forests (Olbert et 
al., 1995; Schaale and Furrer, 1995). 
Whereas the above studies demonstrate the applicability of SOM variants to remote-sensing 
image analysis, other studies specifically modify the basic/original SOM for achieving 
specialized tasks. For example, the Self-Organized Road Mapping (SORM) algorithm was 
developed for road extraction from high-resolution multispectral images where a pre-
classified image is used as the input to a K-medians clustering algorithm, and the cluster 
locations are used as the input to a modified one-dimensional SOM (Doucette et al., 2008). 
Another SOM variant, the PicSOM, is used for the identification of specified anthropogenic 
structures such as buildings and for change detection using high-resolution images 
(Molinier et al., 2007). The technique involves the decomposition of images into subsets 
representing different structures and storing them in an image database. The stored image 
subsets are then used for SOM training, which subsequently allows for querying the image 
database for spatial structures of interest. 
Supervised SOM is achieved by first coarse-tuning the feature map through unsupervised 
learning, and then fine-tuning the map using any supervised LVQ learning method 
(Kohonen, 1988). During LVQ training, the weights of the reference nodes are updated 

 

Authors Year SOM Variant Application 

Doucette et al. 2008 SORM Road extraction 

Molinier et al. 2007 PicSOM 
Detection of buildings;  
change detection 

Hong et al. 2006 GHSOM Cloud characterization 

Liu et al. 2006 GHSOM 
Sea surface temperature 
pattern analysis 

Vilmann et al. 2003 
GSOM  
Magnification control Land-cover classification 

Wan and Fraser 2000 MSOMs 
Joint spatio-temporal 
agricultural classification 

Wan and Fraser 1999 MSOMs 

Multisource data fusion and 
joint spatio-temporal 
agricultural classification 

Olbert et al. 1995 

Population-coded, one-
layer model of 
associative memory 

Mapping fire-damaged 
forests 

Schaale and 
Furrer  1995 

Population-coded, one-
layer model of 
associative memory 

Mapping fire-damaged 
forests; land cover 
classification 

Table 2. Example SOM variants applied to remote sensing  
 
according to samples of specified classes. The originally-proposed LVQ1, LVQ2, and LVQ3 
learning methods and their modifications have been applied to remote-sensing problems 
(Table 3). Fine-turning the classification of a Landsat TM image with LVQ performed better 
than a maximum likelihood classification (MLC) (Ji, 2000). Generalized relevance LVQ 
(GRLVQ) combines two important modifications of the Kohonen LVQs (Villmann et al., 
2003). First, the cost function is minimized through stochastic gradient descent, and second, 
input weights are applied to obtain scaling of the input dimensions. In Villmann et al. 
(2003), GRLVQ was applied to Landsat TM and AVIRIS images for the purposes of land- 
cover/vegetation classification and geologic-mapping, respectively. The results were 
compared to the results obtained through GSOM and Magnification Control SOM (noted 
above), and it was demonstrated that GRLVQ produced the highest classification accuracy 
(Villmann et al., 2003). GRLVQ was further improved for use with high-dimensional 
hyperspectral images (Mendenhall and Merényi, 2008). GRLVQ Improved (GRLVQI) 
addresses the problem of poorly-utilized neurons by modifying the selection of winning 
neurons to encourage selection of infrequent winners. The technique was applied to a 
hyperspectral geologic AVIRIS image of the Lunar Crater Volcanic Field (LCVF) (noted 
above), and it was determined that higher classification accuracy can be obtained with 
GRLVQI relative to GRLVQ. The authors showed that relevance-selected features maintain 
or improve the performance of even basic classifiers (Mendenhall and Merényi, 2008). 
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by its static network architecture and its limited ability to represent hierarchical relations in 
the data (Hong et al., 2006). Thus, a growing hierarchical SOM (GHSOM) has been proposed 
that employs a hierarchical structure comprised of multiple layers, where each layer is 
composed of one or more SOMs. Based on the input data distributions, the size of the sub-
layers dynamically adapts during network learning, and feature maps are added as needed. 
This layered architecture explicitly represents hierarchical relations between input data 
(Hong et al., 2006). The GHSOM is advantageous for processing large remote-sensor data 
sets and increasing image classification accuracy (Liu et al., 2006). GHSOM has been applied 
to the problem of cloud classification in satellite images (Hong et al., 2006) and the analysis 
of sea surface temperature patterns (Liu et al., 2006). Growing SOM (GSOM) changes its 
structure during the learning process by adding neurons to the output space, and it was 
successfully applied to the problem of unsupervised classification of a multispectral Landsat 
Thematic Mapper (TM) image (acquired over Colorado, USA, with multiple vegetation and 
soil classes) and a hyperspectral Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
scene (acquired over the Lunar Crater Volcanic Field (LCVF), Nevada, USA, which is 
dominated by mineralogic/geologic materials) (Vilmann et al., 2003). Another SOM variant 
involves magnification control through the use of an additional magnification control 
parameter, and the technique was applied to the same Landsat TM and AVIRIS scenes as 
GSOM (Vilmann et al., 2003). Another SOM variant, Multiple SOMs (MSOMs), fuse several 
small feature maps, each explicitly representing different cluster regions, thus better 
approximating each region, and thus better dealing with region borders (Wan and Fraser, 
1999; Wan and Fraser, 2000). MSOMs vary in the type of SOM used and in the way the small 
feature maps are fused, which can be performed in accordance with unsupervised, 
supervised, or hybrid methods. MSOMs have been used for multisource data fusion and 
compound classification of a bitemporal, agricultural remote-sensor image data set (Wan 
and Fraser, 1999). In Wan and Fraser (2000), the applicability of MSOMs was demonstrated 
through land-cover classification of an AVIRIS image and a joint spatio-temporal 
classification of two Landsat TM images. A modified SOM based on the work of Hillermeier 
et al. (1994), which introduced self-organized lateral network connections, has also been 
used to perform land-cover classification, including mapping fire-damaged forests (Olbert et 
al., 1995; Schaale and Furrer, 1995). 
Whereas the above studies demonstrate the applicability of SOM variants to remote-sensing 
image analysis, other studies specifically modify the basic/original SOM for achieving 
specialized tasks. For example, the Self-Organized Road Mapping (SORM) algorithm was 
developed for road extraction from high-resolution multispectral images where a pre-
classified image is used as the input to a K-medians clustering algorithm, and the cluster 
locations are used as the input to a modified one-dimensional SOM (Doucette et al., 2008). 
Another SOM variant, the PicSOM, is used for the identification of specified anthropogenic 
structures such as buildings and for change detection using high-resolution images 
(Molinier et al., 2007). The technique involves the decomposition of images into subsets 
representing different structures and storing them in an image database. The stored image 
subsets are then used for SOM training, which subsequently allows for querying the image 
database for spatial structures of interest. 
Supervised SOM is achieved by first coarse-tuning the feature map through unsupervised 
learning, and then fine-tuning the map using any supervised LVQ learning method 
(Kohonen, 1988). During LVQ training, the weights of the reference nodes are updated 

 

Authors Year SOM Variant Application 

Doucette et al. 2008 SORM Road extraction 

Molinier et al. 2007 PicSOM 
Detection of buildings;  
change detection 

Hong et al. 2006 GHSOM Cloud characterization 

Liu et al. 2006 GHSOM 
Sea surface temperature 
pattern analysis 

Vilmann et al. 2003 
GSOM  
Magnification control Land-cover classification 

Wan and Fraser 2000 MSOMs 
Joint spatio-temporal 
agricultural classification 

Wan and Fraser 1999 MSOMs 

Multisource data fusion and 
joint spatio-temporal 
agricultural classification 

Olbert et al. 1995 

Population-coded, one-
layer model of 
associative memory 

Mapping fire-damaged 
forests 

Schaale and 
Furrer  1995 

Population-coded, one-
layer model of 
associative memory 

Mapping fire-damaged 
forests; land cover 
classification 

Table 2. Example SOM variants applied to remote sensing  
 
according to samples of specified classes. The originally-proposed LVQ1, LVQ2, and LVQ3 
learning methods and their modifications have been applied to remote-sensing problems 
(Table 3). Fine-turning the classification of a Landsat TM image with LVQ performed better 
than a maximum likelihood classification (MLC) (Ji, 2000). Generalized relevance LVQ 
(GRLVQ) combines two important modifications of the Kohonen LVQs (Villmann et al., 
2003). First, the cost function is minimized through stochastic gradient descent, and second, 
input weights are applied to obtain scaling of the input dimensions. In Villmann et al. 
(2003), GRLVQ was applied to Landsat TM and AVIRIS images for the purposes of land- 
cover/vegetation classification and geologic-mapping, respectively. The results were 
compared to the results obtained through GSOM and Magnification Control SOM (noted 
above), and it was demonstrated that GRLVQ produced the highest classification accuracy 
(Villmann et al., 2003). GRLVQ was further improved for use with high-dimensional 
hyperspectral images (Mendenhall and Merényi, 2008). GRLVQ Improved (GRLVQI) 
addresses the problem of poorly-utilized neurons by modifying the selection of winning 
neurons to encourage selection of infrequent winners. The technique was applied to a 
hyperspectral geologic AVIRIS image of the Lunar Crater Volcanic Field (LCVF) (noted 
above), and it was determined that higher classification accuracy can be obtained with 
GRLVQI relative to GRLVQ. The authors showed that relevance-selected features maintain 
or improve the performance of even basic classifiers (Mendenhall and Merényi, 2008). 
 

www.intechopen.com



Self-Organizing Maps236

 

Authors Year Technique Application 

Mendenhall 
and Merenyi 2008 GRLVQI  Land-cover classification 

Vilmann et al. 2003 GRLVQ Land-cover classification 

Ji 2000 SOM/LVQ Land-cover classification 
Table 3. Supervised LVQ applications in remote sensing 
 
The Kohonen self-organizing feature map, also referred to as the Kohonen clustering 
network (KCN) (Lin and Lee, 1996), exhibits some advantageous properties. For instance, 
weight vectors work to represent the natural tendency of a cluster of data points. It is 
unsupervised in that it requires no “teacher” during learning. KCN inherently reduces the 
dimensionality of the data by compressing and mapping it to the Kohonen layer, or 
mapping cortex. In addition, it always orients itself along the principal axes, but does not 
require the orthogonal and linear assumptions of standard principal component analysis 
(PCA). Thus, superior performance can be accrued when arbitrarily deformed distributions 
are present (Schaale and Furrer, 1995). And finally, KCN utilizes a parallel architecture, and 
it provides a graphical organization of topologically-preserved relationships. However, the 
KCN also entails several significant disadvantages: KCN is sequential, the termination 
strategy is artificial, and parameters such as the learning rate and the neighborhood size are 
selected heuristically, which does not ensure optimal performance. Convergence can be 
slow, and the network may not necessarily handle complexity accurately (Tsao et al., 1994). 
Therefore, some attempts have been made in the ANN literature to address these 
disadvantages. For instance, Huntsberger and Ajjimarangsee (1990) first proposed a scheme 
that was essentially a partial integration of KCN and fuzzy c-means clustering (FCM), where 
the learning rates {αik} were replaced with fuzzy membership values {uik,t} calculated with 
FCM. This approach was referred to as the Partial Fuzzy Kohonen Clustering Network 
(PFKCN). One extra layer, a membership layer, was added to the output layer, or distance 
layer, of the original KCN. The output uik represented the degree to which the input pattern 
xk belonged to cluster I. During the learning process, however, in order to derive cluster 
centers that are the same as those of the FCM algorithm, it was necessary to feed these 
outputs back to update the cluster centers via a feedback path (Huntsberger and 
Ajjimarangsee, 1990). Note that m, the weighting exponent, still had to be chosen, and the 
approach lacked theoretical foundations and formal derivations (Bezdek and Pal, 1995). No 
properties pertaining to convergence were established; termination was forced. The fuzzy 
LVQ (FLVQ) algorithm (Bezdek and Pal, 1995) addresses these PFKCN shortcomings. 
Baraldi et al. (1998) gives a comparison of the properties of SOM and FLVQ algorithms. 
Approaches based on the integration of ANN learning and fuzzy systems have been 
investigated in remote-sensing application domains (Table 4). Unsupervised fuzzy LVQ 
(FLVQ) combines FCM and unsupervised LVQ, and the technique has been applied to the 
task of coastal vegetation classification using hyperspectral AVIRIS surface reflectance 
image data (Filippi and Jensen, 2006). The effect of using continuum-removed AVIRIS image 
spectra as input to FLVQ for the same task was investigated in Filippi and Jensen (2007). 
Membership values are calculated for pixels according to a fuzzy c-partitioning of the 

 

feature space, where, in a remote-sensing context, the feature vectors correspond to the set 
of input image bands (Filippi and Jensen, 2006). A modification of FLVQ incorporates 
Gaussian membership functions for calculating fuzzy membership grades for input pixels 
and consequently uses fuzzy membership grade and not Euclidean distance to estimate 
closeness of input pixels to output clusters (Qui and Jensen, 2004). Since Gaussian 
membership functions are used in fuzzifying Kohonen’s LVQ2 algorithm, the Gaussian LVQ 
(GLVQ) employs supervised learning, though it can internally utilize unsupervised learning 
to generate natural clusters. Further modification of GLVQ uses training data to initialize 
the weights of the network and also ensures that only the winning neuron is updated (Qui, 
2008). The improved GLVQ has been applied to Hyperion satellite image land-cover 
classification and achieved better classification accuracy compared to standard 
hyperspectral classification algorithms. Other FLVQ studies include Blonda et al. (1995) and 
Ceccarelli et al. (1995), where it was employed for Landsat image segmentation and SAR 
texture data classification; FLVQ was then known as the fuzzy Kohonen clustering network 
(FKCN). Baraldi et al. (1998) used FLVQ and SOM to classify 18 multitemporal Landsat TM 
bands into general land-cover categories. Benz (1999) proposed an adaptive system that 
integrated FLVQ with a supervised fuzzy distribution estimator to classify single- and 
multi-channel SAR data to identify flooded areas, water, and various land-cover classes. 
FLVQ employs fuzziness in the learning rate and update strategies, but not typically in 
producing fuzzy outputs (Filippi and Jensen, 2006). Thus, remote-sensing studies utilizing 
FLVQ and related algorithms usually generate crisp, or hard, image classification results.  
 

Authors Year Technique Application 

Qui  2008 GFLVQ Modified  Land-cover classification 

Filippi and Jensen 2007 FLVQ  

Coastal vegetation classification 
with continuum-removed 
spectra 

Lee and Lathrop 2006 SOM-LVQ-GMM Subpixel land cover 

Filippi and Jensen 2006 FLVQ  Coastal vegetation classification 

Qui and Jensen 2004 GFLVQ Land-cover classification 

Benz 1999 

FLVQ integrated 
with supervised 
fuzzy distribution 
estimator 

Flooded-area and land-cover 
classification 

Baraldi et al. 1998 FLVQ and SOM Land-cover classification 

Ceccarelli et al. 1995 FKCN/FLVQ Land-cover classification 

Blonda et al. 1995 FKCN/FLVQ Land-cover classification 
Table 4. Fuzzy LVQ and related studies in remote sensing 
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Authors Year Technique Application 
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Table 3. Supervised LVQ applications in remote sensing 
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(FLVQ) combines FCM and unsupervised LVQ, and the technique has been applied to the 
task of coastal vegetation classification using hyperspectral AVIRIS surface reflectance 
image data (Filippi and Jensen, 2006). The effect of using continuum-removed AVIRIS image 
spectra as input to FLVQ for the same task was investigated in Filippi and Jensen (2007). 
Membership values are calculated for pixels according to a fuzzy c-partitioning of the 
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Gaussian membership functions for calculating fuzzy membership grades for input pixels 
and consequently uses fuzzy membership grade and not Euclidean distance to estimate 
closeness of input pixels to output clusters (Qui and Jensen, 2004). Since Gaussian 
membership functions are used in fuzzifying Kohonen’s LVQ2 algorithm, the Gaussian LVQ 
(GLVQ) employs supervised learning, though it can internally utilize unsupervised learning 
to generate natural clusters. Further modification of GLVQ uses training data to initialize 
the weights of the network and also ensures that only the winning neuron is updated (Qui, 
2008). The improved GLVQ has been applied to Hyperion satellite image land-cover 
classification and achieved better classification accuracy compared to standard 
hyperspectral classification algorithms. Other FLVQ studies include Blonda et al. (1995) and 
Ceccarelli et al. (1995), where it was employed for Landsat image segmentation and SAR 
texture data classification; FLVQ was then known as the fuzzy Kohonen clustering network 
(FKCN). Baraldi et al. (1998) used FLVQ and SOM to classify 18 multitemporal Landsat TM 
bands into general land-cover categories. Benz (1999) proposed an adaptive system that 
integrated FLVQ with a supervised fuzzy distribution estimator to classify single- and 
multi-channel SAR data to identify flooded areas, water, and various land-cover classes. 
FLVQ employs fuzziness in the learning rate and update strategies, but not typically in 
producing fuzzy outputs (Filippi and Jensen, 2006). Thus, remote-sensing studies utilizing 
FLVQ and related algorithms usually generate crisp, or hard, image classification results.  
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Subpixel image analysis estimates the percentage of different land covers within a pixel. To 
estimate the percent cover of impervious surface, lawn, and woody tree cover in 
urban/suburban areas, Lee and Lathrop (2006) fine-tune a SOM with LVQ and then 
construct a Gaussian kernel density function for each SOM node. Using the Gaussian 
Mixture Model, the posterior probabilities of the land-cover classes were computed for each 
pixel. To apply the proposed approach to subpixel analysis, the authors equated the percent 
land-cover type composition with the posterior probability. 
Other hybrid techniques have been used in remote sensing (Table 5). SOM, LVQ, fuzzy 
clustering, and parametric and non-parametric Bayesian approaches are used for deriving 
clusters, and selection of the best partitioning is accomplished through fuzzy multi-criteria 
decision-making (Guijarro and Pajares, 2009). The technique is applied to texture extraction 
from natural images. In Gonçalves et al. (2008), cluster analysis was performed on a set of 
SOM prototypes, rather than operating directly upon the original image patterns. 
Specifically, SOM was applied first; agglomerative hierarchical clustering with restricted 
connectivity was then applied to the SOM grid. Another hybrid approach uses wavelet 
fusion as a pre-processing step, and the results are used as input to SOM, which is then fine-
tuned through LVQ (Bagan et al., 2008). Applying the technique for land classification of an 
ASTER image improved classification accuracy compared to using the original ASTER 
reflectance bands as input. A cascaded architecture of neural fuzzy neural networks with 
feature mapping (CNFM) involves feature extraction from multispectral images and 
inputting the features to an unsupervised SOM, which performs dimensionality reduction; 
the result is fed to a supervised neural fuzzy network which performs final clustering (Lin et 
al., 2000). Other attempts have also involved the Kohonen SOM being used for initial 
clustering as part of a modular network architecture, e.g., where supervised approaches 
have utilized a self-organizing component. Yoshida and Omatu (1994) used the SOM for 
initial clustering before the data was fed into a Multiple-Layer Feedforward Network 
(MLFN) trained with back-propagation (BP); in concert with geographical data, training 
areas were selected more precisely using the clustering results from the SOM. Blonda et al. 
(1996) used the Kohonen SOM as part of a modular neural classification system. A single-
layer perceptron (SLP) (i.e., a multilayer perceptron (MLP) with no hidden neurons) was 
used as the supervised module. In another study, the weights at convergence of a Kohonen’s 
self-organizing module have been used to initialize the weights between the input and 
hidden layers of a backpropagation ANN; this markedly increased the convergence rate, 
and thus decreased backpropagation network training time (Li and Si, 1992). Solaiman and 
Mouchot (1994) compared the MLC with the Kohonen SOM, LVQ2, MLP, and an 
unsupervised/supervised hybrid HLVQ network (consisting of an unsupervised SOM and 
a supervised LVQ2 network) in classifying an agricultural Landsat TM scene. In general, the 
hybrid method and the MLC produced the best results, but the SOM was comparable. These 
methods exceeded the classification accuracy of the MLP by about 10%. Ito and Omatu 
(1997) partitioned the training data to where a separate self-organizing competitive layer 
was assigned to each class. Once training was completed, a k-nearest neighbor approach was 
invoked such that k winner neurons were selected in order of minimum distance between 
the input vectors and the neuron weights. Although an artificial convergence criterion was 
used during self-organization, favorable results were still obtained. These modular systems 
have generally been successful when applied to multispectral remote-sensor images. 
 

 

Authors Year Technique Application 

Guijarro and 
Pajares 2009 

Fuzzy Multicriteria 
Decision Making Approach  

Classifying textures in natural 
images 

Gonçalves et 
al. 2008 

SOM and agglomerative 
hierarchical clustering Land-cover classification 

Bagan et al. 2008 
Wavelet Fusion and 
SOM/LVQ Land-cover classification 

Lin et al. 2000 CNFM  Land-cover classification 
Ito and 
Omatu 1997 

Self-organizing neural 
network and k-NN 

Urban land-cover 
classification 

Blonda et al. 1996 SOM and SLP Land-cover classification 
Solaiman 
and Mouchot 1994 

Hybrid HLVQ (SOM and 
supervised LVQ2 network) Agricultural classification 

Yoshida and 
Omatu 1994 SOM and MLP Land-cover classification 

Li and Si 1992 
Self-Organizing 
Backpropagation (SOBP) Land-cover classification 

Table 5. SOM hybrid studies in remote sensing 

 
3. Unsupervised Classification of Landsat ETM+ Image Data Using SOM 
 

An unsupervised snow-cover classification of a Landsat 7 ETM+ image demonstrates the 
application of SOM in remote sensing.  

 
3.1 Data description 
The Landsat ETM+ image used in the study was acquired on 27 March, 2002 and covers part 
of Wisconsin and Minnesota. The National Land Cover Database (NLCD) 2001 shows the 
predominant land covers as agricultural (cultivated crops, pasture/hay) and deciduous 
forest (Figure 1) (MRLC, 2009). The Mississippi River and several of its tributaries are 
notable spatial features in the scene. Snow cover is present in the northern half of the image 
and is easily distinguishable in cyan in a false-color composite of Landsat 7 ETM+ bands 5, 4 
and 2 as R,G,B (Figure 2). 
Landsat 7 ETM+ was launched in 1999 by National Aeronautics and Space Administration 
(NASA) and images the Earth once every 16 days in eight spectral bands (NASA, 2009). 
Bands 1-5 and band 7 have spatial resolution at nadir of 30 meters; band 6, which is a 
thermal infrared band, has a 60-meter resolution; and band 8, a panchromatic band, has 15-
meter resolution. Bands 1-3 record electromagnetic energy in the visible portion of the 
spectrum, band 4 in the near-infrared, and bands 5 and 7 in the short-wave infrared. Bands 6 
and 8 were not used in the study because of the difference in spatial resolution. The six 
bands used in the study (Table 7) were first scaled to radiance, then an atmospheric 
correction was applied using the MODTRAN4 radiation transfer code (Jensen, 2005), and 
the image was georegistered to an orthorectified Landsat ETM+ image. 

www.intechopen.com



Self-Organizing Map-based Applications in Remote Sensing 239

 

Subpixel image analysis estimates the percentage of different land covers within a pixel. To 
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construct a Gaussian kernel density function for each SOM node. Using the Gaussian 
Mixture Model, the posterior probabilities of the land-cover classes were computed for each 
pixel. To apply the proposed approach to subpixel analysis, the authors equated the percent 
land-cover type composition with the posterior probability. 
Other hybrid techniques have been used in remote sensing (Table 5). SOM, LVQ, fuzzy 
clustering, and parametric and non-parametric Bayesian approaches are used for deriving 
clusters, and selection of the best partitioning is accomplished through fuzzy multi-criteria 
decision-making (Guijarro and Pajares, 2009). The technique is applied to texture extraction 
from natural images. In Gonçalves et al. (2008), cluster analysis was performed on a set of 
SOM prototypes, rather than operating directly upon the original image patterns. 
Specifically, SOM was applied first; agglomerative hierarchical clustering with restricted 
connectivity was then applied to the SOM grid. Another hybrid approach uses wavelet 
fusion as a pre-processing step, and the results are used as input to SOM, which is then fine-
tuned through LVQ (Bagan et al., 2008). Applying the technique for land classification of an 
ASTER image improved classification accuracy compared to using the original ASTER 
reflectance bands as input. A cascaded architecture of neural fuzzy neural networks with 
feature mapping (CNFM) involves feature extraction from multispectral images and 
inputting the features to an unsupervised SOM, which performs dimensionality reduction; 
the result is fed to a supervised neural fuzzy network which performs final clustering (Lin et 
al., 2000). Other attempts have also involved the Kohonen SOM being used for initial 
clustering as part of a modular network architecture, e.g., where supervised approaches 
have utilized a self-organizing component. Yoshida and Omatu (1994) used the SOM for 
initial clustering before the data was fed into a Multiple-Layer Feedforward Network 
(MLFN) trained with back-propagation (BP); in concert with geographical data, training 
areas were selected more precisely using the clustering results from the SOM. Blonda et al. 
(1996) used the Kohonen SOM as part of a modular neural classification system. A single-
layer perceptron (SLP) (i.e., a multilayer perceptron (MLP) with no hidden neurons) was 
used as the supervised module. In another study, the weights at convergence of a Kohonen’s 
self-organizing module have been used to initialize the weights between the input and 
hidden layers of a backpropagation ANN; this markedly increased the convergence rate, 
and thus decreased backpropagation network training time (Li and Si, 1992). Solaiman and 
Mouchot (1994) compared the MLC with the Kohonen SOM, LVQ2, MLP, and an 
unsupervised/supervised hybrid HLVQ network (consisting of an unsupervised SOM and 
a supervised LVQ2 network) in classifying an agricultural Landsat TM scene. In general, the 
hybrid method and the MLC produced the best results, but the SOM was comparable. These 
methods exceeded the classification accuracy of the MLP by about 10%. Ito and Omatu 
(1997) partitioned the training data to where a separate self-organizing competitive layer 
was assigned to each class. Once training was completed, a k-nearest neighbor approach was 
invoked such that k winner neurons were selected in order of minimum distance between 
the input vectors and the neuron weights. Although an artificial convergence criterion was 
used during self-organization, favorable results were still obtained. These modular systems 
have generally been successful when applied to multispectral remote-sensor images. 
 

 

Authors Year Technique Application 

Guijarro and 
Pajares 2009 

Fuzzy Multicriteria 
Decision Making Approach  

Classifying textures in natural 
images 

Gonçalves et 
al. 2008 

SOM and agglomerative 
hierarchical clustering Land-cover classification 

Bagan et al. 2008 
Wavelet Fusion and 
SOM/LVQ Land-cover classification 

Lin et al. 2000 CNFM  Land-cover classification 
Ito and 
Omatu 1997 

Self-organizing neural 
network and k-NN 

Urban land-cover 
classification 

Blonda et al. 1996 SOM and SLP Land-cover classification 
Solaiman 
and Mouchot 1994 

Hybrid HLVQ (SOM and 
supervised LVQ2 network) Agricultural classification 

Yoshida and 
Omatu 1994 SOM and MLP Land-cover classification 

Li and Si 1992 
Self-Organizing 
Backpropagation (SOBP) Land-cover classification 

Table 5. SOM hybrid studies in remote sensing 

 
3. Unsupervised Classification of Landsat ETM+ Image Data Using SOM 
 

An unsupervised snow-cover classification of a Landsat 7 ETM+ image demonstrates the 
application of SOM in remote sensing.  

 
3.1 Data description 
The Landsat ETM+ image used in the study was acquired on 27 March, 2002 and covers part 
of Wisconsin and Minnesota. The National Land Cover Database (NLCD) 2001 shows the 
predominant land covers as agricultural (cultivated crops, pasture/hay) and deciduous 
forest (Figure 1) (MRLC, 2009). The Mississippi River and several of its tributaries are 
notable spatial features in the scene. Snow cover is present in the northern half of the image 
and is easily distinguishable in cyan in a false-color composite of Landsat 7 ETM+ bands 5, 4 
and 2 as R,G,B (Figure 2). 
Landsat 7 ETM+ was launched in 1999 by National Aeronautics and Space Administration 
(NASA) and images the Earth once every 16 days in eight spectral bands (NASA, 2009). 
Bands 1-5 and band 7 have spatial resolution at nadir of 30 meters; band 6, which is a 
thermal infrared band, has a 60-meter resolution; and band 8, a panchromatic band, has 15-
meter resolution. Bands 1-3 record electromagnetic energy in the visible portion of the 
spectrum, band 4 in the near-infrared, and bands 5 and 7 in the short-wave infrared. Bands 6 
and 8 were not used in the study because of the difference in spatial resolution. The six 
bands used in the study (Table 7) were first scaled to radiance, then an atmospheric 
correction was applied using the MODTRAN4 radiation transfer code (Jensen, 2005), and 
the image was georegistered to an orthorectified Landsat ETM+ image. 
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Fig. 1. Predominant land covers in the scene are cultivated crops, pasture/hay, and 
deciduous forests. The Mississippi River and some of its tributaries are major spatial 
features (Source: NLCD, 2001). 
 

 
Fig. 2. A false-color composite image comprised of Landsat ETM+ bands 5, 4 and 2 as R,G,B 
shows snow cover as cyan colors in the northern half of the image. The square box 
represents the subset in Figure 4. 
 

 

Input Data Band pass (µm) / 
Equation 

Landsat ETM+ Band 1 0.45 - 0.52 

Landsat ETM+ Band 2 0.53 - 0.61 

Landsat ETM+ Band 3 0.63 - 0.69 

Landsat ETM+ Band 4 0.78 - 0.90 

Landsat ETM+ Band 5 1.55 - 1.75 

Landsat ETM+ Band 7 2.09 - 2.35 

NDSI 64
64

BandBand
BandBand


  

NDVI 34
34

BandBand
BandBand


  

Table 7. Two input-combination permuations to SOM were assessed. The first one included 
six of the Landsat 7 ETM+ bands (bands 1-5 and band 7), and the second data set included 
two additional normalized difference index images, which have been demonstrated to be 
useful in mapping snow in forests (Klein et al., 1998). 

 
3.2 Methodology 
Image analysis was performed in the IDRISI 16 GIS/remote-sensing software package using 
the implemented SOM module, which is modeled after the method described in Kohonen 
(1990). The neural network was run with an initial neighborhood radius of 17.97; a 
minimum learning rate of 0.5; a maximum learning rate of 1; and a 12 × 12 lattice of output 
neurons. A k-means clustering was applied to the SOM results, and a maximum of 10 k-
means classes/clusters was specified. 
Two networks were developed with the same parameters, but with different input 
combinations. For the first input combination, inputs were the six Landsat ETM+ surface 
reflectance bands (Table 7). For the SOM with this input combination, the quantization 
error, which measures the average distance between each input and the neuron to which it 
is mapped, was 0.0775. For the second input combination, two additional normalized 
difference index bands were  added (Table 7), lowering the quantization error to 0.0169. 
Reflectance bands 3 and 4 are used to calculate the Normalized Difference Vegetation Index 
(NDVI) which captures the inverse relationship between reflectance in the red and near-
infrared portions of the electromagnetic spectrum associated with healthy green vegetation 
(Jensen, 2005). The index is useful in distinguishing vegetated areas that have higher NDVI 
values from non-vegetated or sparsely-vegetated areas with lower NVDI values. 
Normalized Difference Snow Index (NDSI) is calculated using bands 4 and 6, and, similarly 
to NDVI, it uses the inverse relationship between snow reflectance in the visible and near-
infrared (Hall, 1995). Adding the two index images does not increase the information 
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six of the Landsat 7 ETM+ bands (bands 1-5 and band 7), and the second data set included 
two additional normalized difference index images, which have been demonstrated to be 
useful in mapping snow in forests (Klein et al., 1998). 

 
3.2 Methodology 
Image analysis was performed in the IDRISI 16 GIS/remote-sensing software package using 
the implemented SOM module, which is modeled after the method described in Kohonen 
(1990). The neural network was run with an initial neighborhood radius of 17.97; a 
minimum learning rate of 0.5; a maximum learning rate of 1; and a 12 × 12 lattice of output 
neurons. A k-means clustering was applied to the SOM results, and a maximum of 10 k-
means classes/clusters was specified. 
Two networks were developed with the same parameters, but with different input 
combinations. For the first input combination, inputs were the six Landsat ETM+ surface 
reflectance bands (Table 7). For the SOM with this input combination, the quantization 
error, which measures the average distance between each input and the neuron to which it 
is mapped, was 0.0775. For the second input combination, two additional normalized 
difference index bands were  added (Table 7), lowering the quantization error to 0.0169. 
Reflectance bands 3 and 4 are used to calculate the Normalized Difference Vegetation Index 
(NDVI) which captures the inverse relationship between reflectance in the red and near-
infrared portions of the electromagnetic spectrum associated with healthy green vegetation 
(Jensen, 2005). The index is useful in distinguishing vegetated areas that have higher NDVI 
values from non-vegetated or sparsely-vegetated areas with lower NVDI values. 
Normalized Difference Snow Index (NDSI) is calculated using bands 4 and 6, and, similarly 
to NDVI, it uses the inverse relationship between snow reflectance in the visible and near-
infrared (Hall, 1995). Adding the two index images does not increase the information 
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content of the inputs, but it does increase the redundancy in the input data. Redundancy 
and structure in the input data is one of the principles of self-organization (Haykin, 2009), 
and therefore, the second input combination would be expected to produce better results. 
The performance of SOM in detecting snow-covered pixels using the two input 
combinations was compared to the MODIS snow-mapping algorithm (SNOMAP) which has 
a long history of use in mapping snow and is the standard algorithm for producing global 
daily snow maps from MODIS (Hall, 1995; Hall et al., 2002). SNOMAP maps snow primarily 
using the NDSI, but a combination of NDSI and NDVI improves snow mapping in forests 
(Klein et al., 1998). Also, SNOMAP excludes water pixels from analysis (Hall, 1995). To 
facilitate the comparison of SOM results to SNOMAP, water is masked in the current study. 

 
3.3 Results and discussion 
The input combination including only reflectance bands returned 10 classes that were 
subsequently combined into snow-covered and snow-free areas. The resulting snow map 
has a 92% overall agreement with SNOMAP (Table 8). Commission errors, where SOM 
maps snow missed by SNOMAP, were 24.56%, whereas omission errors, pixels mapped as 
snow by SNOMAP but missed by SOM, is much lower (only 3.71%). 
The second input combination which includes the additional index bands returned only 
three classes. Two of the classes are easily identified as snow and snow-free. The third class 
represented a combination of water and snow-covered pixels. Excluding water from the 
analysis, the remaining third class pixels were considered snow. (Figure 3). The overall 
agreement between the second SOM result and SNOMAP is 88% (Table 9). No omission 
errors occurred, meaning SOM did not miss any of the snow-covered areas mapped by 
SNOMAP. However, the commission errors were high, e.g., 35.38% for snow-covered, 
which is larger than the same error for the reflectance-only input combination. 
Both input combinations resulted in a larger area mapped as snow compared to SNOMAP, 
with the input combination with additional index bands mapping the largest snow-covered 
area. SNOMAP mapped 4,499 km2 as snow; SOM with the first input data combination 
mapped 5,703 km2; and SOM with the second input combination mapped 6,915 km2 as 
snow. 
The errors of commission between the input combination with additional index bands and 
SNOMAP were examined visually (Figure 4). The area mapped as snow by SOM appears to 
be snow-covered in the false color-composite of Landsat bands 5, 4 and 2, but failed to be 
mapped as snow by SNOMAP.  So even though the second input combination has lower  
 

Reflectance Bands 
Only 

SNOMAP 
Snow Snow-Free 

Snow 4,779,553 (21.075%) 1,556,011 (6.86%) 
Snow-Free 184,057 (0.81%) 16,167,435 (71.26%) 

Overall agreement: 92% 
Table 8. Confusion matrix between SNOMAP and SOM with reflectance bands only as input 
shows number of pixels that are in agreement or disagreement. Numbers in parenthesis 
indicate percentage of total count. 
 

 

Reflectance and Index 
Bands 

SNOMAP 
Snow Snow-Free 

Snow 4,963,610 (21.88%) 2,718,029 (11.98%) 
Snow-Free 0 (0%) 15,005,417 (66.14%) 

Overall agreement: 88% 
Table 9. Confusion matrix between SNOMAP and SOM with both reflectance bands and 
index bands as input, indicating number of pixels and percent agreement and disagreement. 
 

 
Fig. 3. Snow maps produced by SNOMAP (a) map lesser snow-cover extent compared to the 
snow maps produced by SOM with both reflectance bands (not illustrated) and index bands 
(b) as input.  

 

 
Fig. 4. Portion of false-color image composite examined (a). Comparing the results of SOM 
with both reflectance bands and index bands as input (b) and SNOMAP (c) shows that the 
larger snow-cover extent derived by SOM appears more correct. 
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content of the inputs, but it does increase the redundancy in the input data. Redundancy 
and structure in the input data is one of the principles of self-organization (Haykin, 2009), 
and therefore, the second input combination would be expected to produce better results. 
The performance of SOM in detecting snow-covered pixels using the two input 
combinations was compared to the MODIS snow-mapping algorithm (SNOMAP) which has 
a long history of use in mapping snow and is the standard algorithm for producing global 
daily snow maps from MODIS (Hall, 1995; Hall et al., 2002). SNOMAP maps snow primarily 
using the NDSI, but a combination of NDSI and NDVI improves snow mapping in forests 
(Klein et al., 1998). Also, SNOMAP excludes water pixels from analysis (Hall, 1995). To 
facilitate the comparison of SOM results to SNOMAP, water is masked in the current study. 

 
3.3 Results and discussion 
The input combination including only reflectance bands returned 10 classes that were 
subsequently combined into snow-covered and snow-free areas. The resulting snow map 
has a 92% overall agreement with SNOMAP (Table 8). Commission errors, where SOM 
maps snow missed by SNOMAP, were 24.56%, whereas omission errors, pixels mapped as 
snow by SNOMAP but missed by SOM, is much lower (only 3.71%). 
The second input combination which includes the additional index bands returned only 
three classes. Two of the classes are easily identified as snow and snow-free. The third class 
represented a combination of water and snow-covered pixels. Excluding water from the 
analysis, the remaining third class pixels were considered snow. (Figure 3). The overall 
agreement between the second SOM result and SNOMAP is 88% (Table 9). No omission 
errors occurred, meaning SOM did not miss any of the snow-covered areas mapped by 
SNOMAP. However, the commission errors were high, e.g., 35.38% for snow-covered, 
which is larger than the same error for the reflectance-only input combination. 
Both input combinations resulted in a larger area mapped as snow compared to SNOMAP, 
with the input combination with additional index bands mapping the largest snow-covered 
area. SNOMAP mapped 4,499 km2 as snow; SOM with the first input data combination 
mapped 5,703 km2; and SOM with the second input combination mapped 6,915 km2 as 
snow. 
The errors of commission between the input combination with additional index bands and 
SNOMAP were examined visually (Figure 4). The area mapped as snow by SOM appears to 
be snow-covered in the false color-composite of Landsat bands 5, 4 and 2, but failed to be 
mapped as snow by SNOMAP.  So even though the second input combination has lower  
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Overall agreement: 92% 
Table 8. Confusion matrix between SNOMAP and SOM with reflectance bands only as input 
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overall accuracy as compared to SNOMAP than the first input combination, it appears to 
provide more accurate snow mapping. However, further validation of the SOM results 
requires the use of field observations or higher-resolution images. Note that the “errors” 
stated in study may not technically be considered as errors per se, as we treated the 
SNOMAP result as reference data, rather than obtaining ground reference data. 

 
4. Conclusion 
 

SOM-based and SOM-related techniques have been applied in remote sensing. Image- 
analysis tasks range from identifying synoptic-scale ocean or atmospheric characteristics to 
land-cover classification. The utility of the Kohonen SOM as an unsupervised classification 
technique was demonstrated here by generating a snow map based upon a Landsat 7 ETM+ 
image. SOM-mapping of snow compares favorably to the widely-used SNOMAP algorithm, 
which has a considerable heritage in mapping snow from satellite images. In the single test 
image, the SOM mapped snow that SNOMAP missed. Better results were achieved when 
the input bands were complimented by index bands, which increased the redundancy in the 
input. 
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