
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 301

Modiied Cascade Correlation Neural Network and its Applications to
Multidisciplinary Analysis Design and Optimization in Ship Design

Adeline Schmitz, Frederick Courouble, Hamid Hefazi and Eric Besnard

x

Modified Cascade Correlation Neural
Network and its Applications to

Multidisciplinary Analysis Design
and Optimization in Ship Design

Adeline Schmitz, Frederick Courouble,

Hamid Hefazi and Eric Besnard
California State University, Long Beach

USA

1. Introduction

Artificial Neural Networks (NN) basically attempt to replicate functions of the human brain
by connecting neurons to each other in specific manners. In most cases, the number of
neurons and connections has been limited to tens or hundreds of neurons with a similar
order of magnitude of connections between them. This contrasts with the human brain
which has many orders of magnitude more neurons and also many more connections
between them. The work done so far in this field can therefore be categorized as precursory
and the potential of this technology has yet to be fully realized. Jain & Deo (2005) present a
survey of applications of NNs in ocean engineering. They have been used for predicting
environmental parameters (wave heights, sea level, wind speeds, tides, etc.), forces and
damage on ocean-going structures, and ship and barge motions, in various ship design
applications and more. Gougoulidis (2008) presents an overview of utilization of neural
networks in many other marine applications including structures, stability, propulsion and
seakeeping. All of the applications that are reviewed, except one, are for predictions of
characteristics of ships.
In the area of ship design, NNs have been employed for various purposes. For example,
Koushan (2003) presents a hull form optimization employing NNs in which eight hull form
parameters are varied in order to minimize resistance. Similarly, the use of NNs in hull
shape optimization by Danõşman et al.(2002) and Koh et al. (2005) allows for a more
advanced flow model (panel method instead of thin-ship flow theory) and thus leads to
improved shapes. Koh (2004) present a similar approach for investigating resistance,
manoeuvrability and seakeeping characteristics of a high speed hull form. In Mesbahi &
Bertram (2000), and Bertram & Mesbahi (2004), NNs are used to derive functional relations
between design parameters for cargo ships as an alternative to using charts. In Maisonneuve
(2003), several NN application examples from the industry are discussed, showing state-of-
the-art of European research in marine design: integrating real calculations (using CAD

17

www.intechopen.com

Machine Learning302

model) and artificial calculations (using NNs as response surface methods) to perform
single- or multi-objective optimizations.
In most of the applications above, a single hidden layer feed-forward type of network and
back-propagation are used. Also, the number of input nodes used by the different
investigators was relatively small, on the order of one to ten. Very few applications used a
large number of inputs to utilize the real power of the neural networks. One exception is
Danõşman et al. (2002) which used a single, hidden layer NN with 40 input and four output
parameters. The inputs represent a series of half breadths of the aft end of a catamaran and
the output parameters are related to wave resistance, wave elevation and displacement. The
network used back-propagation with a training set of 300 and a validation set of 50 points.
The number of hidden units used and the errors produced by the neural network are not
discussed in the paper, however.
As the number of parameters to be varied increases, training the network becomes more and
more challenging. It is demonstrated that feedforward NNs have universal approximation
ability for a wide variety of functions classes, provided that a sufficient number of hidden
units are available (Cybenko, 1989, Hornik, 1991). The approximation ability of a particular
network depends on the numbers of input and output units, the number of training cases,
the amount of noise in the targets, the complexity of the function to be learned, the actual
architecture of the network, the type of hidden unit activation function and the training
algorithm. This often leaves NN users having to determine the network size by trial and
error. Also, back-propagation, the most commonly used algorithm to train single hidden
layer feedforward NNs, is known to be very slow for large input spaces. Other network
structures and training algorithms should be investigated.
This chapter presents an alternative NN structure based on a constructive network topology
and a corresponding training algorithm suitable for large number of input/outputs to
address the problems where the number of design parameters is fairly large, say up to 30 or
even more.
The chapter is divided into four sections. First, the use of NNs as advanced regression
models in the ship design cycle is reviewed and the choice of the particular topology
(constructive network) and training algorithm (modified cascade correlation, or “MCC”) of
the NN is justified.
The next section describes in detail the MCC. This algorithm is an improvement from the
original cascade algorithm introduced by Fahlman and Lebiere (1990). Improvements
include altering the weight initialization, modifying the candidate hidden unit training, and
introducing normalized inputs, “early stopping” and “ensemble averaging.”
Next, the NN approach is applied to the design/optimization of an underwater hull
configuration using a genetic algorithm search method. Results are compared with those
obtained with a classical optimization approach in which the CFD code is directly coupled
with the optimizer.
The last section presents a NN-based performance analysis and optimization of sailing
configurations of an America’s Cup class yacht. The objective is to maximize boat speed
(objective function) by varying the sailing setups (design variables). In the approach, the
experimental data from the sailing records provided by sensors is used to train an MCC
neural network. The network is coupled with a genetic algorithm to determine the
maximum boat speed and corresponding yacht settings at various wind speeds. Because the
majority of the data is gathered in a small region of the search space corresponding to a

valid set of sailing configurations, the remaining regions of the domain are not well
populated and can lead to training errors for the neural network. The chapter presents an
automatic method to fill the domain of investigation by adding artificial points to the
database in regions without sufficient experimental data.

2. Neural Networks as Response Surface Methods in the Design Cycle

2.1 NNs in the Design Cycle
The systems engineering approach, originated and widely used in the aerospace industry,
consists of decomposing a system into subsystems. For a ship, those would correspond to
the hull forms definition, propulsion, structure, payload, etc. This system decomposition
approach is described, for example, in Blanchard & Fabrycky (1997), and can be applied at
the ship level as well as at subsystem levels in the systems architecture. For example, this
systems approach may also be used to design a propulsion subsystem which will be
integrated into the ship, based on requirements established at higher levels. In other words,
every component may be looked as a system which gets integrated into a system of systems.
The analyses performed at each subsystem level rely, in general, on a combination of semi-
analytical models, advanced numerical methods such as finite element analysis, and use of
existing databases. The modern approach used in the design of such systems usually
includes optimization at some level.
Neural networks may be inserted directly at all levels of the system design process and on a
broad basis. Specialists who use advanced computational tools for detailed analyses are
often remotely connected to the design loop. The use of NN allows for them to be indirectly
integrated very early into the design cycle by generating a computational database
representative of the problem at hand over the desired design space. For example, the
database might consist of a few hundred CFD analyses performed for a configuration
represented by tens of widely varying design parameters. This database can then be used to
train –hence its name, “training set”– a neural network which is then inserted in the design
loop (Fig. 1). At this point, the designer (not the analyst) can use the NN and get a solution
for a variety of designs in a fraction of a second. For example, if a network has been trained
for estimating the ship resistance, the latter can be obtained by the designer for any desired
point in the design space with minimal computational time.
Similar uses of neural networks can be made when dealing with available large databases.
Such databases may be from one or more sources, numerical and/or experimental. In this
case, the database can be used directly to train the NN and the latter can also be integrated
into the design loop (Fig. 1).
The result is a design approach in which the function, such as ship resistance, corresponding
to a particular set of design variables either selected by the designer or by the computer
(“design tool”), can be obtained instantaneously.
In practical terms, the introduction of NN allows for extraction of time-consuming or
difficult operations (performing an advanced numerical analysis or extracting information
from a large and evolving database) from the design loop while still keeping their influence
on the outcome of the design process via the NN. The cost has thus been moved (and
possibly reduced in the process) to the training set generation (if it was not already
available) and to the training of the network.

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 303

model) and artificial calculations (using NNs as response surface methods) to perform
single- or multi-objective optimizations.
In most of the applications above, a single hidden layer feed-forward type of network and
back-propagation are used. Also, the number of input nodes used by the different
investigators was relatively small, on the order of one to ten. Very few applications used a
large number of inputs to utilize the real power of the neural networks. One exception is
Danõşman et al. (2002) which used a single, hidden layer NN with 40 input and four output
parameters. The inputs represent a series of half breadths of the aft end of a catamaran and
the output parameters are related to wave resistance, wave elevation and displacement. The
network used back-propagation with a training set of 300 and a validation set of 50 points.
The number of hidden units used and the errors produced by the neural network are not
discussed in the paper, however.
As the number of parameters to be varied increases, training the network becomes more and
more challenging. It is demonstrated that feedforward NNs have universal approximation
ability for a wide variety of functions classes, provided that a sufficient number of hidden
units are available (Cybenko, 1989, Hornik, 1991). The approximation ability of a particular
network depends on the numbers of input and output units, the number of training cases,
the amount of noise in the targets, the complexity of the function to be learned, the actual
architecture of the network, the type of hidden unit activation function and the training
algorithm. This often leaves NN users having to determine the network size by trial and
error. Also, back-propagation, the most commonly used algorithm to train single hidden
layer feedforward NNs, is known to be very slow for large input spaces. Other network
structures and training algorithms should be investigated.
This chapter presents an alternative NN structure based on a constructive network topology
and a corresponding training algorithm suitable for large number of input/outputs to
address the problems where the number of design parameters is fairly large, say up to 30 or
even more.
The chapter is divided into four sections. First, the use of NNs as advanced regression
models in the ship design cycle is reviewed and the choice of the particular topology
(constructive network) and training algorithm (modified cascade correlation, or “MCC”) of
the NN is justified.
The next section describes in detail the MCC. This algorithm is an improvement from the
original cascade algorithm introduced by Fahlman and Lebiere (1990). Improvements
include altering the weight initialization, modifying the candidate hidden unit training, and
introducing normalized inputs, “early stopping” and “ensemble averaging.”
Next, the NN approach is applied to the design/optimization of an underwater hull
configuration using a genetic algorithm search method. Results are compared with those
obtained with a classical optimization approach in which the CFD code is directly coupled
with the optimizer.
The last section presents a NN-based performance analysis and optimization of sailing
configurations of an America’s Cup class yacht. The objective is to maximize boat speed
(objective function) by varying the sailing setups (design variables). In the approach, the
experimental data from the sailing records provided by sensors is used to train an MCC
neural network. The network is coupled with a genetic algorithm to determine the
maximum boat speed and corresponding yacht settings at various wind speeds. Because the
majority of the data is gathered in a small region of the search space corresponding to a

valid set of sailing configurations, the remaining regions of the domain are not well
populated and can lead to training errors for the neural network. The chapter presents an
automatic method to fill the domain of investigation by adding artificial points to the
database in regions without sufficient experimental data.

2. Neural Networks as Response Surface Methods in the Design Cycle

2.1 NNs in the Design Cycle
The systems engineering approach, originated and widely used in the aerospace industry,
consists of decomposing a system into subsystems. For a ship, those would correspond to
the hull forms definition, propulsion, structure, payload, etc. This system decomposition
approach is described, for example, in Blanchard & Fabrycky (1997), and can be applied at
the ship level as well as at subsystem levels in the systems architecture. For example, this
systems approach may also be used to design a propulsion subsystem which will be
integrated into the ship, based on requirements established at higher levels. In other words,
every component may be looked as a system which gets integrated into a system of systems.
The analyses performed at each subsystem level rely, in general, on a combination of semi-
analytical models, advanced numerical methods such as finite element analysis, and use of
existing databases. The modern approach used in the design of such systems usually
includes optimization at some level.
Neural networks may be inserted directly at all levels of the system design process and on a
broad basis. Specialists who use advanced computational tools for detailed analyses are
often remotely connected to the design loop. The use of NN allows for them to be indirectly
integrated very early into the design cycle by generating a computational database
representative of the problem at hand over the desired design space. For example, the
database might consist of a few hundred CFD analyses performed for a configuration
represented by tens of widely varying design parameters. This database can then be used to
train –hence its name, “training set”– a neural network which is then inserted in the design
loop (Fig. 1). At this point, the designer (not the analyst) can use the NN and get a solution
for a variety of designs in a fraction of a second. For example, if a network has been trained
for estimating the ship resistance, the latter can be obtained by the designer for any desired
point in the design space with minimal computational time.
Similar uses of neural networks can be made when dealing with available large databases.
Such databases may be from one or more sources, numerical and/or experimental. In this
case, the database can be used directly to train the NN and the latter can also be integrated
into the design loop (Fig. 1).
The result is a design approach in which the function, such as ship resistance, corresponding
to a particular set of design variables either selected by the designer or by the computer
(“design tool”), can be obtained instantaneously.
In practical terms, the introduction of NN allows for extraction of time-consuming or
difficult operations (performing an advanced numerical analysis or extracting information
from a large and evolving database) from the design loop while still keeping their influence
on the outcome of the design process via the NN. The cost has thus been moved (and
possibly reduced in the process) to the training set generation (if it was not already
available) and to the training of the network.

www.intechopen.com

Machine Learning304

The result is a NN which can estimate the function or functions over the design space it has
been trained on. This ability to quickly evaluate new designs allows in turn for the use of
global optimization tools such as genetic algorithms instead of having to rely on local
optimization methods or exploring a restricted part of the design space.

Subsystem 1
Semi-analytical

model

Design Tool
(DOE or

optimization)

New Design

Subsystem 2
NN-2

Subsystem 3
NN-3

Objective(s) &
Constraints

Training set
generation for
subsystem 2

analysis

Subsystem 2
NN-2

Large
database for
subsystem 3

analysis

Subsystem 3
NN-3

Fig. 1. System design loop utilizing NNs. The NNs are generated outside the design loop
based on computationally extensive models and/or large databases.

2.2 Advantages Offered by Constructive Neural Networks
NNs have been investigated for many applications outside the field of ocean engineering
that require a large number of function analyses, ranging from chemistry (Agatonovic-
Kustrin et al., 1998, and Takayama et al., 2003) to structural analysis (Deng et al., 2005).
Research clearly indicates that NNs compare favourably with classical RSM (Gougoulidis,
2008, Todoroki et al., 2004, Bourquin et al., 1998, Gomes & Awruch 2004, Dutt et al., 2004 and
Lee & Hajel, 2001), in particular when the function is non-convex over the desired domain
and the function may be highly nonlinear. In addition, for problems with a large number of
inputs (design variables), the size of the dataset required for the classical RSM rapidly
grows. Schmitz (2007) and Besnard et al. (2007) present a survey of the different RSM
available and demonstrate the clear advantage in using NNs in this type of application.
As discussed above, for most marine applications reported to date, however, NNs employed
either a fixed topology and/or back propagation for training. The former implies that one
needs to have some information about the function to approximate and the latter leads to
increasingly large CPU time requirements for training in the case of a large number of
inputs.
Methods which use a fixed network topology involve evaluating in advance (before
training) the type of network that would best suit the application (how many neurons, how
many hidden-layers) to match the complexity of the NN to that of the function. This point is
best illustrated by Kwok & Yeung (1997a): “Consider a data set generated from a smooth
underlying function with additive noise on the outputs. A polynomial with too few coefficients will be
unable to capture the underlying function from which the data was generated, while a polynomial
with too many coefficients will fit the noise in the data and again result in a poor representation of the
underlying function. For an optimal number of coefficients the fitted polynomial will give the best
representation of the function and also the best predictions for new data. A similar situation arises in
the application of NN, where it is again necessary to match the network complexity to the problem

being solved. Algorithms that can find an appropriate network architecture automatically are thus
highly desirable.”
There are essentially two approaches for training multilayer feedforward networks for
function approximation which can lead to variable networks (Kwok and Yeung 1997a). The
Pruning Algorithms start with a large network, trains the network weights until an
acceptable solution is found, and then uses a pruning method to remove unnecessary units
or weights (units connected with very small weights). On the other hand, Constructive
Algorithms start with a minimal network, and then grow additional hidden units as needed.
The primary advantage of constructive algorithms versus pruning algorithms is that the NN
size is automatically determined. Constructive algorithms are computationally economical
compared to pruning algorithms which spend most time training on networks larger than
necessary. Also, they are likely to find smaller network solutions, thus requiring less
training data for good generalization. They also require a small amount of memory because
they usually use a “greedy” approach where only part of the weights is trained at once,
whereas the remaining part is kept constant (Schmitz 2007).
Cascade-Correlation, first introduced by Fahlman & Lebiere (1990), is one such supervised
learning algorithm for NNs. Instead of just adjusting the weights in a network of fixed
topology, Cascade-Correlation begins with a minimal network, then automatically trains
and adds new hidden units one-by-one in a cascading manner. This architecture has several
advantages over other algorithms: it learns very quickly; the network determines its own
size and topology; it retains the structure it has built even if the training set changes; and it
requires no back-propagation of error signals through the connections of the network. In
addition, for a large number of inputs (design variables), the most widely used learning
algorithm, back-propagation, is known to be very slow. Cascade-Correlation does not
exhibit this limitation (Fahlman & Lebiere 1990).

3. Modified Cascade Correlation Neural Networks

As mentioned above, the constructive Cascade-Correlation algorithm begins with a minimal
network consisting of the input and output layers and no hidden unit (neurons), then
automatically trains and adds one hidden unit at a time until the error (Ep) between the
targets (fp) of the training set and the outputs from the network (fNN,p) reaches a desired
minimal value. Thus, it self-determines the number of neurons needed as well as their
connectivity or weights.
The original algorithm of Fahlman & Lebiere (1990) was geared towards pattern recognition
and has been improved to make it a robust and accurate method for function approximation
(Schmitz et al., 2002, Schmitz, 2007). Although the definitions used here assume that the NN
has a single output, i.e. that the NN represents a single scalar function such as ship
resistance, the process is easily extended to networks with multiple outputs (Schmitz et al.,
2002). In the applications considered in this paper, multiple functions, such as ship
resistance and ship displacement, are each represented by a separate network, i.e. each uses
multiple single-output networks rather than a single multiple-output network. It was found
during the course of the study that it was more advantageous to train multiple single-output
networks than one large multiple output network in terms of error on an unseen dataset
(generalization error) and computing time (since multiple “single output” networks could
be trained simultaneously faster than one single “multiple output” network.

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 305

The result is a NN which can estimate the function or functions over the design space it has
been trained on. This ability to quickly evaluate new designs allows in turn for the use of
global optimization tools such as genetic algorithms instead of having to rely on local
optimization methods or exploring a restricted part of the design space.

Subsystem 1
Semi-analytical

model

Design Tool
(DOE or

optimization)

New Design

Subsystem 2
NN-2

Subsystem 3
NN-3

Objective(s) &
Constraints

Training set
generation for
subsystem 2

analysis

Subsystem 2
NN-2

Large
database for
subsystem 3

analysis

Subsystem 3
NN-3

Fig. 1. System design loop utilizing NNs. The NNs are generated outside the design loop
based on computationally extensive models and/or large databases.

2.2 Advantages Offered by Constructive Neural Networks
NNs have been investigated for many applications outside the field of ocean engineering
that require a large number of function analyses, ranging from chemistry (Agatonovic-
Kustrin et al., 1998, and Takayama et al., 2003) to structural analysis (Deng et al., 2005).
Research clearly indicates that NNs compare favourably with classical RSM (Gougoulidis,
2008, Todoroki et al., 2004, Bourquin et al., 1998, Gomes & Awruch 2004, Dutt et al., 2004 and
Lee & Hajel, 2001), in particular when the function is non-convex over the desired domain
and the function may be highly nonlinear. In addition, for problems with a large number of
inputs (design variables), the size of the dataset required for the classical RSM rapidly
grows. Schmitz (2007) and Besnard et al. (2007) present a survey of the different RSM
available and demonstrate the clear advantage in using NNs in this type of application.
As discussed above, for most marine applications reported to date, however, NNs employed
either a fixed topology and/or back propagation for training. The former implies that one
needs to have some information about the function to approximate and the latter leads to
increasingly large CPU time requirements for training in the case of a large number of
inputs.
Methods which use a fixed network topology involve evaluating in advance (before
training) the type of network that would best suit the application (how many neurons, how
many hidden-layers) to match the complexity of the NN to that of the function. This point is
best illustrated by Kwok & Yeung (1997a): “Consider a data set generated from a smooth
underlying function with additive noise on the outputs. A polynomial with too few coefficients will be
unable to capture the underlying function from which the data was generated, while a polynomial
with too many coefficients will fit the noise in the data and again result in a poor representation of the
underlying function. For an optimal number of coefficients the fitted polynomial will give the best
representation of the function and also the best predictions for new data. A similar situation arises in
the application of NN, where it is again necessary to match the network complexity to the problem

being solved. Algorithms that can find an appropriate network architecture automatically are thus
highly desirable.”
There are essentially two approaches for training multilayer feedforward networks for
function approximation which can lead to variable networks (Kwok and Yeung 1997a). The
Pruning Algorithms start with a large network, trains the network weights until an
acceptable solution is found, and then uses a pruning method to remove unnecessary units
or weights (units connected with very small weights). On the other hand, Constructive
Algorithms start with a minimal network, and then grow additional hidden units as needed.
The primary advantage of constructive algorithms versus pruning algorithms is that the NN
size is automatically determined. Constructive algorithms are computationally economical
compared to pruning algorithms which spend most time training on networks larger than
necessary. Also, they are likely to find smaller network solutions, thus requiring less
training data for good generalization. They also require a small amount of memory because
they usually use a “greedy” approach where only part of the weights is trained at once,
whereas the remaining part is kept constant (Schmitz 2007).
Cascade-Correlation, first introduced by Fahlman & Lebiere (1990), is one such supervised
learning algorithm for NNs. Instead of just adjusting the weights in a network of fixed
topology, Cascade-Correlation begins with a minimal network, then automatically trains
and adds new hidden units one-by-one in a cascading manner. This architecture has several
advantages over other algorithms: it learns very quickly; the network determines its own
size and topology; it retains the structure it has built even if the training set changes; and it
requires no back-propagation of error signals through the connections of the network. In
addition, for a large number of inputs (design variables), the most widely used learning
algorithm, back-propagation, is known to be very slow. Cascade-Correlation does not
exhibit this limitation (Fahlman & Lebiere 1990).

3. Modified Cascade Correlation Neural Networks

As mentioned above, the constructive Cascade-Correlation algorithm begins with a minimal
network consisting of the input and output layers and no hidden unit (neurons), then
automatically trains and adds one hidden unit at a time until the error (Ep) between the
targets (fp) of the training set and the outputs from the network (fNN,p) reaches a desired
minimal value. Thus, it self-determines the number of neurons needed as well as their
connectivity or weights.
The original algorithm of Fahlman & Lebiere (1990) was geared towards pattern recognition
and has been improved to make it a robust and accurate method for function approximation
(Schmitz et al., 2002, Schmitz, 2007). Although the definitions used here assume that the NN
has a single output, i.e. that the NN represents a single scalar function such as ship
resistance, the process is easily extended to networks with multiple outputs (Schmitz et al.,
2002). In the applications considered in this paper, multiple functions, such as ship
resistance and ship displacement, are each represented by a separate network, i.e. each uses
multiple single-output networks rather than a single multiple-output network. It was found
during the course of the study that it was more advantageous to train multiple single-output
networks than one large multiple output network in terms of error on an unseen dataset
(generalization error) and computing time (since multiple “single output” networks could
be trained simultaneously faster than one single “multiple output” network.

www.intechopen.com

Machine Learning306

3.1 Base Algorithm as Introduced by Fahlman and Lebiere
The basic algorithm as introduced by Fahlman and Lebiere (1990) includes the following 11
steps:
Step 1: Start with the required input and output units; both layers are fully connected. The
number of inputs and outputs is dictated by the problem.
Step 2: Train all connections ending at an output unit with a common learning algorithm
until the squared error Es of the NN no longer decreases.

2 2

, ,
1 1 1

1 1
2 2

Np Np m

p p i p i p
p p i

Es y t y t

 (1)

Here m is the size of the outputs (or number of outputs), Np is the size of the training set, yi,p
is the ith output from NN, and ti,p is the corresponding target.
Step 3: Generate a candidate unit that receives trainable input connections from all of the
network’s external inputs and from all pre-existing hidden units (if any). The output of this
candidate unit is not yet connected to the active network (output).
Step 4: Train the unit (its weight) to maximize the correlation referred to as SC (Eq. 2).
Learning takes place with an ordinary learning algorithm; training is stopped when the
correlation score no longer improves. The correlation formula is given by

max

, ,
1 1

m P

C o p o i p i
i p

S z z E E

 (2)

Here zo,p is the output of the candidate hidden unit and Ei,p is the residual error of the
outputs calculated at Step 2, Ei,p=yi,p-ti,p. The bar above a quantity denotes the average over
the training set.
Step 5: Connect the candidate unit with the outputs and freeze its input weights. The
candidate unit acts now as an additional input unit.
Step 6: Train again the input-outputs connections by minimizing the squared error Es as
defined in Step 2.
Steps 7 to 10: Repeat Steps three to six adding one hidden unit at a time.
Step 11: Stop training when the error E of the net falls below a given value, .
Instead of a single candidate unit, it is possible to use a pool of candidate units, each with a
different set of random initial weights. All receive the same input signals and see the same
residual error for each training pattern. Because they do not interact with one another, or
affect the active network, they can be trained simultaneously. Only the candidate whose
correlation score is the best is installed. The use of a pool of candidates greatly reduces the
chances that a useless unit will be permanently installed because an individual candidate
got stuck during training. Fahlman and Lebiere (1990) typically show that four to eight
candidate units are enough to ensure good candidates in each pool.
Steps 2 and 4 require the use of an optimization routine. Fahlman uses the so-called
Quickprop algorithm. Quickprop computes the derivative of the error with respect to the
weights as in standard back-propagation, but instead of simple gradient descent, Quickprop
uses a second order method, related to Newton’s method, to update the weights (Fahlman,
1988).

3.2 Overview of Algorithm Modifications for Function Approximation
While the basic CC algorithm described in the previous section provides a good foundation
for regression applications, it also has areas which can be improved. This section presents
the modifications that were developed and implemented to the CC algorithm described
above. Fahlman introduced this algorithm for classification tasks which typically use a large
number of inputs. The network is thus well suited for the application in mind in this
research, i.e. approximation of functions with a large number of variables. Practical
optimization problems require a large number of design variables which define the
configuration to be optimized. CC algorithm learns very quickly and uses minimal
computer memory as it only trains some of the network weights while others are frozen. It
has been shown to work well for regression tasks (Kwok & Yeung, 1993, 1997a and 1997b,
Prechelt, 1997, Treagold & Gedeon, 1999, Lehtokangas, 1999, Lahnajärvi et al., 2002). Each
author, however, points out some potential downfalls of the algorithm and proposes some
possible fixes. These problems are primarily:
 Maximizing Fahlman’s correlation formula trains candidate neurons to have a large

activation (weight) whenever the error at their output is not equal to the average error.
Cascade correlation has a tendency to overcompensate errors. (Prechelt, 1997)

 The candidate unit weight optimization might get stuck in a local maximum, and thus
units which are not correlating well with the error are installed on the NN, leading to
more units than necessary to reach the desired level of accuracy (deeper network)
(Lehtokangas, 1999, Kwok & Yeung, 1997b, Lahnajärvi et al.,2002).

 Cascading units can result in a network that can exhibit very strong non-linearities, thus
affecting generalization (Kwok & Yeung 1993, 1997a).

The critical issue in developing a neural network for regression tasks is generalization: how
well will the network make predictions for cases that are not in the training set? Neural
networks, like other nonlinear estimation methods such as kernel regression and even linear
methods like polynomial regression, can suffer from either underfitting or overfitting. As
stated in Sarle (2002): “A network that is not sufficiently complex can fail to detect fully the signal
in a complicated data set, leading to underfitting. A network that is too complex may fit the noise, not
just the signal, leading to overfitting. Overfitting is especially dangerous because it can easily lead to
predictions that are far beyond the range of the training data with many of the common types of
NNs.”
Model selection plays an important role in the generalization ability of the network. As
explained above, constructive methods, like cascade correlation, are usually better methods
than fixed network topologies trained with back-propagation or pruning methods because
they automatically find the number of hidden units that matches the complexity of the
problem. They also find smaller network solutions. Smaller networks mean less connections
or weights to adjust and thus usually require smaller training sets for similar generalization
ability (Kwok & Yeung, 1997b).
The generalization ability of the NN has been addressed in the Modified Cascade
Correlation algorithm. Various improvements to the original CC based on some of the
solutions proposed by the above-referenced works have been implemented. Extensive
research has been conducted that demonstrates the clear advantages of using the MCC on a
test function for dimensions varying from 2 to 30 inputs (Schmitz 2007).
In the MCC, inputs and outputs to the NN are non-dimensionalized, weights are
constrained to a maximum value in order to limit strong non-linearities of the response

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 307

3.1 Base Algorithm as Introduced by Fahlman and Lebiere
The basic algorithm as introduced by Fahlman and Lebiere (1990) includes the following 11
steps:
Step 1: Start with the required input and output units; both layers are fully connected. The
number of inputs and outputs is dictated by the problem.
Step 2: Train all connections ending at an output unit with a common learning algorithm
until the squared error Es of the NN no longer decreases.

2 2

, ,
1 1 1

1 1
2 2

Np Np m

p p i p i p
p p i

Es y t y t

 (1)

Here m is the size of the outputs (or number of outputs), Np is the size of the training set, yi,p
is the ith output from NN, and ti,p is the corresponding target.
Step 3: Generate a candidate unit that receives trainable input connections from all of the
network’s external inputs and from all pre-existing hidden units (if any). The output of this
candidate unit is not yet connected to the active network (output).
Step 4: Train the unit (its weight) to maximize the correlation referred to as SC (Eq. 2).
Learning takes place with an ordinary learning algorithm; training is stopped when the
correlation score no longer improves. The correlation formula is given by

max

, ,
1 1

m P

C o p o i p i
i p

S z z E E

 (2)

Here zo,p is the output of the candidate hidden unit and Ei,p is the residual error of the
outputs calculated at Step 2, Ei,p=yi,p-ti,p. The bar above a quantity denotes the average over
the training set.
Step 5: Connect the candidate unit with the outputs and freeze its input weights. The
candidate unit acts now as an additional input unit.
Step 6: Train again the input-outputs connections by minimizing the squared error Es as
defined in Step 2.
Steps 7 to 10: Repeat Steps three to six adding one hidden unit at a time.
Step 11: Stop training when the error E of the net falls below a given value, .
Instead of a single candidate unit, it is possible to use a pool of candidate units, each with a
different set of random initial weights. All receive the same input signals and see the same
residual error for each training pattern. Because they do not interact with one another, or
affect the active network, they can be trained simultaneously. Only the candidate whose
correlation score is the best is installed. The use of a pool of candidates greatly reduces the
chances that a useless unit will be permanently installed because an individual candidate
got stuck during training. Fahlman and Lebiere (1990) typically show that four to eight
candidate units are enough to ensure good candidates in each pool.
Steps 2 and 4 require the use of an optimization routine. Fahlman uses the so-called
Quickprop algorithm. Quickprop computes the derivative of the error with respect to the
weights as in standard back-propagation, but instead of simple gradient descent, Quickprop
uses a second order method, related to Newton’s method, to update the weights (Fahlman,
1988).

3.2 Overview of Algorithm Modifications for Function Approximation
While the basic CC algorithm described in the previous section provides a good foundation
for regression applications, it also has areas which can be improved. This section presents
the modifications that were developed and implemented to the CC algorithm described
above. Fahlman introduced this algorithm for classification tasks which typically use a large
number of inputs. The network is thus well suited for the application in mind in this
research, i.e. approximation of functions with a large number of variables. Practical
optimization problems require a large number of design variables which define the
configuration to be optimized. CC algorithm learns very quickly and uses minimal
computer memory as it only trains some of the network weights while others are frozen. It
has been shown to work well for regression tasks (Kwok & Yeung, 1993, 1997a and 1997b,
Prechelt, 1997, Treagold & Gedeon, 1999, Lehtokangas, 1999, Lahnajärvi et al., 2002). Each
author, however, points out some potential downfalls of the algorithm and proposes some
possible fixes. These problems are primarily:
 Maximizing Fahlman’s correlation formula trains candidate neurons to have a large

activation (weight) whenever the error at their output is not equal to the average error.
Cascade correlation has a tendency to overcompensate errors. (Prechelt, 1997)

 The candidate unit weight optimization might get stuck in a local maximum, and thus
units which are not correlating well with the error are installed on the NN, leading to
more units than necessary to reach the desired level of accuracy (deeper network)
(Lehtokangas, 1999, Kwok & Yeung, 1997b, Lahnajärvi et al.,2002).

 Cascading units can result in a network that can exhibit very strong non-linearities, thus
affecting generalization (Kwok & Yeung 1993, 1997a).

The critical issue in developing a neural network for regression tasks is generalization: how
well will the network make predictions for cases that are not in the training set? Neural
networks, like other nonlinear estimation methods such as kernel regression and even linear
methods like polynomial regression, can suffer from either underfitting or overfitting. As
stated in Sarle (2002): “A network that is not sufficiently complex can fail to detect fully the signal
in a complicated data set, leading to underfitting. A network that is too complex may fit the noise, not
just the signal, leading to overfitting. Overfitting is especially dangerous because it can easily lead to
predictions that are far beyond the range of the training data with many of the common types of
NNs.”
Model selection plays an important role in the generalization ability of the network. As
explained above, constructive methods, like cascade correlation, are usually better methods
than fixed network topologies trained with back-propagation or pruning methods because
they automatically find the number of hidden units that matches the complexity of the
problem. They also find smaller network solutions. Smaller networks mean less connections
or weights to adjust and thus usually require smaller training sets for similar generalization
ability (Kwok & Yeung, 1997b).
The generalization ability of the NN has been addressed in the Modified Cascade
Correlation algorithm. Various improvements to the original CC based on some of the
solutions proposed by the above-referenced works have been implemented. Extensive
research has been conducted that demonstrates the clear advantages of using the MCC on a
test function for dimensions varying from 2 to 30 inputs (Schmitz 2007).
In the MCC, inputs and outputs to the NN are non-dimensionalized, weights are
constrained to a maximum value in order to limit strong non-linearities of the response

www.intechopen.com

Machine Learning308

surface, training of the input-to-hidden-unit weights and hidden-to-output weights is
performed with a second order optimization method (Sequential Quadratic Programming)
instead of the Quickprop algorithm introduced by the original authors. Several stopping
criteria are also available to limit overfitting of the network; they all continue training
slightly past the minimum validation error (error measured on the Validation Set) and the
resulting network is that which has the smallest squared error on the VS, whereas the
original authors stop when the error on the training set reaches a predetermined value.
Also, ensemble averaging, a well known technique for reducing overfitting is available
when training with the MCC. These improvements are described in more detail in the
following sections.

3.2.1 Normalization of Inputs
The activation function of the hidden units is usually highly nonlinear. In this research, the
activation function chosen is the sigmoid function which varies between zero and one.
During training, weights are initialized with small random values. It is commonly known
that optimization algorithms will perform faster if optimization is started in an area where
the objective function varies rapidly. It is thus better to ensure that the hidden units are not
in their saturated portion but rather in the area of the sigmoid which is quasi-linearly
varying when optimization is started. Along with using small initial weights, it was also
decided to normalize the inputs to the NN. The training set minimum and maximum values
are first calculated for each input i.

1
mini ipp Np

MinInput z

 (3)

1
maxi ipp Np

MaxInput z

 (4)

where Np is the size of the training set and zip is the ith input for the pth point of the training
set.
The training set is next rescaled from zero to one according to the equation below.

1 1

1 1 1

 1...

p

p

np np n

n n

z MinInput
z MaxInput MinInput

for p Np
z z MinInput

MaxInput MinInput

 (5)

Also the validation and generalization sets are rescaled using the same minimum and
maximum values found for the training set, so they will vary from around zero to one (but
not exactly between 0 and 1).

3.2.2 Weights Initialization
In any nonlinear optimization problem, the initialization of the parameters has an important
influence on the ability of the training program to converge and the speed of that

convergence. The training of weights in NNs can be viewed as a nonlinear optimization
problem in which the goal is to find a set of network weights that optimizes a cost function.
In the MCC algorithm, there are two separate optimization problems. The first one is to
maximize a correlation function to train the candidate hidden unit newly added to the
network; the other is to minimize the error on the training set. Both describe a surface in the
weight space. Training algorithms are simply methods used to find the minimum of this
surface. The complexity of the search is governed by the nature of this surface. Error
surfaces for multilayer NNs have typically many flat regions where learning is slow and
long narrow “canyons” that are flat in one direction and steep in the other directions. This
makes it very difficult to search the surface efficiently using gradient-based routines. In
addition, the cost function is characterized by a large number of local minima with values in
the vicinity of the best global minimum. The efficiency of the search method depends much
on the initial weight distribution. The simplest category among the weight initialization
methods is random weight initialization. It is commonly known that if all the weights of an
NN are initialized with a zero, they cannot change to any other value during training if
some simple training algorithms are used. Random initialization has been proposed to avoid
this undesired situation and its ability to break the symmetry. Very little research has been
reported on weight initialization in the literature (Lehtokangas, 1999 and Lahnajärvi et al.,
2002).
In the cascade correlation algorithm, there are three separate weight optimization problems
to investigate:
1. The first optimization problem is the squared error minimization between input and

output units before any hidden unit is added to the network. A previous study showed
that the weights between the inputs and the outputs should be initialized randomly
between -0.5 and +0.5 (Hefazi et al., 2003).

2. The second optimization problem consists of finding the best candidate hidden unit by
maximizing the correlation formula. The weight initialization consists in calculating the
norm of the input vector Zp, pZ , for each training set point p (also called pattern), and

then initializing the weights for the new candidate unit wj so that:
3.

1

2

1,...,1
4 * max ()

n h

j p Npj
w

 pw Z . (6)

Also during the optimization, the weights values are limited between -10 and +10, as
lower values lead to very deep networks and higher values lead to severe overfitting of
the data.

4. A third optimization consists of minimizing again the squared error after a new hidden
unit (hth hidden unit) has been added to the network and connected to the outputs.
Hefazi et al. (2003) showed that the weights vij found at the previous step (unit h-1) are
already close to the optimal value with this new hidden unit added to the network. For
this weight initialization problem, it is then best to use, as initial weights, the ones
found at the previous iteration (weights between the inputs and previous hidden units
to hidden unit h-1) and to initialize at zero the new weights between the inputs and
previous hidden unit to hidden unit h. This method leads to the fastest search for the

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 309

surface, training of the input-to-hidden-unit weights and hidden-to-output weights is
performed with a second order optimization method (Sequential Quadratic Programming)
instead of the Quickprop algorithm introduced by the original authors. Several stopping
criteria are also available to limit overfitting of the network; they all continue training
slightly past the minimum validation error (error measured on the Validation Set) and the
resulting network is that which has the smallest squared error on the VS, whereas the
original authors stop when the error on the training set reaches a predetermined value.
Also, ensemble averaging, a well known technique for reducing overfitting is available
when training with the MCC. These improvements are described in more detail in the
following sections.

3.2.1 Normalization of Inputs
The activation function of the hidden units is usually highly nonlinear. In this research, the
activation function chosen is the sigmoid function which varies between zero and one.
During training, weights are initialized with small random values. It is commonly known
that optimization algorithms will perform faster if optimization is started in an area where
the objective function varies rapidly. It is thus better to ensure that the hidden units are not
in their saturated portion but rather in the area of the sigmoid which is quasi-linearly
varying when optimization is started. Along with using small initial weights, it was also
decided to normalize the inputs to the NN. The training set minimum and maximum values
are first calculated for each input i.

1
mini ipp Np

MinInput z

 (3)

1
maxi ipp Np

MaxInput z

 (4)

where Np is the size of the training set and zip is the ith input for the pth point of the training
set.
The training set is next rescaled from zero to one according to the equation below.

1 1

1 1 1

 1...

p

p

np np n

n n

z MinInput
z MaxInput MinInput

for p Np
z z MinInput

MaxInput MinInput

 (5)

Also the validation and generalization sets are rescaled using the same minimum and
maximum values found for the training set, so they will vary from around zero to one (but
not exactly between 0 and 1).

3.2.2 Weights Initialization
In any nonlinear optimization problem, the initialization of the parameters has an important
influence on the ability of the training program to converge and the speed of that

convergence. The training of weights in NNs can be viewed as a nonlinear optimization
problem in which the goal is to find a set of network weights that optimizes a cost function.
In the MCC algorithm, there are two separate optimization problems. The first one is to
maximize a correlation function to train the candidate hidden unit newly added to the
network; the other is to minimize the error on the training set. Both describe a surface in the
weight space. Training algorithms are simply methods used to find the minimum of this
surface. The complexity of the search is governed by the nature of this surface. Error
surfaces for multilayer NNs have typically many flat regions where learning is slow and
long narrow “canyons” that are flat in one direction and steep in the other directions. This
makes it very difficult to search the surface efficiently using gradient-based routines. In
addition, the cost function is characterized by a large number of local minima with values in
the vicinity of the best global minimum. The efficiency of the search method depends much
on the initial weight distribution. The simplest category among the weight initialization
methods is random weight initialization. It is commonly known that if all the weights of an
NN are initialized with a zero, they cannot change to any other value during training if
some simple training algorithms are used. Random initialization has been proposed to avoid
this undesired situation and its ability to break the symmetry. Very little research has been
reported on weight initialization in the literature (Lehtokangas, 1999 and Lahnajärvi et al.,
2002).
In the cascade correlation algorithm, there are three separate weight optimization problems
to investigate:
1. The first optimization problem is the squared error minimization between input and

output units before any hidden unit is added to the network. A previous study showed
that the weights between the inputs and the outputs should be initialized randomly
between -0.5 and +0.5 (Hefazi et al., 2003).

2. The second optimization problem consists of finding the best candidate hidden unit by
maximizing the correlation formula. The weight initialization consists in calculating the
norm of the input vector Zp, pZ , for each training set point p (also called pattern), and

then initializing the weights for the new candidate unit wj so that:
3.

1

2

1,...,1
4 * max ()

n h

j p Npj
w

 pw Z . (6)

Also during the optimization, the weights values are limited between -10 and +10, as
lower values lead to very deep networks and higher values lead to severe overfitting of
the data.

4. A third optimization consists of minimizing again the squared error after a new hidden
unit (hth hidden unit) has been added to the network and connected to the outputs.
Hefazi et al. (2003) showed that the weights vij found at the previous step (unit h-1) are
already close to the optimal value with this new hidden unit added to the network. For
this weight initialization problem, it is then best to use, as initial weights, the ones
found at the previous iteration (weights between the inputs and previous hidden units
to hidden unit h-1) and to initialize at zero the new weights between the inputs and
previous hidden unit to hidden unit h. This method leads to the fastest search for the

www.intechopen.com

Machine Learning310

optimum as well as the smallest overfitting. Similarly, the weights are allowed to vary
only between -10 and +10 during optimization.

3.2.3 Choice of optimization routine
The weight optimization must be solved by using some optimization software. Kwok &
Yeung (1993) demonstrate that the CC algorithm can always reach Es< for a given >0 for
L2 functions, even when using a local optimizer. Fahlman (1988) uses its own optimization
routine to update the weights; the Quickprop algorithm, a second order local search method
related to Newton’s method. In this research, a commercially available software DOT,
developed by Vanderplaats (1995) was chosen. This software contains a choice of the latest
state-of-the-art optimization methods. Therefore the Broydon-Fletcher-Goldfarb-Shanno
(BFGS) method from DOT software was chosen for its proven efficiency and accuracy for
unconstrained optimization problems. It is also a quasi-Newtonian method because it
creates an approximation of the inverse of the Hessian matrix. The details of the method are
explained in Vanderplaats (1995). One advantage of using this software is that the gradient
of the squared error and the correlation formula can be supplied directly to DOT and, thus,
considerably speed up the weight optimization.

3.2.4 Candidate Hidden Unit Training
Fahlman’s original algorithm calls for randomly initializing a pool of four to eight candidate
units and then maximizing all candidate units. The candidate whose correlation score is the
highest is then added to the network. This is done because, as explained in 0, the weight
surface has many local maxima. And since the method used for finding the best weights is a
gradient search, i.e. local search, the optimization may get stuck in a local maxima and fail
to find the global one. So doing several searches starting with different initial weight values
increases the chance of finding the “global” optimum. One might want to use a global
search method, but this becomes prohibitive in terms of computer time requirements.
Another idea is to use a much larger pool, of the order of 100-500 candidates, initialized at
random and then only optimizing the one whose correlation after random initialization is
best. Random initialization is very fast, and increases the chance of starting the optimization
with a unit close to the global optimum and only one candidate is trained using the time
consuming optimization algorithm. Lehtokangas (1999) has applied this method
successfully to his constructive algorithm and found it beneficial in terms of time
requirements and performance of the NN. Both options are implemented in the algorithm.
A study in Schmitz (2007) shows that for a number of inputs greater than 5 or 10, it is
advantageous to use the method using a large pool of candidate units.

3.2.5 Stopping Criterion
When training a NN, one is usually interested in obtaining a network with optimal
generalization performance. Generalization performance means small errors on examples
not seen during training. As hidden units are added to the network, the error on the TS
decreases, i.e. the network is able to fit the training data better. However, when looking at
the error on an unseen data set, the error initially decreases but at some point during
training it increases. The network starts to overfit the training data and the generalization
ability of the network gets worse. This is even more pronounced when the data is noisy

(Bishop, 1995). This phenomenon is called the bias variance tradeoff; underfitting produces
excessive bias in the outputs, whereas overfitting produces excessive variance. To our
knowledge, Fahlman and Lebiere did not study the generalization properties of their CC
network and looked only at the convergence of their network on the training data.
An easy way to find a network having the best performance on new data is to evaluate the
error function using data which is independent of that used for training, i.e. on the
validation set (VS) and to stop training when the error is minimum on the VS. This method
is called early stopping or stopping the learning procedure before full convergence of the
network on the training set (TS) to obtain optimal generalization properties. It is widely
used in all feedforward NN architectures. Because of the stochastic nature of the CC
algorithm, the minimum validation error might exhibit several local minima as hidden units
are added one by one before the global minimum can be attained. This implies that one
must continue training the NN past each local minimum to make sure that the global
minimum has been found and then choose the network with the number of hidden units
which correspond to this minimum validation error. Prechelt (1998a & 1998b) has derived
several classes of stopping criteria which may be used to determine how long training
should be continued to make sure that the global minimum has been found. These criteria
are described in detail in Schmitz (2007). Only the criterion used in the applications
presented in this chapter is described in Section 0.

3.2.6 Ensemble Averaging
Because of the stochastic nature of the process in building NNs, it is a common practice to
train many different candidate networks and then to keep only the one with best
performance. Each network leads to different weight values, different numbers of HUs and
different errors. Usually, the one with the best performance is chosen. Performance is
usually measured by how the network predicts data on an independent validation set. There
are two disadvantages in this approach. First, the effort involved in training the remaining
networks is wasted. Second, the generalization performance on the validation set has a
random component since it is a relatively small set and so the network which had best
performance on the validation set might not be the one with the best generalization, i.e.
performance on the rest of the computational domain. These drawbacks can be overcome by
combining the networks together by forming a committee. There are several ways of
combining networks; one simple way is to take the output of the committee to be the
average output of each individual network. This method, called ensemble averaging, appears
to be a very simple way to limit the overfitting of the network. According to Bishop (1995),
the error on the committee is always less than the average error calculated by averaging the
error on each individual network. Also, networks trained with the CC algorithm usually
show strong non-linearities in their response because the hidden units are added in cascade,
making a network with many layers and one hidden unit in each layer. In the application in
mind involving approximation of smooth functions, the idea of using all the networks
constructed, and average them out to “smooth out” the response surface, appears
promising. Tekto & Villa (1997) have done some preliminary research on ensemble
averaging combined with early stopping (ESE) for NNs trained according to the cascade
correlation algorithm for simple single input/single output functions. Their work shows
that the technique they call ESE provides an improvement in the generalization ability of the
network for those test cases. An extensive study in Schmitz (2007) has shown that ensemble

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 311

optimum as well as the smallest overfitting. Similarly, the weights are allowed to vary
only between -10 and +10 during optimization.

3.2.3 Choice of optimization routine
The weight optimization must be solved by using some optimization software. Kwok &
Yeung (1993) demonstrate that the CC algorithm can always reach Es< for a given >0 for
L2 functions, even when using a local optimizer. Fahlman (1988) uses its own optimization
routine to update the weights; the Quickprop algorithm, a second order local search method
related to Newton’s method. In this research, a commercially available software DOT,
developed by Vanderplaats (1995) was chosen. This software contains a choice of the latest
state-of-the-art optimization methods. Therefore the Broydon-Fletcher-Goldfarb-Shanno
(BFGS) method from DOT software was chosen for its proven efficiency and accuracy for
unconstrained optimization problems. It is also a quasi-Newtonian method because it
creates an approximation of the inverse of the Hessian matrix. The details of the method are
explained in Vanderplaats (1995). One advantage of using this software is that the gradient
of the squared error and the correlation formula can be supplied directly to DOT and, thus,
considerably speed up the weight optimization.

3.2.4 Candidate Hidden Unit Training
Fahlman’s original algorithm calls for randomly initializing a pool of four to eight candidate
units and then maximizing all candidate units. The candidate whose correlation score is the
highest is then added to the network. This is done because, as explained in 0, the weight
surface has many local maxima. And since the method used for finding the best weights is a
gradient search, i.e. local search, the optimization may get stuck in a local maxima and fail
to find the global one. So doing several searches starting with different initial weight values
increases the chance of finding the “global” optimum. One might want to use a global
search method, but this becomes prohibitive in terms of computer time requirements.
Another idea is to use a much larger pool, of the order of 100-500 candidates, initialized at
random and then only optimizing the one whose correlation after random initialization is
best. Random initialization is very fast, and increases the chance of starting the optimization
with a unit close to the global optimum and only one candidate is trained using the time
consuming optimization algorithm. Lehtokangas (1999) has applied this method
successfully to his constructive algorithm and found it beneficial in terms of time
requirements and performance of the NN. Both options are implemented in the algorithm.
A study in Schmitz (2007) shows that for a number of inputs greater than 5 or 10, it is
advantageous to use the method using a large pool of candidate units.

3.2.5 Stopping Criterion
When training a NN, one is usually interested in obtaining a network with optimal
generalization performance. Generalization performance means small errors on examples
not seen during training. As hidden units are added to the network, the error on the TS
decreases, i.e. the network is able to fit the training data better. However, when looking at
the error on an unseen data set, the error initially decreases but at some point during
training it increases. The network starts to overfit the training data and the generalization
ability of the network gets worse. This is even more pronounced when the data is noisy

(Bishop, 1995). This phenomenon is called the bias variance tradeoff; underfitting produces
excessive bias in the outputs, whereas overfitting produces excessive variance. To our
knowledge, Fahlman and Lebiere did not study the generalization properties of their CC
network and looked only at the convergence of their network on the training data.
An easy way to find a network having the best performance on new data is to evaluate the
error function using data which is independent of that used for training, i.e. on the
validation set (VS) and to stop training when the error is minimum on the VS. This method
is called early stopping or stopping the learning procedure before full convergence of the
network on the training set (TS) to obtain optimal generalization properties. It is widely
used in all feedforward NN architectures. Because of the stochastic nature of the CC
algorithm, the minimum validation error might exhibit several local minima as hidden units
are added one by one before the global minimum can be attained. This implies that one
must continue training the NN past each local minimum to make sure that the global
minimum has been found and then choose the network with the number of hidden units
which correspond to this minimum validation error. Prechelt (1998a & 1998b) has derived
several classes of stopping criteria which may be used to determine how long training
should be continued to make sure that the global minimum has been found. These criteria
are described in detail in Schmitz (2007). Only the criterion used in the applications
presented in this chapter is described in Section 0.

3.2.6 Ensemble Averaging
Because of the stochastic nature of the process in building NNs, it is a common practice to
train many different candidate networks and then to keep only the one with best
performance. Each network leads to different weight values, different numbers of HUs and
different errors. Usually, the one with the best performance is chosen. Performance is
usually measured by how the network predicts data on an independent validation set. There
are two disadvantages in this approach. First, the effort involved in training the remaining
networks is wasted. Second, the generalization performance on the validation set has a
random component since it is a relatively small set and so the network which had best
performance on the validation set might not be the one with the best generalization, i.e.
performance on the rest of the computational domain. These drawbacks can be overcome by
combining the networks together by forming a committee. There are several ways of
combining networks; one simple way is to take the output of the committee to be the
average output of each individual network. This method, called ensemble averaging, appears
to be a very simple way to limit the overfitting of the network. According to Bishop (1995),
the error on the committee is always less than the average error calculated by averaging the
error on each individual network. Also, networks trained with the CC algorithm usually
show strong non-linearities in their response because the hidden units are added in cascade,
making a network with many layers and one hidden unit in each layer. In the application in
mind involving approximation of smooth functions, the idea of using all the networks
constructed, and average them out to “smooth out” the response surface, appears
promising. Tekto & Villa (1997) have done some preliminary research on ensemble
averaging combined with early stopping (ESE) for NNs trained according to the cascade
correlation algorithm for simple single input/single output functions. Their work shows
that the technique they call ESE provides an improvement in the generalization ability of the
network for those test cases. An extensive study in Schmitz (2007) has shown that ensemble

www.intechopen.com

Machine Learning312

averaging always improves the generalization ability of the NN and should indeed be used
each time an NN is constructed with the MCC algorithm.

3.3 Equations/Mathematical Formulation/Algorithm
This section describes the mathematical formulation the modified CC algorithm for function
approximation. The training algorithm was programmed in C++ language and coupled with
the DOT software which uses FORTRAN language.

3.3.1 Step 1: No Hidden Units/Linear Inputs to Outputs Connection
In the first step of building the network with the cascade correlation algorithm, there are no
hidden units. Inputs and outputs are fully connected, the weights, vij, determine the strength
of the connection from the ith input to the jth output. These will need to be adjusted to
minimize the squared error Es. Fig. 2 shows a schematic of the input-outputs connections
without hidden units. The vertical lines sum all incoming activation. X connections
correspond to weights to be trained. Square boxes represent neurons; input-output neurons
have a linear activation function.
The bias term can be modelled in the equations as an additional input unit of value one and
with weighted connections to the outputs. Without loss of generality, the output neurons
can have a linear activation function of slope one (i.e. (z)=z) because there is always a linear
component to a nonlinear function, thus a linear link between inputs and outputs. This
greatly simplifies the equations for training the NN. The bias parameter is useful to
compensate for the difference between the mean (over the training set) of the output vector
and the corresponding mean of the target data.
Based on this NN, the relationship between input and output is given by

1 11 1, 1 1

1 , 1

1...

1

p n p

np

mp m m n

y v v z

p Np
z

y v v

 (7)

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

Linear input-
output neurons

znp

z2p

z1p

zn+1,p

…

…

Fig. 2. Schematic of input-output connections without hidden units. The vertical lines sum
all incoming activation. X connections or weights must be trained.

3.3.2 Step 2: Minimize Squared Error without Hidden Unit
The next step consists of adjusting the weights to fit the training data. The squared error
between the targets and the outputs is used as the standard error measure and must be
minimized. The squared error for the neural network without hidden unit is given by the
following equation:

2

2

, 1
1 1 1 1 1

1 1
2 2

Np Npm m n

ip ip ij jp i n ip
i p i p j

Es y t v z v t

 (8)

The weights vij are initialized randomly between [-0.5, +0.5] as discussed in Section 0. The
error is then minimized by adjusting the weights using the BFGS method from DOT
optimization software (Vanderplaats, 1995). DOT allows the user to directly input the
gradient of the function to optimize, if known, and to speed up the optimization process.
The gradient of squared error with respect to the weights klEs v can be calculated
analytically as follow:

 , 1
1 1

Np n

kj jp k n kp lp
p jkl

Es v z v t z
v

 (9)

with k {1…m}, l {1…n+1} and j {1…n}.
It is noteworthy to point out here that a pseudo inverse method could also be used to find
the minimum error since it is a linear system. However BFGS works fast on linear systems
and is subsequently used to find the candidate units weights once hidden units have been
added and the system is no longer linear. This approach was used here instead of
calculating the pseudo inverse matrix.

3.3.3 Step 3: Adding a First Hidden Unit Connected to Inputs only
After optimizing the matrix of weights, V, a first hidden unit is connected to the inputs as
shown in Fig. 3. Its output is noted zn+2, p.

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

Adding first
hidden unit

zn+2,p

w1

wn+1

Fig. 3. Schematic of input to first hidden unit connections. Hidden unit not yet connected to
outputs. Diamond connections to be trained.

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 313

averaging always improves the generalization ability of the NN and should indeed be used
each time an NN is constructed with the MCC algorithm.

3.3 Equations/Mathematical Formulation/Algorithm
This section describes the mathematical formulation the modified CC algorithm for function
approximation. The training algorithm was programmed in C++ language and coupled with
the DOT software which uses FORTRAN language.

3.3.1 Step 1: No Hidden Units/Linear Inputs to Outputs Connection
In the first step of building the network with the cascade correlation algorithm, there are no
hidden units. Inputs and outputs are fully connected, the weights, vij, determine the strength
of the connection from the ith input to the jth output. These will need to be adjusted to
minimize the squared error Es. Fig. 2 shows a schematic of the input-outputs connections
without hidden units. The vertical lines sum all incoming activation. X connections
correspond to weights to be trained. Square boxes represent neurons; input-output neurons
have a linear activation function.
The bias term can be modelled in the equations as an additional input unit of value one and
with weighted connections to the outputs. Without loss of generality, the output neurons
can have a linear activation function of slope one (i.e. (z)=z) because there is always a linear
component to a nonlinear function, thus a linear link between inputs and outputs. This
greatly simplifies the equations for training the NN. The bias parameter is useful to
compensate for the difference between the mean (over the training set) of the output vector
and the corresponding mean of the target data.
Based on this NN, the relationship between input and output is given by

1 11 1, 1 1

1 , 1

1...

1

p n p

np

mp m m n

y v v z

p Np
z

y v v

 (7)

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

Linear input-
output neurons

znp

z2p

z1p

zn+1,p

…

…

Fig. 2. Schematic of input-output connections without hidden units. The vertical lines sum
all incoming activation. X connections or weights must be trained.

3.3.2 Step 2: Minimize Squared Error without Hidden Unit
The next step consists of adjusting the weights to fit the training data. The squared error
between the targets and the outputs is used as the standard error measure and must be
minimized. The squared error for the neural network without hidden unit is given by the
following equation:

2

2

, 1
1 1 1 1 1

1 1
2 2

Np Npm m n

ip ip ij jp i n ip
i p i p j

Es y t v z v t

 (8)

The weights vij are initialized randomly between [-0.5, +0.5] as discussed in Section 0. The
error is then minimized by adjusting the weights using the BFGS method from DOT
optimization software (Vanderplaats, 1995). DOT allows the user to directly input the
gradient of the function to optimize, if known, and to speed up the optimization process.
The gradient of squared error with respect to the weights klEs v can be calculated
analytically as follow:

 , 1
1 1

Np n

kj jp k n kp lp
p jkl

Es v z v t z
v

 (9)

with k {1…m}, l {1…n+1} and j {1…n}.
It is noteworthy to point out here that a pseudo inverse method could also be used to find
the minimum error since it is a linear system. However BFGS works fast on linear systems
and is subsequently used to find the candidate units weights once hidden units have been
added and the system is no longer linear. This approach was used here instead of
calculating the pseudo inverse matrix.

3.3.3 Step 3: Adding a First Hidden Unit Connected to Inputs only
After optimizing the matrix of weights, V, a first hidden unit is connected to the inputs as
shown in Fig. 3. Its output is noted zn+2, p.

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

Adding first
hidden unit

zn+2,p

w1

wn+1

Fig. 3. Schematic of input to first hidden unit connections. Hidden unit not yet connected to
outputs. Diamond connections to be trained.

www.intechopen.com

Machine Learning314

The connections (weights) between inputs and the hidden unit are noted wj in

1 1

2 , 1 1
1

1 ,

p n

n p n n j jp
j

n p

z
z w w w w z

z

 (10)

where j = 1,…,n+1 and is the sigmoid function. Also, to simplify the notation, the +1 of the
bias is replaced by the notation zn+1, p in the equations.

3.3.4 Step 4: Maximize Correlation Formula for First Hidden Unit
The next step in the CC algorithm is to maximize the correlation for the new hidden unit
installed on the network. Optimization is performed with the BFGS method from DOT
(Vanderplaats, 1995).
For this weight initialization, the norm of the input vector Zp, pZ , is calculated for each

training set point p (also called pattern). And the weights for the new candidate unit wj are
initialized so that:

1

2
p1,...,1

4 * max ()
n

j p Npj
w

 Z (11)

to avoid starting the optimization in the highly saturated part of the sigmoid, and thus
getting a null derivative of the correlation formula with respect to the weights wj. In fact, a
pool of candidate hidden units is generated with different random initial weights, and two
options are available to train the candidates depending on the size of the pool chosen. If this
number is less than 10, the algorithm is programmed so that all candidate units in the pool
are trained to maximize the chosen correlation formula using the BFGS algorithm. Only the
unit with the largest correlation value after training is next installed on the network. This
method is the same as Fahlman’s algorithm except for the use of the BFGS instead of the
Quickprop (Fahlman, 1988) algorithm. If the size of the pool is greater than 10, then only the
candidate unit which exhibits the largest correlation value after random initialization is
trained with the BFGS method and next permanently installed on the NN. This builds the
network faster since the time-consuming operation of optimizing the weights is done only
once. The other option implies optimizing several candidates. For this method to work well,
it is recommended to use a large pool, say 100 to 500 candidates. Only the candidate whose
correlation is the highest is kept in memory. Its weights are saved in a separate matrix WH:

 1 1

1 1... nw w WH (12)

Those connections are now permanently frozen.
The following equation describes the correlation formula, denoted SC, between the
candidate unit’s value and the residual output error observed at the first unit.

 2 , 2
1 1

Npm

C n p n ip i
i p

S z z E E

 (13)

where Eip is the residual error Eip = yip – tip calculated with the outputs yip from the previous
step. Strictly speaking, SC, is actually a covariance, not a true correlation because the formula
leaves out some of the normalization terms.
The gradient of SC with respect to the wl can again be calculated analytically and is supplied
to the optimizer to speed up the process.

2 , 2
1

1 2 , 2

1

sgn
Np

n p n ip i
pm

C

Npil n p n
ip i

p l l

z z E E
S
w z z

E E
w w

 (14)

where

1

2,

1
 '

n
n p

i ip lp
il

z
w z z

w

 (15)

 2,2

1

1 Np
n kn

kl l

zz
w Np w

 (16)

and
 x x (17)

is the derivative of the activation function (sigmoid).

3.3.5 Step 5: Connect First Hidden Unit to Outputs
Once trained, the new hidden unit is connected to the outputs with the weights saved in
matrix WH. The output zn+2,p is now fixed; it acts as an additional input to the NN. The NN
equation can be written as:

1 11 1, 2 1

1 , 2 2,

p n p

mp m m n n p

y v v z

y v v z

 (18)

A schematic of the connections is represented in Fig. 4, the weights that connect the input-
to-outputs weights and the first HU-to-output weights are still unknown and must be
trained in Step 6.

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 315

The connections (weights) between inputs and the hidden unit are noted wj in

1 1

2 , 1 1
1

1 ,

p n

n p n n j jp
j

n p

z
z w w w w z

z

 (10)

where j = 1,…,n+1 and is the sigmoid function. Also, to simplify the notation, the +1 of the
bias is replaced by the notation zn+1, p in the equations.

3.3.4 Step 4: Maximize Correlation Formula for First Hidden Unit
The next step in the CC algorithm is to maximize the correlation for the new hidden unit
installed on the network. Optimization is performed with the BFGS method from DOT
(Vanderplaats, 1995).
For this weight initialization, the norm of the input vector Zp, pZ , is calculated for each

training set point p (also called pattern). And the weights for the new candidate unit wj are
initialized so that:

1

2
p1,...,1

4 * max ()
n

j p Npj
w

 Z (11)

to avoid starting the optimization in the highly saturated part of the sigmoid, and thus
getting a null derivative of the correlation formula with respect to the weights wj. In fact, a
pool of candidate hidden units is generated with different random initial weights, and two
options are available to train the candidates depending on the size of the pool chosen. If this
number is less than 10, the algorithm is programmed so that all candidate units in the pool
are trained to maximize the chosen correlation formula using the BFGS algorithm. Only the
unit with the largest correlation value after training is next installed on the network. This
method is the same as Fahlman’s algorithm except for the use of the BFGS instead of the
Quickprop (Fahlman, 1988) algorithm. If the size of the pool is greater than 10, then only the
candidate unit which exhibits the largest correlation value after random initialization is
trained with the BFGS method and next permanently installed on the NN. This builds the
network faster since the time-consuming operation of optimizing the weights is done only
once. The other option implies optimizing several candidates. For this method to work well,
it is recommended to use a large pool, say 100 to 500 candidates. Only the candidate whose
correlation is the highest is kept in memory. Its weights are saved in a separate matrix WH:

 1 1

1 1... nw w WH (12)

Those connections are now permanently frozen.
The following equation describes the correlation formula, denoted SC, between the
candidate unit’s value and the residual output error observed at the first unit.

 2 , 2
1 1

Npm

C n p n ip i
i p

S z z E E

 (13)

where Eip is the residual error Eip = yip – tip calculated with the outputs yip from the previous
step. Strictly speaking, SC, is actually a covariance, not a true correlation because the formula
leaves out some of the normalization terms.
The gradient of SC with respect to the wl can again be calculated analytically and is supplied
to the optimizer to speed up the process.

2 , 2
1

1 2 , 2

1

sgn
Np

n p n ip i
pm

C

Npil n p n
ip i

p l l

z z E E
S
w z z

E E
w w

 (14)

where

1

2,

1
 '

n
n p

i ip lp
il

z
w z z

w

 (15)

 2,2

1

1 Np
n kn

kl l

zz
w Np w

 (16)

and
 x x (17)

is the derivative of the activation function (sigmoid).

3.3.5 Step 5: Connect First Hidden Unit to Outputs
Once trained, the new hidden unit is connected to the outputs with the weights saved in
matrix WH. The output zn+2,p is now fixed; it acts as an additional input to the NN. The NN
equation can be written as:

1 11 1, 2 1

1 , 2 2,

p n p

mp m m n n p

y v v z

y v v z

 (18)

A schematic of the connections is represented in Fig. 4, the weights that connect the input-
to-outputs weights and the first HU-to-output weights are still unknown and must be
trained in Step 6.

www.intechopen.com

Machine Learning316

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

HU 1
zn+2,p

w1
1

wn+1
1

vm,n+2v1,n+2

Fig. 4. Schematic of first hidden unit connected to the outputs. Diamond connections are
permanently frozen. X connections must be trained again.

3.3.6 Step 6: Minimize Squared Error with first Hidden Unit
Once the new HU is installed on the network, the matrix V must be optimized to minimize
the squared error on the TS using the BFGS algorithm from DOT.
The squared error is calculated as:

2

22

1 1 1 1 1

1 1
2 2

Np Npm m n

ip ip ij jp ip
i p i p j

Es y t v z t

 (19)

The gradient, which is also supplied to the optimizer, is given by:

2

1 1

Np n

kj jp kp lp
p jkl

Es v z t z
v

 (20)

for k {1…m} and l {1…n+2}.
Weights are initialized by taking former weights calculated above for j {1…n+1} and set to
zero for j = n+2. Indeed, the first n+1 columns of the V matrix represent the input-to-output
weights. Those have already been adjusted at Step 2 to minimize the squared error. It is
therefore expected that a good initial guess for the solution with the additional HU in the
network is to take the former weights calculated at Step 2 and to set to zero the weights that
connect the new hidden unit to the outputs. These weights correspond to column n+2 in the
weights matrix V.
After the squared error is minimized for the training set, it is next evaluated on the
validation and the generalization set if they have been specified. Either the epsilon stopping

criterion or one of the early stopping criteria can be chosen. (see Section 0). The chosen
criterion for stopping is checked. If it is met the program stops. If it is not met, the program
continues adding hidden units one at a time.

3.3.7 Step 7: Connect hth Hidden Unit to Inputs
Each time a new hidden unit is added, a link from this neuron to all the inputs (and bias)
and the former hidden units is created (see Fig. 5).

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

HU 1
zn+2,p

w1
1

wn+1
1

vm,n+2v1,n+2

HU 2

zn+3,p

wn+1
2

w1
2

wn+2
2

Adding hth

hidden unit

zn+h+1,p

w1

wn+1

wn+h+1

wn+2

v1,n+3 vm,n+3

…

Fig. 5. Schematic after adding hth hidden unit. Hidden unit connected to former HUs and
inputs only. Diamond connections to the hth hidden unit only must be trained (wj weights)

The equation for the output of the hth hidden unit added on to the NN, zn+1+h,p, is:

 1 ,
1

n h

n h p j jp
j

z w z

 (21)

The zjp are the inputs to the network for j=1…n+1 and the outputs from the h-1 previous
hidden units for j=n+2, … n+h. Since the input-to-hidden unit weights are frozen for the h-1
previous HUs, they can be viewed as additional inputs to the network. The weights wj from
the inputs and the previous HUs to the hth hidden unit are unknown and must be adjusted.

3.3.8 Step 8: Maximize Correlation Formula for hth Hidden Unit
Next, the wj weights are adjusted to maximize the correlation formula. Again a pool of
candidate units is created by initializing the weights wj for each candidate at random and
Step 4 is repeated. The candidate whose correlation is the highest is kept in memory as wjh.
Those weights are saved on row h of the matrix WH. Each line of this matrix contains the

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 317

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

HU 1
zn+2,p

w1
1

wn+1
1

vm,n+2v1,n+2

Fig. 4. Schematic of first hidden unit connected to the outputs. Diamond connections are
permanently frozen. X connections must be trained again.

3.3.6 Step 6: Minimize Squared Error with first Hidden Unit
Once the new HU is installed on the network, the matrix V must be optimized to minimize
the squared error on the TS using the BFGS algorithm from DOT.
The squared error is calculated as:

2

22

1 1 1 1 1

1 1
2 2

Np Npm m n

ip ip ij jp ip
i p i p j

Es y t v z t

 (19)

The gradient, which is also supplied to the optimizer, is given by:

2

1 1

Np n

kj jp kp lp
p jkl

Es v z t z
v

 (20)

for k {1…m} and l {1…n+2}.
Weights are initialized by taking former weights calculated above for j {1…n+1} and set to
zero for j = n+2. Indeed, the first n+1 columns of the V matrix represent the input-to-output
weights. Those have already been adjusted at Step 2 to minimize the squared error. It is
therefore expected that a good initial guess for the solution with the additional HU in the
network is to take the former weights calculated at Step 2 and to set to zero the weights that
connect the new hidden unit to the outputs. These weights correspond to column n+2 in the
weights matrix V.
After the squared error is minimized for the training set, it is next evaluated on the
validation and the generalization set if they have been specified. Either the epsilon stopping

criterion or one of the early stopping criteria can be chosen. (see Section 0). The chosen
criterion for stopping is checked. If it is met the program stops. If it is not met, the program
continues adding hidden units one at a time.

3.3.7 Step 7: Connect hth Hidden Unit to Inputs
Each time a new hidden unit is added, a link from this neuron to all the inputs (and bias)
and the former hidden units is created (see Fig. 5).

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

HU 1
zn+2,p

w1
1

wn+1
1

vm,n+2v1,n+2

HU 2

zn+3,p

wn+1
2

w1
2

wn+2
2

Adding hth

hidden unit

zn+h+1,p

w1

wn+1

wn+h+1

wn+2

v1,n+3 vm,n+3

…

Fig. 5. Schematic after adding hth hidden unit. Hidden unit connected to former HUs and
inputs only. Diamond connections to the hth hidden unit only must be trained (wj weights)

The equation for the output of the hth hidden unit added on to the NN, zn+1+h,p, is:

 1 ,
1

n h

n h p j jp
j

z w z

 (21)

The zjp are the inputs to the network for j=1…n+1 and the outputs from the h-1 previous
hidden units for j=n+2, … n+h. Since the input-to-hidden unit weights are frozen for the h-1
previous HUs, they can be viewed as additional inputs to the network. The weights wj from
the inputs and the previous HUs to the hth hidden unit are unknown and must be adjusted.

3.3.8 Step 8: Maximize Correlation Formula for hth Hidden Unit
Next, the wj weights are adjusted to maximize the correlation formula. Again a pool of
candidate units is created by initializing the weights wj for each candidate at random and
Step 4 is repeated. The candidate whose correlation is the highest is kept in memory as wjh.
Those weights are saved on row h of the matrix WH. Each line of this matrix contains the

www.intechopen.com

Machine Learning318

weights wji saved for each HU. Its dimension is increased by one row and one column each
time a new HU is added.

1 1
1 1

2 2
1 2

1

0 0

0

n

n

h h
n h

w w
w w

w w

WH

 (22)

Again, the equation for the correlation can be written as:

 ,
1 1

N pm

c o p o ip i
i p

S z z E E

 (23)

and
 , 1 ,o p n h pz z (24)

For simplicity, in the equations the output to the hth hidden unit is denoted zo,p instead of
zn+h+1,p. Also as before, Eip is the residual error Eip = |yip – tip| calculated with the outputs yip
for the network with h-1 hidden units.
The gradient of SC is given by

 ,
,

1 1 1
sgn

Np Npm
o p oC

o p o ip i ip i
i p pl l l

z zS z z E E E E
w w w

 (25)

where

1

,

1
 '

n h
o p

i ip lp
il

z
w z z

w

 (26)

 ,

1

1 Np
o ko

kl l

zz
w Np w

 (27)

3.3.9 Step 9: Connect hth Hidden Unit to Outputs
The candidate HU with the highest correlation is added on to the network and connected to
the output (see Fig. 6). The matrix V connects the inputs and all hidden units installed to the
network to the outputs. The outputs can be calculated with the following equation.

1 11 1, 1 1

1 , 1 1 ,

p n h p

mp m m n h n h p

y v v z

y v v z

 (28)

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

HU 1
zn+2,p

w1
1

wn+1
1

vm,n+2v1,n+2

HU 2

zn+3,p

wn+1
2

w1
2

wn+2
2

HU h

zn+h+1,p

w1
h

wn+1
h

wn+h+1
h

wn+2
h

v1,n+3 vm,n+3

…
vm,n+hv1,n+h

Fig. 6. Connecting hth hidden unit to the outputs. X connections must be trained again.

3.3.10 Step 10: Minimize Squared Error for hth Hidden Unit
Similarly to Step 6, weights vij are initialized by taking former weights calculated for the NN
with h-1 HUs for columns j {1,…, n+h} and set to zero for column j = n+1+h. The squared
error is calculated over the training set and is minimized using the BFGS algorithm.
The squared error and its gradient are both supplied to the optimizer, their equations are:

22 1

1 1 1 1 1

1 1
2 2

Np Npm m n h

ip ip ij jp ip
i p i p j

Es y t v z t

 (29)

and

1

1 1

Np n h

kj jp kp lp
p jkl

Es v z t z
v

 (30)

for k {1,…,m} and l {1,…,n+1+h}.

3.3.11 Step 11: Stop Training when Stopping Criterion is met
Steps seven through ten are repeated and the cascade correlation algorithm stops when the
stopping criterion is met. Several stopping criteria are available to the user in the modified
algorithm. The first one, the epsilon stopping criterion, is used in Fahlman’s original
algorithm (Fahlman & Lebiere, 1990). However, this criterion does not prevent overfitting
and therefore, was later replaced by the early stopping criteria as described below.
The Epsilon Stopping Criterion
The epsilon stopping criterion stops the algorithm when the square error on the training set
has reached a predetermined value. The problem with this criterion is that the user must
determine in advance which value to use. Also the squared error can vary significantly

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 319

weights wji saved for each HU. Its dimension is increased by one row and one column each
time a new HU is added.

1 1
1 1

2 2
1 2

1

0 0

0

n

n

h h
n h

w w
w w

w w

WH

 (22)

Again, the equation for the correlation can be written as:

 ,
1 1

N pm

c o p o ip i
i p

S z z E E

 (23)

and
 , 1 ,o p n h pz z (24)

For simplicity, in the equations the output to the hth hidden unit is denoted zo,p instead of
zn+h+1,p. Also as before, Eip is the residual error Eip = |yip – tip| calculated with the outputs yip
for the network with h-1 hidden units.
The gradient of SC is given by

 ,
,

1 1 1
sgn

Np Npm
o p oC

o p o ip i ip i
i p pl l l

z zS z z E E E E
w w w

 (25)

where

1

,

1
 '

n h
o p

i ip lp
il

z
w z z

w

 (26)

 ,

1

1 Np
o ko

kl l

zz
w Np w

 (27)

3.3.9 Step 9: Connect hth Hidden Unit to Outputs
The candidate HU with the highest correlation is added on to the network and connected to
the output (see Fig. 6). The matrix V connects the inputs and all hidden units installed to the
network to the outputs. The outputs can be calculated with the following equation.

1 11 1, 1 1

1 , 1 1 ,

p n h p

mp m m n h n h p

y v v z

y v v z

 (28)

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

HU 1
zn+2,p

w1
1

wn+1
1

vm,n+2v1,n+2

HU 2

zn+3,p

wn+1
2

w1
2

wn+2
2

HU h

zn+h+1,p

w1
h

wn+1
h

wn+h+1
h

wn+2
h

v1,n+3 vm,n+3

…
vm,n+hv1,n+h

Fig. 6. Connecting hth hidden unit to the outputs. X connections must be trained again.

3.3.10 Step 10: Minimize Squared Error for hth Hidden Unit
Similarly to Step 6, weights vij are initialized by taking former weights calculated for the NN
with h-1 HUs for columns j {1,…, n+h} and set to zero for column j = n+1+h. The squared
error is calculated over the training set and is minimized using the BFGS algorithm.
The squared error and its gradient are both supplied to the optimizer, their equations are:

22 1

1 1 1 1 1

1 1
2 2

Np Npm m n h

ip ip ij jp ip
i p i p j

Es y t v z t

 (29)

and

1

1 1

Np n h

kj jp kp lp
p jkl

Es v z t z
v

 (30)

for k {1,…,m} and l {1,…,n+1+h}.

3.3.11 Step 11: Stop Training when Stopping Criterion is met
Steps seven through ten are repeated and the cascade correlation algorithm stops when the
stopping criterion is met. Several stopping criteria are available to the user in the modified
algorithm. The first one, the epsilon stopping criterion, is used in Fahlman’s original
algorithm (Fahlman & Lebiere, 1990). However, this criterion does not prevent overfitting
and therefore, was later replaced by the early stopping criteria as described below.
The Epsilon Stopping Criterion
The epsilon stopping criterion stops the algorithm when the square error on the training set
has reached a predetermined value. The problem with this criterion is that the user must
determine in advance which value to use. Also the squared error can vary significantly

www.intechopen.com

Machine Learning320

from one function to another. The average value of the outputs changes the error as defined
by Eq. 1. Also the number of points used in the training will change the value of the error.
So, this value should be adjusted by the user manually every time a network needs to be
trained. Also this stopping criterion does not give any information on the generalization
ability of the network, i.e. how the network performs for points not in the training set. This
criterion is thus replaced by the early stopping criteria described in the next subsection,
which monitor the error on an unseen dataset, the validation set.
The Early Stopping Criteria
As alluded to earlier, these criteria allow to limit overfitting of the network by checking how
the error decreases on the validation set. It is commonly know that as more units are added,
the network is able to fit training data better since additional degrees of freedom are added.
However, the error on data not used during training decreases at first but then later
increases, showing signs of overfitting or overtraining. The idea of early stopping is to stop
training early, before full convergence of the network on the training set, or when the error
on the unseen dataset, the VS, is minimum. However in order to find the minimum of the
error on the VS, one must continue training the network some time past this minimum and
then stop and choose the network with the number of hidden units which correspond to
that minimum error. This leads to several stopping criteria to decide how long to continue
training after a minimum of the error is found.
Three classes of stopping criteria are available in the MCC. They are described in detail in
Schmitz (2007) and are not repeated here. The criterion used in both applications described
in this chapter is the PQ0.75 criterion. This criterion is relatively efficient and accurate in
finding the true minimum error on the VS.
A few definitions are required before the PQ criterion can be derived. The squared error
calculated on the TS for h hidden units added on the network will be noted EsTS(h) and
called training set error at epoch h, or training error for short. The epoch h corresponds to a
network trained with h hidden units, with h varying from 0 to the maximum number of
hidden units (namely 70 in the MCC). EsVS(h), the validation error, is the corresponding
error on the VS. Let EsOPT-VS(h) be the lowest validation error obtained in epochs up to h:

'
() min (')OPT VS VSh h

Es h Es h
 (31)

The generalization loss (GL(h)) at epoch h is defined as the relative increase of the validation
error over the minimum so far, in percent:

 ()() 100 1
()

VS

OPT VS

E hGL h
E h

 (32)

The training progress, denoted Pk(h), measures how large the average training error is
during a training strip of length k (epochs from h-k+1 to h) with respect to the minimum
error during that same strip.

 ' 1

1 '

(')
() 1000 1

min (')

h

h h k TS
k

TSh k h h

Es h
P h

k Es h

 (33)

The PQ0.75 criterion can be defined as following: training stops when the quotient of
generalization loss and progress exceeds a threshold α=0.75, such that:

 ()() 0.75
()k

GL hPQ h
P h

 . (34)

Note that this criterion is only checked after every end-of-strip epoch h, where the length of
the strip is k epochs. In the following study we will always assume length of strips k=5.
When the criterion is met, the training is stopped at some value of h and the resulting set of
weights is the one that corresponds to the lowest validation error EsOPT-VS(h). So, the
corresponding network usually has a number of hidden units h’<h. Note that the criterion
does not ensures stopping, so a large maximum number of hidden units (hmax = 70) was
chosen to avoid training indefinitely.

3.3.12 Resulting Single Network
Once the stopping criterion is met, the algorithm stops. If the epsilon criterion is used, the
resulting network is the last trained. If one of the early stopping criteria is used, the program
chooses the network with the number of hidden units corresponding to the minimum
validation error. The program keeps several matrices in memory: WH=[whj], the weights
between inputs and each hidden unit saved after adding each unit is added to the NN. Also,
it keeps two sets of vij weights; the one between inputs, plus all hidden units and outputs
after the last hidden unit has been added to the network and the set of vij weights which
correspond the minimum validation error (if needed).
The function, approximating f is thus given by the equations below and can be evaluated by
recurrence, so that:

1

11 1, 11

1
1 , 1

1

n h
n

m m n hm

h

x

v vy
x

u
v vy

u

 (35)

1

1 1
1 1 1

1
1

0 0

1

0

n
n

h h
h n h

h

x

u w w
x

u
u w w

u

 (36)

where xl (l {1,…,n}) are inputs to the neural network, yi (i {1,…,m}) outputs and uk (k
{1,…,h}) intermediate states, calculated by recurrence. Also, h is the number of hidden

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 321

from one function to another. The average value of the outputs changes the error as defined
by Eq. 1. Also the number of points used in the training will change the value of the error.
So, this value should be adjusted by the user manually every time a network needs to be
trained. Also this stopping criterion does not give any information on the generalization
ability of the network, i.e. how the network performs for points not in the training set. This
criterion is thus replaced by the early stopping criteria described in the next subsection,
which monitor the error on an unseen dataset, the validation set.
The Early Stopping Criteria
As alluded to earlier, these criteria allow to limit overfitting of the network by checking how
the error decreases on the validation set. It is commonly know that as more units are added,
the network is able to fit training data better since additional degrees of freedom are added.
However, the error on data not used during training decreases at first but then later
increases, showing signs of overfitting or overtraining. The idea of early stopping is to stop
training early, before full convergence of the network on the training set, or when the error
on the unseen dataset, the VS, is minimum. However in order to find the minimum of the
error on the VS, one must continue training the network some time past this minimum and
then stop and choose the network with the number of hidden units which correspond to
that minimum error. This leads to several stopping criteria to decide how long to continue
training after a minimum of the error is found.
Three classes of stopping criteria are available in the MCC. They are described in detail in
Schmitz (2007) and are not repeated here. The criterion used in both applications described
in this chapter is the PQ0.75 criterion. This criterion is relatively efficient and accurate in
finding the true minimum error on the VS.
A few definitions are required before the PQ criterion can be derived. The squared error
calculated on the TS for h hidden units added on the network will be noted EsTS(h) and
called training set error at epoch h, or training error for short. The epoch h corresponds to a
network trained with h hidden units, with h varying from 0 to the maximum number of
hidden units (namely 70 in the MCC). EsVS(h), the validation error, is the corresponding
error on the VS. Let EsOPT-VS(h) be the lowest validation error obtained in epochs up to h:

'
() min (')OPT VS VSh h

Es h Es h
 (31)

The generalization loss (GL(h)) at epoch h is defined as the relative increase of the validation
error over the minimum so far, in percent:

 ()() 100 1
()

VS

OPT VS

E hGL h
E h

 (32)

The training progress, denoted Pk(h), measures how large the average training error is
during a training strip of length k (epochs from h-k+1 to h) with respect to the minimum
error during that same strip.

 ' 1

1 '

(')
() 1000 1

min (')

h

h h k TS
k

TSh k h h

Es h
P h

k Es h

 (33)

The PQ0.75 criterion can be defined as following: training stops when the quotient of
generalization loss and progress exceeds a threshold α=0.75, such that:

 ()() 0.75
()k

GL hPQ h
P h

 . (34)

Note that this criterion is only checked after every end-of-strip epoch h, where the length of
the strip is k epochs. In the following study we will always assume length of strips k=5.
When the criterion is met, the training is stopped at some value of h and the resulting set of
weights is the one that corresponds to the lowest validation error EsOPT-VS(h). So, the
corresponding network usually has a number of hidden units h’<h. Note that the criterion
does not ensures stopping, so a large maximum number of hidden units (hmax = 70) was
chosen to avoid training indefinitely.

3.3.12 Resulting Single Network
Once the stopping criterion is met, the algorithm stops. If the epsilon criterion is used, the
resulting network is the last trained. If one of the early stopping criteria is used, the program
chooses the network with the number of hidden units corresponding to the minimum
validation error. The program keeps several matrices in memory: WH=[whj], the weights
between inputs and each hidden unit saved after adding each unit is added to the NN. Also,
it keeps two sets of vij weights; the one between inputs, plus all hidden units and outputs
after the last hidden unit has been added to the network and the set of vij weights which
correspond the minimum validation error (if needed).
The function, approximating f is thus given by the equations below and can be evaluated by
recurrence, so that:

1

11 1, 11

1
1 , 1

1

n h
n

m m n hm

h

x

v vy
x

u
v vy

u

 (35)

1

1 1
1 1 1

1
1

0 0

1

0

n
n

h h
h n h

h

x

u w w
x

u
u w w

u

 (36)

where xl (l {1,…,n}) are inputs to the neural network, yi (i {1,…,m}) outputs and uk (k
{1,…,h}) intermediate states, calculated by recurrence. Also, h is the number of hidden

www.intechopen.com

Machine Learning322

units corresponding to the last hidden unit added to the network, if the epsilon stopping
criterion is used, or the one corresponding to the minimum validation error.
Note that the network has been trained with inputs normalized according to the TS and
outputs rescaled so that the TS average is one. Therefore, the datapoint X, must be linearly
transformed before evaluating the output of the network according to the following
equation.

1 1

1 1 1

p

p

np np n

n n

z MinInput
x MaxInput MinInput

x z MinInput
MaxInput MinInput

X (37)

where MinInputi and MaxInputi are the minimum and maximum values obtained from Eq. 3
and 4.
When using the early stopping criterion, several networks are trained sequentially using the
same TS and VS. Because the weight surfaces have many local minima and maxima and the
weights are initialized at random, the networks will all be different. Only the network which
leads to the smaller validation error is retained.

3.3.13 Resulting Ensemble Network
If ensemble averaging is chosen, all networks built are kept in memory and the output of the
committee network is taken as the average output of each individual network. A simple
average according to

 ()
_

1

1 M
k

Ensemble NN
kM

 Y Y (38)

is used to calculate the prediction ability of the ensemble. The output YEnsemble_NN is average
of output values of each individual network Y(k) where k=1,….,M is the index of the network
belonging to the ensemble.

4. Application to Fast Ship Multi Disciplinary Design Optimization

This section describes an MDO optimization of an underwater hull configuration. The
optimization is performed using both a “classical approach”, in which the CFD analysis is
integrated directly inside the optimization loop, and an “NN approach”, in which the CFD
analyses are used for TS generation, i.e. outside of the optimization loop.

4.1 Design Problem Description
The problem consists of optimizing one of Pacific Marine’s advanced lifting bodies. This
patented underwater hull is made of two displacement bodies, called H-bodies, linked with a
thin foil, referred to as cross-foil, and attached to the ship by two struts as shown in Fig. 7.
The entire arrangement is referred to as the twin H-body configuration and can be fitted to

catamaran or pentamaran hull forms. The displacement bodies are designed to provide
good sea-keeping properties at lower speeds when the hulls of the catamaran or
pentamaran are partially submerged, while the cross-foil is designed to provide additional
lift at higher speed when the multiple hulls are lifted out of the water in order to reduce
drag.
A very similar configuration was optimized under a previous work reported by Hefazi et al.
(2002), using the classical optimization process. Sea trials of a half-scale replica of this
configuration on a 44 ft test platform were conducted to provide data for the validation and
demonstrate the application of lifting body technology on a real test platform (Hefazi et al.,
2003). The resulting optimized geometry was integrated into the first US-built “fast ship”,
the HDV-100 technology demonstrator (Fig. 8).

Fig. 7. Twin H-body configuration, baseline

Fig. 8. Blended-wing-body configuration sketch and picture of the HDV-100 technology
demonstrator (shown here at low speed)

Cross-foil

Strut

H-body

2.74 m

> 7.81 m

> 0.2286 m

>1.524 m

Less than 10.3632 m (34 ft)

9.144 m

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 323

units corresponding to the last hidden unit added to the network, if the epsilon stopping
criterion is used, or the one corresponding to the minimum validation error.
Note that the network has been trained with inputs normalized according to the TS and
outputs rescaled so that the TS average is one. Therefore, the datapoint X, must be linearly
transformed before evaluating the output of the network according to the following
equation.

1 1

1 1 1

p

p

np np n

n n

z MinInput
x MaxInput MinInput

x z MinInput
MaxInput MinInput

X (37)

where MinInputi and MaxInputi are the minimum and maximum values obtained from Eq. 3
and 4.
When using the early stopping criterion, several networks are trained sequentially using the
same TS and VS. Because the weight surfaces have many local minima and maxima and the
weights are initialized at random, the networks will all be different. Only the network which
leads to the smaller validation error is retained.

3.3.13 Resulting Ensemble Network
If ensemble averaging is chosen, all networks built are kept in memory and the output of the
committee network is taken as the average output of each individual network. A simple
average according to

 ()
_

1

1 M
k

Ensemble NN
kM

 Y Y (38)

is used to calculate the prediction ability of the ensemble. The output YEnsemble_NN is average
of output values of each individual network Y(k) where k=1,….,M is the index of the network
belonging to the ensemble.

4. Application to Fast Ship Multi Disciplinary Design Optimization

This section describes an MDO optimization of an underwater hull configuration. The
optimization is performed using both a “classical approach”, in which the CFD analysis is
integrated directly inside the optimization loop, and an “NN approach”, in which the CFD
analyses are used for TS generation, i.e. outside of the optimization loop.

4.1 Design Problem Description
The problem consists of optimizing one of Pacific Marine’s advanced lifting bodies. This
patented underwater hull is made of two displacement bodies, called H-bodies, linked with a
thin foil, referred to as cross-foil, and attached to the ship by two struts as shown in Fig. 7.
The entire arrangement is referred to as the twin H-body configuration and can be fitted to

catamaran or pentamaran hull forms. The displacement bodies are designed to provide
good sea-keeping properties at lower speeds when the hulls of the catamaran or
pentamaran are partially submerged, while the cross-foil is designed to provide additional
lift at higher speed when the multiple hulls are lifted out of the water in order to reduce
drag.
A very similar configuration was optimized under a previous work reported by Hefazi et al.
(2002), using the classical optimization process. Sea trials of a half-scale replica of this
configuration on a 44 ft test platform were conducted to provide data for the validation and
demonstrate the application of lifting body technology on a real test platform (Hefazi et al.,
2003). The resulting optimized geometry was integrated into the first US-built “fast ship”,
the HDV-100 technology demonstrator (Fig. 8).

Fig. 7. Twin H-body configuration, baseline

Fig. 8. Blended-wing-body configuration sketch and picture of the HDV-100 technology
demonstrator (shown here at low speed)

Cross-foil

Strut

H-body

2.74 m

> 7.81 m

> 0.2286 m

>1.524 m

Less than 10.3632 m (34 ft)

9.144 m

www.intechopen.com

Machine Learning324

The optimization is performed for a boat speed of 47 knots (24.2 m/s). At this velocity, the
parent hull will run dry. The whole configuration must be able to generate a total lift of 80
LT, including a minimum of 16 LT by displacement effect.
The objective is to maximize range, i.e. lift-to-drag ratio, which corresponds to minimizing
drag at constant lift. In addition, the configuration is to be designed such that it can operate
cavitation free at 52 knots. Additionally, the operating draft is to be 2.74 m (waterline to
lowest point - 9 ft) and a structural constraint is to be imposed to prevent yield of the cross-
foil. Also, the maximum width of configuration shall not exceed 10.36 m (34 ft) and the
strut-to-strut distance is fixed by requirements for mating to the upper hull.
From an optimization problem point of view, the objective function and design constraints
can be summarized as:
 Objective: Maximize lift-to-drag (LOD)
 Constraints:
 Operational speed of 47 knots (i.e. Reynolds number is 211.63106 based on a reference

chord of 8.69 m in 75 F Hawaii waters)
 Cavitation free at 52 knots, i.e. 0.269pC (Hawaii water at 75 F)
 Total lift (TL) equal to 80 LT
 Displacement or buoyant lift (BL) greater that 16 LT
 2.74 m (9 ft) operating draft
 Strut centerline to strut centerline distance is fixed at 9.14 m (30 ft) for mating with

upper hull
 Overall beam length should not exceed 10.36 m (34 ft)
 Minimum strut thickness 0.2286 m (0.75 ft)
 Minimum strut chord of 1.524 m (5 ft)
 The cross foil should have the structural integrity, not to yield using a material of yield

strength of 344.7379 Mpa (50 ksi), assuming solid section.
 Displacement pod length should not exceed by more than 20% the parent body (defined

as optimized configuration (Hefazi, 2002)), i.e. 7.81 m.

4.2 Classical Optimization
4.2.1 Objectives, Constraints and Optimization Implementation
Nowadays, all design engineers are accustomed to designing their vehicles using some
computer aided design (CAD) or solid modeling package, such as Pro-Engineer, CATIA,
UniGraphics, IDEAS. In addition, the designer usually represents the configuration by a set
of parameters, or design variables, which can be varied to improve the design by linking the
CAD software with an appropriate analysis module. This approach is routinely used for
structural design, for example, by linking the CAD software with a finite element (FE)
method. Such an approach is not yet routinely used, however, in the case of hydrodynamic
shape optimization, because additional challenges face the designer. Among these issues are
 The cost and accuracies associated with flow analysis using CFD
 The grid requirements for CFD methods
In order to address the issue of CFD shape optimization, one must be able to automatically
vary the shape of various elements of the configuration in the CAD method, generate a
mesh of sufficient quality for the CFD method, and use an efficient and accurate CFD
method to obtain the hydrodynamic performance of the configuration being analyzed. The

driver in the selection of the components of the CFD optimization method is the ability to
link these tools together in an automated fashion, without user intervention, while ensuring
that the flow analysis is both efficient and accurate for the problem at hand. For this reason,
several options for each tool were considered and the following set of tools was selected:

 CAD software: Pro-Engineer (Parametric Technology Corporation, 2009)
 Grid generation software: ICEM CFD (ANSYS, Inc., 2009)
 CFD software: CSULB-developed interactive boundary layer (IBL) approach with

free surface modeled by negative images (Besnard, 1998, and Hefazi et al., 2002)
 Optimization software: iSIGHT (Dassault Systèmes SIMULIA, 2009)

Pro-Engineer and ICEM CFD were selected because of the existence of a module which does
allow for automatic data transfer between the CAD and grid generation package. The IBL
approach was chosen because at high Reynolds numbers and low angles of attack, it is a
very accurate and efficient approach. In addition, because of the large Froude number for
the case at hand, the free surface can be modelled with negative images. Finally, the
numerical optimizer iSIGHT offers an easy to use platform for the optimization and/or
design of experiments. The method, controlled by iSIGHT, integrates the different software
packages with several scripts, which, once set up, performs all tasks automatically, without
user intervention. This automatic setup is critical in the optimization process. iSIGHT
controls the process and calls the various scripts;
 Define and generate the new geometry (Pro-Engineer);
 Check for any constraint violation (from output of Pro-Engineer);
 Generates a mesh suitable for the CFD method (ICEM CFD);
 Executes the CFD method (IBL code); and
 Extracts the data needed by iSIGHT (objective function and constraint values) and

calculate the constrained objective function for the next iteration.
The process implemented for the Twin-H body optimization is shown in Fig. 9. The
configuration is represented by a total of 28 design variables which control the size and
shape of each component, which, once assembled, describe the entire configuration. The first
step involves generating a geometrically feasible configuration from the selected set of
design variables. Simple geometrical parameters, such as width, length, chord, etc., are used
to characterize the elements. Foil cross-sections are defined by their mean camber line and
thickness distributions. Camber line is parameterized by the classical NACA two-parameter
set. The thickness distribution, yth, is represented by a 6-deg. polynomial, with an additional
term, a0, for controlling the leading edge radius:

6

0
1

() , 0 1i
th i

i
y x a x a x x

 (39)

This configuration is automatically generated by the CAD-based solid modeler, Pro-
Engineer, based on the 28 design variables using scripts. This process involves two parts:
 Airfoil shape definitions (“shape.in” files)
 Configuration parameterization (“.ptr” files)
Several independent scripts using the different “shape.in” files are used to regenerate
updated Pro-Engineer files (“.ptr” files). Then, Pro-Engineer automatically updates the
geometry based on the revised data.

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 325

The optimization is performed for a boat speed of 47 knots (24.2 m/s). At this velocity, the
parent hull will run dry. The whole configuration must be able to generate a total lift of 80
LT, including a minimum of 16 LT by displacement effect.
The objective is to maximize range, i.e. lift-to-drag ratio, which corresponds to minimizing
drag at constant lift. In addition, the configuration is to be designed such that it can operate
cavitation free at 52 knots. Additionally, the operating draft is to be 2.74 m (waterline to
lowest point - 9 ft) and a structural constraint is to be imposed to prevent yield of the cross-
foil. Also, the maximum width of configuration shall not exceed 10.36 m (34 ft) and the
strut-to-strut distance is fixed by requirements for mating to the upper hull.
From an optimization problem point of view, the objective function and design constraints
can be summarized as:
 Objective: Maximize lift-to-drag (LOD)
 Constraints:
 Operational speed of 47 knots (i.e. Reynolds number is 211.63106 based on a reference

chord of 8.69 m in 75 F Hawaii waters)
 Cavitation free at 52 knots, i.e. 0.269pC (Hawaii water at 75 F)
 Total lift (TL) equal to 80 LT
 Displacement or buoyant lift (BL) greater that 16 LT
 2.74 m (9 ft) operating draft
 Strut centerline to strut centerline distance is fixed at 9.14 m (30 ft) for mating with

upper hull
 Overall beam length should not exceed 10.36 m (34 ft)
 Minimum strut thickness 0.2286 m (0.75 ft)
 Minimum strut chord of 1.524 m (5 ft)
 The cross foil should have the structural integrity, not to yield using a material of yield

strength of 344.7379 Mpa (50 ksi), assuming solid section.
 Displacement pod length should not exceed by more than 20% the parent body (defined

as optimized configuration (Hefazi, 2002)), i.e. 7.81 m.

4.2 Classical Optimization
4.2.1 Objectives, Constraints and Optimization Implementation
Nowadays, all design engineers are accustomed to designing their vehicles using some
computer aided design (CAD) or solid modeling package, such as Pro-Engineer, CATIA,
UniGraphics, IDEAS. In addition, the designer usually represents the configuration by a set
of parameters, or design variables, which can be varied to improve the design by linking the
CAD software with an appropriate analysis module. This approach is routinely used for
structural design, for example, by linking the CAD software with a finite element (FE)
method. Such an approach is not yet routinely used, however, in the case of hydrodynamic
shape optimization, because additional challenges face the designer. Among these issues are
 The cost and accuracies associated with flow analysis using CFD
 The grid requirements for CFD methods
In order to address the issue of CFD shape optimization, one must be able to automatically
vary the shape of various elements of the configuration in the CAD method, generate a
mesh of sufficient quality for the CFD method, and use an efficient and accurate CFD
method to obtain the hydrodynamic performance of the configuration being analyzed. The

driver in the selection of the components of the CFD optimization method is the ability to
link these tools together in an automated fashion, without user intervention, while ensuring
that the flow analysis is both efficient and accurate for the problem at hand. For this reason,
several options for each tool were considered and the following set of tools was selected:

 CAD software: Pro-Engineer (Parametric Technology Corporation, 2009)
 Grid generation software: ICEM CFD (ANSYS, Inc., 2009)
 CFD software: CSULB-developed interactive boundary layer (IBL) approach with

free surface modeled by negative images (Besnard, 1998, and Hefazi et al., 2002)
 Optimization software: iSIGHT (Dassault Systèmes SIMULIA, 2009)

Pro-Engineer and ICEM CFD were selected because of the existence of a module which does
allow for automatic data transfer between the CAD and grid generation package. The IBL
approach was chosen because at high Reynolds numbers and low angles of attack, it is a
very accurate and efficient approach. In addition, because of the large Froude number for
the case at hand, the free surface can be modelled with negative images. Finally, the
numerical optimizer iSIGHT offers an easy to use platform for the optimization and/or
design of experiments. The method, controlled by iSIGHT, integrates the different software
packages with several scripts, which, once set up, performs all tasks automatically, without
user intervention. This automatic setup is critical in the optimization process. iSIGHT
controls the process and calls the various scripts;
 Define and generate the new geometry (Pro-Engineer);
 Check for any constraint violation (from output of Pro-Engineer);
 Generates a mesh suitable for the CFD method (ICEM CFD);
 Executes the CFD method (IBL code); and
 Extracts the data needed by iSIGHT (objective function and constraint values) and

calculate the constrained objective function for the next iteration.
The process implemented for the Twin-H body optimization is shown in Fig. 9. The
configuration is represented by a total of 28 design variables which control the size and
shape of each component, which, once assembled, describe the entire configuration. The first
step involves generating a geometrically feasible configuration from the selected set of
design variables. Simple geometrical parameters, such as width, length, chord, etc., are used
to characterize the elements. Foil cross-sections are defined by their mean camber line and
thickness distributions. Camber line is parameterized by the classical NACA two-parameter
set. The thickness distribution, yth, is represented by a 6-deg. polynomial, with an additional
term, a0, for controlling the leading edge radius:

6

0
1

() , 0 1i
th i

i
y x a x a x x

 (39)

This configuration is automatically generated by the CAD-based solid modeler, Pro-
Engineer, based on the 28 design variables using scripts. This process involves two parts:
 Airfoil shape definitions (“shape.in” files)
 Configuration parameterization (“.ptr” files)
Several independent scripts using the different “shape.in” files are used to regenerate
updated Pro-Engineer files (“.ptr” files). Then, Pro-Engineer automatically updates the
geometry based on the revised data.

www.intechopen.com

Machine Learning326

In the second step, constraints which may be determined from the newly generated solid
model, such as volume, structural constraint, etc., are evaluated. In third step, a suitable
mesh is automatically generated using ICEM CFD. This mesh is then used along with the
CFD input data file to execute the CFD code. The CFD tool used here makes use of the high
Froude and Reynolds number approximations by employing a viscous-inviscid approach.
The inviscid flow is solved by a higher order panel method with the free surface effects
modeled by negative images and the viscous flow is solved using an inverse boundary layer
approach which can treat large regions of flow separation. Viscous and inviscid methods are
coupled using the blowing velocity/displacement concept and leads to accurate pressure,
lift and drag predictions at minimal costs for this type of configuration and flow conditions
(see, e.g., Hefazi et al. 2002). Hence, only a surface mesh is needed. The use of a Reynolds
averaged Navier-Stokes (RANS) method would require the use of a volume mesh which
could also be implemented with the tools used here (ICEM CFD).
The last step involves the use of a constrained objective function, fc. Because a global
optimization method is used (genetic algorithm), the objective function and constraints are
integrated into a single “constrained objective function” which is to be minimized. The
constrained objective function is such that, when at least one constraint is strongly violated,
fc is set close to fmax. fmax is typically on the order of one and corresponds to a normalized
value of the maximum objective function. The normalization value is given by the user and
is typically chosen at the higher values of expected f over the search space. For example,
with an optimization where L/D is the objective function on the order of 10-15, a
normalization value of 10 to 20 can be chosen. Choosing 10 would mean that fc might reach
1.5.
Two positive parameters 1 and 2 are now defined. If 1, ii g , then the constrained
objective function is f. If 2 | ii g , then the penalized cost function gets close to fmax
depending on how the constraints are violated. In other words, 1 decides when constraints
become active, and 2 when they become prohibitive.
The generalized constraint G is defined as

1

1
1() ()

i

i
gcon

G x g x
n

 (40)

and the constrained objective function becomes

 max() 1 . () . . 1
2

y

c
ef x y f x y f

 (41)

where

 21

0 if 0
()

if 0x

x
x

e x

 (42)

and

1 2

10 ()
()

G xy

 (43)

For the NN based optimization, the generation of the training and validation sets is
performed using the same approach, except that instead of using iSIGHT setup to run an
optimization (genetic algorithms in the present case), it is designed to run Latin Hypercube
samplings of the desired TS, VS and GS sizes.

Update shape in ProEngineer files
(runShape)

Compute flow and process
data (runDAC)

ProEngineer D.V.:
 crosswing.ptr
 hbody.ptr
 strut.ptr

Shape D.V.:
 “shape.in”

files

Optimizer
Or Latin
Hypercube
(iSIGHT)

New D.V.

Regenerate model
(Pro-E)

Check if regenerated
successfully

Check if structural
constraint is violated

fc=3
No

fc=1
Yes

Yes

No

Check if CFD
ran sucessfullyfc=2

No

Yes Calculated value of fc

Compute mesh (ICEM-CFD)
(runDAC)

Fig. 9. Optimization with the classical approach. This same loop is used for
training/validation set generation but with Latin Hypercube sampling instead of
optimization.

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 327

In the second step, constraints which may be determined from the newly generated solid
model, such as volume, structural constraint, etc., are evaluated. In third step, a suitable
mesh is automatically generated using ICEM CFD. This mesh is then used along with the
CFD input data file to execute the CFD code. The CFD tool used here makes use of the high
Froude and Reynolds number approximations by employing a viscous-inviscid approach.
The inviscid flow is solved by a higher order panel method with the free surface effects
modeled by negative images and the viscous flow is solved using an inverse boundary layer
approach which can treat large regions of flow separation. Viscous and inviscid methods are
coupled using the blowing velocity/displacement concept and leads to accurate pressure,
lift and drag predictions at minimal costs for this type of configuration and flow conditions
(see, e.g., Hefazi et al. 2002). Hence, only a surface mesh is needed. The use of a Reynolds
averaged Navier-Stokes (RANS) method would require the use of a volume mesh which
could also be implemented with the tools used here (ICEM CFD).
The last step involves the use of a constrained objective function, fc. Because a global
optimization method is used (genetic algorithm), the objective function and constraints are
integrated into a single “constrained objective function” which is to be minimized. The
constrained objective function is such that, when at least one constraint is strongly violated,
fc is set close to fmax. fmax is typically on the order of one and corresponds to a normalized
value of the maximum objective function. The normalization value is given by the user and
is typically chosen at the higher values of expected f over the search space. For example,
with an optimization where L/D is the objective function on the order of 10-15, a
normalization value of 10 to 20 can be chosen. Choosing 10 would mean that fc might reach
1.5.
Two positive parameters 1 and 2 are now defined. If 1, ii g , then the constrained
objective function is f. If 2 | ii g , then the penalized cost function gets close to fmax
depending on how the constraints are violated. In other words, 1 decides when constraints
become active, and 2 when they become prohibitive.
The generalized constraint G is defined as

1

1
1() ()

i

i
gcon

G x g x
n

 (40)

and the constrained objective function becomes

 max() 1 . () . . 1
2

y

c
ef x y f x y f

 (41)

where

 21

0 if 0
()

if 0x

x
x

e x

 (42)

and

1 2

10 ()
()

G xy

 (43)

For the NN based optimization, the generation of the training and validation sets is
performed using the same approach, except that instead of using iSIGHT setup to run an
optimization (genetic algorithms in the present case), it is designed to run Latin Hypercube
samplings of the desired TS, VS and GS sizes.

Update shape in ProEngineer files
(runShape)

Compute flow and process
data (runDAC)

ProEngineer D.V.:
 crosswing.ptr
 hbody.ptr
 strut.ptr

Shape D.V.:
 “shape.in”

files

Optimizer
Or Latin
Hypercube
(iSIGHT)

New D.V.

Regenerate model
(Pro-E)

Check if regenerated
successfully

Check if structural
constraint is violated

fc=3
No

fc=1
Yes

Yes

No

Check if CFD
ran sucessfullyfc=2

No

Yes Calculated value of fc

Compute mesh (ICEM-CFD)
(runDAC)

Fig. 9. Optimization with the classical approach. This same loop is used for
training/validation set generation but with Latin Hypercube sampling instead of
optimization.

www.intechopen.com

Machine Learning328

4.2.2 Classical Optimization Results
A genetic algorithm optimization was run over the 28-dimension design space for 5000
iterations. The outcome was a configuration with an L/D of 12.92, which represents a 26
percent improvement in L/D over the baseline design. A comparison of the performance of
the baseline and optimum configurations is shown in Table 1. Note that the number of
iterations used is small for a global search problem with 28 design variables, but it was
limited to 5000 because of time requirements. One iteration takes about 10 min. to run on an
Origin 3200 server. 5000 runs correspond to over a month of CPU time.

 Baseline Optimum Objective
Buoyant lift 18.4 LT 16.1 LT > 16 LT
Total lift 80.2 LT 81.6 LT = 80 LT
Cpmin -0.263 -0.250 > - 0.269
LOD 10.23 12.92 Maximum

Table 1. Performance of optimized vs. baseline configuration (28 design variables)

4.3 Neural Network Optimization Approach
The use of the neural network (NN) approach encompasses several steps:

 Generation of the training set (TS) & validation set (VS)
 NN training to obtain a NN “evaluator(s)”
 Optimization with the NN evaluator(s)

The first two steps are explained in detail in the next subsections. The third step is
essentially the same as the classical optimization with the CFD code replaced by the neural
network, and thus is not repeated here.
The optimization approach specific to the twin H-body optimization problem calls for the
use of five single output neural networks as shown in Fig. 10, one for the objective function
and the others for the constraints: lift-to-drag ratio (LOD), minimum pressure (Cpmin),
dynamic lift (DL), buoyant lift (BL) and maximum stress value (Struc). Alternatively, a
single NN with five outputs could have been used, but typically, the resulting network is
much more complex than five individual networks (has more weights). Hence, it takes more
time to generate, i.e. train, and usually needs a larger training set than five single output
networks to generalize well. Also the five networks can be trained in parallel on a
multiprocessor machine, reducing the training time even more.

LOD
NN

Optimizer
(iSIGHT)

New D.V.

Calculated value of fc
and LOD, Cpmin, DL,

BL, Struc

Cpmin
NN

Dynamic
Lift (DL)

NN

Buoyant
Lift (BL)

NN

Structures
(Struc)

NN

fc calculator

Fig. 10. Optimization process with NN approach

Also, although the optimization is performed on the constrained objective function, fc, it was
not represented directly by a single NN because it would have required a very good training
set definition in the small regions of the design space where the design was feasible. Instead,
using five networks allows for accurate representation of each function over the design
space and thus improved predictions for fc.

4.3.1 Training and Validation Sets
For the present analysis, a validation set (VS) of 300 points was generated with the iSIGHT
setup of Fig. 9 and using the same 28 design variables as for the classical approach, but
using a Latin Hypercube instead of an optimization algorithm. Two training sets (TS) were
also generated using the same process, one with 1000 points, the second with 2000 points. A
third set with 5000 points was also generated to be used as the Generalization Set (GS).
Although a practical application may not involve the generation of multiple TS and
certainly not a GS, this was done here to analyze the effect of TS size on the result quality.
For each size of Latin Hypercube sampling in the design space, approximately 20 to 25
percent of the points were geometrically unfeasible (i.e. the model could not be successfully
reconstructed) and had to be removed from the training sets. Nevertheless, the VS, TS and
GS will be referred to as 300-VS, 1000-TS, 2000-TS and 5000-GS subsequently. The exact sizes
for each set are respectively, 228, 808, 1587, and 3852.

4.3.2 Neural Network Training
Each neural network (NN) was trained with 28 inputs (or design variables) and one output,
i.e. one for each function: buoyant lift (BL), Cpmin, dynamic lift (DL), lift-to-drag ratio
(LOD), structural constraint (Struc) and total lift (TL). For each function, 10 NNs were built
and the one that had the best validation error was chosen. Typically, training each network
takes from about an hour (for 1000-TS) to a day for the more complete data sets (5000-GS).
Unlike CFD methods which are demanding in computing power (I/O, memory), training
demands relatively little other than CPU time and thus, all training can be done in parallel
on the same server without interfering with other ongoing computations. This feature is yet
another advantage compared to training a single multiple-output network.
The results for the different TS did not vary much from one to the other and are presented
here for the 1000-TS. Also, in order to evaluate the quality of the training and compare the
error on the 300 points VS. The GS of 5000 points was evaluated on the trained NN. Table 2
shows the average errors and standard deviations over the TS, VS and GS. Errors and
standard deviations are adequate for the problem at hand. For example, an average error of
0.04 is expected for the displacement (BL) which has a value on the order of 18 and the
corresponding standard deviation is also 0.04.

 Typical TSE VSE GSE std
TS

E std
VS

E std
GS

E

BL (LT) 18 0.0275 0.0381 0.0419 0.0223 0.0314 0.0427
Cpmin -0.269 0.0055 0.0065 0.0068 0.0066 0.0071 0.0080
DL (LT) 60 0.1607 0.1847 0.1855 0.2002 0.1420 0.1874
LOD 12 0.2270 0.2602 0.2646 0.1775 0.2074 0.2054
Struc (MPa) 300 4.05 5.3 5.3 3.7 5.2 5.1

Table 2. Average errors and standard deviations on TS, VS and GS for a 1000-pt. TS and a
5000-pt. GS for the 28-design variable Twin H-body optimization

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 329

4.2.2 Classical Optimization Results
A genetic algorithm optimization was run over the 28-dimension design space for 5000
iterations. The outcome was a configuration with an L/D of 12.92, which represents a 26
percent improvement in L/D over the baseline design. A comparison of the performance of
the baseline and optimum configurations is shown in Table 1. Note that the number of
iterations used is small for a global search problem with 28 design variables, but it was
limited to 5000 because of time requirements. One iteration takes about 10 min. to run on an
Origin 3200 server. 5000 runs correspond to over a month of CPU time.

 Baseline Optimum Objective
Buoyant lift 18.4 LT 16.1 LT > 16 LT
Total lift 80.2 LT 81.6 LT = 80 LT
Cpmin -0.263 -0.250 > - 0.269
LOD 10.23 12.92 Maximum

Table 1. Performance of optimized vs. baseline configuration (28 design variables)

4.3 Neural Network Optimization Approach
The use of the neural network (NN) approach encompasses several steps:

 Generation of the training set (TS) & validation set (VS)
 NN training to obtain a NN “evaluator(s)”
 Optimization with the NN evaluator(s)

The first two steps are explained in detail in the next subsections. The third step is
essentially the same as the classical optimization with the CFD code replaced by the neural
network, and thus is not repeated here.
The optimization approach specific to the twin H-body optimization problem calls for the
use of five single output neural networks as shown in Fig. 10, one for the objective function
and the others for the constraints: lift-to-drag ratio (LOD), minimum pressure (Cpmin),
dynamic lift (DL), buoyant lift (BL) and maximum stress value (Struc). Alternatively, a
single NN with five outputs could have been used, but typically, the resulting network is
much more complex than five individual networks (has more weights). Hence, it takes more
time to generate, i.e. train, and usually needs a larger training set than five single output
networks to generalize well. Also the five networks can be trained in parallel on a
multiprocessor machine, reducing the training time even more.

LOD
NN

Optimizer
(iSIGHT)

New D.V.

Calculated value of fc
and LOD, Cpmin, DL,

BL, Struc

Cpmin
NN

Dynamic
Lift (DL)

NN

Buoyant
Lift (BL)

NN

Structures
(Struc)

NN

fc calculator

Fig. 10. Optimization process with NN approach

Also, although the optimization is performed on the constrained objective function, fc, it was
not represented directly by a single NN because it would have required a very good training
set definition in the small regions of the design space where the design was feasible. Instead,
using five networks allows for accurate representation of each function over the design
space and thus improved predictions for fc.

4.3.1 Training and Validation Sets
For the present analysis, a validation set (VS) of 300 points was generated with the iSIGHT
setup of Fig. 9 and using the same 28 design variables as for the classical approach, but
using a Latin Hypercube instead of an optimization algorithm. Two training sets (TS) were
also generated using the same process, one with 1000 points, the second with 2000 points. A
third set with 5000 points was also generated to be used as the Generalization Set (GS).
Although a practical application may not involve the generation of multiple TS and
certainly not a GS, this was done here to analyze the effect of TS size on the result quality.
For each size of Latin Hypercube sampling in the design space, approximately 20 to 25
percent of the points were geometrically unfeasible (i.e. the model could not be successfully
reconstructed) and had to be removed from the training sets. Nevertheless, the VS, TS and
GS will be referred to as 300-VS, 1000-TS, 2000-TS and 5000-GS subsequently. The exact sizes
for each set are respectively, 228, 808, 1587, and 3852.

4.3.2 Neural Network Training
Each neural network (NN) was trained with 28 inputs (or design variables) and one output,
i.e. one for each function: buoyant lift (BL), Cpmin, dynamic lift (DL), lift-to-drag ratio
(LOD), structural constraint (Struc) and total lift (TL). For each function, 10 NNs were built
and the one that had the best validation error was chosen. Typically, training each network
takes from about an hour (for 1000-TS) to a day for the more complete data sets (5000-GS).
Unlike CFD methods which are demanding in computing power (I/O, memory), training
demands relatively little other than CPU time and thus, all training can be done in parallel
on the same server without interfering with other ongoing computations. This feature is yet
another advantage compared to training a single multiple-output network.
The results for the different TS did not vary much from one to the other and are presented
here for the 1000-TS. Also, in order to evaluate the quality of the training and compare the
error on the 300 points VS. The GS of 5000 points was evaluated on the trained NN. Table 2
shows the average errors and standard deviations over the TS, VS and GS. Errors and
standard deviations are adequate for the problem at hand. For example, an average error of
0.04 is expected for the displacement (BL) which has a value on the order of 18 and the
corresponding standard deviation is also 0.04.

 Typical TSE VSE GSE std
TS

E std
VS

E std
GS

E

BL (LT) 18 0.0275 0.0381 0.0419 0.0223 0.0314 0.0427
Cpmin -0.269 0.0055 0.0065 0.0068 0.0066 0.0071 0.0080
DL (LT) 60 0.1607 0.1847 0.1855 0.2002 0.1420 0.1874
LOD 12 0.2270 0.2602 0.2646 0.1775 0.2074 0.2054
Struc (MPa) 300 4.05 5.3 5.3 3.7 5.2 5.1

Table 2. Average errors and standard deviations on TS, VS and GS for a 1000-pt. TS and a
5000-pt. GS for the 28-design variable Twin H-body optimization

www.intechopen.com

Machine Learning330

Also, average errors and standard deviations on the VS and GS are in excellent agreement,
thus validating the VS approach despite the number of points used for the design space of
28 dimensions.

4.3.3 Neural Network Optimization Results
The neural networks generated in the form of five executables for Cpmin, LOD, DL, BL and
Struc using the different sizes of training sets (1000-TS and 2000-TS) were integrated in
iSIGHT as shown in Fig. 10. A genetic algorithm (GA) optimization was used with an initial
population of 50 and 35000 iterations were run based on the constrained objective function
defined in Section 0.
The best 100 runs resulting from the optimization with the five NNs (best fc) were then run
using the Pro-Engineer model and the CFD code to compute the objective function and
constraints and compare them with those of the NN near the optimum. Also, a few results
from the optimization (i.e. as determined by the NN) with a slightly higher LOD than that of
the best fc but with constraints closer to their limit (therefore resulting in a lower fc) were
chosen and also run through the CFD package. A summary of the results is shown in Table
3. For each size of training set, the table shows:
 The best fc as determined by the optimizer (i.e. after 35000 GA iterations using the NN)
 The best LOD based on the NN with minimal constraint violations: corresponds to

some hand-picked results from the optimization showing a slightly better LOD but
with constraints close to the acceptable limits resulting in a higher fc

 The best fc based on CFD results from the 100 best NN points (as determined by the
GA)

 The best LOD based on CFD results from the 100 best NN points (as determined by the
GA)

In each case, buoyant lift (BL), total lift (TL), lift-to-drag ratio (LOD) and minimum pressure
(Cpmin) values computed by the NN and the CFD method are shown. The stress value
(Struc) is not shown because it exhibited little variations between points and because the
constraint was not violated. Also, the dynamic lift (DL) can be directly calculated from total
and buoyant lift values (the optimization actually uses DL and BL to determine TL, but the
latter is presented because it corresponds to a primitive twin H-body requirement). It should
also be noted that the constraints are not implemented as step functions but rather very
steep functions which do vary near the constraint border. For example, the primitive
requirement calls for a displacement or buoyant lift greater than 16 LT, but as implemented
here, a value close to 15 is acceptable. For this reason, fc may vary in a counter-intuitive
fashion, thus rendering the analysis of its values difficult. It is therefore not shown.
The differences between using the NN and the direct CFD computation are within
acceptable limits. They are very close in many instances. Also, differences between the
values resulting from different selection processes for a particular TS are rather small.
Finally, while one observes that the LOD is over-predicted by the NN, the differences
between points are about the same for a given TS. Regardless of which TS is chosen,
however, LOD is greatly improved from the 12.9 result obtained with the direct CFD
method.

TS Results
Output from NN Same DV but with CFD

BL TL LOD Cpmin BL TL LOD Cpmin

1000

Best fc optimized from
NN 15.23 80.59 14.39 -0.265 15.24 81.59 13.76 -0.266

Best LOD optimized
from NN 14.75 79.94 14.44 -0.267 14.78 81.04 13.85 -0.268

Best fc (using CFD) out
of 100 best runs 15.49 80.81 14.30 -0.264 15.51 81.67 13.70 -0.266

Best LOD (using CFD)
out of 100 best 15.25 80.60 14.38 -0.265 15.25 81.64 13.78 -0.265

2000

Best fc optimized from
NN 15.20 80.67 14.49 -0.265 15.13 80.86 13.70 -0.271

Best LOD Optimized
from NN 15.07 80.66 14.51 -0.265 15.01 80.78 13.81 -0.269

Best fc (using CFD) out
of 100 best runs 15.30 80.74 14.42 -0.263 15.23 80.96 13.71 -0.265

Best LOD (using CFD)
out of 100 best 15.17 80.59 14.47 -0.265 15.11 80.75 13.79 -0.270

Table 3. Results from NN optimization and comparison with CFD

4.4 Comparison between Classical and NN-based Methods
Depending on which design is selected, L/D (LOD) ranges from 13.70 to 13.85, which is a
definite improvement from the classical method which lead to 12.92. This improvement is
due to the ability to increase the exploration of the design space within the time available in
a given design project. For the classical optimization, the genetic algorithm was allowed to
run for 5000 iterations, which corresponds to approximately one month of constant
calculations on an Origin 3200 server. Because of the use of the CFD tool inside the design
loop, CPU time available limited the design space exploration and did not lead to a true
optimum. On the other hand, a much larger number of iterations could be performed with
the NN approach leading to a greater L/D improvement. In this case, most of the CPU time
is taken by the training set generation, with all other computations (training and GA
iterations) representing a small fraction of the total CPU time. With as low as 1000 points
generated to approximate the various functions over a design space with 28 design
variables, an improvement of about 34 percent in L/D is achieved with the NN approach
compared with the original baseline twin H-body, this at one fourth the cost needed to get a
26 percent improvement when using the classical approach (with iterations limited because
of CPU time constraints).
The results also point to a few improvements which would need to be implemented to
address non-differentiable functions (to improve Cpmin predictions, for example), the
selection of constrained objective function, and the selection of mathematical optimization
method. The latter comment is particularly pertinent for problems in which the optimizer
(GA here) would focus its attention in a region of the design space where one (or more)
function (objective or constraint) is not approximated as well as might be desired, thus
potentially leading to unusable optimization results. One could benefit from having an
optimization method which explores several regions of the design space, as illustrated in
Lin and Wu (2002).
Results do show, however, that the method can provide its user with a valuable tool for
improving designs within a limited time frame and possibly at a lower cost than using

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 331

Also, average errors and standard deviations on the VS and GS are in excellent agreement,
thus validating the VS approach despite the number of points used for the design space of
28 dimensions.

4.3.3 Neural Network Optimization Results
The neural networks generated in the form of five executables for Cpmin, LOD, DL, BL and
Struc using the different sizes of training sets (1000-TS and 2000-TS) were integrated in
iSIGHT as shown in Fig. 10. A genetic algorithm (GA) optimization was used with an initial
population of 50 and 35000 iterations were run based on the constrained objective function
defined in Section 0.
The best 100 runs resulting from the optimization with the five NNs (best fc) were then run
using the Pro-Engineer model and the CFD code to compute the objective function and
constraints and compare them with those of the NN near the optimum. Also, a few results
from the optimization (i.e. as determined by the NN) with a slightly higher LOD than that of
the best fc but with constraints closer to their limit (therefore resulting in a lower fc) were
chosen and also run through the CFD package. A summary of the results is shown in Table
3. For each size of training set, the table shows:
 The best fc as determined by the optimizer (i.e. after 35000 GA iterations using the NN)
 The best LOD based on the NN with minimal constraint violations: corresponds to

some hand-picked results from the optimization showing a slightly better LOD but
with constraints close to the acceptable limits resulting in a higher fc

 The best fc based on CFD results from the 100 best NN points (as determined by the
GA)

 The best LOD based on CFD results from the 100 best NN points (as determined by the
GA)

In each case, buoyant lift (BL), total lift (TL), lift-to-drag ratio (LOD) and minimum pressure
(Cpmin) values computed by the NN and the CFD method are shown. The stress value
(Struc) is not shown because it exhibited little variations between points and because the
constraint was not violated. Also, the dynamic lift (DL) can be directly calculated from total
and buoyant lift values (the optimization actually uses DL and BL to determine TL, but the
latter is presented because it corresponds to a primitive twin H-body requirement). It should
also be noted that the constraints are not implemented as step functions but rather very
steep functions which do vary near the constraint border. For example, the primitive
requirement calls for a displacement or buoyant lift greater than 16 LT, but as implemented
here, a value close to 15 is acceptable. For this reason, fc may vary in a counter-intuitive
fashion, thus rendering the analysis of its values difficult. It is therefore not shown.
The differences between using the NN and the direct CFD computation are within
acceptable limits. They are very close in many instances. Also, differences between the
values resulting from different selection processes for a particular TS are rather small.
Finally, while one observes that the LOD is over-predicted by the NN, the differences
between points are about the same for a given TS. Regardless of which TS is chosen,
however, LOD is greatly improved from the 12.9 result obtained with the direct CFD
method.

TS Results
Output from NN Same DV but with CFD

BL TL LOD Cpmin BL TL LOD Cpmin

1000

Best fc optimized from
NN 15.23 80.59 14.39 -0.265 15.24 81.59 13.76 -0.266

Best LOD optimized
from NN 14.75 79.94 14.44 -0.267 14.78 81.04 13.85 -0.268

Best fc (using CFD) out
of 100 best runs 15.49 80.81 14.30 -0.264 15.51 81.67 13.70 -0.266

Best LOD (using CFD)
out of 100 best 15.25 80.60 14.38 -0.265 15.25 81.64 13.78 -0.265

2000

Best fc optimized from
NN 15.20 80.67 14.49 -0.265 15.13 80.86 13.70 -0.271

Best LOD Optimized
from NN 15.07 80.66 14.51 -0.265 15.01 80.78 13.81 -0.269

Best fc (using CFD) out
of 100 best runs 15.30 80.74 14.42 -0.263 15.23 80.96 13.71 -0.265

Best LOD (using CFD)
out of 100 best 15.17 80.59 14.47 -0.265 15.11 80.75 13.79 -0.270

Table 3. Results from NN optimization and comparison with CFD

4.4 Comparison between Classical and NN-based Methods
Depending on which design is selected, L/D (LOD) ranges from 13.70 to 13.85, which is a
definite improvement from the classical method which lead to 12.92. This improvement is
due to the ability to increase the exploration of the design space within the time available in
a given design project. For the classical optimization, the genetic algorithm was allowed to
run for 5000 iterations, which corresponds to approximately one month of constant
calculations on an Origin 3200 server. Because of the use of the CFD tool inside the design
loop, CPU time available limited the design space exploration and did not lead to a true
optimum. On the other hand, a much larger number of iterations could be performed with
the NN approach leading to a greater L/D improvement. In this case, most of the CPU time
is taken by the training set generation, with all other computations (training and GA
iterations) representing a small fraction of the total CPU time. With as low as 1000 points
generated to approximate the various functions over a design space with 28 design
variables, an improvement of about 34 percent in L/D is achieved with the NN approach
compared with the original baseline twin H-body, this at one fourth the cost needed to get a
26 percent improvement when using the classical approach (with iterations limited because
of CPU time constraints).
The results also point to a few improvements which would need to be implemented to
address non-differentiable functions (to improve Cpmin predictions, for example), the
selection of constrained objective function, and the selection of mathematical optimization
method. The latter comment is particularly pertinent for problems in which the optimizer
(GA here) would focus its attention in a region of the design space where one (or more)
function (objective or constraint) is not approximated as well as might be desired, thus
potentially leading to unusable optimization results. One could benefit from having an
optimization method which explores several regions of the design space, as illustrated in
Lin and Wu (2002).
Results do show, however, that the method can provide its user with a valuable tool for
improving designs within a limited time frame and possibly at a lower cost than using

www.intechopen.com

Machine Learning332

conventional analysis tools integrated in the optimization loop. In this latter case, similarly
to the twin H-body configuration optimization presented here, the cost of the analyses limits
the number of iterations which can be performed in a reasonable time leading likely to sub-
optimal solutions. On the other hand, with the NN approach, a large number of designs can
be investigated quickly –almost instantaneously– once a training set has been made
available and the NN has been trained.

5. Application to an America’s Cup Class Yacht Analysis and Design

In this section, we apply the NN approach to a case where one wishes to use large
experimental datasets for detailed analysis and optimization of the performance of a system,
here an America’s Cup class yacht. This case presents unique challenges associated with the
fact that some data is not usable and that the data is usually not uniformly distributed over
the design space. The objective here is to use an experimental database obtained with a
yacht in at-sea trials to determine the fastest upwind speed the boat can have under
prevalent wind conditions from the corresponding boat settings (including keel, rudder,
sail, etc.).

5.1 Parameters
During trials, America’s Cup teams record their boat performance with very high accuracy
to create a true dynamic picture of the boat response under various sailing conditions. This
sailing data file recorded by the Wave Technology Processor (WTP) is used here as our
experimental database. In our example, each sailing “point” is a vector with a total of 40
parameters. Since the objective here is to optimize the upwind performance of the boat, the
projected speed over the course is to be maximized:

 cos()VMG Vs TWA (44)

where Vs is the measured boat speed, VMG is the Velocity Made Good, and TWA is the true
wind angle. This VMG becomes the objective function, and will be the output of the NN.
Of the remaining 39 parameters, eight independent variables have been selected for the
training based on their accuracy and their major influence on boat speed. Other dependent
variables, parameters with calibration problems or with marginal impact on boat speed,
have been discarded. The eight remaining independent variables to be used for the NN
training are (with their variable name written in parenthesis):

 Heel Angle (Heel)
 Leeway Angle (Leeway)
 True Wind Angle (TWA)
 True Wind Speed (TWS)
 Trim Tab Angle (Trim Tab)
 Rudder Angle (Rudder)
 Forestay Tension (Forestay)
 Main Traveler Position (Main Traveler)

The sailing database represents several hours of sailing and about 50 percent of that sailing
time is the upwind direction, which is our targeted condition. This type of dataset based on

experiments requires using a process to identify the data corresponding to the desired
conditions (here upwind) among the entire database and to discard the downwind sailing
and all transitional moments like tacking, rounding marks.

5.2 Data filtering
To filter or process the large WTP database several software packages such as Microsoft
Access (M.A.) are available. M.A. is able to manipulate large series of data, with a good
Microsoft Excel interface to generate plots from the output dataset for verification purposes.
The queries technique for M.A. simplifies the experimental dataset filtering process in
manipulating with a logical operator the variables and generates a new dataset without
altering the original database. Once the queries (point selection criteria) are written, the
system is automated to produce a new dataset in an instant from any other experimental
database of similar type. M.A. is used first to discard all transitional and non-upwind sailing
points. In a second step, since the upwind sailing data is a mix of port and starboard sailing
with design variables being either positives or negatives, M.A. is used to convert the points
to a single condition, here starboard sailing.
Seven constraints capable of removing and altering the incorrect data are used:

1. 0 ≤ absolute [Leeway] ≤ 2
2. 0 ≤ absolute [Trim tab] ≤ 9
3. 0 ≤ absolute [Rudder] ≤ 12
4. if [AWA] > 0 then [Main Traveler]
5. if [AWA] < 0 then [Main Traveler] x (-1)
6. 16 < absolute [AWA] < 40
7. [Boatspeed] / [Vs_target] ≥ 0.6

where AWA corresponds to the apparent wind angle and Vs_target is the expected boat
speed at such conditions.
In our example, the number of points provided by the team was 21,200. The automated
filtering system removed about 40% of points from the raw sailing database.

Fig 11. Filtered database shown in terms of Heel vs. TWS resulting from imposing 7
constraints

0

5

10

15

20

25

30

35

40

5 10 15 20 25

TWS

H
ee

l Heel constraint
Heel2

Removed

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 333

conventional analysis tools integrated in the optimization loop. In this latter case, similarly
to the twin H-body configuration optimization presented here, the cost of the analyses limits
the number of iterations which can be performed in a reasonable time leading likely to sub-
optimal solutions. On the other hand, with the NN approach, a large number of designs can
be investigated quickly –almost instantaneously– once a training set has been made
available and the NN has been trained.

5. Application to an America’s Cup Class Yacht Analysis and Design

In this section, we apply the NN approach to a case where one wishes to use large
experimental datasets for detailed analysis and optimization of the performance of a system,
here an America’s Cup class yacht. This case presents unique challenges associated with the
fact that some data is not usable and that the data is usually not uniformly distributed over
the design space. The objective here is to use an experimental database obtained with a
yacht in at-sea trials to determine the fastest upwind speed the boat can have under
prevalent wind conditions from the corresponding boat settings (including keel, rudder,
sail, etc.).

5.1 Parameters
During trials, America’s Cup teams record their boat performance with very high accuracy
to create a true dynamic picture of the boat response under various sailing conditions. This
sailing data file recorded by the Wave Technology Processor (WTP) is used here as our
experimental database. In our example, each sailing “point” is a vector with a total of 40
parameters. Since the objective here is to optimize the upwind performance of the boat, the
projected speed over the course is to be maximized:

 cos()VMG Vs TWA (44)

where Vs is the measured boat speed, VMG is the Velocity Made Good, and TWA is the true
wind angle. This VMG becomes the objective function, and will be the output of the NN.
Of the remaining 39 parameters, eight independent variables have been selected for the
training based on their accuracy and their major influence on boat speed. Other dependent
variables, parameters with calibration problems or with marginal impact on boat speed,
have been discarded. The eight remaining independent variables to be used for the NN
training are (with their variable name written in parenthesis):

 Heel Angle (Heel)
 Leeway Angle (Leeway)
 True Wind Angle (TWA)
 True Wind Speed (TWS)
 Trim Tab Angle (Trim Tab)
 Rudder Angle (Rudder)
 Forestay Tension (Forestay)
 Main Traveler Position (Main Traveler)

The sailing database represents several hours of sailing and about 50 percent of that sailing
time is the upwind direction, which is our targeted condition. This type of dataset based on

experiments requires using a process to identify the data corresponding to the desired
conditions (here upwind) among the entire database and to discard the downwind sailing
and all transitional moments like tacking, rounding marks.

5.2 Data filtering
To filter or process the large WTP database several software packages such as Microsoft
Access (M.A.) are available. M.A. is able to manipulate large series of data, with a good
Microsoft Excel interface to generate plots from the output dataset for verification purposes.
The queries technique for M.A. simplifies the experimental dataset filtering process in
manipulating with a logical operator the variables and generates a new dataset without
altering the original database. Once the queries (point selection criteria) are written, the
system is automated to produce a new dataset in an instant from any other experimental
database of similar type. M.A. is used first to discard all transitional and non-upwind sailing
points. In a second step, since the upwind sailing data is a mix of port and starboard sailing
with design variables being either positives or negatives, M.A. is used to convert the points
to a single condition, here starboard sailing.
Seven constraints capable of removing and altering the incorrect data are used:

1. 0 ≤ absolute [Leeway] ≤ 2
2. 0 ≤ absolute [Trim tab] ≤ 9
3. 0 ≤ absolute [Rudder] ≤ 12
4. if [AWA] > 0 then [Main Traveler]
5. if [AWA] < 0 then [Main Traveler] x (-1)
6. 16 < absolute [AWA] < 40
7. [Boatspeed] / [Vs_target] ≥ 0.6

where AWA corresponds to the apparent wind angle and Vs_target is the expected boat
speed at such conditions.
In our example, the number of points provided by the team was 21,200. The automated
filtering system removed about 40% of points from the raw sailing database.

Fig 11. Filtered database shown in terms of Heel vs. TWS resulting from imposing 7
constraints

0

5

10

15

20

25

30

35

40

5 10 15 20 25

TWS

H
ee

l Heel constraint
Heel2

Removed

www.intechopen.com

Machine Learning334

Fig 11 shows a sample point distribution (here Heel vs TWS) over the design space; the
filtered points (shown in blue) are mainly gathered in a dense area but a few points are still
“unrealistic” by their location in the plot, away from the main cloud area.
Based on experience, a sailing limit base line (in pink) has been drawn and all records
located below the pink limit line are non-valid, non-representative sailing points. They
represent 1 to 2 % of initially filtered points and can be easily removed “manually” (non-
automated approach).
Similarly, two other verification plots (TWA vs TWS and Forestay vs TWS) were made. The
“unrealistic” point percentage is similar to that above, with only about 1% of them needing
to be removed manually. This low percentage validates our constraints and filtering
procedure. The resulting database has 6,386 points.

5.3 Filling of the design/analysis space
In this analysis, the wind range selected is from 10 to 15 knots. As illustrated in Fig. 12, the
experimental data, shown here in terms of Heel and Forestay settings from 10 to 11 knots, is
primarily dependent on the TWS values with most data points located in a cluster or
“cloud” and areas around the cloud with few or no points. The objective is to have the NN
trained to provide the boat performance over a range of operating condition. Since the
location of these clusters is not a priori known, it is necessary to have an approach where the
NN gives adequate results in the “empty regions” of the space. This is accomplished by
filling in the remainder of the space with other points. The technique consists of generating
artificial points in areas of low point density (i.e. “fill-in” the space) but with their objective
function value equal to some fixed “unattractive” value. Therefore, any NN function
evaluation away from the “cloud” area(s) will generate a lower objective function value (if
the goal is maximization of the said function, such as boat speed) in the vicinity of the points
added to the dataset; preventing the optimizer to search for solutions in that area.

Fig. 12. Heel and Forestay settings variation with TWS between 10 and 11 knots.

18

20

22

24

26

28

30

32

34

9.9 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 11.1

TWS

H
ee

l

6

7

8

9

10

11

12

13

14

Fo
re

st
ay

Heel Forestay

The location and the quantity of these added points is the crucial element, as they need to
surround the border zone of high density points without perturbing the well-defined zones
of the domain, or clouds.
A data point enclosing a number “n” of variables is interpreted as a vector of dimension n.
In a first step, the additional points are generated randomly over the entire domain. In a
second step, those that end up within a cloud are removed. The selection (decision to keep)
each of the randomly generated points is based on geometric considerations. The selection
criterion is based on the largest of the distance between closest points of the experimental
database, δ. In other words, if the experimental dataset is 1i i N

x

 with ix

 a vector of
dimension n, each vector or point has a closest neighbour and the distance between that
point and its closest neighbour defined in Euclidian space is δi. Therefore, δ can be defined
as:

1 1 1i i ji N i N j N

MAX MAX MIN x x

 (45)

Specifically, a randomly added point iy

 will be discarded if there exists a point kx
 such that

the distance between these two is less than k.δ, where k is a constant to be determined as
discussed in the next section.
The result of this process is an experimental database which has been filled in regions away
from the “cloud” and usable for generating the NN. The two questions which arise are first,
what is the best value to give to k, and second, what value to give to the NN output, or
objective function since we use the NN for optimization, at that additional point. Courouble
et al. (2008) present a detailed analysis which answers these questions and only a summary
of the results is presented here.
Since the NN is used for optimization (maximization of upwind boat speed and
determination of the corresponding settings), ideally, the result obtained with the NN
trained using the database including the automated filling process should be the same as
that when an experienced yacht designer would restrict the sailing parameters to
“appropriate ranges.” This latter case is used as a reference case for comparison with the
results obtained from the automated filling process.

5.3.1 Reference case
To preset the correct search domain to be used in the optimization, one approach is to first
represent the point locations graphically like in Fig 11 and then visually define the design
space boundaries by selecting, for each variable, upper and lower values, values which may
vary as functions of key parameters, such as TWS. This method of pre-restraining the
domain is subjective as it relies on the reader’s ability to evaluate the boundary values,
labor-intensive as it requires one plot for each design variable, and inadequate for complex
cases where no single variable can be used to establish such bounds.
In the case of the yacht, TWS plays a key role in the actual boat speed so that by focusing on
1-knot increments in TWS, it becomes possible to define upper and lower value for the eight
design variables by plotting seven similar two-dimensional graphs as functions of TWS, as
in Fig.4. This approach enables us to define a reference case against which we can compare
with the automated filling process where such parameter restrictions are not imposed.

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 335

Fig 11 shows a sample point distribution (here Heel vs TWS) over the design space; the
filtered points (shown in blue) are mainly gathered in a dense area but a few points are still
“unrealistic” by their location in the plot, away from the main cloud area.
Based on experience, a sailing limit base line (in pink) has been drawn and all records
located below the pink limit line are non-valid, non-representative sailing points. They
represent 1 to 2 % of initially filtered points and can be easily removed “manually” (non-
automated approach).
Similarly, two other verification plots (TWA vs TWS and Forestay vs TWS) were made. The
“unrealistic” point percentage is similar to that above, with only about 1% of them needing
to be removed manually. This low percentage validates our constraints and filtering
procedure. The resulting database has 6,386 points.

5.3 Filling of the design/analysis space
In this analysis, the wind range selected is from 10 to 15 knots. As illustrated in Fig. 12, the
experimental data, shown here in terms of Heel and Forestay settings from 10 to 11 knots, is
primarily dependent on the TWS values with most data points located in a cluster or
“cloud” and areas around the cloud with few or no points. The objective is to have the NN
trained to provide the boat performance over a range of operating condition. Since the
location of these clusters is not a priori known, it is necessary to have an approach where the
NN gives adequate results in the “empty regions” of the space. This is accomplished by
filling in the remainder of the space with other points. The technique consists of generating
artificial points in areas of low point density (i.e. “fill-in” the space) but with their objective
function value equal to some fixed “unattractive” value. Therefore, any NN function
evaluation away from the “cloud” area(s) will generate a lower objective function value (if
the goal is maximization of the said function, such as boat speed) in the vicinity of the points
added to the dataset; preventing the optimizer to search for solutions in that area.

Fig. 12. Heel and Forestay settings variation with TWS between 10 and 11 knots.

18

20

22

24

26

28

30

32

34

9.9 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 11.1

TWS

H
ee

l

6

7

8

9

10

11

12

13

14

Fo
re

st
ay

Heel Forestay

The location and the quantity of these added points is the crucial element, as they need to
surround the border zone of high density points without perturbing the well-defined zones
of the domain, or clouds.
A data point enclosing a number “n” of variables is interpreted as a vector of dimension n.
In a first step, the additional points are generated randomly over the entire domain. In a
second step, those that end up within a cloud are removed. The selection (decision to keep)
each of the randomly generated points is based on geometric considerations. The selection
criterion is based on the largest of the distance between closest points of the experimental
database, δ. In other words, if the experimental dataset is 1i i N

x

 with ix

 a vector of
dimension n, each vector or point has a closest neighbour and the distance between that
point and its closest neighbour defined in Euclidian space is δi. Therefore, δ can be defined
as:

1 1 1i i ji N i N j N

MAX MAX MIN x x

 (45)

Specifically, a randomly added point iy

 will be discarded if there exists a point kx
 such that

the distance between these two is less than k.δ, where k is a constant to be determined as
discussed in the next section.
The result of this process is an experimental database which has been filled in regions away
from the “cloud” and usable for generating the NN. The two questions which arise are first,
what is the best value to give to k, and second, what value to give to the NN output, or
objective function since we use the NN for optimization, at that additional point. Courouble
et al. (2008) present a detailed analysis which answers these questions and only a summary
of the results is presented here.
Since the NN is used for optimization (maximization of upwind boat speed and
determination of the corresponding settings), ideally, the result obtained with the NN
trained using the database including the automated filling process should be the same as
that when an experienced yacht designer would restrict the sailing parameters to
“appropriate ranges.” This latter case is used as a reference case for comparison with the
results obtained from the automated filling process.

5.3.1 Reference case
To preset the correct search domain to be used in the optimization, one approach is to first
represent the point locations graphically like in Fig 11 and then visually define the design
space boundaries by selecting, for each variable, upper and lower values, values which may
vary as functions of key parameters, such as TWS. This method of pre-restraining the
domain is subjective as it relies on the reader’s ability to evaluate the boundary values,
labor-intensive as it requires one plot for each design variable, and inadequate for complex
cases where no single variable can be used to establish such bounds.
In the case of the yacht, TWS plays a key role in the actual boat speed so that by focusing on
1-knot increments in TWS, it becomes possible to define upper and lower value for the eight
design variables by plotting seven similar two-dimensional graphs as functions of TWS, as
in Fig.4. This approach enables us to define a reference case against which we can compare
with the automated filling process where such parameter restrictions are not imposed.

www.intechopen.com

Machine Learning336

5.3.2 Automated space filling
The first step is to convert the sailing database independent variables to non-dimensional
values so that the database is contained in a unit hypercube of dimension n, with n = 8 in
our example. Second, we generate a random set of non-dimensional points/vectors in the
same hypercube. The randomly generated points are added throughout the design space
and those “too close” to a valid point of the database are removed following the approach
described above; only the points populating the voids are kept.
Courouble et al. (2008) show that 1,000 random points over the targeted space provide good
accuracy. For the current dataset, the largest of the minimum distances expressed in terms of
non-dimensional vectors is 0.698; for convenience we will choose δ=0.7 as the distance
criterion. Therefore, the randomly generated points are kept only if they are at least at a
distance of k x 0.7 from their neighbors. For example, for k = 1, about 40% of the 1000
random points are rejected with the criterion of 0.70.

5.4 Process overview
Fig. 13 presents an overview of the automated process, starting with the database containing
the filtered sailing data.
Since the validation set (VS) is used for stopping the training and our interest is to train the
function over the sailing telemetry, the VS will be composed of valid sailing data points
only. In our case, the VS is about 300 points and all remaining points are used for the
training set (TS) to which points are added following the approach described above (except
in the reference case). The TS and VS are then used to train the NN, so that VMG can be
determined instantaneously from given sailing parameters and wind conditions.
The global optimization method used here us a Genetic Algorithm (GA). GA is a search and
optimization method based on the process of biological evolution, in that they involve a
search from a population of solutions and not from a single point. Each iteration of a GA
involves a competitive selection that penalizes poor solutions. The solutions with high
fitness are recombined with others to produce members of the next generation.
Reproduction and mutations are used to generate new solutions which are biased towards
regions of the space for which good solutions have already been seen. The strength of the
GA is that they perform well in spaces where there may be multiple local optima. The
typical drawback of GA is the requirement for a rather large number of function
evaluations, a requirement easily met here with the use of the NN since objective functions
can be evaluated instantaneously.
The overall dataset is primarily based on the TWS going from 10 to 15 knots; consistent with
sailing practice. In order to establish well defined reference cases to be used for evaluation of
the automated approach (see above), the analysis is split in one-knot increments, starting at
10 knots. In the general case, however, such splitting would not be necessary since the NN
would be capable of representing the dependency of the boat speed on TWS (as long as TWS
is an independent parameter). A summary of the results is presented in the next section.

 NO

 YES

WTP Sailing database

Objective Function generated:

“Boat Speed”

TS Dataset

Neural Network Training

Data converted to regular value

Generation of non dimensional Vectors

with obj. function = min datatset Value

Distance
Criteria

Data conversion in

Non Dimensional value

VS Dataset

Optimized solution Instantaneous calculation

Fig. 13. Automated process starting with the WTP sailing database and leading to a NN
capable of instantaneously calculating boat speed, or which can be used to generate
optimum sailing setups under varying conditions.

5.5 Results and Discussion
5.5.1 Effects of Optimum Distance Criterion and Number of Added Points
All optimizations shown here are performed with a population size of 5000 with a stopping
criterion of 100 generations. One optimum is obtained in about eight minutes on a regular
personal computer, corresponding to half a million operations of the trained function.
As noted above, the results obtained from the automated database processing are compared
with a reference case where the search space has been greatly restricted to fit the available
data. In this section, all added points are assigned a boat speed of 0. Table 4 presents the
effect of the number of added points (before those too close to sailing data clusters are
removed automatically) and distance criterion in comparison with the optimum values
found in the reference case. With no added points, the optimum solution of run 1 is off by
about 12% when comparing the value with the reference case. This large error is due to

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 337

5.3.2 Automated space filling
The first step is to convert the sailing database independent variables to non-dimensional
values so that the database is contained in a unit hypercube of dimension n, with n = 8 in
our example. Second, we generate a random set of non-dimensional points/vectors in the
same hypercube. The randomly generated points are added throughout the design space
and those “too close” to a valid point of the database are removed following the approach
described above; only the points populating the voids are kept.
Courouble et al. (2008) show that 1,000 random points over the targeted space provide good
accuracy. For the current dataset, the largest of the minimum distances expressed in terms of
non-dimensional vectors is 0.698; for convenience we will choose δ=0.7 as the distance
criterion. Therefore, the randomly generated points are kept only if they are at least at a
distance of k x 0.7 from their neighbors. For example, for k = 1, about 40% of the 1000
random points are rejected with the criterion of 0.70.

5.4 Process overview
Fig. 13 presents an overview of the automated process, starting with the database containing
the filtered sailing data.
Since the validation set (VS) is used for stopping the training and our interest is to train the
function over the sailing telemetry, the VS will be composed of valid sailing data points
only. In our case, the VS is about 300 points and all remaining points are used for the
training set (TS) to which points are added following the approach described above (except
in the reference case). The TS and VS are then used to train the NN, so that VMG can be
determined instantaneously from given sailing parameters and wind conditions.
The global optimization method used here us a Genetic Algorithm (GA). GA is a search and
optimization method based on the process of biological evolution, in that they involve a
search from a population of solutions and not from a single point. Each iteration of a GA
involves a competitive selection that penalizes poor solutions. The solutions with high
fitness are recombined with others to produce members of the next generation.
Reproduction and mutations are used to generate new solutions which are biased towards
regions of the space for which good solutions have already been seen. The strength of the
GA is that they perform well in spaces where there may be multiple local optima. The
typical drawback of GA is the requirement for a rather large number of function
evaluations, a requirement easily met here with the use of the NN since objective functions
can be evaluated instantaneously.
The overall dataset is primarily based on the TWS going from 10 to 15 knots; consistent with
sailing practice. In order to establish well defined reference cases to be used for evaluation of
the automated approach (see above), the analysis is split in one-knot increments, starting at
10 knots. In the general case, however, such splitting would not be necessary since the NN
would be capable of representing the dependency of the boat speed on TWS (as long as TWS
is an independent parameter). A summary of the results is presented in the next section.

 NO

 YES

WTP Sailing database

Objective Function generated:

“Boat Speed”

TS Dataset

Neural Network Training

Data converted to regular value

Generation of non dimensional Vectors

with obj. function = min datatset Value

Distance
Criteria

Data conversion in

Non Dimensional value

VS Dataset

Optimized solution Instantaneous calculation

Fig. 13. Automated process starting with the WTP sailing database and leading to a NN
capable of instantaneously calculating boat speed, or which can be used to generate
optimum sailing setups under varying conditions.

5.5 Results and Discussion
5.5.1 Effects of Optimum Distance Criterion and Number of Added Points
All optimizations shown here are performed with a population size of 5000 with a stopping
criterion of 100 generations. One optimum is obtained in about eight minutes on a regular
personal computer, corresponding to half a million operations of the trained function.
As noted above, the results obtained from the automated database processing are compared
with a reference case where the search space has been greatly restricted to fit the available
data. In this section, all added points are assigned a boat speed of 0. Table 4 presents the
effect of the number of added points (before those too close to sailing data clusters are
removed automatically) and distance criterion in comparison with the optimum values
found in the reference case. With no added points, the optimum solution of run 1 is off by
about 12% when comparing the value with the reference case. This large error is due to

www.intechopen.com

Machine Learning338

“waves” in the network near the edges of data clusters because of lack of data outside these
clusters and because some of the best sailing conditions are actually near some of these
edges of data clusters.
Increasing gradually the number of points from one hundred to one thousand, the
difference drops to 2.1%. For a margin within 2% accuracy, 1000 points added over the six
thousand sailing data points, means a minimum of 16% of added points is required the
whole dataset. Theoretically in training a NN there is no limitation in terms of size, so
adding more points would then not be a problem. Therefore, to improve the non-valid
domain coverage, a higher percentage of added points (such as up to 20% of the total
original dataset size) appears to be a safe margin to start with.
The second element to investigate is the distance criterion. Our initial distance was based on
k = 1 so as to insert additional points not too close to the valid sailing points. Results for two
additional datasets are shown in Table 4, both with one thousand additional points but
differing by their distance criterion (k coefficient). In the first dataset, the distance criterion is
reduced to 75% (k=0.75); in the second dataset, the distance is reduced by 50% (k=0.5). For
k=0.5, the dataset is within 1% of the target solution; k=0.75 shows a difference of 3.5%,
which is still acceptable. This solution, however, is marginal, with parameters like heel angle
or forestay tension being lower than typical values. This discrepancy is likely due to the fact
that an objective function, boat speed, of zero was set of additional points which also creates
“waves” in the NN near the edges of clusters. The value to use for these additional points is
discussed below.

Case # of added points k Error %*
1 0 1 12.5
2 100 1 7.2
3 500 1 5.5
4 1000 1 2.1
5 1000 0.75 3.5
6 1000 0.5 0.7

Table 4. Comparison of optimum obtained with the automated database processing with
that obtained with the reference case over a more restrictive design space. TWS: 10-11 Knots.

5.5.2 Effect of Boat Speed for Added Points and Impact on Minimum Distance
Criterion
To prevent the optimizer from searching in the low point density area, we assigned boat
speed of zero for all the added points. Populating non-valid areas of the domain by non-
sailing data points with speed value set to zero is radical but efficient, especially if the
domain to be covered is very large for the amount of added points available. But as we get
closer to the sailing data points, we risk that locally the function value be altered. Here, the
sailing dataset shows boat speed values ranging from 7.1 to 11.3 knots, and inserting a point
with zero value creates a radical damping of 170 % in the function value and may remove
potential attractive solutions in the optimization process or create waves near the edges of
sailing data clusters. To prevent that phenomenon near the edges, the function value for the
added points is set to be equal to the overall minimum boat speed of the dataset (i.e. 7.1

* compared with reference case

knots) instead of 0.0 as set in earlier analyses. From that statement we created two new
datasets with similar number of points added (1000) and k=1, but with function values equal
to the lower boat speed value (7.1). The solutions when compared with the reference case
show differences within 1.2 %, which is even better than the 3% obtained earlier.
In regard to the settings (eight sailing variables), there is also more consistency between the
two solutions. On a sailboat many different set ups can provide nearly the same boat speed,
as long as they are coherent. In this case, although the TWS are not exactly the same the
setting numbers are globally in the same range which is an important factor to emphasize,
meaning the solutions have been optimized for both domains in a similar zone. Courouble et
al. (2008) compare these solutions in more detail and show that although the solutions are
within few percent, a closer look at the optimum design variables for heel, forestay, rudder
and trim tab show some differences between the two solutions, but similar trends,
suggesting that several combinations of sailing parameters may be used for optimum boat
speed. The results demonstrate that the method offers excellent potential for identifying the
areas of interests for further investigation. Although not performed in the present study, the
use of a multi-island genetic algorithm would allow a user to explore such areas
systematically.

6. References

Agatonovic-Kustrin, S.; Zecevic, M.; Zivanovic, L.; and Tucker, I.G. (1998) ″Application of
Neural Networks for Response Surface Modeling in HPLC Optimization,″ Analytica
Chimica Acta, Vol. 364, pp. 265-273.

ANSYS, Inc. (2009) ″ANSYS ICEM CFD″ [Online] available at
<http://www.ansys.com/products/icemcfd.asp>, accessed 01 June 2009.

Bertram, V.; Mesbahi, E. (2004) ″Estimating Resistance and Power for fast Monohulls
Employing Artificial Neural Nets,″ 4th Int. Conf. High-Performance Marine
Vehicles (HIPER), Rome.

Besnard, E.; Schmitz, A.; Kaups, K.; Tzong, G.; Hefazi, H.; Chen, H.H.; Kural, O.; and Cebeci,
T (1998) ″Hydrofoil Design and Optimization for Fast Ships,″ Proceedings of the 1998
ASME International Congress and Exhibition, Anaheim, CA.

Besnard, E.; Schmitz, A.; Hefazi, H.; and Shinde, R. (2007) ″Constructive Neural Networks
and their Application to Ship Multi-disciplinary Design Optimization,″ Journal of
Ship Research, Vol. 51, No. 4, pp. 297-312.

Blanchard, B. and Fabrycky, W. (1997) Systems Engineering and Analysis, 3rd Ed., Prentice
Hall.

Bishop, C. (1995) Neural Networks for Pattern Recognition, Oxford University Press.
Bourquin, J.; Schmidli, H.; van Hoogevest, P.; and Leuenberger, H. (1998) ″Advantages of

Artificial Neural Networks (ANNs) as Alternative Modeling Technique for Data
Sets Showing Non-linear Relationships Using Data from a Galenical Study on a
Solid Dosage Form,″ European Journal of Pharmaceutical Sciences, Vol. 7, pp. 5-16.

Cybenko, G. (1989) ″Approximation by Superpositions of a Sigmoidal Function, ″
Mathematics of Control, Signal and Systems, Vol. 2, Issue 4, pp. 303-314

Courouble, F.; Besnard, E.; and Schmitz, A. (2008) “Application of Constructive Neural
Networks to America’s Cup Racing Yacht Performance Optimization,” Paper

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 339

“waves” in the network near the edges of data clusters because of lack of data outside these
clusters and because some of the best sailing conditions are actually near some of these
edges of data clusters.
Increasing gradually the number of points from one hundred to one thousand, the
difference drops to 2.1%. For a margin within 2% accuracy, 1000 points added over the six
thousand sailing data points, means a minimum of 16% of added points is required the
whole dataset. Theoretically in training a NN there is no limitation in terms of size, so
adding more points would then not be a problem. Therefore, to improve the non-valid
domain coverage, a higher percentage of added points (such as up to 20% of the total
original dataset size) appears to be a safe margin to start with.
The second element to investigate is the distance criterion. Our initial distance was based on
k = 1 so as to insert additional points not too close to the valid sailing points. Results for two
additional datasets are shown in Table 4, both with one thousand additional points but
differing by their distance criterion (k coefficient). In the first dataset, the distance criterion is
reduced to 75% (k=0.75); in the second dataset, the distance is reduced by 50% (k=0.5). For
k=0.5, the dataset is within 1% of the target solution; k=0.75 shows a difference of 3.5%,
which is still acceptable. This solution, however, is marginal, with parameters like heel angle
or forestay tension being lower than typical values. This discrepancy is likely due to the fact
that an objective function, boat speed, of zero was set of additional points which also creates
“waves” in the NN near the edges of clusters. The value to use for these additional points is
discussed below.

Case # of added points k Error %*
1 0 1 12.5
2 100 1 7.2
3 500 1 5.5
4 1000 1 2.1
5 1000 0.75 3.5
6 1000 0.5 0.7

Table 4. Comparison of optimum obtained with the automated database processing with
that obtained with the reference case over a more restrictive design space. TWS: 10-11 Knots.

5.5.2 Effect of Boat Speed for Added Points and Impact on Minimum Distance
Criterion
To prevent the optimizer from searching in the low point density area, we assigned boat
speed of zero for all the added points. Populating non-valid areas of the domain by non-
sailing data points with speed value set to zero is radical but efficient, especially if the
domain to be covered is very large for the amount of added points available. But as we get
closer to the sailing data points, we risk that locally the function value be altered. Here, the
sailing dataset shows boat speed values ranging from 7.1 to 11.3 knots, and inserting a point
with zero value creates a radical damping of 170 % in the function value and may remove
potential attractive solutions in the optimization process or create waves near the edges of
sailing data clusters. To prevent that phenomenon near the edges, the function value for the
added points is set to be equal to the overall minimum boat speed of the dataset (i.e. 7.1

* compared with reference case

knots) instead of 0.0 as set in earlier analyses. From that statement we created two new
datasets with similar number of points added (1000) and k=1, but with function values equal
to the lower boat speed value (7.1). The solutions when compared with the reference case
show differences within 1.2 %, which is even better than the 3% obtained earlier.
In regard to the settings (eight sailing variables), there is also more consistency between the
two solutions. On a sailboat many different set ups can provide nearly the same boat speed,
as long as they are coherent. In this case, although the TWS are not exactly the same the
setting numbers are globally in the same range which is an important factor to emphasize,
meaning the solutions have been optimized for both domains in a similar zone. Courouble et
al. (2008) compare these solutions in more detail and show that although the solutions are
within few percent, a closer look at the optimum design variables for heel, forestay, rudder
and trim tab show some differences between the two solutions, but similar trends,
suggesting that several combinations of sailing parameters may be used for optimum boat
speed. The results demonstrate that the method offers excellent potential for identifying the
areas of interests for further investigation. Although not performed in the present study, the
use of a multi-island genetic algorithm would allow a user to explore such areas
systematically.

6. References

Agatonovic-Kustrin, S.; Zecevic, M.; Zivanovic, L.; and Tucker, I.G. (1998) ″Application of
Neural Networks for Response Surface Modeling in HPLC Optimization,″ Analytica
Chimica Acta, Vol. 364, pp. 265-273.

ANSYS, Inc. (2009) ″ANSYS ICEM CFD″ [Online] available at
<http://www.ansys.com/products/icemcfd.asp>, accessed 01 June 2009.

Bertram, V.; Mesbahi, E. (2004) ″Estimating Resistance and Power for fast Monohulls
Employing Artificial Neural Nets,″ 4th Int. Conf. High-Performance Marine
Vehicles (HIPER), Rome.

Besnard, E.; Schmitz, A.; Kaups, K.; Tzong, G.; Hefazi, H.; Chen, H.H.; Kural, O.; and Cebeci,
T (1998) ″Hydrofoil Design and Optimization for Fast Ships,″ Proceedings of the 1998
ASME International Congress and Exhibition, Anaheim, CA.

Besnard, E.; Schmitz, A.; Hefazi, H.; and Shinde, R. (2007) ″Constructive Neural Networks
and their Application to Ship Multi-disciplinary Design Optimization,″ Journal of
Ship Research, Vol. 51, No. 4, pp. 297-312.

Blanchard, B. and Fabrycky, W. (1997) Systems Engineering and Analysis, 3rd Ed., Prentice
Hall.

Bishop, C. (1995) Neural Networks for Pattern Recognition, Oxford University Press.
Bourquin, J.; Schmidli, H.; van Hoogevest, P.; and Leuenberger, H. (1998) ″Advantages of

Artificial Neural Networks (ANNs) as Alternative Modeling Technique for Data
Sets Showing Non-linear Relationships Using Data from a Galenical Study on a
Solid Dosage Form,″ European Journal of Pharmaceutical Sciences, Vol. 7, pp. 5-16.

Cybenko, G. (1989) ″Approximation by Superpositions of a Sigmoidal Function, ″
Mathematics of Control, Signal and Systems, Vol. 2, Issue 4, pp. 303-314

Courouble, F.; Besnard, E.; and Schmitz, A. (2008) “Application of Constructive Neural
Networks to America’s Cup Racing Yacht Performance Optimization,” Paper

www.intechopen.com

Machine Learning340

presented at the MDY’08, 3rd Symposium on Yacht Design and Production,
Madrid Spain.

Danõşman, D. B.; Mesbahi, E.; Atlar, M. and Goren, O. (2002) ″A New Hull Form
Optimization Technique for Minimum Wave Resistance,″ 10th International
Maritime Association Mediterranean Congress (IMAM), Crete

Dassault Systèmes SIMULIA (2009). ″iSIGHT – Integrate, Automate, and Optimize your
Manual Design Processes,″ [Online] available at <
http://www.simulia.com/products/isight.html >, accessed 01 June 2009.

Dutt, J. R.; Dutta, P. K.; and Banerjee, R. (2004) ″Optimization of Culture Parameters for
Extracellular Protease Production from a Newly Isolated Pseudomonas sp. using
Response Surface and Artificial Neural Network Models,″ Process Biochemistry, Vol
39, pp. 2193–2198.

Fahlman, S.E. (1988) ″Faster-Learning Variations on Back-Propagation Learning: An
Empirical Study,″ in Proceedings of the 1988 Connectionist Models Summer School,
Morgan Kaufmann.

Fahlman, S. E. and Lebiere, C. (1990) ″The Cascade-Correlation Learning Architecture, ″
Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, USA.

Gomes, H. M.; and Awruch, A. M. (2004) ″Comparison of Response Surface and Neural
Network with other Methods for Structural Reliability Analysis,″ Structural Safety,
Vol. 26, pp. 49-67.

Gougoulidis, G. (2008), "The utilization of Artificial Neural Networks in Marine
Applications: An Overview". Journal of Naval Engineering, Vol. 120, No.3, pp 19-
26, 2008.

Hefazi, H et al. (2002) ″CFD Design Tool Development and Validation, CCDoTT FY00 Task
2.8, ″ Center for the Commercial Deployment of Transportation Technologies, Long
Beach, CA., [Online] available at
<ftp://www.foundation.csulb.edu/CCDoTT/Deliverables/2000/Task%202.8/task
2.8_1.pdf>, accessed 01 March 2009.

Hefazi, H et al. (2003) ″Computer Software Product End Item, Deliverable 2, Optimization
Tool Development Based on Neural Networks Computer DCI-MCCR-80700
report,″ Center for the Commercial Deployment of Transportation Technologies,
Long Beach, CA. [Online] available at
<ftp://www.foundation.csulb.edu/CCDoTT/Deliverables/2002/task%202.20/tas
k%202.20_opttools%20FY%2002.pdf>, accessed 01 March 2009.

Hornik, K. (1991) ″Approximation Capabilities of Multilayer Feedforward Networks,
″Neural Networks, Vol. 4, Issue 2, pp. 251-257.

Jain, P.; and Deo, M. C. (2005) ″Neural Networks in Ocean Engineering,″ Ships And Offshore
Structures (SAOS 2006), Vol. 1, Issue 1, pp. 25-35.

Koushan, K. (2003) ″Automatic Hull Form Optimization Towards Lower Resistance and
Wash using Artificial Intelligence,″ FAST 2003 Conference, Ischia, Italy.

Koh, L.; Janson, C-E, Altar, M.; Larsson, L.; Mesbahi, E.; and Abt, C. (2005) ″Novel Design
and Hydrodynamic Optimization of a High Speed Hull Form,″ 5th International
Conference on High Performance Marine Vessels, Shanghai.

Kwok, T. Y. and Yeung, D. Y. (1993) ″Theorical Analysis of Constructive Neural Networks,″
Technical Report HKUST-CS-93-12, Hong Kong University of Science and
Technology.

Kwok, T. Y. and Yeung, D. Y. (1997a) ″Constructive Algorithms for Structure Learning in
Feedforward Neural Networks for Regression Problems,″ IEEE Transactions on
Neural Networks, Vol. 8, Issue 3, pp. 630-645.

Kwok, T. Y. and Yeung, D. Y. (1997b) ″Objective Function for Training New Hidden Units in
Constructive Neural Networks,″ IEEE transactions on Neural Networks, Vol. 8, Issue
5, pp 1131-1148.

Lahnajärvi J.J.T. et al.(2002) ″Evaluation of Constructive Neural Networks with Cascaded
Architectures,″ Neurocomputing, Vol. 48, pp 573-607.

Lee, J.; and Hajel, P. (2001) ″Application of Classifier Systems in Improving Response
Surface based Approximations for Design Optimization,″ Computers and Structures,
Vol. 79, pp. 333-344.

Lehtokangas, M. (1999) ″Fast Initialization for Cascade-Correlation Learning,″ IEEE
Transactions on Neural Networks, Vol. 10, no 2.

Lin, C.Y.; and Wu, W.H. (2002) ″Niche Identification Techniques in Multimodal Genetic
Search with Sharing Scheme,″ Advances in Engineering Software, Vol. 22, pp. 779-791.

Maisonneuve, J.J. (2003) “Chapter 7: Applications Examples from Industry,” in Optimistic -
Optimization in Marine Design, 2nd edition, Birk, L., and Harries, S. (Editors),
Mensch & Buch Verlag.

Mesbahi, E.; Bertram, V. (2000) ″Empirical Design Formulae Using Artificial Neural Nets,″
COMPIT'2000, Potsdam.

Parametric Technology Corporation (2009) ″PTC : Pro/ENGINEER,″ [Online] available at
<http://www.ptc.com/appserver/mkt/products/home.jsp?k=403>, accessed 01
June 2009.

Prechelt, L. (1997) ″Investigation of the CasCor Family of Learning Algorithms,″ Neural
Networks, Vol. 10, No. 5, pp 885-896.

Prechelt, L. (1998a) ″Automatic Early Stopping Using Cross-Validation: Quantifying the
Criteria,″ Neural Networks, Vol. 11, Number 4, 761-767

Prechelt, (1998b) ″Early Stopping : But When?,″ in Neural networks : Tricks of the Trade,
Lecture Notes In Computer Science, Vol. 1524, pp 55-69, Orr, G.B., and Mueller, K.-
R., eds.

Sarle, W.S., ed. (2002) ″Neural Network FAQ, Usenet newsgroup comp.ai.neural-nets,″
[Online] available at <ftp://ftp.sas.com/pub/neural/FAQ.html>, accessed 01 June
2009.

Schmitz, A. (2007) Constructive Neural Networks for Function Approximation and their
Application to CFD Shape Optimization, Ph.D Thesis, Claremont Graduate University.

Tekto, I.; Villa, A. (1997) “An Enhancement of Generalization Ability in Cascade Correlation
Algorithm by Avoidance of Overfitting/Overtraining Problem”, Neural Porcessing
Letters, Vol. 6, pp 43-50

Takayama, K.; Fujikawa, M.; Obata, Y.; and Morishita, M. (2003) ″Neural Network based
Optimization of Drug Formulations,″ Advanced Drug Delivery Reviews, Vol. 55, pp.
1217–1231.

www.intechopen.com

Modiied Cascade Correlation Neural Network and its Applications
 to Multidisciplinary Analysis Design and Optimization in Ship Design 341

presented at the MDY’08, 3rd Symposium on Yacht Design and Production,
Madrid Spain.

Danõşman, D. B.; Mesbahi, E.; Atlar, M. and Goren, O. (2002) ″A New Hull Form
Optimization Technique for Minimum Wave Resistance,″ 10th International
Maritime Association Mediterranean Congress (IMAM), Crete

Dassault Systèmes SIMULIA (2009). ″iSIGHT – Integrate, Automate, and Optimize your
Manual Design Processes,″ [Online] available at <
http://www.simulia.com/products/isight.html >, accessed 01 June 2009.

Dutt, J. R.; Dutta, P. K.; and Banerjee, R. (2004) ″Optimization of Culture Parameters for
Extracellular Protease Production from a Newly Isolated Pseudomonas sp. using
Response Surface and Artificial Neural Network Models,″ Process Biochemistry, Vol
39, pp. 2193–2198.

Fahlman, S.E. (1988) ″Faster-Learning Variations on Back-Propagation Learning: An
Empirical Study,″ in Proceedings of the 1988 Connectionist Models Summer School,
Morgan Kaufmann.

Fahlman, S. E. and Lebiere, C. (1990) ″The Cascade-Correlation Learning Architecture, ″
Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, USA.

Gomes, H. M.; and Awruch, A. M. (2004) ″Comparison of Response Surface and Neural
Network with other Methods for Structural Reliability Analysis,″ Structural Safety,
Vol. 26, pp. 49-67.

Gougoulidis, G. (2008), "The utilization of Artificial Neural Networks in Marine
Applications: An Overview". Journal of Naval Engineering, Vol. 120, No.3, pp 19-
26, 2008.

Hefazi, H et al. (2002) ″CFD Design Tool Development and Validation, CCDoTT FY00 Task
2.8, ″ Center for the Commercial Deployment of Transportation Technologies, Long
Beach, CA., [Online] available at
<ftp://www.foundation.csulb.edu/CCDoTT/Deliverables/2000/Task%202.8/task
2.8_1.pdf>, accessed 01 March 2009.

Hefazi, H et al. (2003) ″Computer Software Product End Item, Deliverable 2, Optimization
Tool Development Based on Neural Networks Computer DCI-MCCR-80700
report,″ Center for the Commercial Deployment of Transportation Technologies,
Long Beach, CA. [Online] available at
<ftp://www.foundation.csulb.edu/CCDoTT/Deliverables/2002/task%202.20/tas
k%202.20_opttools%20FY%2002.pdf>, accessed 01 March 2009.

Hornik, K. (1991) ″Approximation Capabilities of Multilayer Feedforward Networks,
″Neural Networks, Vol. 4, Issue 2, pp. 251-257.

Jain, P.; and Deo, M. C. (2005) ″Neural Networks in Ocean Engineering,″ Ships And Offshore
Structures (SAOS 2006), Vol. 1, Issue 1, pp. 25-35.

Koushan, K. (2003) ″Automatic Hull Form Optimization Towards Lower Resistance and
Wash using Artificial Intelligence,″ FAST 2003 Conference, Ischia, Italy.

Koh, L.; Janson, C-E, Altar, M.; Larsson, L.; Mesbahi, E.; and Abt, C. (2005) ″Novel Design
and Hydrodynamic Optimization of a High Speed Hull Form,″ 5th International
Conference on High Performance Marine Vessels, Shanghai.

Kwok, T. Y. and Yeung, D. Y. (1993) ″Theorical Analysis of Constructive Neural Networks,″
Technical Report HKUST-CS-93-12, Hong Kong University of Science and
Technology.

Kwok, T. Y. and Yeung, D. Y. (1997a) ″Constructive Algorithms for Structure Learning in
Feedforward Neural Networks for Regression Problems,″ IEEE Transactions on
Neural Networks, Vol. 8, Issue 3, pp. 630-645.

Kwok, T. Y. and Yeung, D. Y. (1997b) ″Objective Function for Training New Hidden Units in
Constructive Neural Networks,″ IEEE transactions on Neural Networks, Vol. 8, Issue
5, pp 1131-1148.

Lahnajärvi J.J.T. et al.(2002) ″Evaluation of Constructive Neural Networks with Cascaded
Architectures,″ Neurocomputing, Vol. 48, pp 573-607.

Lee, J.; and Hajel, P. (2001) ″Application of Classifier Systems in Improving Response
Surface based Approximations for Design Optimization,″ Computers and Structures,
Vol. 79, pp. 333-344.

Lehtokangas, M. (1999) ″Fast Initialization for Cascade-Correlation Learning,″ IEEE
Transactions on Neural Networks, Vol. 10, no 2.

Lin, C.Y.; and Wu, W.H. (2002) ″Niche Identification Techniques in Multimodal Genetic
Search with Sharing Scheme,″ Advances in Engineering Software, Vol. 22, pp. 779-791.

Maisonneuve, J.J. (2003) “Chapter 7: Applications Examples from Industry,” in Optimistic -
Optimization in Marine Design, 2nd edition, Birk, L., and Harries, S. (Editors),
Mensch & Buch Verlag.

Mesbahi, E.; Bertram, V. (2000) ″Empirical Design Formulae Using Artificial Neural Nets,″
COMPIT'2000, Potsdam.

Parametric Technology Corporation (2009) ″PTC : Pro/ENGINEER,″ [Online] available at
<http://www.ptc.com/appserver/mkt/products/home.jsp?k=403>, accessed 01
June 2009.

Prechelt, L. (1997) ″Investigation of the CasCor Family of Learning Algorithms,″ Neural
Networks, Vol. 10, No. 5, pp 885-896.

Prechelt, L. (1998a) ″Automatic Early Stopping Using Cross-Validation: Quantifying the
Criteria,″ Neural Networks, Vol. 11, Number 4, 761-767

Prechelt, (1998b) ″Early Stopping : But When?,″ in Neural networks : Tricks of the Trade,
Lecture Notes In Computer Science, Vol. 1524, pp 55-69, Orr, G.B., and Mueller, K.-
R., eds.

Sarle, W.S., ed. (2002) ″Neural Network FAQ, Usenet newsgroup comp.ai.neural-nets,″
[Online] available at <ftp://ftp.sas.com/pub/neural/FAQ.html>, accessed 01 June
2009.

Schmitz, A. (2007) Constructive Neural Networks for Function Approximation and their
Application to CFD Shape Optimization, Ph.D Thesis, Claremont Graduate University.

Tekto, I.; Villa, A. (1997) “An Enhancement of Generalization Ability in Cascade Correlation
Algorithm by Avoidance of Overfitting/Overtraining Problem”, Neural Porcessing
Letters, Vol. 6, pp 43-50

Takayama, K.; Fujikawa, M.; Obata, Y.; and Morishita, M. (2003) ″Neural Network based
Optimization of Drug Formulations,″ Advanced Drug Delivery Reviews, Vol. 55, pp.
1217–1231.

www.intechopen.com

Machine Learning342

Todoroki, A.; and Ishikawa, T. (2004) ″Design of Experiments for Stacking Sequence
Optimizations with Genetic Algorithm using Response Surface Approximation,″
Composite Structures, Vol. 64, pp. 349-357.

Treagold, .K.; Gedeon,T.D. (1999) ″Exploring Constructive Cascade Networks,″ IEEE
Transactions on Neural Networks, Vol. 10, No. 6.

Vanderplaats, Muira & Associates Inc. (1995), DOT Users Manual, Version 4.20, VMA
Engineering.

www.intechopen.com

Machine Learning

Edited by Yagang Zhang

ISBN 978-953-307-033-9

Hard cover, 438 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Machine learning techniques have the potential of alleviating the complexity of knowledge acquisition. This

book presents today’s state and development tendencies of machine learning. It is a multi-author book. Taking

into account the large amount of knowledge about machine learning and practice presented in the book, it is

divided into three major parts: Introduction, Machine Learning Theory and Applications. Part I focuses on the

introduction to machine learning. The author also attempts to promote a new design of thinking machines and

development philosophy. Considering the growing complexity and serious difficulties of information processing

in machine learning, in Part II of the book, the theoretical foundations of machine learning are considered, and

they mainly include self-organizing maps (SOMs), clustering, artificial neural networks, nonlinear control, fuzzy

system and knowledge-based system (KBS). Part III contains selected applications of various machine

learning approaches, from flight delays, network intrusion, immune system, ship design to CT and RNA target

prediction. The book will be of interest to industrial engineers and scientists as well as academics who wish to

pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as

computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a

reference for software professionals and practitioners.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Adeline Schmitz, Frederick Courouble, Hamid Hefazi and Eric Besnard (2010). Modified Cascade Correlation

Neural Network and its Applications to Multidisciplinary Analysis Design and Optimization in Ship Design,

Machine Learning, Yagang Zhang (Ed.), ISBN: 978-953-307-033-9, InTech, Available from:

http://www.intechopen.com/books/machine-learning/modified-cascade-correlation-neural-network-and-its-

applications-to-multidisciplinary-analysis-desig

www.intechopen.com

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

