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1. Introduction     
 

Terrain topography carries information that is fundamental for geomorphic modeling and, 
ultimately, for understanding geologic processes responsible for land-surface form. 
Classification of terrain is tantamount to organizing the expressions (features) of terrain 
topography into landforms (classes) – patches of topography having similar characteristics 
and commonly recognizable semantic labels. Because of the spatial character of topographic 
data, such classification is referred to as geomorphic mapping. The result of classification of 
an entire landscape scene into a set of mutually exclusive and exhaustive landform classes is 
referred to as a geomorphic map.
Geomorphic mapping of terrestrial and planetary surfaces has been done traditionally via 
visual interpretation of images (Wilhelms, 1990; Tanaka, 1994). This manual method is slow, 
labor intensive, and suffers from subjectivity. Presently, remote sensing instruments 
onboard spacecrafts are providing increasingly large volumes of topographic data related to 
Earth as well as surfaces of other planets. This data rich environment challenges the ability 
of the geosciences community to turn a significant portion of all collected data into  
products (like, for example, geomorphic maps) that could be utilized in research. Simply 
put, advances in geomorphic mapping have not kept up with advances in data collection. If 
left to manual mapping, the percentage of planetary surfaces mapped to the level of detail 
permitted by an increased resolution of newly collected data will continue to drop 
precipitously. In order to prevent this decline in rate of data to map conversion, it is 
necessary to automate the mapping process. Fortunately, the surface properties that 
distinguish between different landforms can be described quantitatively by a set of 
numerical measures called terrain attributes which are derived from a digital elevation 
model (DEM) of the surface. This opens the opportunity for automation of the mapping 
process. The topic of auto-mapping landforms from topography has received some attention 
in the geosciences literature; however, such approaches rely frequently on hand-made rules 
for classification and are designed exclusively for terrestrial applications. 
Machine learning can play a vital role in automating the process of geomorphic mapping. A 
learning system can be employed to either fully automate the process of discovering 
meaningful landform classes using clustering techniques; or it can be used instead to predict 
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the class of unlabeled landforms - after an expert has manually labeled a representative 
sample of the landforms - using classification techniques. We refer to the two techniques as 
unsupervised and supervised learning, respectively. Unsupervised learning techniques are 
applicable in cases of exploratory mapping, where no prior knowledge about the surface 
exists and both landform types and their spatial presence need to be derived by an 
algorithm. Exploratory mapping finds application in expediting creation of geologic maps in 
planetary science context where surfaces are still being explored and landform classes are 
not yet defined. Supervised learning techniques are applicable in cases of exploitation 
mapping when only the spatial presence of a priori defined landform classes is required. 
Exploitation mapping finds application in creating final geomorphic maps for terrestrial and 
planetary sites for which constituting landform classes are known a priori.
In developing machine learning-based mapping tools we face a number of design choices, 
starting from the selection of a basic unit of surface, through the choice of features (terrain 
attributes), to a pick of an appropriate machine learning technique. The fundamental 
problem is to design a technique that results in a map that has information content and 
visual esthetics similar to those found in manually drawn maps; such outcome ensures a 
large impact in the geosciences community and, consequently, has the greatest scientific 
value.   

 
2. Preliminaries and previous work 
 

All our tools are based on topographic data which provides a fundamental description of a 
surface and is well-suited for automated mapping. Topographic data is available as a grid-
based DEM, a raster that stores site’s elevation value at each pixel in a corresponding raster 
node. All features used by our machine learning-based mapping tools are derived from the 
DEM. These features are divided into at-pixel features and area statistics features (Evans, 
1998). At-pixel features, except for elevation itself, require a small region or neighborhood 
around the pixel to calculate their values. Area statistics features depend on the range or 
distribution of values within the selected, larger neighborhood. 
Previously published methods for auto-mapping of landforms can be divided into those that 
utilize machine learning and those that don’t (Gallant et al, 2005; Dragut and Blaschke, 2006; 
van Asselen and Seijmonsbergen, 2006; Iwahashi and Pike, 2007). Machine learning-based 
methods can be further grouped into those using unsupervised learning techniques (Irvin et 
al, 1997; Burrough et al, 2000; Adediran et al, 2004; Stepinski and Vilalta, 2005; Bue and 
Stepinski, 2006; Ehsani and Quiel, 2008;) and those using supervised learning (Brown et al, 
1998; Hengl and Rossiter, 2003; Prima et al, 2006; Stepinski et al, 2006; Stepinski et al, 2007). 
Moreover, all methods can be grouped into pixel-based methods (Irvin et al, 1997; Brown et 
al, 1998; Burrough et al, 2000; Hengl and Rossiter, 2003; Adediran et al, 2004; Stepinski and 
Vilalta, 2005; Bue and Stepinski, 2006; Prima et al, 2006; Iwahashi and Pike, 2007; Ehsani and 
Quiel, 2008), where an algorithm assigns landform label for each pixel in a DEM separately, 
and segmentation-based methods (Dragut and Blaschke, 2006; van Asselen and 
Seijmonsbergen, 2006; Stepinski et al, 2006; Stepinski et al, 2007; Ghosh et al, 2009), where an 
algorithm assigns landform labels to multi-pixel but attribute-homogeneous segments of the 
landscape. Fig. 1. illustrates the conceptual difference between pixel-based and 
segmentation-based approaches. Proposed methods differ broadly in classification 
algorithms and feature selection. We claim that a segmentation-based approach utilizing 

supervised or unsupervised machine learning has the potential to generate maps most 
comparable to manual maps, and thus most useful. Consequently, our own recent efforts 
have concentrated on such approaches. Here we discuss the spectrum of tools that we have 
developed for both exploratory and exploitation purposes. We discuss the tools for 
exploratory mapping that are both, pixel-based and segmentation-based. We also discuss 
the tools for exploitation mapping, which are exclusively segmentation-based. Our work 
focuses on mapping the planet Mars, because Mars is the only planet besides Earth for 
which global topographic data is currently available (Smith et al, 2003). However, the tools 
are applicable to mapping terrestrial landmass for which a global, high resolution DEM is 
available. Moreover, these tools are also applicable to mapping the surfaces of planet 
Mercury and the Moon once the DEMs for these planets become available (Krishna et al, 
2009; Araki et al, 2009) in the near future. The resolution of DEMs of planetary surfaces is 
coarser than the resolution of terrestrial DEMs. This presents unique challenges for auto-
mapping their surfaces as the coarse resolution excludes the direct use of area statistics 
features decreasing the number of features available to a classifier. 
 

 
Fig. 1. Two different approaches to assigning geomorphic labels to topographic data 

 
3. Unsupervised learning for exploratory mapping 
 

Development of tools for exploratory geomorphic mapping of Martian surfaces is motivated 
by a desire for taking stock of all potential landforms present in the site regardless of their 
semantic meaning. Exploratory mapping is best achieved by unsupervised learning that 
relies on clustering techniques to automatically discover natural clusters in data. We discuss 
generating exploratory maps of Martian geomorphology using both, pixel-based and 
segmentation-based method. 
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the class of unlabeled landforms - after an expert has manually labeled a representative 
sample of the landforms - using classification techniques. We refer to the two techniques as 
unsupervised and supervised learning, respectively. Unsupervised learning techniques are 
applicable in cases of exploratory mapping, where no prior knowledge about the surface 
exists and both landform types and their spatial presence need to be derived by an 
algorithm. Exploratory mapping finds application in expediting creation of geologic maps in 
planetary science context where surfaces are still being explored and landform classes are 
not yet defined. Supervised learning techniques are applicable in cases of exploitation 
mapping when only the spatial presence of a priori defined landform classes is required. 
Exploitation mapping finds application in creating final geomorphic maps for terrestrial and 
planetary sites for which constituting landform classes are known a priori.
In developing machine learning-based mapping tools we face a number of design choices, 
starting from the selection of a basic unit of surface, through the choice of features (terrain 
attributes), to a pick of an appropriate machine learning technique. The fundamental 
problem is to design a technique that results in a map that has information content and 
visual esthetics similar to those found in manually drawn maps; such outcome ensures a 
large impact in the geosciences community and, consequently, has the greatest scientific 
value.   

 
2. Preliminaries and previous work 
 

All our tools are based on topographic data which provides a fundamental description of a 
surface and is well-suited for automated mapping. Topographic data is available as a grid-
based DEM, a raster that stores site’s elevation value at each pixel in a corresponding raster 
node. All features used by our machine learning-based mapping tools are derived from the 
DEM. These features are divided into at-pixel features and area statistics features (Evans, 
1998). At-pixel features, except for elevation itself, require a small region or neighborhood 
around the pixel to calculate their values. Area statistics features depend on the range or 
distribution of values within the selected, larger neighborhood. 
Previously published methods for auto-mapping of landforms can be divided into those that 
utilize machine learning and those that don’t (Gallant et al, 2005; Dragut and Blaschke, 2006; 
van Asselen and Seijmonsbergen, 2006; Iwahashi and Pike, 2007). Machine learning-based 
methods can be further grouped into those using unsupervised learning techniques (Irvin et 
al, 1997; Burrough et al, 2000; Adediran et al, 2004; Stepinski and Vilalta, 2005; Bue and 
Stepinski, 2006; Ehsani and Quiel, 2008;) and those using supervised learning (Brown et al, 
1998; Hengl and Rossiter, 2003; Prima et al, 2006; Stepinski et al, 2006; Stepinski et al, 2007). 
Moreover, all methods can be grouped into pixel-based methods (Irvin et al, 1997; Brown et 
al, 1998; Burrough et al, 2000; Hengl and Rossiter, 2003; Adediran et al, 2004; Stepinski and 
Vilalta, 2005; Bue and Stepinski, 2006; Prima et al, 2006; Iwahashi and Pike, 2007; Ehsani and 
Quiel, 2008), where an algorithm assigns landform label for each pixel in a DEM separately, 
and segmentation-based methods (Dragut and Blaschke, 2006; van Asselen and 
Seijmonsbergen, 2006; Stepinski et al, 2006; Stepinski et al, 2007; Ghosh et al, 2009), where an 
algorithm assigns landform labels to multi-pixel but attribute-homogeneous segments of the 
landscape. Fig. 1. illustrates the conceptual difference between pixel-based and 
segmentation-based approaches. Proposed methods differ broadly in classification 
algorithms and feature selection. We claim that a segmentation-based approach utilizing 

supervised or unsupervised machine learning has the potential to generate maps most 
comparable to manual maps, and thus most useful. Consequently, our own recent efforts 
have concentrated on such approaches. Here we discuss the spectrum of tools that we have 
developed for both exploratory and exploitation purposes. We discuss the tools for 
exploratory mapping that are both, pixel-based and segmentation-based. We also discuss 
the tools for exploitation mapping, which are exclusively segmentation-based. Our work 
focuses on mapping the planet Mars, because Mars is the only planet besides Earth for 
which global topographic data is currently available (Smith et al, 2003). However, the tools 
are applicable to mapping terrestrial landmass for which a global, high resolution DEM is 
available. Moreover, these tools are also applicable to mapping the surfaces of planet 
Mercury and the Moon once the DEMs for these planets become available (Krishna et al, 
2009; Araki et al, 2009) in the near future. The resolution of DEMs of planetary surfaces is 
coarser than the resolution of terrestrial DEMs. This presents unique challenges for auto-
mapping their surfaces as the coarse resolution excludes the direct use of area statistics 
features decreasing the number of features available to a classifier. 
 

 
Fig. 1. Two different approaches to assigning geomorphic labels to topographic data 

 
3. Unsupervised learning for exploratory mapping 
 

Development of tools for exploratory geomorphic mapping of Martian surfaces is motivated 
by a desire for taking stock of all potential landforms present in the site regardless of their 
semantic meaning. Exploratory mapping is best achieved by unsupervised learning that 
relies on clustering techniques to automatically discover natural clusters in data. We discuss 
generating exploratory maps of Martian geomorphology using both, pixel-based and 
segmentation-based method. 
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3.1 Pixel-based, unsupervised mapping 
In our pixel-based application to exploratory mapping of Mars (Stepinski and Vilalta, 2005), 
an unsupervised learning algorithm groups pixels that are similar in the space of 
geomorphic features. The choice of features is dictated by the type of surface to be mapped. 
A large portion of Martian surface consists of cratered plateau; planetary geomorphologists 
are interested in mapping various parts of craters, non-crater ridges, linear landforms 
known as channels, and various types of plateau. This interest dictates the choice of features 
that are best to discriminate between potential landforms of interest. 
In the first tool that we have developed (Stepinski and Vilalta, 2005) the mapping is based 
on six features (terrain attributes). The first feature, u1, is the elevation itself. The second 
feature, u2, is a “flooding adjustment”; In order to calculate u2 we first artificially modify the 
original elevation using the so-called “flooding” algorithm (O’Callaghan and Mark, 1984). It 
identifies all enclosed topographic depressions and raises their elevation to the level of the 
lowest pour point around their edge thus producing a “flooded” elevation field. The 
flooding adjustment (u2) is the difference between flooded and original elevations; it has 
non-zero values only for pixels located inside topographic depressions (craters). The third 
feature, u3, is the steepest slope between a focus pixel and the eight of its nearest 
neighboring pixels calculated using the original elevation field. The fourth feature, u4, is the 
steepest slope calculated using the flooded elevation field. The fifth feature, u5, is a 
contributing area. The contributing area is the total number of pixels “draining” through a 
focus pixel; the term draining is used here as a metaphor for connectivity between different 
pixels in a landscape. A pixel counts toward the contributing area of a focus pixel if there is 
a chain of steepest slope directions linking it to the focus pixel. Small values of u5 flag pixels 
located on topographic peaks, ridges, and divides. Large values of u5 flag channels. Finally, 
the sixth feature, u6, is the contributing area based on the flooded elevation field. 
The set of six features { u1, u2, u3, u4, u5, u6 } is calculated for all pixels in a site. The basic object 
of clustering is a pixel in the DEM that carries a vector of six features. Two pixels are similar 
if their feature vectors are close in the sense of Euclidean metric. A clustering algorithm 
applied for all pixels produces as output a set of k classes, Ck = { c1, c2, . . . , ck } where each 
class ci contains a list of pixels that are similar to each other. The set of classes is mutually 
exclusive and exhaustive. The map is generated by assigning each pixel a color 
corresponding to its class. In our first implementation (Stepinski and Vilalta, 2005) of our 
pixel-based exploratory mapping tool we cluster the DEM using probabilistic clustering 
algorithm that follows the Expectation Maximization (EM) technique (McLachlan and 
Krishan, 1997). It groups vectors into classes by modeling each class through a probability 
density function. Each vector in the dataset has a probability of class membership and is 
assigned to the class with highest posterior probability. The number of classes is calculated 
using cross-validation (Cheesman and Stutz, 1996). Because a typical Martian DEM of 
interest contains a large amount of data, a direct clustering via the EM technique is 
computationally expensive. To alleviate this problem we sample the DEM to create a 
smaller, initial dataset of pixels. This initial dataset is clustered into Ck using the EM 
technique. The remaining pixels are classified into Ck using a decision tree learning 
algorithm (Quinlan, 1993) constructed on the basis of the initial dataset.  
 
 
 

 
Fig. 2. (A) Topography of Tisia Valles site on Mars. (B) The 12-class geomorphic map created 
by a pixel-based tool using a probabilistic clustering algorithm. 
 
In order to demonstrate the utility of our tool for producing an exploratory geomorphic map 
of landscape on Mars we have applied it to a test site called Tisia Valles. The six-feature 
vector was calculated for each of the site’s 163,240 pixels. Because different features have 
different physical meaning and different range of values, we have normalized all features so 
that their values are in the range (0, 1). This normalization assures that every feature 
contributes with equal weight to the “distance” between different pixels. The 40,000 pixels 
were randomly chosen to create an initial dataset. We have assured uniform sampling in 
order to obtain an unbiased representation of all, even rare landscape features. Our 
clustering algorithm has grouped these 40,000 pixels into 12 separable and exhaustive 
clusters. The remaining pixels were classified into those 12 clusters using a decision tree 
algorithm. 
Fig. 2A. shows the topography of the test site; red-to-blue gradient indicates high-to-low 
elevation. Fig. 2B. shows a geomorphic map generated by our tool; different landform 
classes (clusters of similar feature vectors) are shown using different colors. The semantic 
interpretation of these classes requires expert judgment; an analyst needs to review statistics 
of feature vectors values in each class and spatial distribution of classes with respect to each 
other. A simplified result of such interpretation is given in the legend of Fig. 2. An analyst 
divided the 12 classes into 4 different groups pertaining to plateau, craters, ridges, and 
channels, respectively. Some groups, for example the plateau group, may include several 
landforms classes. An expert grouped the four classes (labeled 1, 2, 3, and 4) into the plateau 
group because they are identical from a geomorphic point of view, just located at different 
elevations. This example illustrates a “problem” with mapping based on the principle of 
unsupervised learning - a reasonable cluster derived under a proximity measure may not 
constitute a “novel” landform as perceived by an analyst. Nevertheless, in face of lack of any 
previous knowledge about the site’s landscape, unsupervised learning delivers valuable, 
first draft information. 
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3.1 Pixel-based, unsupervised mapping 
In our pixel-based application to exploratory mapping of Mars (Stepinski and Vilalta, 2005), 
an unsupervised learning algorithm groups pixels that are similar in the space of 
geomorphic features. The choice of features is dictated by the type of surface to be mapped. 
A large portion of Martian surface consists of cratered plateau; planetary geomorphologists 
are interested in mapping various parts of craters, non-crater ridges, linear landforms 
known as channels, and various types of plateau. This interest dictates the choice of features 
that are best to discriminate between potential landforms of interest. 
In the first tool that we have developed (Stepinski and Vilalta, 2005) the mapping is based 
on six features (terrain attributes). The first feature, u1, is the elevation itself. The second 
feature, u2, is a “flooding adjustment”; In order to calculate u2 we first artificially modify the 
original elevation using the so-called “flooding” algorithm (O’Callaghan and Mark, 1984). It 
identifies all enclosed topographic depressions and raises their elevation to the level of the 
lowest pour point around their edge thus producing a “flooded” elevation field. The 
flooding adjustment (u2) is the difference between flooded and original elevations; it has 
non-zero values only for pixels located inside topographic depressions (craters). The third 
feature, u3, is the steepest slope between a focus pixel and the eight of its nearest 
neighboring pixels calculated using the original elevation field. The fourth feature, u4, is the 
steepest slope calculated using the flooded elevation field. The fifth feature, u5, is a 
contributing area. The contributing area is the total number of pixels “draining” through a 
focus pixel; the term draining is used here as a metaphor for connectivity between different 
pixels in a landscape. A pixel counts toward the contributing area of a focus pixel if there is 
a chain of steepest slope directions linking it to the focus pixel. Small values of u5 flag pixels 
located on topographic peaks, ridges, and divides. Large values of u5 flag channels. Finally, 
the sixth feature, u6, is the contributing area based on the flooded elevation field. 
The set of six features { u1, u2, u3, u4, u5, u6 } is calculated for all pixels in a site. The basic object 
of clustering is a pixel in the DEM that carries a vector of six features. Two pixels are similar 
if their feature vectors are close in the sense of Euclidean metric. A clustering algorithm 
applied for all pixels produces as output a set of k classes, Ck = { c1, c2, . . . , ck } where each 
class ci contains a list of pixels that are similar to each other. The set of classes is mutually 
exclusive and exhaustive. The map is generated by assigning each pixel a color 
corresponding to its class. In our first implementation (Stepinski and Vilalta, 2005) of our 
pixel-based exploratory mapping tool we cluster the DEM using probabilistic clustering 
algorithm that follows the Expectation Maximization (EM) technique (McLachlan and 
Krishan, 1997). It groups vectors into classes by modeling each class through a probability 
density function. Each vector in the dataset has a probability of class membership and is 
assigned to the class with highest posterior probability. The number of classes is calculated 
using cross-validation (Cheesman and Stutz, 1996). Because a typical Martian DEM of 
interest contains a large amount of data, a direct clustering via the EM technique is 
computationally expensive. To alleviate this problem we sample the DEM to create a 
smaller, initial dataset of pixels. This initial dataset is clustered into Ck using the EM 
technique. The remaining pixels are classified into Ck using a decision tree learning 
algorithm (Quinlan, 1993) constructed on the basis of the initial dataset.  
 
 
 

 
Fig. 2. (A) Topography of Tisia Valles site on Mars. (B) The 12-class geomorphic map created 
by a pixel-based tool using a probabilistic clustering algorithm. 
 
In order to demonstrate the utility of our tool for producing an exploratory geomorphic map 
of landscape on Mars we have applied it to a test site called Tisia Valles. The six-feature 
vector was calculated for each of the site’s 163,240 pixels. Because different features have 
different physical meaning and different range of values, we have normalized all features so 
that their values are in the range (0, 1). This normalization assures that every feature 
contributes with equal weight to the “distance” between different pixels. The 40,000 pixels 
were randomly chosen to create an initial dataset. We have assured uniform sampling in 
order to obtain an unbiased representation of all, even rare landscape features. Our 
clustering algorithm has grouped these 40,000 pixels into 12 separable and exhaustive 
clusters. The remaining pixels were classified into those 12 clusters using a decision tree 
algorithm. 
Fig. 2A. shows the topography of the test site; red-to-blue gradient indicates high-to-low 
elevation. Fig. 2B. shows a geomorphic map generated by our tool; different landform 
classes (clusters of similar feature vectors) are shown using different colors. The semantic 
interpretation of these classes requires expert judgment; an analyst needs to review statistics 
of feature vectors values in each class and spatial distribution of classes with respect to each 
other. A simplified result of such interpretation is given in the legend of Fig. 2. An analyst 
divided the 12 classes into 4 different groups pertaining to plateau, craters, ridges, and 
channels, respectively. Some groups, for example the plateau group, may include several 
landforms classes. An expert grouped the four classes (labeled 1, 2, 3, and 4) into the plateau 
group because they are identical from a geomorphic point of view, just located at different 
elevations. This example illustrates a “problem” with mapping based on the principle of 
unsupervised learning - a reasonable cluster derived under a proximity measure may not 
constitute a “novel” landform as perceived by an analyst. Nevertheless, in face of lack of any 
previous knowledge about the site’s landscape, unsupervised learning delivers valuable, 
first draft information. 
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Fig. 3. (A) Topography of Terra Cimmeria site on Mars. (B) The 20-class geomorphic map 
created by a pixel-based tool using a SOM-Ward clustering algorithm. 
 
Our tool for exploratory mapping using pixel-based unsupervised learning technique was 
further modified (Bue and Stepinski, 2006) to achieve greater computational efficiency 
necessary for mapping larger sites. The clustering efficiency was significantly improved by 
using a two-level clustering procedure (Vesanto and Alhoniemi, 2000) consisting of a self-
organizing map (SOM) (Kohonen, 1995) and the Ward hierarchical clustering (Ward, 1963). 
The SOM is a neural network technique that groups similar vectors into nearby points on a 
2-D grid composed of nodes. Through an unsupervised, iterative procedure, a large set of 
feature vectors is mapped onto the much smaller number of SOM’s nodes in such a way that 
similar feature vectors are associated with the same note or neighboring nodes. Because the 
number of nodes is much smaller than the number of vectors, many similar vectors are 
mapped onto a single node. The bundle of feature vectors associated with a given SOM 
node is typified by a single representative vector referred to as a codebook vector. The final 
clustering of feature vectors into an assigned number of k clusters (landform classes) is 
achieved by the Ward’s minimum variance grouping algorithm (Ward, 1963) applied to the 
set of codebook vectors. 
Fig. 3A. depicts a topography of a 5,303,888 pixels-large site on Mars referred to as Terra 
Cimmeria. We used 30 x 30 rectangular SOM grid to perform a first step of clustering the 
feature vectors associated with those pixels into 900 codebook vectors. In the final step the 
codebook vectors were clustered into 20 landform classes shown on Fig. 3B using different 
colors. As in the previous example, the semantic interpretation of the classes requires expert 
judgment; a simplified result of such interpretation is given in the legend of Fig. 3. 
 

 

3.2 Segmentation-based, unsupervised mapping 
Our second tool for exploratory mapping via unsupervised learning combines aspects of 
pixel-based and segment-based mapping approaches (Stepinski and Bagaria, 2009). We 
constructed a two-stage algorithm consisting of a pixel-based base classifier and a segment-
based meta classifier. A base classifier is applied to multiple pixels in a neighborhood of a 
focus pixel resulting in an ensemble of landform type predictions. A meta classifier is an 
unsupervised segmentation/classification algorithm that combines these predictions and 
outputs a segment-based map of emergent landform regions or classes.  This tool is 
designed for exploratory mapping of very large regions using small number of original 
features.  
In order to increase a computational efficiency of our tool we utilize a rule-based classifier as 
our base classifier. The rule-based classifier uses empirical knowledge to construct a 
decision tree; submitting a set of terrain features to a trunk of the tree results in a landform 
type label at the leave of the tree. The nested means technique (Iwahashi and Pike, 2007) is 
used to construct a decision tree because it outputs landform types whose meanings do not 
correspond directly to named terrestrial formations, thus, they won’t lose their relevance in 
application to non-terrestrial surfaces. Our rule-based classifier uses only three original 
terrain features (slope gradient, surface texture, and local convexity) to label each pixel into 
one of 16 statistically predefined landform types.  
The segment-based meta classifier uses a set of secondary features designed to capture 
contextual information around a given pixel. The secondary features are calculated from the 
labels (1 to 16) returned by the base classifier; they are combined into a pixel-attached 
feature-vector which describes, in a generalized manner, surface character in the 
neighborhood of this pixel. We calculate 19 secondary features. The first 16 features are 
normalized frequencies of labels outputted by the base classifier contained within a N x N 
pixels square window centered on the focus pixel. The value of N controls the level of 
generalization from landform types to landform classes. Two windows may have similar 
frequencies but different spatial distributions of the labels. The last three secondary features 
measure pattern of landform types in a neighborhood and are based on a modification of 
Multi-Scale Local Binary Pattern (LBP) concept (Ojala et al,  2002). The 19-dimensional 
vector of secondary features is used to generate a final segmentation-based map.
We use the Recursive Hierarchical Segmentation (RHSEG) algorithm (Tilton, 2000) that 
simultaneously segments the DEM on the basis of secondary features and cluster the 
segments into landform classes. The RHSEG is an iterative algorithm that produces 
hierarchies of both, segmentation levels, and clustering levels. Starting from individual 
pixels as regions seeds, the algorithm alternates between merging similar adjacent regions 
into larger regions (segmentation) and merging labels of non-adjacent similar regions 
(clustering). Both steps utilize similarity criteria based on statistics of secondary features of 
pixels constituting the segments. As this two-step process is iteratively repeated, it produces 
a natural hierarchy of both, spatial segmentations and clusters of features. Stopping RHSEG 
at a given iteration level yields a map of a certain geographical and feature-space resolution. 
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achieved by the Ward’s minimum variance grouping algorithm (Ward, 1963) applied to the 
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Fig. 3A. depicts a topography of a 5,303,888 pixels-large site on Mars referred to as Terra 
Cimmeria. We used 30 x 30 rectangular SOM grid to perform a first step of clustering the 
feature vectors associated with those pixels into 900 codebook vectors. In the final step the 
codebook vectors were clustered into 20 landform classes shown on Fig. 3B using different 
colors. As in the previous example, the semantic interpretation of the classes requires expert 
judgment; a simplified result of such interpretation is given in the legend of Fig. 3. 
 

 

3.2 Segmentation-based, unsupervised mapping 
Our second tool for exploratory mapping via unsupervised learning combines aspects of 
pixel-based and segment-based mapping approaches (Stepinski and Bagaria, 2009). We 
constructed a two-stage algorithm consisting of a pixel-based base classifier and a segment-
based meta classifier. A base classifier is applied to multiple pixels in a neighborhood of a 
focus pixel resulting in an ensemble of landform type predictions. A meta classifier is an 
unsupervised segmentation/classification algorithm that combines these predictions and 
outputs a segment-based map of emergent landform regions or classes.  This tool is 
designed for exploratory mapping of very large regions using small number of original 
features.  
In order to increase a computational efficiency of our tool we utilize a rule-based classifier as 
our base classifier. The rule-based classifier uses empirical knowledge to construct a 
decision tree; submitting a set of terrain features to a trunk of the tree results in a landform 
type label at the leave of the tree. The nested means technique (Iwahashi and Pike, 2007) is 
used to construct a decision tree because it outputs landform types whose meanings do not 
correspond directly to named terrestrial formations, thus, they won’t lose their relevance in 
application to non-terrestrial surfaces. Our rule-based classifier uses only three original 
terrain features (slope gradient, surface texture, and local convexity) to label each pixel into 
one of 16 statistically predefined landform types.  
The segment-based meta classifier uses a set of secondary features designed to capture 
contextual information around a given pixel. The secondary features are calculated from the 
labels (1 to 16) returned by the base classifier; they are combined into a pixel-attached 
feature-vector which describes, in a generalized manner, surface character in the 
neighborhood of this pixel. We calculate 19 secondary features. The first 16 features are 
normalized frequencies of labels outputted by the base classifier contained within a N x N 
pixels square window centered on the focus pixel. The value of N controls the level of 
generalization from landform types to landform classes. Two windows may have similar 
frequencies but different spatial distributions of the labels. The last three secondary features 
measure pattern of landform types in a neighborhood and are based on a modification of 
Multi-Scale Local Binary Pattern (LBP) concept (Ojala et al,  2002). The 19-dimensional 
vector of secondary features is used to generate a final segmentation-based map.
We use the Recursive Hierarchical Segmentation (RHSEG) algorithm (Tilton, 2000) that 
simultaneously segments the DEM on the basis of secondary features and cluster the 
segments into landform classes. The RHSEG is an iterative algorithm that produces 
hierarchies of both, segmentation levels, and clustering levels. Starting from individual 
pixels as regions seeds, the algorithm alternates between merging similar adjacent regions 
into larger regions (segmentation) and merging labels of non-adjacent similar regions 
(clustering). Both steps utilize similarity criteria based on statistics of secondary features of 
pixels constituting the segments. As this two-step process is iteratively repeated, it produces 
a natural hierarchy of both, spatial segmentations and clusters of features. Stopping RHSEG 
at a given iteration level yields a map of a certain geographical and feature-space resolution. 
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Fig. 4. (A) Topography of Tharsis region on Mars. (B) The results of rule-based classification. 
(C) The 9-class geomorphic map created by the meta classifier. 
 
In order to demonstrate the utility of our segmentation-based exploratory mapping tool we 
have applied it to the Tharsis region on planet Mars. The Tharsis region on Mars (Fig. 4A) is 
an enormous volcanic plateau containing a number of large volcanoes including Olympus 
Mons – the largest volcano in the solar system. We used a 1024 x 1024 pixels DEM of Tharsis 
region with the resolution of 4 km/pixel. The base classifier labeled each of 1,048, 576 pixels 
with one of 16 labels resulting in a pixel-based map as shown on Fig. 4B. The legend to Fig. 
4B is organized in a square array (see insert): the top row groups terrain types (1, 5, 9, 13) 
representing rough, convex landscapes; the second row groups terrain types (3, 7, 11, 15) 
standing for rough, concave landscape; the third row groups terrain types (2, 6, 10, 14) 
representing smooth, convex landscapes; the last row groups terrain types (4, 8, 12, 16) 
corresponding to smooth, concave landscapes. In each row progressively larger values of 
labels indicate gentler landscape. The secondary features are calculated using N=11 pixels 
moving window. We set the parameters of RHSEG algorithm so it starts saving the 
segmentation results when the feature-vectors are already clustered into 20 landform 
classes. This most-detailed of all retained partitioning is referred to as level 0 segmentation. 
Subsequent, progressively coarser segmentations are referred to as level 1 to 19, 
respectively. Fig. 4C shows the level 11 segmentation consisting of 2382 segments grouped 
into 9 landform classes. The legend to Fig. 4C shows a color and a numerical label assigned 
to each landform class. 
Notwithstanding superficial visual similarity (this similarity decreases rapidly when the 
close-ups of the two maps are examined) between the map generated by the base classifier 
(Fig. 4B) and the map generated by the meta classifier (Fig. 4C), the map generated by 
RHSEG algorithm has a higher utility because it partitions a site in a fashion similar to what 
an analyst would do manually – into fewer larger, more heterogeneous areas corresponding 
to more broadly defined landform classes. The small pie diagrams next to label annotations 
in a legend to Fig. 4C indicate a “composition” of each landform class in terms of types 
outputted by the base classifier. Different classes are characterized by different degrees of 
terrain type inhomogeneity reflecting the reality of natural landscape. The visual esthetics of 
the map shown on Fig. 4C resembles manually drawn geologic maps, however, direct, 
formal comparison of our map with a manually drawn geologic map is difficult because 
analysts use not only objective criteria (such as, surface morphology) but also subjective 
criteria (such as, nomenclature, history of previous investigations, etc.). Nevertheless, our 

map shown on Fig. 4C shows a rough correspondence to a manually drawn geologic map of 
the Tharsis region (Scott and Tanaka, 1986). 

 
4. Supervised learning for exploitation mapping 
 

In many cases planetary scientists know a priori what landform classes they want to map in 
a given site. Automation of such exploitation mapping should not be based on the principle 
of unsupervised learning that offers no control over the character of outcome classes; 
instead, it should be based on the principle of supervised learning where classes are set a 
priori. Recognizing that automatically generated maps must conform to expectations of the 
planetary science domain, our efforts to automate the process of exploitation mapping focus 
on the concatenation of a segmentation-based technique with supervised learning (Stepinski 
et al, 2006; Stepinski et al, 2007; Ghosh et al, 2009). The idea of segmentation-based 
classification follows from the realization that pixels are not the best fundamental units of 
visual or topographic scenes, and it is more natural and efficient to work with more 
perceptually meaningful entities obtained from low-level grouping processes. Such entities 
are referred to as superpixels (Mori, 2005) in the computer vision community and as 
segments (Benz et al, 2004) in the remote sensing community. The diagram in Fig. 1B 
illustrates the concept of segmentation-based classification of landform classes. The 
segmentation-based classification technique has many desired properties: a) segments are 
perceptually meaningful, b) they are computationally efficient, c) their geometric and 
statistical properties provide additional information that can be incorporated into 
classification, d) because the technique results in oversegmentation of the site, most 
structures in the site are conserved and there is little loss of information over using 
individual pixels. 
We have developed a family of tools for automating exploitation mapping of planetary 
surfaces; each tool utilizes a specific combination of segmentation and classification 
algorithms. We employ two different segmentation algorithms. The dividing algorithm 
splits the landscape on the basis of abrupt discontinuities in pixel-based feature vectors. The 
agglomerative algorithm initially treats each pixel as an individual segment; these initial 
segments are combined into larger segments as long as a user-defined criterion for the 
uniformity of constituent pixel-based feature vectors holds. Both algorithms use the same 
pixel-based feature vectors. We also employ three different learning algorithms for segment 
classification and to generate maps of landforms. Thus, altogether, we have evaluated six 
different tools, corresponding to six different segmentation/classification combinations. 

 
4.1 Segmentation methods 
The segmentation procedure subdivides the landscape into mutually exclusive and 
exhaustive segments containing pixels having approximately uniform pixel-based feature 
vectors. These segments constitute topographic objects, which, subsequently, are classified 
into landforms classes. Raster segmentation has been the subject of intense study in the 
domain of image analysis, however, requirements for an effective segmentation for the 
purpose of mapping are different from those encountered in the field of computer vision. In 
particular, for the purpose of mapping-by-classification, it is desirable to oversegment the 
site. Having small segments eliminates the danger of a particularly large segment being 
misclassified, which would avoid producing a grossly incorrect map. Moreover, having 
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Fig. 4. (A) Topography of Tharsis region on Mars. (B) The results of rule-based classification. 
(C) The 9-class geomorphic map created by the meta classifier. 
 
In order to demonstrate the utility of our segmentation-based exploratory mapping tool we 
have applied it to the Tharsis region on planet Mars. The Tharsis region on Mars (Fig. 4A) is 
an enormous volcanic plateau containing a number of large volcanoes including Olympus 
Mons – the largest volcano in the solar system. We used a 1024 x 1024 pixels DEM of Tharsis 
region with the resolution of 4 km/pixel. The base classifier labeled each of 1,048, 576 pixels 
with one of 16 labels resulting in a pixel-based map as shown on Fig. 4B. The legend to Fig. 
4B is organized in a square array (see insert): the top row groups terrain types (1, 5, 9, 13) 
representing rough, convex landscapes; the second row groups terrain types (3, 7, 11, 15) 
standing for rough, concave landscape; the third row groups terrain types (2, 6, 10, 14) 
representing smooth, convex landscapes; the last row groups terrain types (4, 8, 12, 16) 
corresponding to smooth, concave landscapes. In each row progressively larger values of 
labels indicate gentler landscape. The secondary features are calculated using N=11 pixels 
moving window. We set the parameters of RHSEG algorithm so it starts saving the 
segmentation results when the feature-vectors are already clustered into 20 landform 
classes. This most-detailed of all retained partitioning is referred to as level 0 segmentation. 
Subsequent, progressively coarser segmentations are referred to as level 1 to 19, 
respectively. Fig. 4C shows the level 11 segmentation consisting of 2382 segments grouped 
into 9 landform classes. The legend to Fig. 4C shows a color and a numerical label assigned 
to each landform class. 
Notwithstanding superficial visual similarity (this similarity decreases rapidly when the 
close-ups of the two maps are examined) between the map generated by the base classifier 
(Fig. 4B) and the map generated by the meta classifier (Fig. 4C), the map generated by 
RHSEG algorithm has a higher utility because it partitions a site in a fashion similar to what 
an analyst would do manually – into fewer larger, more heterogeneous areas corresponding 
to more broadly defined landform classes. The small pie diagrams next to label annotations 
in a legend to Fig. 4C indicate a “composition” of each landform class in terms of types 
outputted by the base classifier. Different classes are characterized by different degrees of 
terrain type inhomogeneity reflecting the reality of natural landscape. The visual esthetics of 
the map shown on Fig. 4C resembles manually drawn geologic maps, however, direct, 
formal comparison of our map with a manually drawn geologic map is difficult because 
analysts use not only objective criteria (such as, surface morphology) but also subjective 
criteria (such as, nomenclature, history of previous investigations, etc.). Nevertheless, our 

map shown on Fig. 4C shows a rough correspondence to a manually drawn geologic map of 
the Tharsis region (Scott and Tanaka, 1986). 

 
4. Supervised learning for exploitation mapping 
 

In many cases planetary scientists know a priori what landform classes they want to map in 
a given site. Automation of such exploitation mapping should not be based on the principle 
of unsupervised learning that offers no control over the character of outcome classes; 
instead, it should be based on the principle of supervised learning where classes are set a 
priori. Recognizing that automatically generated maps must conform to expectations of the 
planetary science domain, our efforts to automate the process of exploitation mapping focus 
on the concatenation of a segmentation-based technique with supervised learning (Stepinski 
et al, 2006; Stepinski et al, 2007; Ghosh et al, 2009). The idea of segmentation-based 
classification follows from the realization that pixels are not the best fundamental units of 
visual or topographic scenes, and it is more natural and efficient to work with more 
perceptually meaningful entities obtained from low-level grouping processes. Such entities 
are referred to as superpixels (Mori, 2005) in the computer vision community and as 
segments (Benz et al, 2004) in the remote sensing community. The diagram in Fig. 1B 
illustrates the concept of segmentation-based classification of landform classes. The 
segmentation-based classification technique has many desired properties: a) segments are 
perceptually meaningful, b) they are computationally efficient, c) their geometric and 
statistical properties provide additional information that can be incorporated into 
classification, d) because the technique results in oversegmentation of the site, most 
structures in the site are conserved and there is little loss of information over using 
individual pixels. 
We have developed a family of tools for automating exploitation mapping of planetary 
surfaces; each tool utilizes a specific combination of segmentation and classification 
algorithms. We employ two different segmentation algorithms. The dividing algorithm 
splits the landscape on the basis of abrupt discontinuities in pixel-based feature vectors. The 
agglomerative algorithm initially treats each pixel as an individual segment; these initial 
segments are combined into larger segments as long as a user-defined criterion for the 
uniformity of constituent pixel-based feature vectors holds. Both algorithms use the same 
pixel-based feature vectors. We also employ three different learning algorithms for segment 
classification and to generate maps of landforms. Thus, altogether, we have evaluated six 
different tools, corresponding to six different segmentation/classification combinations. 

 
4.1 Segmentation methods 
The segmentation procedure subdivides the landscape into mutually exclusive and 
exhaustive segments containing pixels having approximately uniform pixel-based feature 
vectors. These segments constitute topographic objects, which, subsequently, are classified 
into landforms classes. Raster segmentation has been the subject of intense study in the 
domain of image analysis, however, requirements for an effective segmentation for the 
purpose of mapping are different from those encountered in the field of computer vision. In 
particular, for the purpose of mapping-by-classification, it is desirable to oversegment the 
site. Having small segments eliminates the danger of a particularly large segment being 
misclassified, which would avoid producing a grossly incorrect map. Moreover, having 
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approximately equal-sized segments assures that statistics of pixel-based features are 
calculated from comparable ensembles of member pixels. 
Our dividing segmentation algorithm (Stepinski et al, 2006) uses the watershed transform 
(Beucher, 1992) applied to a gray-scale image that encapsulates gradients of pixel-based 
feature vectors. This image is calculated using a computationally simple homogeneity 
measure H (Jing et al, 2003). A pixel located in a region that is homogeneous with respect to 
pixel-based features has a small value of H. On the other hand, a pixel located in a region 
which is inhomogeneous with respect to features has a large value of H. A raster constructed 
by calculating the values of H for all pixels in the landscape can be interpreted as a gray-
scale image and is referred to as the H-image. White areas in H-image represent boundaries 
of homogeneous regions, whereas the dark areas represent the actual regions. The 
watershed transform of H results in (over) segmentation of the H-image (and thus the 
landscape). 
Our agglomerative segmentation algorithm (Stepinski et al, 2007) uses a contiguity-
enhanced variant of the standard K-means clustering algorithm, which uses – in addition to 
terrain attributes – spatial coordinates of pixels as features. The additional spatial features 
control the size of the segments while providing the resultant segments with very desirable 
geometric properties. For example, in areas where terrain features are approximately 
uniform, the local gradient of the total feature vector is dominated by changes in spatial 
coordinates leading to the formation of round-shaped segments. On the other hand, in areas 
where change in the total feature vector is dominated by change in terrain attributes, 
segments tend to exhibit an elongated shape in direction perpendicular to the gradient of 
the terrain-only sub-vector. These properties constitute additional knowledge that could be 
exploited by the classification module. The actual segmentation invokes a simple K-means 
algorithm applied to spatially-enriched, pixel-based feature vectors. The size of the 
segments is controlled by the value of K (which needs to be large to achieve over-
segmentation).  

 
4.2 Application of segmentation methods 
In order to demonstrate the working of segmentation algorithms in practice we applied 
them to the Tisia Valles site on Mars (see Section 3.1). The site is segmented on the basis of 
three pixel-based terrain features { u1, u2, u3 } using both, watershed and K-means, 
algorithms. Note that the featured used here are different from those we choose for 
exploratory mapping (see Section 3.1); they are: u1=slope, u2=curvature, and u3=flooding 
adjustment. The watershed algorithm produced 7708 segments with sizes ranging from 1 to 
267 pixels, whereas K-means algorithm (with the value of K = 5000) produced 6593 single-
connected segments having sizes ranging from 4 to 117 pixels. Note that the K-means 
algorithm yields more than K segments because the resulting K clusters do not correspond 
to K single-connected spatial segments. In order to derive the segmentation we assign a 
unique segment identifier to each subset of a cluster corresponding to a single spatially 
connected region. The two algorithms yield segmentations having very different characters 
(see Fig. 5.). The watershed algorithm yielded a mosaic of segments that, by themselves, do 
not revel the landforms present in the site. On the other hand, the inclusion of spatial 
coordinates into the K-means algorithm resulted in segments that reflect the geometry of the 
landforms – one can notice the major landforms just from the segmentation image. 
 

Fig. 5. Six-classes geomorphic maps Tisia Valles site using different combination of 
segmentation and classification algorithms. 

 
4.3 Segment-based features 
In the segmentation-based classification, pixel-based features used for segmentation are 
different from segment-based features used for classification. Each segment, regardless of an 
algorithm used to obtain the segmentation, is represented by a combination of physical and 
spatial segment-based features. Physical features are pixel-based features averaged over the 

www.intechopen.com



Machine Learning Tools for Geomorphic Mapping of Planetary Surfaces 261

approximately equal-sized segments assures that statistics of pixel-based features are 
calculated from comparable ensembles of member pixels. 
Our dividing segmentation algorithm (Stepinski et al, 2006) uses the watershed transform 
(Beucher, 1992) applied to a gray-scale image that encapsulates gradients of pixel-based 
feature vectors. This image is calculated using a computationally simple homogeneity 
measure H (Jing et al, 2003). A pixel located in a region that is homogeneous with respect to 
pixel-based features has a small value of H. On the other hand, a pixel located in a region 
which is inhomogeneous with respect to features has a large value of H. A raster constructed 
by calculating the values of H for all pixels in the landscape can be interpreted as a gray-
scale image and is referred to as the H-image. White areas in H-image represent boundaries 
of homogeneous regions, whereas the dark areas represent the actual regions. The 
watershed transform of H results in (over) segmentation of the H-image (and thus the 
landscape). 
Our agglomerative segmentation algorithm (Stepinski et al, 2007) uses a contiguity-
enhanced variant of the standard K-means clustering algorithm, which uses – in addition to 
terrain attributes – spatial coordinates of pixels as features. The additional spatial features 
control the size of the segments while providing the resultant segments with very desirable 
geometric properties. For example, in areas where terrain features are approximately 
uniform, the local gradient of the total feature vector is dominated by changes in spatial 
coordinates leading to the formation of round-shaped segments. On the other hand, in areas 
where change in the total feature vector is dominated by change in terrain attributes, 
segments tend to exhibit an elongated shape in direction perpendicular to the gradient of 
the terrain-only sub-vector. These properties constitute additional knowledge that could be 
exploited by the classification module. The actual segmentation invokes a simple K-means 
algorithm applied to spatially-enriched, pixel-based feature vectors. The size of the 
segments is controlled by the value of K (which needs to be large to achieve over-
segmentation).  

 
4.2 Application of segmentation methods 
In order to demonstrate the working of segmentation algorithms in practice we applied 
them to the Tisia Valles site on Mars (see Section 3.1). The site is segmented on the basis of 
three pixel-based terrain features { u1, u2, u3 } using both, watershed and K-means, 
algorithms. Note that the featured used here are different from those we choose for 
exploratory mapping (see Section 3.1); they are: u1=slope, u2=curvature, and u3=flooding 
adjustment. The watershed algorithm produced 7708 segments with sizes ranging from 1 to 
267 pixels, whereas K-means algorithm (with the value of K = 5000) produced 6593 single-
connected segments having sizes ranging from 4 to 117 pixels. Note that the K-means 
algorithm yields more than K segments because the resulting K clusters do not correspond 
to K single-connected spatial segments. In order to derive the segmentation we assign a 
unique segment identifier to each subset of a cluster corresponding to a single spatially 
connected region. The two algorithms yield segmentations having very different characters 
(see Fig. 5.). The watershed algorithm yielded a mosaic of segments that, by themselves, do 
not revel the landforms present in the site. On the other hand, the inclusion of spatial 
coordinates into the K-means algorithm resulted in segments that reflect the geometry of the 
landforms – one can notice the major landforms just from the segmentation image. 
 

Fig. 5. Six-classes geomorphic maps Tisia Valles site using different combination of 
segmentation and classification algorithms. 

 
4.3 Segment-based features 
In the segmentation-based classification, pixel-based features used for segmentation are 
different from segment-based features used for classification. Each segment, regardless of an 
algorithm used to obtain the segmentation, is represented by a combination of physical and 
spatial segment-based features. Physical features are pixel-based features averaged over the 
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constituent pixels of the segments.  Spatial features are obtained using each segment’s shape 
measure and the neighborhood context measure. The shape measure is computed in terms 
of the Shape Complexity Index (SCI). The SCI is a measure of segment circularity. The closer 
the value of SCI is to 1.0, the more circular the object; on the other hand, thin ring-like 
shapes tend to have SCI values of 2.5 and higher. One of the challenges of the automatic 
classification of landforms is feature similarity of some landform classes that differ mostly 
by their spatial context. For instance, segments making up craters’ walls and segments 
constituting ridges not associated with craters may have similar values of slope, curvature, 
but are located in different spatial contexts. In our segmentation-based tool we take into 
consideration spatial context by means of neighborhood context measures. Ideally, we 
would like to know classes of segment’s neighbors to establish its spatial context, but such 
information is not available prior to classification. However, we can categorize the 
unlabeled segments into low, medium, and high categories based on statistics of the values 
of their physical features. Such categorization is used to calculate the neighborhood 
property of each segment using a nine-dimensional vector { ahs, ams, als, ahc, amc, alc, ahf, amf, alf }, 
where aji j=h, m, l and i= s (slope), c(curvature), f(flooding adjustment) is a percentage of the 
focus segment boundary with neighbors belonging to category high (h), medium (m), or low 
(l), respectively. Thus, a segment-based feature vector has 13 components, three physical 
features, the value of SCI, and 9 values of aji. 
 
4.4 Classification and mapping 
We applied three different learning algorithms for segment classification and to generate 
geomorphic maps. First, the simple Naive Bayes algorithm provides a baseline for 
comparison with other classifiers. Second, the Support Vector Machines (SVM) algorithm 
that works by finding an optimal hyper-plane in a (transformed) feature space (Boser et al, 
1992). The optimal hyper-plane maximizes the separation between classes. SVM exploits 
local data patterns and has been found to be effective in spatial data mining applications 
(Sharifzadeh et al, 2003). Third, bagging ensemble learning algorithm (Breiman, 1996) 
generates multiple models by running a single learning algorithm multiple times over 
bootstrapped samples of the training set. The final class label is the result of voting over the 
contributing models (one from each bootstrap sample). Bagging is known to work well for 
complex datasets and is particularly attractive when the training set is noisy (Dietterich, 
2000). We use a decision tree (C4.5) as the base learner in the bagging algorithm. 
We applied these classifiers to segments generated by watershed and K-means generated 
divisions of the Tisia Valles site.  We have chosen six landform classes for mapping:  crater 
floors, convex crater walls, concave crater walls, convex ridges, concave ridges, and inter-
crater plateau.  The choice of these particular landform classes stems from our interest in the 
quantitative characterization of old, cratered Martian surface. The labeled (training) set of 
segments was generated by manually labeling 30% (by surface area) of the Tisia site into the 
aforementioned six classes. Fig. 5 offers a visual assessment of the maps generated by 
different combination of segmentation and classification algorithms. The “ground truth” 
map of Tisia (an extension of the training set to the entire site) was hand-labeled. It shows 
how a typical analyst would map the six landforms in this site;  it does not really constitute 
a ground truth (in the strict meaning of the concept) because an analyst is likely to draw an 
idealized map that misses details and projects a human conceptualization of the entire 
landscape, even if it contradicts local measurements. Maps based on the watershed 

segmentation have a “simple” look as they lack small-scale details, whereas maps based on 
the K-means segmentation look exhibit more small-scale details. On the basis of only a 
visual inspection one could conclude that maps stemming from watershed segmentation are 
“better” because they look more like the ground truth map. However, closer inspection of 
the generated maps shows that maps based on K-means segmentation correctly reflect some 
small-scale details that are absent from the watershed segmentation and the analyst-drawn 
map. The maps generated by Naive Bayes are inaccurate and inferior to maps generated by 
Bagging and SVM.  
 

 
Table 1.  Assessment of performance of different methods used to map the Tisia Valles site. 
The entries for individual landform are precision/recall. NB – Naïve Bayes, B – Bagging 
with C4.5, SVM – Support Vector machines.

Table 1  gives accuracy rates for maps of the Tisia site. Disregarding maps produced by the 
Naive Bayes algorithm, accuracy rates are above 86%. Note that maps based on the 
watershed segmentation have slightly higher rates than maps based on the K-means 
segmentation in line with their greater similarity to the analyst drawing. Precision and recall 
rates for six landform classes are also given in Table 1. Results show that inter-crater 
plateau, crater floor, and convex crater walls landforms are mapped with high accuracy. 
Concave crater walls are detected with less accuracy, and ridges are difficult to identify 
correctly. This is because local ridges look like crater walls, even though they are different 
landforms in the context of the entire landscape. 

 
5. Summary and conclusion 
 

Geomorphic auto-mapping of planetary surfaces is a challenging problem.  Here we have 
described how machine learning techniques, such as clustering or classification, can be 
utilized to automate the process of geomorphic mapping for exploratory and exploitation 
purposes.  Relatively coarse resolution of planetary topographic data limits the number of 
features that can be used in the learning process and makes planetary auto-mapping more 
challenging than terrestrial auto-mapping. With this caveat, the methods discussed here are 
also applicable to terrestrial surfaces.  
The major challenge in exploratory (unsupervised learning) mapping is to generate a map 
that has an appearance and utility similar to maps already used by the geosciences 
community.  This means that a clustering algorithm should be able to generalize from a 
simple similarity of feature vectors to a similarity of ensembles of feature vectors. In other 
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constituent pixels of the segments.  Spatial features are obtained using each segment’s shape 
measure and the neighborhood context measure. The shape measure is computed in terms 
of the Shape Complexity Index (SCI). The SCI is a measure of segment circularity. The closer 
the value of SCI is to 1.0, the more circular the object; on the other hand, thin ring-like 
shapes tend to have SCI values of 2.5 and higher. One of the challenges of the automatic 
classification of landforms is feature similarity of some landform classes that differ mostly 
by their spatial context. For instance, segments making up craters’ walls and segments 
constituting ridges not associated with craters may have similar values of slope, curvature, 
but are located in different spatial contexts. In our segmentation-based tool we take into 
consideration spatial context by means of neighborhood context measures. Ideally, we 
would like to know classes of segment’s neighbors to establish its spatial context, but such 
information is not available prior to classification. However, we can categorize the 
unlabeled segments into low, medium, and high categories based on statistics of the values 
of their physical features. Such categorization is used to calculate the neighborhood 
property of each segment using a nine-dimensional vector { ahs, ams, als, ahc, amc, alc, ahf, amf, alf }, 
where aji j=h, m, l and i= s (slope), c(curvature), f(flooding adjustment) is a percentage of the 
focus segment boundary with neighbors belonging to category high (h), medium (m), or low 
(l), respectively. Thus, a segment-based feature vector has 13 components, three physical 
features, the value of SCI, and 9 values of aji. 
 
4.4 Classification and mapping 
We applied three different learning algorithms for segment classification and to generate 
geomorphic maps. First, the simple Naive Bayes algorithm provides a baseline for 
comparison with other classifiers. Second, the Support Vector Machines (SVM) algorithm 
that works by finding an optimal hyper-plane in a (transformed) feature space (Boser et al, 
1992). The optimal hyper-plane maximizes the separation between classes. SVM exploits 
local data patterns and has been found to be effective in spatial data mining applications 
(Sharifzadeh et al, 2003). Third, bagging ensemble learning algorithm (Breiman, 1996) 
generates multiple models by running a single learning algorithm multiple times over 
bootstrapped samples of the training set. The final class label is the result of voting over the 
contributing models (one from each bootstrap sample). Bagging is known to work well for 
complex datasets and is particularly attractive when the training set is noisy (Dietterich, 
2000). We use a decision tree (C4.5) as the base learner in the bagging algorithm. 
We applied these classifiers to segments generated by watershed and K-means generated 
divisions of the Tisia Valles site.  We have chosen six landform classes for mapping:  crater 
floors, convex crater walls, concave crater walls, convex ridges, concave ridges, and inter-
crater plateau.  The choice of these particular landform classes stems from our interest in the 
quantitative characterization of old, cratered Martian surface. The labeled (training) set of 
segments was generated by manually labeling 30% (by surface area) of the Tisia site into the 
aforementioned six classes. Fig. 5 offers a visual assessment of the maps generated by 
different combination of segmentation and classification algorithms. The “ground truth” 
map of Tisia (an extension of the training set to the entire site) was hand-labeled. It shows 
how a typical analyst would map the six landforms in this site;  it does not really constitute 
a ground truth (in the strict meaning of the concept) because an analyst is likely to draw an 
idealized map that misses details and projects a human conceptualization of the entire 
landscape, even if it contradicts local measurements. Maps based on the watershed 

segmentation have a “simple” look as they lack small-scale details, whereas maps based on 
the K-means segmentation look exhibit more small-scale details. On the basis of only a 
visual inspection one could conclude that maps stemming from watershed segmentation are 
“better” because they look more like the ground truth map. However, closer inspection of 
the generated maps shows that maps based on K-means segmentation correctly reflect some 
small-scale details that are absent from the watershed segmentation and the analyst-drawn 
map. The maps generated by Naive Bayes are inaccurate and inferior to maps generated by 
Bagging and SVM.  
 

 
Table 1.  Assessment of performance of different methods used to map the Tisia Valles site. 
The entries for individual landform are precision/recall. NB – Naïve Bayes, B – Bagging 
with C4.5, SVM – Support Vector machines.

Table 1  gives accuracy rates for maps of the Tisia site. Disregarding maps produced by the 
Naive Bayes algorithm, accuracy rates are above 86%. Note that maps based on the 
watershed segmentation have slightly higher rates than maps based on the K-means 
segmentation in line with their greater similarity to the analyst drawing. Precision and recall 
rates for six landform classes are also given in Table 1. Results show that inter-crater 
plateau, crater floor, and convex crater walls landforms are mapped with high accuracy. 
Concave crater walls are detected with less accuracy, and ridges are difficult to identify 
correctly. This is because local ridges look like crater walls, even though they are different 
landforms in the context of the entire landscape. 

 
5. Summary and conclusion 
 

Geomorphic auto-mapping of planetary surfaces is a challenging problem.  Here we have 
described how machine learning techniques, such as clustering or classification, can be 
utilized to automate the process of geomorphic mapping for exploratory and exploitation 
purposes.  Relatively coarse resolution of planetary topographic data limits the number of 
features that can be used in the learning process and makes planetary auto-mapping more 
challenging than terrestrial auto-mapping. With this caveat, the methods discussed here are 
also applicable to terrestrial surfaces.  
The major challenge in exploratory (unsupervised learning) mapping is to generate a map 
that has an appearance and utility similar to maps already used by the geosciences 
community.  This means that a clustering algorithm should be able to generalize from a 
simple similarity of feature vectors to a similarity of ensembles of feature vectors. In other 
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words, an algorithm should be able to generate classes of varying degree of homogeneity 
based on spatial considerations. This is what our algorithm described in section 3.1 has been 
designed to do.  Future research will address better criteria for deciding which classes 
should be homogeneous and which should be more heterogeneous. Overall, our two-stage 
tool for exploratory mapping is expected to be adopted by the geosciences community 
because it is matured enough for immediate application in geologic mapping, quantitative 
comparative geomorphology, and landscape visualization.   
The major challenge in exploitation mapping (supervised learning) is the issue of spatial 
context. An analyst can map landforms having very similar features as different classes 
depending on broader spatial context. Thus, spatial context must be incorporated into the 
mapping algorithm in order to generate maps similar to those that are manually drawn. We 
have demonstrated that a choice of a particular segmentation method and a particular 
(capable) classification algorithm results in somewhat different maps, but, in general, all 
generated maps were acceptable. Indeed, regardless of the segmentation/classification 
combination, most misclassifications were the results of confusion due to spatial context.  
Our simple method of taking some account of spatial context proved insufficient to prevent 
misclassifications between elements of crater walls and elements of ridges. Future work 
needs to investigate more robust approach, such as, for example, Markov Random Fields, to 
incorporate spatial context information (Besag, 1986) into the learning algorithm. 
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have demonstrated that a choice of a particular segmentation method and a particular 
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