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1. Introduction 
 

Learning is the process of constructing a model from complex world. And machine learning 
is concerned with constructing computer programs that automatically improve with 
experience. Machine learning draws on concepts and results from many fields, including 
artificial intelligence, statistics, control theory, cognitive science, information theory, etc. 
Many successful machine learning applications have also been developed in recent years. 
Obviously, no matter what we adopt new analytical method or technical means, we must 
have a distinct recognition of system itself and its complexity, and increase continuously 
analysis, operation and control level.  
In mathematics, nonlinear system represents a system whose behavior is not expressible as a 
linear function of its descriptors. Our world is inherently nonlinear in nature. Generally 
speaking, there have difficulties in solving nonlinear equations. Especially the nonlinear 
system may give rise to some interesting phenomena such as chaos, where simple changes 
in one part of the system will produce complex effects throughout. 
It has been half century since the discovery of inherent randomicity in nonlinear systems 
(Ulam & Von Neumann, 1947). The study of chaotic symbolic sequences is gradually 
developing in theory. However, applied research of stochastic chaotic sequences has not 
been fully carried out, for most of studies focus on controlling or avoiding chaos. Chaos, 
nevertheless, affords inherent randomicity that can be calculated, which is an important 
applied domain. The stochastic symbolic sequences bear the following three features. First, 
computer can generate them iteratively. Second, like false stochastic numbers, they can set 
up a stochastic sequence simulation (in contradiction, they are based on corresponding 
symbolic spaces). Third, they can produce numerous symbolic spaces, which is not 
characteristic of common stochastic numbers. Therefore, the symbolic dynamics (Hao, 1989; 
Hao, 1991; Hao & Zheng, 1998; Collet & Eckmann, 1980; Alekseev & Yakobson, 1981; Xie, 
1993; Xie, 1996; Peng & Luo, 1991; Zhou & Peng, 2000) developed by this means is supposed 
to be very useful.  
Our researches are based on this kind of symbolic sequences, the generic iterative map in n  
symbolic map (Zhou & Cao, 2003) is: 
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For random n  symbolic sequences, their corresponding symbolic spaces, symbolic 
expression and kneading sequences are listed in Table 1,  
 

Symbolic Spaces Symbolic Expression Kneading Sequences 

2  .L R  ( , )L RL   

3  . .L M R  ( , )R L   --Kneading plane 

4  . . .LM N R  ( , )L RL   --Kneading space 

      
Table 1. The corresponding symbolic character in symbolic spaces 
 
In this chapter, we will clarify the different kinds of statistic character and complexity in 
nonlinear systems. This chapter includes two parts, the fist part is about unimodal surjective 
map and Lorenz type maps nonlinear systems, which are two kinds of typical nonlinear 
systems. The distributions of frequency, inter-occurrence times, first passage time and 
visitation density in unimodal surjective map and Lorenz type maps are discussed carefully. 
These two kinds of nonlinear systems have same distributions, which will also be explained 
in theory, and the catholicity of the statistic character will be elicited. The second part is 
about the inherent randomicity in 4-symbolic dynamics. The distribution of frequency, inter-
occurrence times and the alignment of two random sequences are amplified in detail. By 
using transfer probability of Markov chain (MC), we will obtain analytic expressions of 
generating functions in four probabilities stochastic wander model, which can be applied to 
all 4-symbolic systems. So, a perfect symbolic platform will be set up for our utilizing 
statistic character. The 4-symbolic sequences have natural relations with bioinformatics 
sequences, in the field of application, we hope to afford this kind of symbolic platform 
which satisfies these stochastic properties and study some properties of DNA sequences, 20 
amino acids symbolic sequences of protein structure, and the time series that can be 
symbolic in finance market et al.  

 
2. The statistic character in Unimodal surjective map 
 

2.1 Symbolic dynamics of Unimodal surjective map 
The generic iterative form in Unimodal surjective map is: 
 

2
1 ( , ) 1 2 ,n n nx F A x x      

 

nx  is defined on interval [ 1,1].  
Let us define an alphabet of 2 numbers, which is corresponding to the likely states of a 
random discrete nonlinear system, or all the likely outcomes of a random experiment:  

 0,1 {" "," "}faillure success    

 
The forward sequence constitutes a space (or a set) composed of the generated outcomes: 
 

  0 1 2, , , : , {0,1, 2, }N
i i          

 
These sequences themselves are iteratively generated (Collet & Eckmann, 1980; Peng & Luo, 

1991), in fact it's a shift map : N N   , which acting on the sequences by 

0 1 2 1 2( , , , ) ( , , ).        Another definition is  , which is the product measure 

(Coelho & Collet, 1994; Coelho, 2000; Peng & Cao, 1996; Billingsley, 1986) on N generated 

by the measure (1 , )p p  on  {0,1} , and will be denoted by (1 , )Np p . 

 
2.2 The distribution of frequency 

Defining : {0,1}Nf     by  0 1 2 0{ , , , } ,f      it is coarse graining in theory, one 
can get: 

( ) ( ),i
iX f    (for 0,1,2,i   ), 

 
which are sequences of independent and identically distributed(i.i.d.) random variables 

defined on the probability space ( , )N    (all the following discussions are based on the 

random variables), that is, the random variables represented by 0 1 2, , ,    are i.i.d., and 

( 0,1,2, )i i   is based on  , 
 

0 1 1
1

0

0 1 1

   ( )

n n
n

i

i

n

Y X X X

f x

  









   



   







 

 
The stochastic symbolic sequences in Unimodal surjective map satisfy Binomial distribution: 
 

                                           { : ( ) } (1 )N k k n k
n nY x k C p p                                       (1) 

 
2.3 The inter-occurrence times in Unimodal surjective map 
Now let us make a further study a given word's occurrence times in an independent 
repeated experiment, such as  success  in the alphabet of 2 numbers. Given outcomes of a 
random sequence 
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0 1 2( , , , ) ,N      
 
we are mainly interested in n  such that 1n  , let 
 

1( ) ( ) inf{ 0 : 1}nn        , 
 
and accordingly, for 2j  , 
 

1( ) inf{ ( ) : 1},j j nn        

 
then for all 0k  , the result is, for fixed 0,k   and all 1 1jk k   , 
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                                 (2) 

 
the inter-occurrence times 1 2 1 3 21 , , ,         are i.i.d. with parameters p . 

 
2.4 The first passage time in Unimodal surjective map 
Using this method similar to study the distribution of first passage time yT of one-

dimensional simple random wander in stochastic processes, one gets j  satisfies Negative 

Binomial distribution ( , )BN j p : 
 

                                    
1
1               ( )

( , 1, 2, ,   0 1,   1 )

r r k r
j kk C p q

k r r r p q p
  

  

      
                                (3) 

 
3. The statistic character in Lorenz maps 
 

3.1 Symbolic dynamics of Lorenz maps 
Lorenz equation: 
 

( ),
( )

x y x
y r z x y
z xy bz

 
   
  





 

On the Poincaré section, some geometrical structure of Lorenz flow may be reduced to a 
one-dimensional Lorenz map :[ , ] [ , ]f       , ( , 0, 1)     
 

( ) . . ,      0
( )

( ) . . ,    0
L

R

f x x h o t x
f x

f x x h o t x





 

 

     
    

 

 
Where   is a constant greater than 1, “h.o.t” represents high-level term. Both of the 

branches Lf  and Rf  are monotone increasing. In order to get iterative sequences in the 
part of chaos, the Lorenz map used in this research is:  
 

                                                

2

2

1 2 ,      0
( )

1 2 ,     0
L

R

f x x
f x

f x x

    
   

                                            (4) 

 
The symbolic dynamics of Lorenz maps is also simple (Peng & Du, 1999). Following the 
kneading theory, the address ( )A x  of any point x on the interval [ 1,1]  reads 
 

,          [ 1,0)
( )

,          [0,1]
R x

A x
L x

 
  

 

 
0x  is the turning (discontinuous) point, and one can define C andD  as 

 

0

0

lim ( ),

lim ( ).

Lx

R
x

C f x

D f x











 

 
Two infinite or finite symbolic sequences starting from C  andD  are kneading sequences 
which can be ordered lexicographically by ,L C D R  .  For two kneading sequences, 

1 2 1i i       and 1 2 1i i    , with maximal common leading part: 
 

1 2 1 2i i      , 
 

one has， 

1 2 1 1 2 1i i i i           
 

if and only if 1 1i i   .  
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The shift operator   is defined as， 
 

1 2( )k
k k        for  1 2 1k k        . 

 
For any two sequences， 
 

1 2 1i i          and  1 2 1 ,j j         

 

, { , },i j R L   if ( )k   and ( )k   , for all K  ,then  is called 

maximal, minimal, and ( , )S   is an extremal pair. Let the integers Lk and Rk  be the 

order coordinates of a letter in the sequence such that 1( )Lk L    , and 
1( )Rk R    , the set  Lk and Rk  describe successive sequences of L orR . Then, if 

the pair S further satisfies the following condition: 
 

1( ) ,Lk K   2( ) ,Rk K   { } { } { } ,L Rk k k          

  
' 1( ) ,Lk K  

' 2( ) ,Rk K    ' ' '{ } { } { } .L Rk k k     
 

S  is admissible with respect to the kneading sequences 1K and 2K .  All the admissible 
pairs form an admissible set K and fill up the whole kneading parameter plane of nonlinear 
systems of two letters. 

 
3.2 The distribution of frequency 

See expression (1). 

 
3.3 The inter-occurrence times in Lorenz map 

See expression (2). 

 
3.4 The first passage time in Lorenz map 

See expression (3). 

 
4. Visitation density function of Unimodal surjective maps and Lorenz map 
 

The orbital points’ distribution of the Unimodal surjective maps and Lorenz map is, 
 

                                                           
2

1( )
1

x
x







                                                               (5) 

The concrete resolvent is using Frobenius-Perron operator (Lasota & Mackey, 1985; Yorke & 
Li, 1975; Ding & Li, 1991; Li, 1976). The general form of resolve visitation density problem 
by F-P operatorP is,  

1 ( )
( ) ( )

S

dPf x f u du
dx 

  
, 

 
here, ( )S S x  is a given map,  is an interval, ( )f x  is a density function. In fact, it is an 
iterative process, the initial state is 
 

11 0( )
( ) ( )

S
f u du f u du


  

. 

 

0 ( )f x  is an arbitrary initial density and 1( )f x  is a new density transformed by map 

( )S x , that is,  

1 0f Pf , 
 

until, 

*( ) ( )nf x P f x    as    n . 
 

Of course,  

* *( ) ( )Pf x f x , 
 

the unique limiting density is just the ultimate visitation density function. 
It is mainly in numerical value meaning that getting visitation density functions of higher 
order maps, if the invariable density does exist. Figure 1 is the U-shaped probability density 
based on iterates, corresponding analytic form is just expression (5), 

 
Fig. 1. The visitation density of Unimodal surjective map and Lorenz map based on 1000000 
iterates, the interval [ 1,1]  is divided into 2000 subintervals. X  coordinate axis is 

corresponding interval, Y coordinate axis is the output proportion of each interval. 
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5. The comparability of statistic character in the Unimodal map and Lorenz 
map 
 

The former statistic character in Lorenz map is similar entirely to that in Unimodal 
surjective map. This kind of comparability is determined by the relationship of Unimodal 
surjective map and Lorenz map. (See Figure 2) 

The iterative form of Lorenz map is (4), and Unimodal surjective map is 21 2y x  . 
One can find this characteristic by Figure 2, 
 

,       0
,         0

a b

a b

f f x
f f x
  

  
. 

 
A n -periods orbit of af  corresponds to a couple of n -periods orbits of bf . Both of them 

have the same topological entropy and marker behavior. The fixed point of af  exhibits 

two-periods behavior of bf , which can be found clearly by contrasting their bifurcation 
diagrams. (See Figure 3) 
Compared the right branch of Lorenz map and Unimodal surjective map, the Lorenz map is 
only overturned by x  coordinate axis. As these results reveal that this kind of overturn 
does not influence statistical properties of random sequences. Compared with Unimodal 
map, Lorenz map belongs to a more complex category, which presents more abundant 
dynamics actions. But as above study, these statistical results present regulation as a whole. 
These are randomicity in deterministic systems. 

 
6. The stochastic properties in 4-letters maps 
 

6.1 The distribution of frequency 
Let us define an alphabet of four numbers, which is corresponding to the likely states of a 
random discrete dynamical system, or all the likely outcomes of a random experiment: 
 

     0,1,2,3 , , , , , ,
 {"Spring","Summer","Autumn","Winter"}

L M N R A G C T   


 

The forward sequence constitutes a space (or a set) composed of the generated outcomes: 
 

  0 1 2, , , : , {0,1, 2, }N
i i          

 
These sequences themselves are iteratively generated, in fact it's a shift map 

: N N   , which acting on the sequences by 0 1 2 1 2( , , , ) ( , , ).        

Another definition is , which is the product measure[6] on N generated by the measure 
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1 2 3 4( , , , )p p p p  on  {0,1,2,3}  ( 1 2 3 4 1p p p p    ), and will be denoted by 
Npppp ),,,( 4321 . Defining : {0,1, 2,3}N     by  0 1 2 0{ , , , } ,      it is  

also coarse graining in theory, one can get: 
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Which are sequences of independent and identically distributed (i.i.d.) random variables 

defined on the probability space ( , )N    (all the following discussions are based on the 

random variables), that is, the random variables represented by 0 1 2, , ,    are i.i.d., and 
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6.3 Exponential distribution of 4-letters maps 
Suppose there are two random sequences of outcomes corresponding to the repetition of an 
experiment with four likely results. Let 0 1 2( , , , )      and 0 1 2( , , , )      

denote the sequence of outcomes (  independent of  ). There is an alignment at time n  if 

n n  . The alignment at time n  as a success and no alignment is failure. Then note that, 

for all 0n  ,  0 1p   and 1q p  , 
 

0 0( ) ( )n nP P p        
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1( 1| ) 1n nP Z k Z k    , if 1k   
 

for every 0t  , one gets the asymptotic exponential distribution of k : 
 

0lim ( ( ) | 0) t
k kk

P tE Z e  


   , 

( )kE   represents mathematical expectation of k , t  is a time coordinate. Furthermore, if 
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and 1n k A    , then, 

lim ( ( )) At
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P t E e  


   

 
accordingly, one also gets, 
 

lim ( ( )) Gt
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lim ( ( )) Tt
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Fig. 4 represents the alignment of two random sequences.

 
6.4 Transfer probability of Markov chain (MC) in 4-letters maps 
We choose one of these transfer models (Figure. 5), such as Figure. 6. 
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ijp . The generating function is, 
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let, 
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7. Conclusion and discussion 
 

The statistic character and complexity in nonlinear systems have been clarified in this 
chapter. These stochastic symbolic sequences bear three characters. In two kinds of typical 
nonlinear systems-unimodal surjective map and Lorenz type maps nonlinear systems, the 
distributions of frequency, inter-occurrence times, first passage time and visitation density 
in unimodal surjective map and Lorenz type maps are discussed carefully. These two kinds 
of nonlinear systems have same distributions, which have also been explained in theory, 
and the catholicity of the statistic character has been elicited. In the 4-symbolic dynamics, 
the distribution of frequency, inter-occurrence times and the alignment of two random 
sequences have been amplified in detail. By using transfer probability of Markov chain (MC), 
we have obtained analytic expressions of generating functions in four probabilities 
stochastic wander model, which can be applied to all 4-symbolic systems. So, a perfect 
symbolic platform has been set up for our utilizing statistic character, in fact, it is a 
stochastic signal platform of symbolic simulation. The 4-symbolic sequences have natural 
relations with bioinformatics sequences, in the field of application, we hope to afford a 
symbolic platform which satisfies these statistic character and study some properties of 
DNA sequences (Hao, 2000; Hao et al., 2000; Bershadskii, 2001; Grimm & Rupprecht, 1997; 
Allegrini et al., 1996; Natalia & Avy, 2005; Elena et al., 2005), 20 amino acids symbolic 
sequences of protein structure, and the time series that can be symbolic in finance market et 
al, which are part of our future work. The symbolic platform provides a set of effective 

methods to approach problems of this kind. The establishment of this symbolic platform 
will open up a vast vista. 
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