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1. Introduction  

Routine soil surveys determine many soil properties but soil drainage and soil moisture 
indicators (soil permeability, hydrologic soil group, etc.) are often the most relevant for 
agro-environmental purposes. They influence in-field crop yield and affect several 
environmental processes, i.e., soil erosion, nutrient and pesticide transport by runoff water 
and leaching, nitrification, and greenhouse gas production. Up-to-date information is 
needed to guide watershed and site-specific crop management but conventional soil survey 
procedures are time-consuming and expensive. New technologies, such as remote and 
proximal sensing, feature in many key soil science applications and are particularly effective 
for mapping soil drainage (Niang et al., 2007 and 2006; Bell et al., 1994 and 1992; Lee et al., 
1988; Levine et al., 1994; Cialella et al., 1997; Campling et al., 2002; Liu et al., 2008). Since soil 
drainage is often related to other properties, such as soil water content and texture 
(Kravchenko et al., 2002), it can be mapped using both optical and radar remote sensing. 
When cloud-free optical imagery is not available, radar imaging is the best option. For most 
soil conditions, soil surface moisture and vegetative growth and development are 
considered to be indicators of soil drainage. However, these factors also affect radar 
backscatter. Knowledge of soil and crop types is needed to understand the relationship 
between radar backscatter and soil drainage (Smith et al., 2006). Soil drainage is a dynamic 
process that can by defined only by integrating several factors: water-holding capacity, 
hydraulic conductivity, and seasonal variation in water-table depth (Jennifer et al., 2001). 
Thus, radar remote sensing data must be acquired under appropriate environmental 
conditions to effectively determine soil drainage classes. Most studies on agricultural 
applications of radar remote sensing involve single frequency and single polarization data. 
Unless such data are combined in multi-temporal series, they are limited to a few values 
(McNairn and Brisco, 2004). Only a few studies suggest that multi-polarization radar could 
provide valuable and timely information by delineating homogenous soil zones (McNairn 
and Brisco, 2004; van der Sanden, 2004). One recent study showed that soil drainage could 
be mapped on an in-field scale by using high-resolution optical and C-band SAR data from 
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CV-580 (Liu et al., 2008). However, the relationship between polarimetric parameters and 
soil drainage indicators was not investigated. 
This chapter evaluates the feasibility of using multi-polarization and polarimetric C-band 
SAR data from CV-580 to determine soil drainage classes. First, a Wishart supervised 
classification was applied to determine land use. Multi-polarized channels (HH, VH, VV, 
RR, RL LL, ψ45°, and ψ135°) were synthesized and backscattering coefficients were derived 
for the reference soil profile pits acquired from the soil survey. These data were analysed for 
designated land use and drainage classes. Polarimetric parameters from the Cloude and 
Pottier (1997) decomposition were also analysed. Linear discriminant analysis was applied 
on each land use using soil drainage classes from soil survey. The feasibility of using this 
approach with RADARSAT-2 data to map soil drainage is discussed.  

 
2. Materials and methods 

The study area was located at the Bras d’Henri watershed (167 km2) near Quebec City 
(Figure 1). During the summers of 2004 and 2005, intensive soil surveys were conducted 
over the entire watershed at two prospecting scales (1:20,000 and 1:40,000). A total of 1612 
soil profiles were collected for updating and upgrading the soil map and a recommended 
sampling method based on random transects (Nolin et al., 1994) was adopted. Five out of 
seven soil drainage classes, ranging from well-drained to very-poorly drained, were 
identified in the watershed according to the soil surveyor’s expert knowledge. These data 
were used as a validation dataset. Polarimetric C-band SAR data from CV-580 were 
acquired in November 2005 over the study area. An area of 101 km2, with 1045 soil profiles, 
was covered (Table 1). The SAR data were radiometrically calibrated by the Canadian 
Center of Remote Sensing (Murnaghan, 2005). Radiometric accuracy was less than 1dB for 
the four polarizations. Slant range resolution was 4 × 4 m (azimuth × range) for the SIR-C 
product and incidence angles were large (33° to 67°).  
 
The polarizations (HH, HV, VV, RR, LL, ψ45°, and ψ135°) were synthesized from the SAR 
data using Polarimetric WorkStation software (Touzi and Charbonneau, 2004). These 
polarizations were used as ancillary data for soil drainage classification. The assumption 
was that, under given soil moisture conditions, variation in the radar backscatter would 
indicate soil drainage states. This relationship between polarizations and soil moisture has 
been documented (Baronti et al., 1995). Linear cross-polarizations (HH, VV, and HV) refer to 
the power from the transmitted linear wave (H or V) recorded by the sensor and repolarized 
into the orthogonal polarizations (V or H). With fully polarimetric data, nonlinear 
polarizations, such as circular and elliptical polarizations, can be synthesized. 
 
For the left-handed circular waves (L), the electric field vector rotates counter-clockwise; for 
the right-handed circular waves (R), the vector rotates clockwise. The responses of circular 
co-polarizations (RR and LL) are associated with the volume or multiple scattering and the 
handedness of received wave, while the cross-polarization (RL) is associated with smooth 
surfaces (McNairn et al., 2002). Elliptical polarizations can also be derived from polarimetric 
data by defining the orientation (ψ) and ellipticity () angles. The two polarizations (ψ45° 
and ψ135°) used in this study correspond at =0° and ψ=45°, and =0° and ψ135°, 
respectively, and were positively correlated to soil moisture (McNairn et al., 2002). 

 

Another unique feature provided by the fully polarimetric data is the possibility of 
separating different scattering distributions by sub-matrices associated with the specific 
scattering properties of point, or distributed scatters and their ensembles. Several 
polarimetric target decomposition theorems have been proposed, including: coherent 
(Krogager, 1992; Cameron and Leung, 1990), non-coherent (Huynen, 1965; Holm and 
Barnes, 1988), model-based decomposition (Freeman and Durden, 1998), eigenvector-based 
decomposition (van Zyl, 1989; Cloude, 1992), and others as critically associated in the 
literature (Cloude, 1992; Cloude and Pottier, 1996 and 1997).  
 
The H/A/α (entropy H, anisotropy A, and mean alpha angle α) decomposition theorem 
proposed by Cloude and Pottier (1997) was used in this study to determine soil drainage 
classes. This decomposition is based on eigenvalues extracted from the coherency matrix. 
The average target scattering matrix estimated with these parameters allows the surface 
roughness to be separated from the soil dielectric constant (Hajnesk et al., 2001), which 
depends linearly on soil moisture.  
 
For an accurate extraction of the radar backscatter, a 5 × 5 Lee filter window (Lee, 1986) was 
applied to reduce the speckle noise. The Wishart supervised classification (H/A/α) was also 
applied to the SAR data to assess the characterization of soil drainage classes for agricultural 
areas. The training areas were designated on a RGB composite color and the classification 
was performed with three scattering mechanisms (single bounce scattering, double bounce 
scattering, and volume diffusion) derived from the Freeman decomposition.  
 
A principal component analysis (PCA) was used to reduce the effects of collinear data and 
matrix dimensions. The contribution of synthetized polarization and polarimetric parameters 
on soil drainage classification was assessed by forward stepwise discriminant analysis. 
 

 
Fig. 1. Study area: The Bras d’Henri watershed (QC, Canada) superimposed with the CV-580 
SAR; geo-referenced soil profile pits labelled as points (.) represent the training / validation 
dataset 
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indicate soil drainage states. This relationship between polarizations and soil moisture has 
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Another unique feature provided by the fully polarimetric data is the possibility of 
separating different scattering distributions by sub-matrices associated with the specific 
scattering properties of point, or distributed scatters and their ensembles. Several 
polarimetric target decomposition theorems have been proposed, including: coherent 
(Krogager, 1992; Cameron and Leung, 1990), non-coherent (Huynen, 1965; Holm and 
Barnes, 1988), model-based decomposition (Freeman and Durden, 1998), eigenvector-based 
decomposition (van Zyl, 1989; Cloude, 1992), and others as critically associated in the 
literature (Cloude, 1992; Cloude and Pottier, 1996 and 1997).  
 
The H/A/α (entropy H, anisotropy A, and mean alpha angle α) decomposition theorem 
proposed by Cloude and Pottier (1997) was used in this study to determine soil drainage 
classes. This decomposition is based on eigenvalues extracted from the coherency matrix. 
The average target scattering matrix estimated with these parameters allows the surface 
roughness to be separated from the soil dielectric constant (Hajnesk et al., 2001), which 
depends linearly on soil moisture.  
 
For an accurate extraction of the radar backscatter, a 5 × 5 Lee filter window (Lee, 1986) was 
applied to reduce the speckle noise. The Wishart supervised classification (H/A/α) was also 
applied to the SAR data to assess the characterization of soil drainage classes for agricultural 
areas. The training areas were designated on a RGB composite color and the classification 
was performed with three scattering mechanisms (single bounce scattering, double bounce 
scattering, and volume diffusion) derived from the Freeman decomposition.  
 
A principal component analysis (PCA) was used to reduce the effects of collinear data and 
matrix dimensions. The contribution of synthetized polarization and polarimetric parameters 
on soil drainage classification was assessed by forward stepwise discriminant analysis. 
 

 
Fig. 1. Study area: The Bras d’Henri watershed (QC, Canada) superimposed with the CV-580 
SAR; geo-referenced soil profile pits labelled as points (.) represent the training / validation 
dataset 

www.intechopen.com



Geoscience and Remote Sensing, New Achievements166

 

Drainage class Count % 
D3 53 5.1 
D4 71 6.8 
D5 303 29.0 
D6 495 47.4 
D7 123 11.8 
Total 1045 100.0 

Table 1. Distribution of soil profile pits by drainage classes 

 
3. Results and discussion 

Figure 2 shows the meteorological conditions during November 2005. Two days before the 
CV-580 overpass, cumulative precipitation for November was about 30mm and mean air 
temperature was about 5°C. These conditions can cause water saturation on certain soil 
types; soil water infiltration capability and drainage states could be shown after these dates. 
 

 
Fig. 2. Meteorological  conditions during the acquisition of CV-580 SAR data 
 
Figure 3 shows the Pauli color-coded image of part of the watershed which consists of 
agricultural areas, forest, wetland, and urban zones. It was obtained by assigning the red 
color R=HH-VV, green color G=HV, and blue color B=HH+VV, respectively. The 
Freeman decomposition using R=PDB, G=Pv, and B=Psfor red, green, and blue is 
presented in Figure 4. The PDB, Pv, and Ps parameters are powers scattered by the double-
bounce, volume, and surface components of their covariance matrices, respectively. The 
Freeman decomposition uses similar characteristics as the Pauli-based decomposition, but 
provides a more realistic representation because scattering models are used for dielectric 
surfaces. 
 

 

 
Fig. 3. Image obtained using the Pauli decomposition with R=HH-VV, G=HV, 
B=HH+VV 
 

 
Fig. 4. Image obtained using the Freeman decomposition with R= PDB, G= Pv, and B= Ps 
 
Two types of agricultural areas, with Ps (blue) the predominant scattering mechanism and 
dark areas, appear to have the same contribution from the three scattering mechanisms in 
Figure 4. Some training areas were designated in these areas for the Wishart supervised 
classification (H/A/α). This study focused on these agricultural areas. 
 
Classification results are given in Figure 5. The overall classification accuracy was 86%. 
Urban areas had a lower classification accuracy (63%) but the two designated agricultural 
areas had good classification accuracy: 86% for agricultural Area 1 and 93% for agricultural 
Area 2. 
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Fig. 5. Wishart supervised classification (H/A/α) 
 

 Land use Forest Agricultural 
Area 1 

Agricultural 
Area 2 Water Wetland Urban 

Forest 90 1 3 0 0 5 
Agricultural Area 1 2 86 2 0 0 10 
Agricultural Area 2 6 0 93 0 0 1 
Water 0 0 5 91 0 2 
Wetland 1 4 2 1 91 1 
Urban 7 23 7 0 0 63 

Table 2. Confusion matrix (%). Rows represent user-defined groups while columns 
represent segmented clusters 

 
3.1 Multi-polarization analysis 
The relationship between the mean backscattering with soil drainage classes and 
synthesized polarizations is given in Figures 6 and 7 for the two designated agricultural 
areas. An increase of the backscattering signal is observed for these areas, and for all 
polarizations, as a function of soil moisture as depicted by theoretical models IEM (Fung, 
1994), SPM and GO (Ulaby et al., 1986), and soil drainage classes. For the agricultural Area 
1, there are significant differences (about 4dB) between well-drained (D3+D4) and poorly-
drained soil classes (D5+D6) (Figure 6). Unfortunately, there were no data for the very 
poorly-drained soil class (D7). For the agricultural Area 2, three sets of drainage classes can 
be distinguished: D3, D4+D5+D6, and D7. The VV backscatter is slightly greater than the 
HH polarization for the two areas. According to Dobson and Ulaby (1986), this result may 
be due to the high incidence angle (33° to 66°) of acquisition for the SAR image. Therefore, 
differences in the mean backscattering signal behaviour for the first three soil drainage 
classes in the two agricultural areas indicate that scattering mechanisms differ among these 
fields. Meteorological conditions prevailed until the date of harvest and, therefore, land 
cover was highly variable: ploughed fields (forage, cereal, soybean, or harvested corn), 

 

harvested but not ploughed fields with crop residue, and unharvested corn fields. In this 
context, polarimetric parameters may be useful for analysing the physical properties 
(dielectric and geometric) of the two agricultural fields. 
 

 
Fig. 6. Relationship of the backscattering coefficient with drainage classes in agricultural 
Area 1 for the polarizations 
 

 
Fig. 7. Relationship of the backscattering coefficient with soil drainage classes in agricultural 
Area 2 for the polarizations 

 
3.2 Polarimetric analysis 
Figures 8, 9, and 10 give the α, H, and A parameters extracted from the 3 × 3 coherency matrix, 
respectively. The α is the main parameter used to identify the dominant scattering mechanism. 
Entropy, H, is a statistical descriptor of the randomness of the scattering process which can be 
interpreted as the degree of statistical disorder. Anisotropy, A, measures the relative 
importance of the second and the third eigenvalues. It is a complementary parameter to 
entropy and can be used as a discriminating index when H > 0.7.  
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Fig. 8. Map showing the variation of the parameter, α (°) 
 

 
Fig. 9. Map showing the variation of the entropy parameter, H  

 

 
Fig. 10. Map showing the variation of the anisotropy parameter, A  
 
The relationship of these parameters with the soil drainage classes for the two agricultural 
areas is given in Figures 11 and 12. The low values of the α parameter (15°  α  31°) for the 
two agricultural areas suggest that the scattering corresponds to the single-bounce 
scattering produced by the rough surface. Therefore, the low values of the entropy (0.05  H 
 0.1) for agricultural Area 1 indicate that the scattering process corresponds to a pure 
target. For agricultural Area 2, the values (0.05  H  0.2) indicate the presence of other 
scattering mechanisms weighted by the corresponding eigenvalues (1, 2, 3). The values of 
the anisotropy were greater (A  0.6) in the agricultural Area 2 for all drainage classes, 
whereas in the agricultural Area 1, the A parameter was in the medium range. This result 
confirms the presence of two scattering mechanisms with a dominant process and a 
secondary one with medium probability (3  0). In agreement with the Freeman 
decomposition (Figure 4), we conclude that the agricultural Area 1 was composed mostly of 
bare soils while the agricultural Area 2 consisted of less dense harvested fields with short 
plants. Under conditions similar to those of agricultural Area 1, the combination of α and H 
parameters appears to be sufficient for identifying soil drainage classes (Figure 11). 
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Fig. 11. Relationship of parameters α, H, and A with soil drainage classes in the agricultural 
Area 1 

 

 
Fig. 12. Relationship of parameters α, H, and A with soil drainage classes in agricultural 
Area 2 

 
3.3 Discriminant analysis 
In an approach to reduce collinearity, a principal component analysis (PCA) was applied on 
the multi-polarization dataset. The first two components, consisting of 94% of total variance 
of the information from the multi-polarization dataset, were selected for further analyses. 
The contribution of the multi-polarization data and the polarimetric parameters was studied 
using the following discriminant analysis criteria: Wilks’ lambda, F to remove, significant 
level associated to the partial Lambda, and the tolerance (Table 3). 
 
The multivariate solution shows that the two PCA factors (PC1 for the agricultural Area 1, 
and PC2 for the agricultural Area 2) extracted from the multi-polarization dataset were the 
principal discriminators for soil drainage classes with a p-level near 0 and good tolerance. 
Anisotropy was the polarimetric parameter that had the most significant contribution to the 
discriminant function with good tolerance. The two other polarimetric parameters (α and H) 
contributed to the classification model but their tolerance was weak. 
 

 

Variables Wilks'  F to remove p-level Tolerance 
α 0.91 1.81 0.13 0.25 
A 0.91 2.32 0.06 0.89 
H 0.91 1.86 0.12 0.24 
PCA 1 0.95 14.19 0.00 0.99 
PCA2 0.92 5.9 0.00 0.91 

Table 3. Contribution of the selected parameters to the model classification 
 
The results of the classification by discriminant analysis are presented in Table 4. For the 
two agricultural areas, poorly-drained soils (D6) were clearly identified (73–97%). 
Imperfectly-drained soils (D5) were detected in the agricultural Area 1 with an overall 
classification accuracy of 63%. The well-drained class (D3) was detected with an overall 
classification accuracy of only 33%. The meteorological conditions which prevailed during 
the acquisition of polarimetric SAR data, and the small proportional size of soil drainage 
classes in the agricultural areas, can partially explain the relatively low performance of the 
classification by discriminant analysis. 
  

Drainage 
class 

Agricultural Area 1  Agricultural Area 2  
Proportion Percent correct Proportion Percent correct  

D3 0.13 33.3 0.06 0.0 
D4 0.04 0.0 0.07 0.0 
D5 0.35 62.5 0.30 2.4 
D6 0.48 72.7 0.48 96.7 
D7 0.00 0.0 0.09 19.2 

Total 1.00 60.9 1.00 49.4 
Table 4. Mean alpha, anisotropy, and entropy by drainage class for two agricultural areas 

 
4. Conclusion 

This research demonstrates the feasibility of using multi-polarization and polarimetric data 
for soil drainage classification and mapping. The new generation of SAR technology, with 
its high spatial resolution of fully polarimetric SAR data from RADARSAT-2, could help to 
clarify the complex relationship between soil drainage and radar backscatter and 
subsequently be a resource for developing operational models. Because of the dynamic 
changes of soil drainage, meteorological conditions and land use must be determined prior 
to analysis. Spring acquisition of polarimetric SAR data should produce better classification 
results for predicting soil drainage classes than late fall acquisition because weather 
conditions and land use would be less variable. 
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Fig. 11. Relationship of parameters α, H, and A with soil drainage classes in the agricultural 
Area 1 

 

 
Fig. 12. Relationship of parameters α, H, and A with soil drainage classes in agricultural 
Area 2 

 
3.3 Discriminant analysis 
In an approach to reduce collinearity, a principal component analysis (PCA) was applied on 
the multi-polarization dataset. The first two components, consisting of 94% of total variance 
of the information from the multi-polarization dataset, were selected for further analyses. 
The contribution of the multi-polarization data and the polarimetric parameters was studied 
using the following discriminant analysis criteria: Wilks’ lambda, F to remove, significant 
level associated to the partial Lambda, and the tolerance (Table 3). 
 
The multivariate solution shows that the two PCA factors (PC1 for the agricultural Area 1, 
and PC2 for the agricultural Area 2) extracted from the multi-polarization dataset were the 
principal discriminators for soil drainage classes with a p-level near 0 and good tolerance. 
Anisotropy was the polarimetric parameter that had the most significant contribution to the 
discriminant function with good tolerance. The two other polarimetric parameters (α and H) 
contributed to the classification model but their tolerance was weak. 
 

 

Variables Wilks'  F to remove p-level Tolerance 
α 0.91 1.81 0.13 0.25 
A 0.91 2.32 0.06 0.89 
H 0.91 1.86 0.12 0.24 
PCA 1 0.95 14.19 0.00 0.99 
PCA2 0.92 5.9 0.00 0.91 

Table 3. Contribution of the selected parameters to the model classification 
 
The results of the classification by discriminant analysis are presented in Table 4. For the 
two agricultural areas, poorly-drained soils (D6) were clearly identified (73–97%). 
Imperfectly-drained soils (D5) were detected in the agricultural Area 1 with an overall 
classification accuracy of 63%. The well-drained class (D3) was detected with an overall 
classification accuracy of only 33%. The meteorological conditions which prevailed during 
the acquisition of polarimetric SAR data, and the small proportional size of soil drainage 
classes in the agricultural areas, can partially explain the relatively low performance of the 
classification by discriminant analysis. 
  

Drainage 
class 

Agricultural Area 1  Agricultural Area 2  
Proportion Percent correct Proportion Percent correct  

D3 0.13 33.3 0.06 0.0 
D4 0.04 0.0 0.07 0.0 
D5 0.35 62.5 0.30 2.4 
D6 0.48 72.7 0.48 96.7 
D7 0.00 0.0 0.09 19.2 

Total 1.00 60.9 1.00 49.4 
Table 4. Mean alpha, anisotropy, and entropy by drainage class for two agricultural areas 

 
4. Conclusion 

This research demonstrates the feasibility of using multi-polarization and polarimetric data 
for soil drainage classification and mapping. The new generation of SAR technology, with 
its high spatial resolution of fully polarimetric SAR data from RADARSAT-2, could help to 
clarify the complex relationship between soil drainage and radar backscatter and 
subsequently be a resource for developing operational models. Because of the dynamic 
changes of soil drainage, meteorological conditions and land use must be determined prior 
to analysis. Spring acquisition of polarimetric SAR data should produce better classification 
results for predicting soil drainage classes than late fall acquisition because weather 
conditions and land use would be less variable. 
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