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1. Introduction    
 

Automotive vehicles are nowadays equipped with a significant number of networked 
electronic systems by which advanced vehicle control, elimination of bulky wiring, and 
sophisticated features can be achieved. Most of the features are enabled by the use of 
distributed electronic systems including sensors, switches, actuators and electronic control 
units (ECUs). In today’s premium automobiles, there can be fifty or more individual ECUs 
communicating over multiplexed data networks such as Controller Area Network (CAN), 
Local Interconnect Network (LIN), FlexRay for X-by-wire applications (Kopetz & Bauer, 
2003; Leen et al., 1999; Leen & Heffernan, 2002; Shrinath & Emadi, 2004). 
However, as more features and ECUs are introduced, overall system complexity increases, 
in turn raising the likelihood for unpredictable or emergent behaviour that could not have 
been anticipated during ever shrinking vehicle development cycles. These cycles reduced 
from 48 months in 1985 to 24 months in 2005, and are expected to be 12 months in 2010 
(Ortega et al., 2006). The consequences of the unpredictable behaviour or implementation 
errors would discourage brand loyalty and bring a manufacturer into disrepute. In addition, 
rising feature levels have resulted in the embedded software and electronic components 
becoming an increasing proportion of the total value of the vehicle. The average cost for in-
vehicle electronic content increased from 2% of the total car price in 1974 to 23% in 2004, and 
is forecasted to reach 40% by 2010 (Ortega et al., 2006).  
Against this background, vehicle manufacturers are striving to reduce costs and at the same 
time to improve levels of customer satisfaction. Work to improve test and validation of large 
distributed electronic systems has been ongoing for years (Athanasas & Dear, 2004; Ehret, 
2003; Simonot-Lion, 2003). This has provided manufacturers with approaches to test and 
validation, with some degree of coverage. It is, however, still impossible to use an ideal test 
scheme that provides complete input test coverage to perform exhaustive testing and 
validation because of the large number of possible system states (Storey, 1997), possibly 
resulting in vehicles not working properly due to some design flaws and errors. This is 
compounded by general wear out of mechanical, electrical and electronic components. To 
date, on-board diagnostic systems (OBD) have come into play to cope with faults when 
vehicles are used by customers. OBD are integrated in ECUs to detect and diagnose vehicle 
faults such that diagnostic trouble codes (DTCs) relevant to the faults are set and logged in 
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the ECUs’ memory for later off-board, return-to-dealership-based fault analysis and 
rectification. 
Despite the available OBD, diagnostic techniques have largely been focused on individual or 
defined areas of a vehicle, e.g. engine management, brakes and steering. In a vehicle where 
only a few ECUs and communication messages are deployed, traditional off-board 
diagnostics can be adequate. As system complexity continues to increase, off-board 
diagnostic approaches have become more costly and sometimes ineffective, resulting in high 
levels of “no-fault-found”, incorrect component replacement and increased warranty costs. 
Recent years have seen research work on a paradigm shift from off-board dealership-based 
diagnosis and repair to on-board remotely-assisted diagnosis and in-vehicle repair (Amor-
Segan et al., 2007). It is anticipated that the new on-board vehicle diagnosis scheme will 
improve customer expectations and satisfaction for vehicle reliability. 
This chapter concerns fault detection and diagnosis (FDD) techniques applied to automotive 
electronic systems, especially focusing on faults in in-vehicle networks. FDD on a CAN 
network is demonstrated. Readers will be provided with knowledge on how vehicle faults 
are generally managed, and the trend of intelligent FDD in future vehicles. The rest of this 
chapter is divided into three main sections: (i) a brief introduction to in-vehicle electronic 
systems; (ii) FDD for in-vehicle electronic systems including those in component, feature 
and network levels; (iii) recent research on FDD techniques for in-vehicle networks. 

 
2. In-vehicle electronic systems 
 

Over the past two decades, the rapid growth in performance and reliability of electronic 
embedded systems has enabled vehicle manufacturers to implement complicated 
automotive control systems through the use of sophisticatedly integrated mechanical and 
electronic devices, so called mechatronics (Isermann, 2008). Vehicles are equipped with a 
variety of electronic devices performing different functions, and mostly transferring signals 
via electrical wiring. 

 
2.1 In-vehicle electronics 
State-of-the-art control algorithms and rapidly-improved semiconductor technology make it 
possible for modern vehicles to meet the demands for driver-assisted functions, safety, 
comfort and environment protection. A number of sensors are used to measure controlled 
variables as input signals for ECUs, e.g. engine speed, temperature. The input signals can be 
analogue, e.g. voltage signals from sensors, digital such as switch positions, or modulated 
e.g. Pulse Width Modulation (PWM) signals. With these input signals, ECUs calculate 
required parameters to adjust controlling devices such as actuators. Improved performance 
and additional functions are obtained by synchronising processes controlled by individual 
control units and by adapting their respective parameters to each other in real-time. An 
example of this type of function is a traction control system (TCS) which reduces the driving 
torque when the drive wheels spin (Robert Bosch GmbH, 2004a). 
In 1902, a magneto-ignition system, the first on-board electrical system, was installed in a 
vehicle. It consisted of the magneto itself, an ignition distributor, ignition coils, spark plugs 
and cables. More than a decade later, Bosch had the first complete automotive electrical 
system ready for installation. The system comprised the magneto-ignition system with 
spark plugs, a starter, a generator, headlamps, a battery, and a regulator switch. This was 

 

the starting point of a progress towards a genuine on-board electrical and electronics system 
(Robert Bosch GmbH, 2004). 
Today’s in-vehicle electronic systems have become extensive and much more complicated. 
A large number of electronic devices and software contents are integrated in modern 
vehicles. Applications range from simple door or window control to remotely wireless data 
transfer between vehicles or between a vehicle and the infrastructure. Fig. 1 illustrates the 
exponentially soaring complexity of today’s in-vehicle electronics. 
 

 
Fig. 1. Rapid increase in in-vehicle electronic systems (adapted from McMurran et al., 2006). 
 
In-vehicle electronics can be broadly classified into four main categories corresponding to 
different functionalities, constraints and models: “Powertrain”, “Chassis”, “Body”, and 
“Infotainment” including telematics, multimedia, various types of information and 
entertainment (Zurawski, 2006).  
 “Powertrain” refers to components that generate power and deliver it to the road surface. 
This includes the engine, transmission, clutches, driveshaft, etc. “Powertrain” sometimes 
simply refers to the engine and transmission, and the other components in the transmission.  
“Chassis” involves the systems that control the interaction of the vehicle with the road and 
the chassis. It is related to steering, braking and ride quality. This category includes systems 
such as ABS (Anti-lock Braking System), ESP (Electronic Stability Program) and the new 
forthcoming technology so-called X-by-Wire. “Body” refers to the electronic systems not 
directly involved in the movement of the vehicle. These are, for instance, the systems that 
control doors, windows, seats, boots, etc. “Infotainment” provides drivers with information 
and entertainment through HMI (Human Machine Interface). This enables drivers to see or 
exchange not only in-vehicle information and entertainment such as vehicle conditions and 
movies from an in-car video player, but also information from remote sources via telematics 
(Zurawski, 2006). 

 
2.2 In-vehicle networks 
Historically, the communication between simple electronic devices was mostly achieved by 
using point-to-point links, as shown in Fig. 2 a). Signals in the vehicle were transmitted and 
received among ECUs over non-multiplexed and hard-wired cables. This resulted in bulky, 
expensive and complicated wiring when dealing with the increasing use of ECUs, because 
the number of required communication channels grows exponentially with the number of 
ECUs (Navet et al., 2005). The attempt to eliminate wiring difficulties and to improve 
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automotive distributed control systems became a challenge for automotive manufacturers. 
A wiring harness of a middle-class vehicle was roughly 1 mile long and included 
approximately 300 connectors with 2,000 pins (Robert Bosch GmbH, 2004a). The early 1980s 
saw the emerging solutions for vehicle networking, many of which were based on simple 
data transfer e.g. point-to-point or master-slave UART (Universal Asynchronous 
Receiver/Transmitter) (Leen et al., 1999). 
As requirements in vehicle control grew quickly, and were mostly based on real-time 
control strategies, such simple network configurations and protocols became unwieldy. In 
the mid 1980s, Robert Bosch GmbH invented a robust automotive control network known as 
CAN. CAN is based on a bus configuration, as shown in Fig. 2 b), which allows ECUs 
connected on the bus to receive in-vehicle signals digitally encoded in CAN messages at 
almost the same time. This significantly enhances real-time applications in the vehicle. 
 

 
a)                                    b) 

Fig. 2. Evolution of in-vehicle networks. 
 
Whilst CAN is concerned in this chapter, more recently, there have also been several other 
communication protocols and network topologies used in different categories, depending 
on requirements and cost constraints of applications. These are, for example, Local 
Interconnect Network (LIN) for Body, Time-Triggered CAN (TTCAN) for Powertrain, 
FlexRay for X-by-wire applications, MOST (Media Oriented System Transport) for 
infotainment, and the short-range wireless communication Bluetooth. Fig. 3 shows a cost 
and speed comparison of different networks. 
 

 
Fig. 3. Speed and cost comparison of the well-known in-vehicle networks. 
 
CAN is currently one of the serial communication protocols widely used in automotive and 
industrial automation applications. Fig. 4 illustrates a CAN bus topology in a typical 
automotive application where a number of ECUs can be connected on a high-speed CAN 
(CAN-HS) and a low-speed CAN (CAN-LS) buses which are connected via a gateway.  
 

 

 
Fig. 4. CAN in automotive application. 
 
A CAN communication controller is used in each ECU to control message transmission 
between ECUs connected on the same bus. CAN uses an arbitration feature, illustrated in 
Fig. 5, to control bus access in order to avoid transmission collision which causes 
communication errors. Messages which are assigned lower message identifications (IDs) 
have higher priorities to access the bus. For instance, in Fig. 5, node B loses the arbitration to 
node A because the third bit of node B (logic 1, so called “recessive”) is replaced by the third 
bit of node A (logic 0, so called “dominant”).  
 
If errors occur during communication, an error management feature in the communication 
controller detects, handles and confines such errors. An error frame is transmitted to notify 
ECUs that errors have been detected so that the ECUs ignore the message recently present 
on the bus. The errors involve Bit Error, Bit Stuffing Error, CRC Error, Form Error and 
Acknowledgement Error. Effect of the errors is also limited by CAN controllers to prevent 
further communication failure. More details on CAN and these errors can be found in 
Lawrenz, 1997. 

 
Fig. 5. CAN arbitration. 
 
In case of communication loss, network-relevant DTCs are set and logged in the ECUs that 
expect the lost messages. Applications of CAN embrace not only vehicle control but also 
diagnostic services. Despite the common diagnosis standards such as ISO 9141 K-line, ISO 
14230 KWP2000 (Keyword Protocol 2000), ISO 15765, etc., the trend of diagnostic services is 
towards diagnostics over CAN such as the standard defined in ISO 14229.   
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3. Fault detection and diagnosis for in-vehicle electronics 
 

As mentioned earlier, the rapid growth in hardware and software content in today’s 
vehicles results in increased overall system complexity. Fig. 6 illustrates the evolution of 
vehicle diagnostics together with the system complexity trend. Vehicle diagnostics with only 
conventional instruments, which has been used for simple measurement of normal or faulty 
electrical signals, is no longer effective. Enhanced in-vehicle diagnostic methods have been 
introduced in order that root causes of faults occurring during vehicle operation are 
efficiently detected and identified. For instance, OBD, which was initially intended for 
emission monitoring, is now able to provide logged DTCs and signal measurement for off-
board diagnostics of other non-emission related functions.  
 

 
Fig. 6. Evolution of diagnostic test equipment (adapted from Robert Bosch GmbH, 2004b). 
 
In-vehicle electronic and software control systems can operate on a number of different 
levels: (i) component level—individual ECUs, sensors, actuators and components; (ii) 
functional or feature level—such as braking, cruise control, stability control; (iii) network 
level—such as system-wide coordination and configuration, network wake-up and sleep, 
inter-network gateways and the network itself. As illustrated in Fig. 7, a diagnostic 
application in each level monitors different parameters. For instance, the diagnostic 
application in the component level monitors input and output signals and the battery 
voltage. ECU’s internal operation and communication are monitored by the ones in the 
feature and the network levels respectively. Once faults are detected, tested and confirmed, 
some default or alternative signal values are used by the ECU in a “limp-home” mode 
where the vehicle can be driven to the nearest service centre. The diagnostic processor then 
provides a warning to the driver as well as logging DTCs and additional environment 
parameters, e.g. speed, temperature and timestamp. It should be noted that there are 
currently no actual processors in deployment. The diagnostic processor illustrated in Fig. 7 
is a sub-function in each ECU.  
 

 

 
Fig. 7. Diagnostic scheme for in-vehicle electronic systems. 
 
A flow chart of vehicle diagnostics is shown in Fig. 8. The logged DTCs are accessed off-
board by a diagnostic tool at a service centre, and can be appropriately deleted once the 
faults are found and rectified. Fig. 9 illustrates an example of an off-board diagnostic tool 
used to read DTCs. If any further information about the vehicle repair is needed, the tool 
can be connected to another service centre or the manufacturer’s central diagnostic 
knowledge base in order to request remote assistance. 
 

 
Fig. 8. Flow chart of conventional diagnostics. 
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Fig. 9. Diagnostic tool for reading DTCs. 
 
Since this chapter is intended to focus on FDD for in-vehicle networks, this section next 
discusses FDD for the component and feature levels briefly, and then puts emphasis on the 
network level. 

 
3.1 Component and feature levels 
In the component and feature levels, FDD applications employ different methods for 
detecting functional software and physical hardware faults. Detection approaches range 
from simple threshold and out-of-range comparisons to learning algorithms for non-linear 
signal processing.  
Input and output signals from sensors, connecting lines (signal paths), and actuators are 
checked. Short-circuits to steady-state voltage e.g. battery voltage and the device ground, 
and line interruptions are monitored. Measurements from sensors are examined whether 
they are in permissible ranges. If additional information is available, a plausibility check is 
performed by cross-checking two signals e.g. comparison of crankshaft and camshaft 
speeds. Internal ECU’s operations are checked to ensure that the ECU works as specified. 
These checks are performed immediately after the vehicle being switched on, when the ECU 
operating or controlling the vehicle, and after the ECU finishing its operation. After faults 
are detected, some alternative values are used so that the ECU can continue its operation. 
Additionally, limp-home measures, e.g. limitation of engine speed, may be initiated to 
maintain driving safety, prevent consequence damage, and minimise emissions (Robert 
Bosch GmbH, 2004c).  
Recent research work has proposed new methods for diagnosing root causes of faults in 
distributed electronic systems in vehicles. For example, firstly, Murphey et al., 2004 
proposed the distributed diagnostic agent system (DDAS), a novel diagnostic architecture 
developed for automotive fault diagnosis. The DDAS, implemented for fault detection of 
ECU signals, consists of a vehicle diagnostic agent (VDA) and a number of signal diagnostic 
agents (SDAs), each of which is responsible for diagnosing one particular automotive signal 
using either a single or multiple signals. A novel fuzzy learning algorithm was implemented 
to learn to classify good and bad signal segments by supervised learning from good 
examples only in the training data set. This work used a case-based reasoning (CBR) 
approach in the VDA agent to find the cause of vehicle faults, by which effective diagnostic 
results have been obtained. Secondly, an intelligent diagnostic system (IDS) was developed 
for diagnosis of component faults in a multi-ECU environment by using model-based 
reasoning (MBR), and information taken from failure modes and effects analysis worksheet 

 

(FMEA) (Foran & Jackman, 2005). This work tried to isolate a core faulty component instead 
of simply returning a series of faults. The system was tested by a particular list of test cases 
and was capable of identifying all scenarios in the list with 100% success rate. 

 
3.2 Network level 
A number of research experiments on network design, verification and test to prevent 
network level faults and to improve reliability have been reported (Tindell & Hansson, 1995; 
Temple, 1998; Navet & Song, 1999; Navet & Song, 2001; Gaujal & Navet, 2005; Buja et al., 
2007). Hardware-in-the-loop facilities are playing an important role in the testing of 
networked electronic systems (Isermann et al., 1999; Kendall & Jones, 1999; Short & Pont, 
2008). Methods more specific to network level testing have been discussed (Armengaud et 
al., 2004; Armengaud et al., 2005a; Armengaud et al., 2005b). This has provided device 
suppliers and manufacturers with testing approaches with some degree of test coverage and 
system validation. Despite this, it is inevitable that unexpected faults can still occur due to 
untested conditions or worn components.  

 
3.2.1 Existing Network Management 
It is well understood that generally automotive manufacturers do not develop ECUs 
themselves; rather they mostly outsource this task to different suppliers to do so in 
accordance with the manufacturers’ specifications and existing standards. ECUs from 
different suppliers are then integrated and networked into vehicles by the manufacturers. 
One such well-known standard related to in-vehicle networks is Open System and 
Corresponding Interfaces for Automative Electronics Network Management (OSEK NM).  
Due to the increasing number of ECUs deployed in vehicles, the Open Systems and the 
Corresponding Interfaces for Automotive Electronics (OSEX/VDX) working group has 
defined a standard for communication of ECUs in automotive applications, called Network 
Management or NM (OSEK/VDX, 2004), illustrated in Fig. 10. NM resides in the 
environment where an Operating System (OS) controls system interactions among different 
software layers. NM consists of algorithms defined by OSEK and protocol specific 
algorithms. NM can communicate with the application software in the application layer, 
and vice versa, by using an Application Program Interface (API) in order to enable (or 
disable) OSEK algorithms.  
 

 
Fig. 10. OSEK Network Management. 
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signal processing.  
Input and output signals from sensors, connecting lines (signal paths), and actuators are 
checked. Short-circuits to steady-state voltage e.g. battery voltage and the device ground, 
and line interruptions are monitored. Measurements from sensors are examined whether 
they are in permissible ranges. If additional information is available, a plausibility check is 
performed by cross-checking two signals e.g. comparison of crankshaft and camshaft 
speeds. Internal ECU’s operations are checked to ensure that the ECU works as specified. 
These checks are performed immediately after the vehicle being switched on, when the ECU 
operating or controlling the vehicle, and after the ECU finishing its operation. After faults 
are detected, some alternative values are used so that the ECU can continue its operation. 
Additionally, limp-home measures, e.g. limitation of engine speed, may be initiated to 
maintain driving safety, prevent consequence damage, and minimise emissions (Robert 
Bosch GmbH, 2004c).  
Recent research work has proposed new methods for diagnosing root causes of faults in 
distributed electronic systems in vehicles. For example, firstly, Murphey et al., 2004 
proposed the distributed diagnostic agent system (DDAS), a novel diagnostic architecture 
developed for automotive fault diagnosis. The DDAS, implemented for fault detection of 
ECU signals, consists of a vehicle diagnostic agent (VDA) and a number of signal diagnostic 
agents (SDAs), each of which is responsible for diagnosing one particular automotive signal 
using either a single or multiple signals. A novel fuzzy learning algorithm was implemented 
to learn to classify good and bad signal segments by supervised learning from good 
examples only in the training data set. This work used a case-based reasoning (CBR) 
approach in the VDA agent to find the cause of vehicle faults, by which effective diagnostic 
results have been obtained. Secondly, an intelligent diagnostic system (IDS) was developed 
for diagnosis of component faults in a multi-ECU environment by using model-based 
reasoning (MBR), and information taken from failure modes and effects analysis worksheet 

 

(FMEA) (Foran & Jackman, 2005). This work tried to isolate a core faulty component instead 
of simply returning a series of faults. The system was tested by a particular list of test cases 
and was capable of identifying all scenarios in the list with 100% success rate. 

 
3.2 Network level 
A number of research experiments on network design, verification and test to prevent 
network level faults and to improve reliability have been reported (Tindell & Hansson, 1995; 
Temple, 1998; Navet & Song, 1999; Navet & Song, 2001; Gaujal & Navet, 2005; Buja et al., 
2007). Hardware-in-the-loop facilities are playing an important role in the testing of 
networked electronic systems (Isermann et al., 1999; Kendall & Jones, 1999; Short & Pont, 
2008). Methods more specific to network level testing have been discussed (Armengaud et 
al., 2004; Armengaud et al., 2005a; Armengaud et al., 2005b). This has provided device 
suppliers and manufacturers with testing approaches with some degree of test coverage and 
system validation. Despite this, it is inevitable that unexpected faults can still occur due to 
untested conditions or worn components.  

 
3.2.1 Existing Network Management 
It is well understood that generally automotive manufacturers do not develop ECUs 
themselves; rather they mostly outsource this task to different suppliers to do so in 
accordance with the manufacturers’ specifications and existing standards. ECUs from 
different suppliers are then integrated and networked into vehicles by the manufacturers. 
One such well-known standard related to in-vehicle networks is Open System and 
Corresponding Interfaces for Automative Electronics Network Management (OSEK NM).  
Due to the increasing number of ECUs deployed in vehicles, the Open Systems and the 
Corresponding Interfaces for Automotive Electronics (OSEX/VDX) working group has 
defined a standard for communication of ECUs in automotive applications, called Network 
Management or NM (OSEK/VDX, 2004), illustrated in Fig. 10. NM resides in the 
environment where an Operating System (OS) controls system interactions among different 
software layers. NM consists of algorithms defined by OSEK and protocol specific 
algorithms. NM can communicate with the application software in the application layer, 
and vice versa, by using an Application Program Interface (API) in order to enable (or 
disable) OSEK algorithms.  
 

 
Fig. 10. OSEK Network Management. 
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The protocol specific algorithms are responsible for handling data transfer on the network 
by communicating with the datalink layer. OSEK NM is now a published ISO standard: ISO 
17356-5: 2006. It provides standardised features which ensure the functionality of inter-
networking by using standardised interfaces. NM implementations are incorporated in all 
networked nodes, e.g. ECUs. This means that a solution for NM can be implemented 
throughout the varieties of available ECU hardware. The status of the network is recorded 
and evaluated in all ECUs and thus each node features a determined behaviour regarding 
the network and the application concerned. NM supports diagnostic applications by 
providing acquired network status. 
NM features two mechanisms for network status and fault monitoring—direct network 
management (DNM) by using dedicated messages with a token principle and indirect 
network management (IDNM) by monitoring application messages. The use of these 
mechanisms is dependent on a particular system. Processing of information collected by 
these mechanisms must be in accordance with requirements of the entire networked system.  
Dedicated NM messages are used in DNM: Ring, Alive and Limp Home messages. Each 
node is monitored by other nodes on the network. Nodes transmit and receive NM 
messages via a logical ring in which a communication sequence for synchronisation is 
defined. Each node on the network has a unique ID normally available from 1 to 255. To set 
up a logical ring, a Ring message is sequentially passed from the lowest to the highest ID 
node which then passes the Ring back to the lowest ID node, as illustrated in Fig. 11. DNM 
also requires a broadcast type of network implementation so that every node can hear the 
messages that are being sent (Lemieux, 2001). 
 

 
Fig. 11. DNM logical ring. 
 
An Alive message identifies a new node present on the network and puts the system into a 
transient state. When the new node has identified all nodes on the network, the system 
changes into a stable state where the NM component is fully aware of the status of all nodes 
on the network. A faulty node transmits a Limp Home message cyclically until: (i) it is able 
to receive NM messages from other nodes correctly; or (ii) NM component stops; or (iii) the 
bus goes to sleep mode. Then the node enters a reset state and performs an NM 
initialisation. Other nodes that have received a Limp Home message update their 
configurations to identify the malfunction node being absent from the bus. 
 

 

Although DNM provides useful information on network and node status, it requires a 
somewhat amount of computational resources. Thus, DNM may not be suited for some 
systems in which simple software algorithms and computational resource consumption are 
of concern. IDNM is therefore defined as an alternative mechanism for network 
management. 
For IDNM, instead of dedicated NM messages circulating in a logical ring, application 
messages are monitored by nodes that receive the messages to determine the status of the 
transmitting node. In addition, two message monitoring methods are defined: a single 
timeout for observation (TOB) for all messages and an individual timeout per message. 
Single TOB is used by all nodes for monitoring monitored application messages to identify 
the node states.  For instance, if a node is able to successfully transmit its monitored 
application message within TOB, the node is considered as “Not Mute”. If monitored 
messages are successfully received before TOB elapses, the monitored node (the node that 
sent the messages) is “Present”, shown in Fig. 12. 
 

 
Fig. 12. Application message monitoring for IDNM. 
 
As for an individual timeout per message, IDNM uses COM Deadline Monitoring, a feature 
of OSEK Communication Component, to monitor individual message timeouts. If a 
monitored message has not arrived within predefined time, COM component will signal 
NM to update its configuration to indicate that the monitored node is “Absent”.   Similarly, 
the COM component also signals NM if the local node has failed to transmit a message 
within a predefined time. As a result, that local node is classified as “Mute”. 
To identify the static states (extended states), a specific counter and a threshold level are 
used. A counter is incremented and decremented in accordance with a node state. For 
instance, if the node is “Absent”, the counter will be incremented; if the node resumes being 
“Present” again, the counter will be decremented. When the counter reaches the threshold, 
NM identifies this state as “Node Absent Statically”. NM modes, state transitions and timer 
definitions are also defined in the OSEK NM standard. Further details of OSEK NM can be 
found in OSEK/VDX, 2004 and Lemieux, 2001. 

 
3.2.2 Message rate fault detection 
Examples of CAN application message faults which are most likely to occur on in-vehicle 
networks are shown in Fig. 13 and are defined in detail in Table 1. In general, details of 
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to receive NM messages from other nodes correctly; or (ii) NM component stops; or (iii) the 
bus goes to sleep mode. Then the node enters a reset state and performs an NM 
initialisation. Other nodes that have received a Limp Home message update their 
configurations to identify the malfunction node being absent from the bus. 
 

 

Although DNM provides useful information on network and node status, it requires a 
somewhat amount of computational resources. Thus, DNM may not be suited for some 
systems in which simple software algorithms and computational resource consumption are 
of concern. IDNM is therefore defined as an alternative mechanism for network 
management. 
For IDNM, instead of dedicated NM messages circulating in a logical ring, application 
messages are monitored by nodes that receive the messages to determine the status of the 
transmitting node. In addition, two message monitoring methods are defined: a single 
timeout for observation (TOB) for all messages and an individual timeout per message. 
Single TOB is used by all nodes for monitoring monitored application messages to identify 
the node states.  For instance, if a node is able to successfully transmit its monitored 
application message within TOB, the node is considered as “Not Mute”. If monitored 
messages are successfully received before TOB elapses, the monitored node (the node that 
sent the messages) is “Present”, shown in Fig. 12. 
 

 
Fig. 12. Application message monitoring for IDNM. 
 
As for an individual timeout per message, IDNM uses COM Deadline Monitoring, a feature 
of OSEK Communication Component, to monitor individual message timeouts. If a 
monitored message has not arrived within predefined time, COM component will signal 
NM to update its configuration to indicate that the monitored node is “Absent”.   Similarly, 
the COM component also signals NM if the local node has failed to transmit a message 
within a predefined time. As a result, that local node is classified as “Mute”. 
To identify the static states (extended states), a specific counter and a threshold level are 
used. A counter is incremented and decremented in accordance with a node state. For 
instance, if the node is “Absent”, the counter will be incremented; if the node resumes being 
“Present” again, the counter will be decremented. When the counter reaches the threshold, 
NM identifies this state as “Node Absent Statically”. NM modes, state transitions and timer 
definitions are also defined in the OSEK NM standard. Further details of OSEK NM can be 
found in OSEK/VDX, 2004 and Lemieux, 2001. 

 
3.2.2 Message rate fault detection 
Examples of CAN application message faults which are most likely to occur on in-vehicle 
networks are shown in Fig. 13 and are defined in detail in Table 1. In general, details of 
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periodic messages are specified in a message database during a design process. For instance, 
a message ‘M’ is transmitted by an ECU ‘E’ at every 10 ms. This transmission period can be 
guaranteed by the use of special network software tools. However, message faults can still 
happen when the bus traffic quality is poor due to a large number of error frames, or in a 
system where no such special software tools are implemented in ECUs. It is critical when 
faults occur on messages which are used in real-time control loops. Therefore, network level 
fault detection becomes necessary to monitor the number of messages and their timings, and 
the number of error frames actually present on the network.  
 

 
Fig. 13. CAN message faults. 
 
An application message on the network is periodically monitored by the fault detection in a 
time window Tw (e.g. 100 ms as shown in Fig. 13). The intermediate message rate Nmi (in 
msg/s) is compared with the rate specified in a message database Nsi and a threshold value 
Nti, where i is a message identification number. Tw is chosen to satisfy the inequality: 

 
Tw ≥ 1/MIN[Ns0, Ns1, … Nsn]  

 
where n = 0 to the last message ID, e.g. 255. 
 

Faults Details 

Fault free Message is sent at the specified rate ( Nsi – Nti ≤ Nmi ≤ Nsi + Nti) 

F1: Timeout Message is not sent within predefined time (Nm = 0) 

F2: Missing-Message Message is missing in a particular period (Nm < Ns – Nt) 

F3: Too-Many-
Message Too many messages are transmitted (Nm > Ns + Nt) 

Table 1. Details of application message faults. 
The measurement of the message rates can be seen in the statistics window of CANoe, a 
CAN bus simulation and network design tool. The horizontal axis of the window displays 

 

hexadecimal message IDs and the vertical axis represents the message rates in msg/s. Fig. 
14 shows the normal condition of the simulated network, where application messages with 
different message IDs are transmitted within the normal operating bands defined by: 
 

Nsi – Nti   Nmi    Nsi + Nti 
 
The fault detection is responsible for detecting any message rates that are out of the bands 
such as F1, F2 and F3 shown in Fig. 15. After faults are detected, DTCs and relevant 
snapshot data are logged in accordance with the manufacturer’s definitions.  
 

 
Fig. 14. Normal condition. 
 

 
Fig. 15. Faulty condition. 

 
3.2.3 Fault isolation with multiple discrete events 
It is possible that any of the faulty electronic components on the communication link 
contributes to F1 and F2 presented above. This subsection demonstrates a method for 
isolating possible faulty components by inferring from multiple discrete events in the 
networked system. 
In engineering systems where some basic knowledge of relationships between faults and 
symptoms is available, the knowledge can be expressed in rules based on fault-tree analysis 
(FTA) or event-tree analysis (ETA). A simple example a rule of ‘FAULT1’ caused by two 
symptoms—‘SYMPTOM1’ and ‘SYMPTOM2’ is as follows: 
 

IF (SYMPTOM1 AND SYMPTOM2) THEN ERROR1 
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Fig. 15. Faulty condition. 

 
3.2.3 Fault isolation with multiple discrete events 
It is possible that any of the faulty electronic components on the communication link 
contributes to F1 and F2 presented above. This subsection demonstrates a method for 
isolating possible faulty components by inferring from multiple discrete events in the 
networked system. 
In engineering systems where some basic knowledge of relationships between faults and 
symptoms is available, the knowledge can be expressed in rules based on fault-tree analysis 
(FTA) or event-tree analysis (ETA). A simple example a rule of ‘FAULT1’ caused by two 
symptoms—‘SYMPTOM1’ and ‘SYMPTOM2’ is as follows: 
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IF (ERROR1 OR ERROR2) THEN FAULT1 
 
FTA is a graphical method that hierarchically represents a binary relationship between a 
fault (‘top event’) and symptom(s).  Intermediate events relevant to the ‘top event’ are 
combined using logical operations. FTA is commonly used in hazard analysis in safety-
critical systems as it can represent dependencies in the systems (Storey, 1997). Fig. 16 
illustrates a simple fault tree of a headlamp failure in a vehicle, which involves several root 
causes that can be traced back. FTA is also widely used in fault diagnosis with inference 
methods. Fault diagnosis can be preformed by inferring Boolean values of symptoms from 
sensor measurements such as pressure and position switches, and fault-symptom 
relationships.  
 
For in-vehicle network diagnosis, this subsection addresses how to utilise local message 
monitoring data in ECUs for isolating faulty components. Fault isolation with multiple 
discrete events by interpreting symptoms or intermediate events of the presence and 
correctness of message communication is discussed. 
 

F1: Headlamp 
does not work

Primary 
lamp 
failure

No command 
message

Primary 
ECU 

failure

Battery 
failure

CAN bus 
failure

 
Fig. 16. Simple fault tree of a headlamp failure in a vehicle. 
 
Conventionally, each ECU monitors particular messages it expects to receive. Faulty event 
data such as “timeout” events of the expected messages is locally stored in the ECU. When 
faults occur in a particular component which is not in a communication path between a 
monitoring ECU and a monitored message, the monitoring ECU will not recognise the faults 
and will not store any fault data. For instance, in the ECU diagram shown in Fig. 17, 
suppose that E5 expects M1 from E1 and the other ECUs do not monitor any messages from 
E5. If a “timeout” fault of M1 is detected and stored in E5, the root cause can be several 
components in the communication path e.g. E1, W1, C1, W6, W7, C5, W5 and E5. This list of 
possible faulty component(s) can be narrowed down if every ECU (i) locally monitors 
particular messages from the other ECUs even if the messages are not used in its control 
functions, and (ii) can provide local fault events to be analysed by diagnostic applications in 
a dedicated ECU, provided that there is a redundant communication channel available if the 
main channel is permanently unavailable. 
 

 

A communication path is shown in Fig. 18 where a monitoring ECU receives a monitored 
message from a monitored ECU through several peripheral components. The peripheral 
components can be classified into three major groups: (i) components at the monitoring 
ECU, (ii) those at the monitored ECU and (iii) those shared among ECUs.  
Consider the networked system in Fig. 17 where M5 is monitored by all ECUs, fault 
symptoms in a situation where M5 is not received by E1 - E4 and M1 - M4 are not received 
by E5 can be summarised in Table 2. Possible faulty components can be identified in relation 
to an individual symptom and the peripherals involved in the communication path. 
 

 
Fig. 17. In-vehicle network with ECUs and peripheral components. 
 

 
Fig. 18. Communication path. 
 

  M1 M2 M3 M4 M5 

S1 E1 1 1 1 1 0 

S2 E2 1 1 1 1 0 

S3 E3 1 1 1 1 0 

S4 E4 1 1 1 1 0 

S5 E5 0 0 0 0 1 
Table 2. Fault symptom table: M5 not received by all ECUs except E5 itself. 
 
where 1: Mi is received by Ei;  0: Mi is not received by Ei; Si: Symptom i. 
As shown in Table 3, for instance, S1 can be caused by E1, W1, E1, E5, W5, C5, W6 and W7. 
After considering all of the discrete fault symptoms on the entire network (S1 – S5), W7 is 
involved in every symptom; therefore it is isolated as a faulty component.  
Another example of fault isolation for multiple faults is provided in Table 4. In this example, 
M5 is not received by all ECUs except E5 itself; M1 - M2 are not received by E3 - E5; M3 - M5 
are not received by E1 - E2; M3 - M4 are not received by E5. Similarly, after considering 
multiple discrete fault symptoms on the entire network, W6 and W7 can be isolated as faulty 
components. 
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Fig. 16. Simple fault tree of a headlamp failure in a vehicle. 
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possible faulty component(s) can be narrowed down if every ECU (i) locally monitors 
particular messages from the other ECUs even if the messages are not used in its control 
functions, and (ii) can provide local fault events to be analysed by diagnostic applications in 
a dedicated ECU, provided that there is a redundant communication channel available if the 
main channel is permanently unavailable. 
 

 

A communication path is shown in Fig. 18 where a monitoring ECU receives a monitored 
message from a monitored ECU through several peripheral components. The peripheral 
components can be classified into three major groups: (i) components at the monitoring 
ECU, (ii) those at the monitored ECU and (iii) those shared among ECUs.  
Consider the networked system in Fig. 17 where M5 is monitored by all ECUs, fault 
symptoms in a situation where M5 is not received by E1 - E4 and M1 - M4 are not received 
by E5 can be summarised in Table 2. Possible faulty components can be identified in relation 
to an individual symptom and the peripherals involved in the communication path. 
 

 
Fig. 17. In-vehicle network with ECUs and peripheral components. 
 

 
Fig. 18. Communication path. 
 

  M1 M2 M3 M4 M5 

S1 E1 1 1 1 1 0 

S2 E2 1 1 1 1 0 

S3 E3 1 1 1 1 0 

S4 E4 1 1 1 1 0 

S5 E5 0 0 0 0 1 
Table 2. Fault symptom table: M5 not received by all ECUs except E5 itself. 
 
where 1: Mi is received by Ei;  0: Mi is not received by Ei; Si: Symptom i. 
As shown in Table 3, for instance, S1 can be caused by E1, W1, E1, E5, W5, C5, W6 and W7. 
After considering all of the discrete fault symptoms on the entire network (S1 – S5), W7 is 
involved in every symptom; therefore it is isolated as a faulty component.  
Another example of fault isolation for multiple faults is provided in Table 4. In this example, 
M5 is not received by all ECUs except E5 itself; M1 - M2 are not received by E3 - E5; M3 - M5 
are not received by E1 - E2; M3 - M4 are not received by E5. Similarly, after considering 
multiple discrete fault symptoms on the entire network, W6 and W7 can be isolated as faulty 
components. 
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 E1 W1 C1 E2 W2 C2 E3 W3 C3 E4 W4 C4 E5 W5 C5 W6 W7 

S1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

S2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 

S3 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 

S4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 

S5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 

P - - - - - - - - - - - - - - - - x 
Table 3. Fault isolation table for the symptoms in Table 2. 
 
where 1: component is in the communication path and can cause Si;  

0: component is not in the communication path; 
P: possible faulty components. 

 
  M1 M2 M3 M4 M5 

S1 E1 1 1 0 0 0 

S2 E2 1 1 0 0 0 

S3 E3 0 0 1 1 0 

S4 E4 0 0 1 1 0 

S5 E5 0 0 0 0 1 
Table 4. Fault symptom table: M5 not received by all ECUs except E5 itself; M1 - M2 not 
received by E3 - E5; M3 - M5 not received by E1 - E2; M3 - M4 not received by E5. 
 

 E1 W1 C1 E2 W2 C2 E3 W3 C3 E4 W4 C4 E5 W5 C5 W6 W7 

S1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

S2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

S3 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 

S4 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 

S5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 

P - - - - - - - - - - - - - - - x x 
Table 5. Fault isolation table for the symptoms in Table 4. 
 
In practice, however, the presented fault isolation technique can be implemented only if a 
redundant channel is available. Multiple fault events from all ECUs of the entire network 
are gathered by a dedicated ECU through either the existing network itself or the redundant 
channel when the main network is permanently unavailable, e.g. permanently broken wires. 
The redundant channel can be a wired or wireless link among the ECUs, e.g. FlexRay dual-
channel topology or Bluetooth. Intermittent fault data could be used to represent a 

 

deterioration statistics by using a counter to count the number of detected faults in the 
component. 
This section has discussed in-vehicle network fault detection which ranges from simple 
application message monitoring to more robust and complicated network and ECU status 
monitoring e.g. OSEK DNM. After faults are detected, on-board diagnostic applications in 
ECUs can obtain current network or status by requesting NM, if implemented, to provide 
the status such as an ECU in “Limp-Home”, “Present”, or “Mute” mode. After gathering the 
status and information, and performing fault isolation, the diagnostic applications log 
network-relevant DTCs according to a description specified by the manufacturer. Network-
relevant DTCs are commonly standardised to have a prefix ‘U’. Some examples are shown 
below. 
 
U0003: “High speed CAN communication bus (+) Open” 
U0100: “Lost communication with ECU A” 
U0301: “Software incompatibility with ECU B” 
U0401: “Invalid data received from ECU C” 
 
These DTCs are read by a specific tool to be guidance to engineers to find out root causes. In 
general, there can be several DTCs that relate to a single fault logged by all diagnostic levels. 
To correctly diagnose the real root causes, interpretation from experienced engineers or 
assistance from an advanced guiding method such as the work of Huang et al., 2008 may be 
required. 

 
4. Recent research on FDD for in-vehicle networks 
 

The previous section discussed how faults in automotive electronic systems are 
conventionally handled. However, network level faults can result from a number of causes. 
As illustrated in Fig. 19, failures within an in-vehicle electronic system can manifest 
themselves in many different ways and on a number of different levels. The causes can be 
directly from the network level itself or indirectly from the other two levels. For instance, if 
a message is not transmitted from an ECU as specified, this problem can be caused by an 
internal function in the ECU itself (feature level), the CAN controller or the electrical wiring 
(component level). It is noted that physical hardware faults of in-vehicle networks such as 
CAN cables short-circuit-to-ground or the battery are considered as component level faults. 
 

 
Fig. 19. Impact of failure across different diagnostic levels. 
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 E1 W1 C1 E2 W2 C2 E3 W3 C3 E4 W4 C4 E5 W5 C5 W6 W7 

S1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

S2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 

S3 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 

S4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 

S5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 

P - - - - - - - - - - - - - - - - x 
Table 3. Fault isolation table for the symptoms in Table 2. 
 
where 1: component is in the communication path and can cause Si;  

0: component is not in the communication path; 
P: possible faulty components. 
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S5 E5 0 0 0 0 1 
Table 4. Fault symptom table: M5 not received by all ECUs except E5 itself; M1 - M2 not 
received by E3 - E5; M3 - M5 not received by E1 - E2; M3 - M4 not received by E5. 
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P - - - - - - - - - - - - - - - x x 
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Vehicle diagnosis using DTCs intended for later off-board root cause analysis and repair 
actions can be unwieldy when it comes to dealing with a system comprising a large number 
of ECUs and messages. For instance, several components in the system or communication 
path can cause a DTC U0401 to be set. The data might have been sent correctly by the “ECU 
C” but it was probably corrupted on the bus by intermittent faults in the cable wires. When 
performing off-board diagnostics, it is almost impossible to simulate the same operating 
condition as when the faults were present. This subsection discusses recent research on fully 
on-board FDD techniques that are being implemented to manage faults in real-time and in a 
system-wide and network-wide perspective. 
Recent years have seen a number of research projects on various areas related to intelligent 
vehicles such as vehicles with collision avoidance and self diagnosis capabilities. One of 
such projects is known as the Self-Healing Vehicle concept which outlines a required 
paradigm shift of fault diagnostics and management of in-vehicle electronic systems (Amor-
Segan et al., 2007). The Self-Healing Vehicle concept, illustrated in Fig. 20, is intended to 
mitigate failures within the vehicle’s embedded software and electronic control systems in 
order to “safely keep the vehicle on the road”. The concept envisages a vehicle equipped 
with a standardised, general purpose, networked computing architecture that facilitates 
software and application mobility. This mechanism will be managed by an intelligent fault 
management system with access to remote support services via a telematics link. The 
Intelligent Black Box (iB2) will efficiently use available information in a vehicle that is 
currently under-utilised. This is the large volume of real-time component-, feature- or 
network-related information flowing through the vehicle’s networks. Intelligent use of this 
information will be a key factor in the accurate operation of whole-vehicle diagnostics and 
prognostics, and the overall effectiveness of the fault management system.  
 

 
Fig. 20. The Self-Healing Vehicle concept (adapted from Amor-Segan et al., 2007). 
 
The iB2 is a system capable of performing the following important functions: 
 

 Monitoring of a variety of data sources such as network conditions, system and 
component resources, internal ECU data, etc.; 

 Intelligent data mining, data compression, filtering and analysis; 
 Adapting its behaviour under the instruction from the whole-vehicle diagnostic 

and prognostic system; 
 Proactive system observations for fault diagnosis and prognosis. 

 

These functions will support the on-board whole-vehicle fault management in obtaining 
accurate diagnoses. Clearly, a new framework for fully on-board monitoring and utilising 
the system information—component-, feature-, and network-related information—becomes 
necessary.  
As for the network level, network information can be analysed by an intelligent network 
diagnostic and prognostic process as illustrated in Fig. 21. As a result, accurate diagnoses 
can be generated, and an alarm is triggered when predicted healthiness of the network falls 
below a threshold value (T). Certainly, to achieve this, robustness, accuracy, and continuity 
of network level fault detection will need to be improved. 
 

 
Fig. 21. In-vehicle network diagnostics and prognostics. 

 
4.1 Evaluating network health 
The network health could be indicated by the number of error frames. An error frame is 
transmitted when any of the communication error types is detected by an error management 
unit fitted in a CAN controller. Error detection embraces Cyclic Redundancy Check (CRC), 
bit monitoring, bit stuffing and frame checking. Errors can be caused by a number of 
reasons one of which is the presence of physical disturbances. When CAN buses are 
installed in a vehicle, there can be a situation where the physical wiring or connectors are 
damaged or gradually deteriorated by vibration or corrosion. This would cause the electrical 
signal to vary from specifications, thereby resulting in communication failures and error 
frames being transmitted.  
Fig. 22 illustrates a captured CAN message from an oscilloscope displaying a signal 
distortion effected by analogue disturbances such as low resistance between CAN cables. 
The data can still be decoded by the oscilloscope and there are no error frames transmitted. 
Fig. 23 depicts a zoomed-in capture of the distorted signal. Fig. 24 shows a situation where 
there are more disturbances injected such that error frames are transmitted and the data 
cannot be decoded by the oscilloscope. 
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Fig. 22. Physical CAN signal disturbed by an analogue disturbance. 
 

 
Fig. 23. Zoomed-in CAN signal disturbed by an analogue disturbance. 
 

 
Fig. 24. Physical CAN signal distorted by more analogue disturbances. 
 
The relationship between the number of error frames and the fault types remains under 
investigation at this stage. However, inference systems may be used to analyse the collected 
data from preliminary experiments. For instance, as shown in Fig. 25, an adaptive-network-

 

based fuzzy inference system (ANFIS) can classify the number of error frames into such 
network health conditions as “unhealthy”, “fair” and “healthy”. 
 

 
Fig. 25. Network health classification using ANFIS. 

 
4.2 Adaptive network management 
As discussed in the previous section, DNM provides network status to an application which 
is running in a networked ECU environment. With DNM, there is less overhead to the 
application and a high level of portability across multiple applications can be achieved. 
IDNM, on the other hand, is much simpler to implement. Despite being less robust and 
limited availability of node and network status, IDNM is an alternative mechanism for 
systems where rapid response from NM is not necessary, and simple software algorithms 
and computational resource consumption are of concern. 
Traditionally, network diagnostic applications in ECUs only use either DNM or IDNM to 
provide them with node and network status. If DNM is implemented, some application 
message faults such as intermittent application message missing cannot be detectable 
because application messages are not monitored. Moreover, if NM messages are not 
available from a particular node as a result of its embedded software faults while 
application messages can still be transmitted, diagnostic applications in other nodes will no 
longer be able to detect faults from that faulty node. Conversely, if IDNM is implemented, 
as mentioned earlier, availability of node and network status is limited. This therefore 
would result in less fault coverage in a networked ECU environment. To enhance coverage, 
robustness and continuity of network level fault detection the Adaptive OSEK NM 
technique has been proposed (Suwatthikul, 2007). This technique is divided into two 
approaches: (i) switching DNM to IDNM, called Switched NM; and (ii) combining DNM 
and IDNM, called Combined NM. 
The concept of combining both approaches is based on the fact that if the use of NM by 
applications is not fixed to DNM or IDNM, then the applications will benefit from using the 
advantages of both types of traditional OSEK NM as fault monitoring continues. As 
illustrated in Fig. 26, both approaches begin with variable and timer initialisation. For 
Switched NM, DNM is initially used as the main NM of the system. If DNM is not available 
for some reason such as NM API failure, the IDNM mode will be entered, i.e. application 
messages are monitored by a diagnostic application rather than using information from 
dedicated NM messages. For Combined NM, an application uses DNM and IDNM together 
such that application messages and NM messages are monitored at all time. 
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Fig. 23. Zoomed-in CAN signal disturbed by an analogue disturbance. 
 

 
Fig. 24. Physical CAN signal distorted by more analogue disturbances. 
 
The relationship between the number of error frames and the fault types remains under 
investigation at this stage. However, inference systems may be used to analyse the collected 
data from preliminary experiments. For instance, as shown in Fig. 25, an adaptive-network-

 

based fuzzy inference system (ANFIS) can classify the number of error frames into such 
network health conditions as “unhealthy”, “fair” and “healthy”. 
 

 
Fig. 25. Network health classification using ANFIS. 

 
4.2 Adaptive network management 
As discussed in the previous section, DNM provides network status to an application which 
is running in a networked ECU environment. With DNM, there is less overhead to the 
application and a high level of portability across multiple applications can be achieved. 
IDNM, on the other hand, is much simpler to implement. Despite being less robust and 
limited availability of node and network status, IDNM is an alternative mechanism for 
systems where rapid response from NM is not necessary, and simple software algorithms 
and computational resource consumption are of concern. 
Traditionally, network diagnostic applications in ECUs only use either DNM or IDNM to 
provide them with node and network status. If DNM is implemented, some application 
message faults such as intermittent application message missing cannot be detectable 
because application messages are not monitored. Moreover, if NM messages are not 
available from a particular node as a result of its embedded software faults while 
application messages can still be transmitted, diagnostic applications in other nodes will no 
longer be able to detect faults from that faulty node. Conversely, if IDNM is implemented, 
as mentioned earlier, availability of node and network status is limited. This therefore 
would result in less fault coverage in a networked ECU environment. To enhance coverage, 
robustness and continuity of network level fault detection the Adaptive OSEK NM 
technique has been proposed (Suwatthikul, 2007). This technique is divided into two 
approaches: (i) switching DNM to IDNM, called Switched NM; and (ii) combining DNM 
and IDNM, called Combined NM. 
The concept of combining both approaches is based on the fact that if the use of NM by 
applications is not fixed to DNM or IDNM, then the applications will benefit from using the 
advantages of both types of traditional OSEK NM as fault monitoring continues. As 
illustrated in Fig. 26, both approaches begin with variable and timer initialisation. For 
Switched NM, DNM is initially used as the main NM of the system. If DNM is not available 
for some reason such as NM API failure, the IDNM mode will be entered, i.e. application 
messages are monitored by a diagnostic application rather than using information from 
dedicated NM messages. For Combined NM, an application uses DNM and IDNM together 
such that application messages and NM messages are monitored at all time. 

www.intechopen.com



Fault Detection304

 

 
a)                                       b) 

Fig. 26. Adaptive OSEK NM: a) Switched NM; b) Combined NM. 
 
Although Combined NM will inherently consume more computational resources than when 
traditionally using separate NM, the simulation results show that Combined NM can cover 
more fault scenarios, and provide more accurate network fault detection and improved 
robustness (Suwatthikul, 2007). 
In conclusion, this chapter has provided readers with an idea of how FDD can be applied in 
practice, especially current and future applications in the automotive industry. Modern in-
vehicle electronic systems have become much more complicated due to additional 
sophisticated features. This certainly requires more intelligent and robust FDD. Despite 
available FDD approaches from a number of non-automotive domains, the approaches 
cannot be simply applied to the automotive domain due to obvious constraints such as costs 
and different end users. The aerospace industry has employed advanced FDD for decades, 
involving model-based FDD, bespoke components and redundant systems, in particular for 
safety-critical applications. Inevitably, such approaches are extremely costly and therefore 
not well suited for applications in the automotive industry.  
The direction of future research on FDD in automobiles tends to focus on cost-effective and 
intelligent approaches to whole-vehicle fault management, and new component and system 
architectures. For instance, the use of generic processing components to implement different 
fault management strategies in a vehicle that will achieve the required levels of resilience or 
fault tolerance, yet in a way that is cost-effective and realisable for the automotive domain. 
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Fig. 26. Adaptive OSEK NM: a) Switched NM; b) Combined NM. 
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more fault scenarios, and provide more accurate network fault detection and improved 
robustness (Suwatthikul, 2007). 
In conclusion, this chapter has provided readers with an idea of how FDD can be applied in 
practice, especially current and future applications in the automotive industry. Modern in-
vehicle electronic systems have become much more complicated due to additional 
sophisticated features. This certainly requires more intelligent and robust FDD. Despite 
available FDD approaches from a number of non-automotive domains, the approaches 
cannot be simply applied to the automotive domain due to obvious constraints such as costs 
and different end users. The aerospace industry has employed advanced FDD for decades, 
involving model-based FDD, bespoke components and redundant systems, in particular for 
safety-critical applications. Inevitably, such approaches are extremely costly and therefore 
not well suited for applications in the automotive industry.  
The direction of future research on FDD in automobiles tends to focus on cost-effective and 
intelligent approaches to whole-vehicle fault management, and new component and system 
architectures. For instance, the use of generic processing components to implement different 
fault management strategies in a vehicle that will achieve the required levels of resilience or 
fault tolerance, yet in a way that is cost-effective and realisable for the automotive domain. 

 
5. Acknowledgements 
The author would like to thank the International Automotive Research Centre, University of 
Warwick, for the support of equipment and tools used in the experiments.  

 
6. References 
 

Amor-Segan, M. L.; McMurran, R.; Dhadyalla, G. & Jones, R. P. (2007). Towards the Self-
Healing Vehicle, Proceeding of the 3rd IET Automotive Electronics Conference, Coventry, 
June 2007. 

 

Armengaud, E.; Steininger, A.; Horauer, M.; Pallierer, R. & Friedl, H. (2004). A monitoring 
concept for an automotive distributed network: the FlexRay example, Proceeding of 
the 7th IEEE Workshop on Design and Diagnostics of Electronic Circuit and Systems, Stara 
Lesna, April 2004. pp. 173-178. 

Armengaud, E.; Steininger, A. & Horauer, M. (2005). Efficient stimulus generation for 
testing embedded distributed systems: the FlexRay example, Proceeding of the 10th 
IEEE Int. Conference on Emerging Technology and Factory Automation, Catania, 
September 2005, pp. 763-770. 

Armengaud, E.; Rothensteiner, F.; Steininger, A.; Pallierer, R.; Horauer, M. & Zauner, M. 
(2005). A structured approach for the systematic test of embedded automotive 
communication systems, Proceeding of International Test Conference 2005, Texas, Nov. 
2005, pp. 1-8. 

Athanasas, K. & Dear, I. (2004). Validation of complex vehicle systems of prototype vehicles. 
IEEE Transactions on Vehicular Technology, Vol. 53, No. 6, pp.1835-1846. 

Buja, G.; Pimentel, J. R. & Zuccollo, A. (2007). Overcoming babbling-idiot failures in CAN 
networks: A simple and effective bus guardian solution for the FlexCAN 
architecture. IEEE Transactions on Industrial Informatics, Vol. 3, No. 3, pp. 225-233. 

Ehret, J. (2003). Validation of safety-critical distributed real-time systems. Dr.-Ing. thesis, 
Technical University of Munich, Munich. 

Foran, T. & Jackman, B. (2005). An intelligent diagnostic system for distributed multi-ECU 
automotive control systems, SAE paper: 2005-01-1444, SAE World Congress, 
Michigan, April 2005. 

Gaujal, B. & Navet, N. (2005). Fault confinement mechanism on CAN: Analysis and 
Improvements. IEEE Transactions on Vehicular Technology, Vol. 54, No. 3, pp.1103-
1113. 

Isermann, R.; Schaffnit, J. & Sinsel, S. (1999). Hardware-in-the-loop simulation for the design 
and testing of engine-control systems. Control Engineering Practice, Vol. 7, No. 5, pp. 
643-653. 

Isermann, R. (2008). Mechatronic systems—Innovative products with embedded control. 
Control Engineering Practice, Vol. 16, No. 1, pp. 14-29. 

Kendall I. R. & Jones, R. P. (1999). An investigation into the use of hardware-in-the-loop 
simulation testing for automotive electronic control systems. Control Engineering 
Practice, Vol. 7, No. 11, pp. 1343-1356. 

Kopetz, H. & Bauer, G. (2003). The time-triggered architecture. Proceedings of IEEE, Vol. 91, 
No. 1, pp.112-126. 

Lawrenz, W. (1997). CAN System Engineering: From Theory to Practical Applications, Springer-
Verlag, ISBN 0387949399, New York. 

Leen, G.; Heffernan, D. & Dunne, A. (1999). Digital networks in automotive vehicle. 
Computing and Control Engineering Journal, Vol. 10, No. 6, pp. 257-266. 

Leen, G. & Heffernan, D. (2002). TTCAN: A new time-triggered controller area network. 
Microprocessors and Microsystems, Vol. 26, No. 2, pp. 77-94. 

Lemieux, J. (2001). Programming in the OSEK/VDX Environment, CMP Books, ISBN 
1578200814, Kansas. 

McMurran, R.; McKinney, F.; Tudor, N. J. & Milam, M. (2006). Dependable Systems of 
Systems, SAE paper: 2006-01-0597, SAE World Congress, Michigan, April 2006. 

www.intechopen.com



Fault Detection306

 

Murphey, Y. L.; Crossman, J. A.; Chen, Z. & Cardillo, J. (2003). Automotive fault diagnosis—
Part II: A distributed agent diagnostic system. IEEE Transactions on Vehicular 
Technology, Vol. 52, No. 4, pp.1076-1098. 

Navet, N. & Song, Y.-Q. (1999). Reliability improvement of the dual-priority protocol under 
unreliable transmission. Control Engineering Practice, Vol. 7, No. 8, pp. 975-981. 

Navet, N. & Song, Y.-Q. (2001). Validation of real-time in-vehicle applications. Computers in 
Industry, Vol. 46, No. 2, pp. 107-122. 

Navet, N.; Song, Y. Q.; Simonot-Lion, F. & Wilwert, C. (2005). Trend in automotive 
communication systems. Proceedings of IEEE Special Issue Industrial Communication 
Systems, Vol. 93, pp.1024-1223. 

Ortega, E.; Heurung, T. & Swanson. R. (2006). System design from wires to warranty. 
Automotive Electronics Magazine, February, pp. 14-18. 

OSEK/VDX (2004). Network Management: Concept and Application Programming 
Interface Version 2.5.3. [Online]. Available: http://www.osek-vdx.org. 

Robert Bosch GmbH. (2004). Automotive Electrics Automotive Electronics, Professional 
Engineering Publishing Limited, ISBN 0470519371, Suffolk. 

Robert Bosch GmbH. (2004). Gasoline-Engine Management, Robert Bosch GmbH, ISBN 
0837610524, Bury St. Edmunds. 

Robert Bosch GmbH. (2004). Automotive Handbook, Robert Bosch GmbH, ISBN 0768015138, 
Plochingen. 

Short M. & Pont, M. J. (2008). Assessment of high-integrity embedded automotive control 
systems using hardware in the loop simulation. Journal of Systems and Software, Vol. 
81, No. 7, pp. 1163-1183. 

Shrinath, A. & Emadi, A. (2004). Electronic control units for automotive electrical power 
systems: Communication and networks. Proceedings of IMechE Part D: Journal of 
Automobile Engineering, Vol. 218, pp. 1217-1230. 

Simonot-Lion, F. (2003). In-car embedded electronic architectures: how to ensure their 
safety, Proceeding of the 5th IFAC International Conference on Fieldbus Systems and Their 
Applications, Aveiro, July 2003. 

Storey, N. (1997). Safety-Critical Computer Systems, Addison Wesley Longman, ISBN 
0201427877, New York. 

Suwatthikul, J; McMurran, R. & Jones, R. P. (2007). Adaptive OSEK Network Management 
for In-vehicle Network Fault Detection, Proceeding of the 2007 IEEE International 
Conference on Vehicular Electronics and Safety, Beijing, Dec. 2007. 

Temple, C. (1998). Avoiding the babbling-idiot failure in a time-triggered communication 
system, Proceeding of the 28th Annual International Symposium on Fault-Tolerant 
Computing, pp. 218–225. 

Tindell, K. & Hansson, H. (1995). Babbling idiots, the dual priority protocol, and smart CAN 
controllers, Proceeding of the 2nd International CAN Conference, pp. 7.22–7.28. 

Zurawski, R. (2006). Embedded Systems Handbook, CRC Press, ISBN 0849328241, Florida. 
 

www.intechopen.com



Fault Detection

Edited by Wei Zhang

ISBN 978-953-307-037-7

Hard cover, 504 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

In this book, a number of innovative fault diagnosis algorithms in recently years are introduced.  These

methods can detect failures of various types of system effectively, and with a relatively high significance.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jittiwut Suwatthikul (2010). Fault detection and diagnosis for in-vehicle networks, Fault Detection, Wei Zhang

(Ed.), ISBN: 978-953-307-037-7, InTech, Available from: http://www.intechopen.com/books/fault-

detection/fault-detection-and-diagnosis-for-in-vehicle-networks



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


