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1. Introduction 
 

Electro-hydraulic systems are extensively used in applications of the automation technology 
from robotics and aerospace to heavy industrial systems and are becoming more complex in 
design and function. On-line diagnostic approaches for these systems have been 
considerably interesting for modern production technology as they play a significant role in 
maintenace of automation processes.  

Modelling information involved in a diagnostic method is considered as a quite effective 
diagnostic technique and many approaches have been published for the automated 
industrial processes over the last years such as (Frank 1996, Gertler 1998, Zhou and Bennett 
1998, Chen and Patton 1999, Patton, Frank and Clark 2000, Kinnaert 2003, Angeli 2008). 
Models that run in parallel to the dynamical industrial processes require parameter 
estimation methods that could respond effectively to time restriction situations.  

Various parameter estimation methods have been applied for fault detection in dynamic 
systems including the use of system models linearized about operating points (Reza and 
Blakenship 1996), nonlinear parameter estimation (Marschner and Fischer 1997), least-
square methods (Hjelmstad and Banan 1995), methods using observers (Drakunov, Law and 
Victor 2007) , Kalman filters (Chow et al 2007), expert systems (Isermann and Freyermuth 
1991), neural networks (Raol and Madhuranath 1996), qualitative reasoning (Zhuang and 
Frank 1998) and genetic algorithms (Zhou, Cheng and Ju 2002).  

For the most of these methods the need for highly accurate estimates of the parameters 
require high computational load and memory requirements that reduces the capability of 
the method (Chen 1995) for on-line estimation of the parameters and as consequence makes 
them less suitable for on-line systems. Additional difficulties are presented from the noise in 
the system or the noise by the measurements where most of the methods proposed for 
parameter estimation in non linear systems cannot be applied (Fouladirad and Nikiforov 
2006, Tutkun 2009). On the other hand linearised models have difficulties in representing a 
wide range of operating conditions. 

5
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This Chapter describes a parameter estimation scheme which overcomes some of these 
difficulties. The method is particularly suitable for on-line fault diagnosis because of the low 
memory and computational load requirements and its capability to operate in parallel to 
dynamic industrial process for on-line fault diagnosis. For the development of the 
parameter estimation method the DASYLab data acquisition and control software was used. 
The proposed method is used for the estimation of parameter values that include 
uncertainty while other parameter values were estimated from analytical considerations. 
The developed mathematical model was incorporated in an on-line expert system that 
diagnoses real time faults in hydraulic systems.  

 
2. The actual system and the variables of the system 
 

A hydraulic system consists of various hydraulic elements connected with pipes and a 
hydraulic medium.  

Pb
0.00 Bar

Pa

0.00 Bar

qvbqva

dab

I 2

Jm, φ, ω

2.1

1.3

?

qma qmb

 
Fig. 1. A typical hydraulic system 

A typical hydraulic system, Fig. 1, consists, besides the power unit, mainly of a proportional 
4-way valve (1.3) and a hydraulic motor (2.1) with an attached rotating mass Jm. Assuming 
that the working pressure is constant, the variables of the system are following: The 
pressure at the port A of the hydraulic motor pa, the pressure at the port B of the hydraulic 
motor pb, the rotation angle of the motor shaft , the angular velocity ,  the flows qva and q 
vb through the A and B ports of the proportional 4-way valve, the flows q ma  and q mb 
through the ports A and B of the hydraulic motor, the input current to the proportional 
valve I2 or the corresponding voltage to the amplifier of the proportional valve U2. 

 
3. Operation of the system 
 

The task of the actual system is to drive a hydraulic motor through a cyclical routine, which 
requires a high speed for a short time, and then return to a low speed.  
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           0,0     0,4   0,8                     15,0             t [s]  

  [rad/s]         

 

b) 

 

 

 

  0,0  0,4 0,8                        15,0  t [s]  
 

Fig. 2. Operation cycle of the system: (a) U  - pulse; (b) Response of the hydraulic motor 
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To achieve this a typical input voltage is applied to the system as shown in Fig. 2. The speed 
of the hydraulic motor is proportional to the flow coming from the proportional 4-way 
valve and the displacement volume of the hydraulic motor. The flow is proportional to the 
input voltage to the amplifier of the proportional 4-way valve. The proportional 4-way 
valve is controlled by a periodically changed voltage value U. Fig. 2 shows the pulse 
waveform of the signal U to the amplifier of the proportional 4-way valve and the form of 
the corresponding waveform of the speed  of the hydraulic motor. 
On the normal operation the hydraulic motor takes approximately 0,4 s to change the speed 
from a low value corresponding to U=1 V to a high value corresponding to U=6 V. Any 
fault that occurs in the system can affect both the dynamic and the steady state of the 
system. Thus if data are taken over a period 0 to 0,4 s after having applied the change of 
voltage U both the dynamic and the steady condition should be determinable. In this work 
the positive response of the curve is used for the fault detection. 

 
4. Estimation of the Uncertain Parameters 
 

The simulation results depend on the values of the parameters. The model parameters are: 
the oil elasticity E, the volumetric efficiency v, the nominal flow of the proportional 4-way 
valve Qnv, the nominal voltage signal to the amplifier of the proportional 4-way valve Unv, 
the hydraulic motor displacement Vm , the oil volume in the pipes Vl , the moment of inertia 
Jm , the friction torque Mr, the system pressure p0, the initial value of the command voltage 
to the amplifier of the proportional 4-way valve and the initial value of the rotation angle φ.  
The parameter p0 is the constant system pressure. The command value U2 depends on the 
operating conditions. The parameters Vm , Vl and Jm are clearly determinable values 
depending on measurable physical characteristics of the system. The parameter Unv is 
operation limit defined by the manufacturer. The parameters v and Qnv are derivable from 
the manufacturer’s data and their values are individually tested in the laboratory. 
The parameters Mr (friction torque) and E (oil elasticity) are not easily determined from 
analytical considerations. For the determination of the value of these uncertain parameters 
the simulation for a set of values was performed, and the simulation results were compared 
with the corresponding measurements. The optimal values for Mr  and E are the values that 
minimize the difference between the measurements of the actual system and the model. 
These values are estimated using the integral squared error (ISE) method. The 
determination of Mr  is performed in relation to the commonly used range of values for the 
parameter E (oil elasticity including air) in order to determine more precisely the optimal 
value for both parameters. This process is extensively presented in following Sections 4.2 
and 4.3. 

 
4.1 The DASYLab software 
As already mentioned, for the development of the proposed parameter estimation method 
the DASYLab software was used. The DASYLab (Data Acquisition SYstem Laboratory) is 
graphical programming software that takes advantage of the features and the graphical 
interface provided by Microsoft Windows. This software provides an “intuitive” operating 
environment, which offers data analysis functions, a high signal processing speed, an 
effective graphical display of results and data presentation possibilities. A measuring task 

can be set up directly on the screen by selecting and connecting modular elements which 
can then be freely arranged. 

Among the module functions provided are A/D and D/A converters, digital I/O, 
mathematical functions from fundamental arithmetic to integral and differential calculus, 
statistics, digital filters of several types, logical connectors like AND, OR, NOR etc., 
counters,  chart recorders, I/O files, digital displays, bar graphs, analogue meters and more. 

With DASYLab it is possible to achieve high signal input/output rates using the full power 
of the PC. Special buffers with large, selectable, memory address ranges enable continuous 
data transfer from the data acquisition device through to the software. It obtains real-time 
logging at a rate of up to 800 kHz and real-time on-screen signal display at a rate of up to 70 
kHz. 

The worksheet displayed on the screen can be edited at any time. New modules can be 
developed and added, others can be moved to a different position or deleted. Dialogue 
boxes prompt for all the necessary parameters to be set for the experiment. By using the 
“Black Box” module it is possible to combine elements of the worksheet that are repeatedly 
required in the experiments, integrate them into a Black Box module and insert them into 
worksheets as ready-to-use units. The consequences of this are a saving of time and the 
simplification of the worksheets. 

The maximum worksheet size is 2000 by 2000 pixels, and a worksheet can contain up to 256 
modules. For most modules up to 16 inputs and/or outputs can be configured.  

The acquired data and process results can also be saved to files so that they can be retrieved 
for further processing at a later time. Using DDE (Dynamic Data Exchange), data can be 
transferred directly to other Windows applications supporting the DDE protocol or 
applications with DDE capabilities may be used to start DASYLab and control it while 
running an experiment. 

A worksheet can be created on the screen by selecting and connecting in a suitable way 
stored modules that represent a specific action. The modules are connected by data channels 
so that data can be transferred between them. The worksheet graphically displays on the 
screen the complete experiment setup or measurement procedure including all necessary 
modules and data channels. 

A module represents a functional element in the experiment setup. The function symbolised 
by the modules comprises all the operations required for an experiment e.g. data acquisition 
(by a data acquisition board), signal generation (simulated by a software generator), data 
analysis, evaluation and processing ( mathematics, statistics, control trigger and other 
functions), presentation on screen (display instruments) or export for documentation 
purposes (printer, metafile). 

In the worksheet, modules are represented as complete symbols. These symbols display 
each module’s name and the input and output channels that have been selected for it. A 
data channel is the connection between the output of a module and the input to another 
module. Data are transferred between the respective modules via these connections.  

Modules are organised in module groups. A module group is made up of a number of 
modules providing similar functions. The available module groups are: input/output, 
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To achieve this a typical input voltage is applied to the system as shown in Fig. 2. The speed 
of the hydraulic motor is proportional to the flow coming from the proportional 4-way 
valve and the displacement volume of the hydraulic motor. The flow is proportional to the 
input voltage to the amplifier of the proportional 4-way valve. The proportional 4-way 
valve is controlled by a periodically changed voltage value U. Fig. 2 shows the pulse 
waveform of the signal U to the amplifier of the proportional 4-way valve and the form of 
the corresponding waveform of the speed  of the hydraulic motor. 
On the normal operation the hydraulic motor takes approximately 0,4 s to change the speed 
from a low value corresponding to U=1 V to a high value corresponding to U=6 V. Any 
fault that occurs in the system can affect both the dynamic and the steady state of the 
system. Thus if data are taken over a period 0 to 0,4 s after having applied the change of 
voltage U both the dynamic and the steady condition should be determinable. In this work 
the positive response of the curve is used for the fault detection. 

 
4. Estimation of the Uncertain Parameters 
 

The simulation results depend on the values of the parameters. The model parameters are: 
the oil elasticity E, the volumetric efficiency v, the nominal flow of the proportional 4-way 
valve Qnv, the nominal voltage signal to the amplifier of the proportional 4-way valve Unv, 
the hydraulic motor displacement Vm , the oil volume in the pipes Vl , the moment of inertia 
Jm , the friction torque Mr, the system pressure p0, the initial value of the command voltage 
to the amplifier of the proportional 4-way valve and the initial value of the rotation angle φ.  
The parameter p0 is the constant system pressure. The command value U2 depends on the 
operating conditions. The parameters Vm , Vl and Jm are clearly determinable values 
depending on measurable physical characteristics of the system. The parameter Unv is 
operation limit defined by the manufacturer. The parameters v and Qnv are derivable from 
the manufacturer’s data and their values are individually tested in the laboratory. 
The parameters Mr (friction torque) and E (oil elasticity) are not easily determined from 
analytical considerations. For the determination of the value of these uncertain parameters 
the simulation for a set of values was performed, and the simulation results were compared 
with the corresponding measurements. The optimal values for Mr  and E are the values that 
minimize the difference between the measurements of the actual system and the model. 
These values are estimated using the integral squared error (ISE) method. The 
determination of Mr  is performed in relation to the commonly used range of values for the 
parameter E (oil elasticity including air) in order to determine more precisely the optimal 
value for both parameters. This process is extensively presented in following Sections 4.2 
and 4.3. 

 
4.1 The DASYLab software 
As already mentioned, for the development of the proposed parameter estimation method 
the DASYLab software was used. The DASYLab (Data Acquisition SYstem Laboratory) is 
graphical programming software that takes advantage of the features and the graphical 
interface provided by Microsoft Windows. This software provides an “intuitive” operating 
environment, which offers data analysis functions, a high signal processing speed, an 
effective graphical display of results and data presentation possibilities. A measuring task 

can be set up directly on the screen by selecting and connecting modular elements which 
can then be freely arranged. 

Among the module functions provided are A/D and D/A converters, digital I/O, 
mathematical functions from fundamental arithmetic to integral and differential calculus, 
statistics, digital filters of several types, logical connectors like AND, OR, NOR etc., 
counters,  chart recorders, I/O files, digital displays, bar graphs, analogue meters and more. 

With DASYLab it is possible to achieve high signal input/output rates using the full power 
of the PC. Special buffers with large, selectable, memory address ranges enable continuous 
data transfer from the data acquisition device through to the software. It obtains real-time 
logging at a rate of up to 800 kHz and real-time on-screen signal display at a rate of up to 70 
kHz. 

The worksheet displayed on the screen can be edited at any time. New modules can be 
developed and added, others can be moved to a different position or deleted. Dialogue 
boxes prompt for all the necessary parameters to be set for the experiment. By using the 
“Black Box” module it is possible to combine elements of the worksheet that are repeatedly 
required in the experiments, integrate them into a Black Box module and insert them into 
worksheets as ready-to-use units. The consequences of this are a saving of time and the 
simplification of the worksheets. 

The maximum worksheet size is 2000 by 2000 pixels, and a worksheet can contain up to 256 
modules. For most modules up to 16 inputs and/or outputs can be configured.  

The acquired data and process results can also be saved to files so that they can be retrieved 
for further processing at a later time. Using DDE (Dynamic Data Exchange), data can be 
transferred directly to other Windows applications supporting the DDE protocol or 
applications with DDE capabilities may be used to start DASYLab and control it while 
running an experiment. 

A worksheet can be created on the screen by selecting and connecting in a suitable way 
stored modules that represent a specific action. The modules are connected by data channels 
so that data can be transferred between them. The worksheet graphically displays on the 
screen the complete experiment setup or measurement procedure including all necessary 
modules and data channels. 

A module represents a functional element in the experiment setup. The function symbolised 
by the modules comprises all the operations required for an experiment e.g. data acquisition 
(by a data acquisition board), signal generation (simulated by a software generator), data 
analysis, evaluation and processing ( mathematics, statistics, control trigger and other 
functions), presentation on screen (display instruments) or export for documentation 
purposes (printer, metafile). 

In the worksheet, modules are represented as complete symbols. These symbols display 
each module’s name and the input and output channels that have been selected for it. A 
data channel is the connection between the output of a module and the input to another 
module. Data are transferred between the respective modules via these connections.  

Modules are organised in module groups. A module group is made up of a number of 
modules providing similar functions. The available module groups are: input/output, 
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trigger functions, mathematics, statistics, signal analysis, control, display, files, data 
reduction, special, and black box. 

The overall data processing performance as well as the response time of the individual 
functions is determined by the experimental setup. In addition, the settings for the sampling 
rate, the block size, the analogue and digital outputs and the size of the driver buffer can be 
regulated by the experimental setup. 

 
4.2 Derivation of the Integral Squared Error (ISE) 
The estimation of the parameter value Mr is performed by measuring the integral squared 
error (ISE) between the measured and calculated signals over a period of time and looking 
for the minimum value of the ISE according to the following relations: 

 

Ia  = ( ) ( ) minp p dt F Mam as

tend

a r    2

0

 

 

I b = ( ) ( ) minp p dt F Mbm bs

tend

b r    2

0

 

 

In principle, an optimum value for the friction Mr would exist if both integrals were at a 
minimum for this value. 

The integral squared error is measured using the signal analysis capabilities of the 
DASYLab software by combining two DASYLab "experiments". The first “experiment”, Fig. 
3, performs the control of the hydraulic system and the measurements under various 
operating conditions and updates the operational parameter values of the input files to the 
simulation program. In the second “experiment”, Fig. 4, the results from measurements and 
simulation are compared and processed. Between the two "experiments" the simulation 
program runs using the corresponding input data files with the updated parameter values. 
This method reduces the experimentation time considerably and allows us to perform 
experiments with a large variety of parameter sets. 

The worksheet of Fig. 3 consists of three groups of modules. The module group A is 
responsible for the starting of the hydraulic system. The module group B is responsible for 
the control of the command voltage U2. The module group C is responsible for the data 
measurement and storing for further processing by the second “experiment” (Fig.4).  
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Fig. 3. Worksheet for experiment control and measurements 

 
In the "experiment" of Fig. 3. the output from model (outmo3) and the output from 
measurements (oupr3) are compared. After this comparison of measured and calculated 
data, the integral squared error between them is derived using suitably formulated 
mathematical and statistical DASYLab modules.  
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Fig. 4. Comparison of measured and calculated data and derivation of the integral squared 
error (ISE) 

 
In this "experiment" the arithmetic module "Pam-Pas" calculates the difference between 
calculated and measured pressure pa over the time period t = 0 to 0,4 s. The arithmetic 
module "(Pam-Pas)^2" calculates the square of the pressure difference. 

The module " Int(DPa)^2" calculates the integral of (Pam-Pas)^2. The module "Inta0->tend" 
calculates the value of this integral in the time period t = 0 to tend (0,4 s). The result is the 
integral squared error over the observed period of time and is written to the file 
"integpa.asc", represented by the module “integpa”. This procedure is performed for a set of 
values near the expected value of the friction torque Mr and the result is appended to the 
data of the file "integpa.asc".  

The processing of pressure pb is performed in a similar way with the corresponding 
modules "Pbm-Pbs", "(Pbm-Pbs)^2", "Int(DPb)^2", "Int b 0 ->tend" and "integpb".  

The files "integpa.asc" and "integpb.asc" together with the file "rm.asc", that contains the set 
of the Mr values, are processed by the "experiment" illustrated in Fig. 5, Section 4.3 for the 
estimation of the optimal parameter values. 

 
4.3 Estimation of the optimal parameter values 
The integral squared difference for the pressures pa and pb is the basis for the estimation of 
the best Mr value. In the DASYLab “experiment” of Fig. 5 the files “integpa” and “integpb” 

are graphically represented in relation to the Mr values and are processed for the 
determination of the optimal Mr value. 
 

 
Fig. 5. Determination of the minimum integral squared error for pressures pa  and pb  
 
The module “integ(rm)” displays the integral squared error values for pressure pa and pb 
from the files “integpa” and “integpb” for various Mr values. The module “rm/integ” 
displays these values in a list form. The module “min integ” is a digital meter module that 
displays the minimum value between the integral squared error values of the list.  

In order to estimate an accurate value for the parameter E this procedure was performed for 
oil elasticity values of 0,90  109, of 1,00  109 and 1,10  109 N/m2 in the simulation, because 
these values lie near to the commonly used value for hydraulic mineral oil of 109 N/m2. 

The DASYLab “experiment” of Fig. 5 was performed for the pressures  pa and pb with p0 = 
50 bar, U2 = 6 V and oil elasticity values E = 0,90 109. N/m2, E = 1,00 109 N/m2 and E = 1,10 
 109 N/m2 . The results of the minimum integral squared error are plotted in Fig. 6.  
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displays these values in a list form. The module “min integ” is a digital meter module that 
displays the minimum value between the integral squared error values of the list.  

In order to estimate an accurate value for the parameter E this procedure was performed for 
oil elasticity values of 0,90  109, of 1,00  109 and 1,10  109 N/m2 in the simulation, because 
these values lie near to the commonly used value for hydraulic mineral oil of 109 N/m2. 

The DASYLab “experiment” of Fig. 5 was performed for the pressures  pa and pb with p0 = 
50 bar, U2 = 6 V and oil elasticity values E = 0,90 109. N/m2, E = 1,00 109 N/m2 and E = 1,10 
 109 N/m2 . The results of the minimum integral squared error are plotted in Fig. 6.  
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Fig. 6. The minimum integral squared error for pressure pa and pressure pb by p0 = 50 bar, 
U2 = 1 to 6 V and E = 0,90 109  N/m2 
 
In this Figure it is seen that the value Mr=1,8 minimises the difference between measured 
and calculated pressure pa and the value Mr = 2,0 minimises the difference for the pressure 
pb. Therefore the average value of 1,9 N  m is taken for Mr.   

The value 1,00 . 109 N/m2 for the oil elasticity parameter E is also the most accurate, because 
for a slightly lower and a slightly higher E value the minimum values of the Integral 
Squared Errors of the pressure differences are higher than for E = 1,00 . 109 N/m2. 

In order to test the performance of the model with the above estimated parameter values 
and to illustrate the changes of the pressure differences in relation to the operating 
parameters, the "experiment" of Figure 3 was used. The maximum differences of pressures 
pa and pb between measurement and simulation were calculated from the modules "Pam-
Pas" and "Pbm-Pbs" for various command voltage values U2 and various Mr  values.  

For comparison reasons the experimental results are summarised in Table 1, where the 
maximum pressure differences for the transient condition in relation to the command 
voltage values U2  (5, 6 and 7 V)  and the Mr values  1,70, 1,90 and 2,10 N.m are shown. 

In this table, it can be observed that the maximum pressure differences from simulation and 
measurements are minimised for the estimated Mr  value (= 1,9  N.m) while for other Mr  
values near to the estimated Mr  value the differences increase. 

Another observation is that all pressure difference values for the estimated Mr  value 1,9 
N.m are below the threshold which will be selected later as the criterion for the occurrence 
of a fault by the fault diagnosis process.  

  Deviation of Pa & Pb    

U2  [V] 1 to 5  1 to 6  1 to 7  

Mr [N.m] DPa DPb DPa DPb DPa DPb 

1,70 3,3 2,8 3,1 2,6 3,2 2,7 

1,90 3,1 2,6 2,9 2,4 3,0 2,5 

2,10 3,4 2,9 3,2 2,7 3,3 2,8 

Table 1. Experimental results of the pressure differences by various Mr values 
 
5. Results of the Approach 
 

The experimental work shows that the most accurate value for Mr  is 1,9  Nm and the most 
accurate value for the oil elasticity E is 1,00 .109 N/m2. From the experimental results it was 
observed that the deviation between the pressure curves from measurement and simulation 
was always lower than the threshold that will be defined for the occurrence of a fault in the 
fault detection process.  

The behaviour of model and system using the estimated parameter values is illustrated in 
the diagrams of Fig. 7 where data from the simulation and from the data acquisition process 
are plotted on the same diagram. In these diagrams the high degree of approximation of the 
corresponding curves for the pressure pa   can be observed. Similar response for the pressure 
pb and the angular velocity  were observed. 
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Fig. 7. Response of model and system regarding the pressure pa by p0 = 50 bar, U2 = 1 to 6 V, 
E = 1,00 . 109 N/m2, Mr  = 1,9 N . m 

 
6. Accuracy of the Diagnostic Results of the System 
 

The effects of changes in parameter values on the simulation results were examined in order 
to test the performance of the system.  
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Fig. 8. Influence of a variation of   5 %, and   10% of the parameter Jm  on pressure pa. 
 
The parameters, as the friction torque Mr, the moment of inertia Jm and the oil elasticity E 
were varied. For a variation of   5 %,  10 % and   20 % of these parameters the variation 
of the simulation results was observed and studied. As example, for the oil elasticity E the 

deviations of the simulation results for the above parameter changes are shown in Fig. 8. 
The maximum deviations are approximately 0,5 bar for a variation of  5 % and 1 bar for a 
variation of  10 %. These variations are acceptable for these systems and, in case, the 
specific should not affect the effectiveness of the fault detection. Observations indicated a 
similar effect for changes of the other parameters as well as on the pressure pb. 

 
7. Conclusion 
 

Parameter estimation methods for real-time fault detection in dynamical systems are related 
to the effectiveness of the total diagnostic system. In this Chapter, a parameter estimation 
approach that uses low computational load and memory requirements has been presented 
which is also able to respond effectively to time restriction situations. The method has been 
applied to a dynamic drive and control system and has the capability to estimate on-line 
parameter values as well as to operate in parallel to the final real-time fault detection 
system. For the development of the parameter estimation method the capabilities of the 
DASYLab data acquisition and control software were used.  

The final model, used by the fault detection system, is able to simulate quite precisely the 
actual behaviour of the physical system and can respond to the requirements of on-line 
performance. The experimental results provide evidence of the consistency degree between 
the behaviour of model and the system that makes the parameter estimation method 
particularly suitable for on-line fault diagnosis systems. 
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