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1. Introduction

The purpose of this chapter is to provide a concise introduction to cellular automata simula-
tions, and to serve as a starting point for those who wish to use cellular automata in modelling
and applications. No previous exposure to cellular automata is assumed, beyond a standard
mathematical background expected from a science or engineering researcher.
Cellular automata (CA) are dynamical systems characterized by discreteness in space, time,
and in state variables. In general, they can be viewed as cells in a regular lattice updated
synchronously according to a local interaction rule, where the state of each cell is restricted
to a finite set of allowed values. Unlike other dynamical systems, the idea of cellular au-
tomaton can be explained without using any advanced mathematical apparatus. Consider,
for instance, a well-known example of the so-called majority voting rule. Imagine a group of
people arranged in a line line who vote by raising their right hand. Initially some of them
vote “yes”, others vote “no”. Suppose that at each time step, each individual looks at three
people in his direct neighbourhood (himself and two nearest neighbours), and updates his vote
as dictated by the majority in the neighbourhood. If the variable si(t) represents the vote of
the i-th individual at the time t (assumed to be an integer variable), we can write the CA rule
representing the voting process as

si(t + 1) = majority
{

si−1(t), si(t), si+1(t)
}

. (1)

This is illustrated in Figure 1, where periodic boundary conditions are used, that is, the right

Fig. 1. Example of CA: majority voting rule.
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neighbour of i = 9 is considered to be i = 1, and similarly for i = 1. If eq. (1) is iterated
many times for t = 1, 2, 3, . . ., we have a discrete-time dynamical system, often referred to as
one-dimensional cellular automaton. Of course, in a general case, instead of eq. (1) we can
use another rule, and instead of one-dimensional lattice we may consider higher-dimensional
structures. Voting rule in 2-dimensions, for example, could be defined as

si,j(t + 1) = majority
{

si−1,j(t), si+1,j(t), si,j(t), si,j−1(t), si,j+1(t)
}

, (2)

where the variable si,j(t) represents the vote of the individual located at (i, j) at time t, assum-
ing that i, j and t are all integer variables. Again, by iterating the above rule for t = 1, 2, 3, . . .,
we obtain a two-dimensional dynamical system, known as two-dimensional majority-voting
cellular automaton.
Given the simplicity of CA definition, it is not surprising that cellular automata enjoy tremen-
dous popularity as a modelling tool, in a number of diverse fields of science and engineering.
While it is impossible to list all applications of CA in this short chapter, we will mention
some monographs and other publications which could serve as a starting point for exploring
CA-based models. The first serious area of applications of CA opened in mid-80’s, when the
development of lattice gas cellular automata (LGCA) for hydrodynamics initiated an exten-
sive growth of CA-based models in fluid dynamics, including models of Navier-Stokes fluids
and chemically reacting systems. Detailed discussion of these models, as well as applications
of CA in nonequilibrium phase transition modelling can be found in (Chopard and Drozd,
1998). In recent years, the rise of fast and inexpensive digital computers brought a new wave
of diverse applications of CA in areas ranging from biological sciences (e.g., population dy-
namics, immune system models, tumor growth models, etc.) to engineering (e.g. models
of electromagnetic radiation fields around antennas, image processing, interaction of remote
sensors, traffic flow models, etc.) An extensive collection of articles on applications of cellular
automata can be found in a series of conference volumes produced bi-annually in connection
with International Conference on Cellular Automata for Research and Industry (Bandini et al.,
2002; Sloot et al., 2004; Umeo et al., 2008; Yacoubi et al., 2006) as well as in Journal of Cellular
Automata, a new journal launched in 2006 and dedicated exclusively to CA theory and appli-
cations. Among the applications listed above, traffic flow models should be singled out as one
of the most important and extensively studies areas. A good albeit already somewhat dated
review of these models can be found in (Chowdhury et al., 2000). For readers interested in the
theory of cellular automata, computational aspects of CA are discussed in (Ilachinski, 2001;
Wolfram, 1994; 2002), while more mathematical approach is presented in Kari (2005).
Discrete nature of cellular automata renders CA-based models suitable for computer simula-
tions and computer experimentation. One can even say that computer simulations are almost
mandatory for anyone who wants to understand behavior of CA-based model: apparent sim-
plicity of CA definition is rather deceiving, and in spite of this simplicity, dynamics of CA
can be immensely complex. In many cases, very little can be done with existing mathematical
methods, and computer simulations are the only choice.
In this chapter, we will describe basic problems and methods for CA simulations, starting
from the definition of the “simulation” in the context of CA, and followed by the discussion of
various types of simulations, difficulties associated with them, and methods used to resolve
these difficulties. Most ideas will be presented using one-dimensional examples for the sake
of clarity.
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2. Cellular automata

We will start from some remarks relating CA to partial differential equations, which are usu-
ally more familiar to modelers that CA. Cellular automata are often described as fully discrete
analogs of partial differential equations (PDEs). In one dimension, PDE which is first-order in
time can be written as

ut(x, t) = F(u, ux, uxx, . . .), (3)

where u(x, t) is the unknown function, and subscripts indicate differentiation. Informally,
cellular automata can be obtained by replacing derivatives in (3) by difference quotients

ut →
u(x, t + ǫ)− u(x, t)

ǫ

, (4)

ux →
u(x + h, t)− u(x − h, t)

2h
, (5)

uxx →
u(x + 2h, t)− 2u(x, t) + u(x − 2h, t)

4h2
, (6)

etc. With these substitutions, and by taking h = ǫ = 1 one can rewrite (3) as

u(x, t + 1) = u(x, t) + F

(

u,
u(x + 1, t)− u(x − 1, t)

2
,

u(x + 2, t)− 2u(x, t) + u(x − 2, t)

4
, . . .

)

.

(7)
One can now see that the right hand side of the above equation depends on

u(x, t), u(x ± 1, t), u(x ± 2, t), . . . (8)

and therefore we can rewrite rewrite (7) as

u(x, t + 1) = f (u(x − r, t), u(x − r + 1, t), . . . , u(x + r, t)), (9)

where f is called a local function and the integer r is called a radius of the cellular automaton.
The local function for cellular automata is normally restricted to take values in a finite set of
symbols G. To reflect this, we will use symbol si(t) to denote the value of the (discrete) state
variable at site i at time t, that is,

si(t + 1) = f
(

si−r(t), si−r+1(t), . . . , si+r(t)
)

. (10)

In the case of binary cellular automata, which are the main focus of this chapter, the local
function takes values in the set {0, 1}, so that f : {0, 1} → {0, 1}2r+1. Binary rules of radius
1 are called elementary rules, and they are usually identified by their Wolfram number W( f ),
defined as

W( f ) =
1

∑
x1,x2,x3=0

f (x1, x2, x3)2
(22x1+21x2+20x3). (11)

In what follows, the set of symbols G = {0, 1, ...N − 1} will be be called a symbol set, and by S
we will denote the set of all bisequences over G, where by a bisequence we mean a function
on to G. The set S will also be called the configuration space. Most of the time, we shall
assume that G = {0, 1}, so that the configuration space will usually be a set of bi-infinite
binary strings. Corresponding to f (also called a local mapping) we can define a global mapping
F : S → S such that (F(s))i = f (si−r, . . . , si, . . . , si+r) for any s ∈ S .
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Comparing (3) and (10), we conclude that r plays a similar role in CA as the degree of the
highest derivative in PDEs. We should stress, however, that the PDE defined by (3) and the
cellular automaton (10) obtained by the above “discretization procedure” have usually very
little in common. There exist discretization schemes (such as ultradiscretization) which seem
to preserve some features of the dynamics while passing from PDE to CA, but they are beyond
the scope of this chapter. We merely want to indicate here that conceptually, cellular automata
are closely related to PDEs, although in contrast to PDEs, all variables in CA are discrete.
Moreover, dependent variable u is bounded in the case of CA – a restriction which is not
normally imposed on the dependent variable of a PDE.

2.1 Deterministic initial value problem

For PDEs, an initial value problem (also called a Cauchy problem) is often considered. It is
the problem of finding u(x, t) for t > 0 subject to

ut(x, t) = F(u, ux, uxx, . . .), for x ∈ , t > 0,

u(x, 0) = G(x) for x ∈ , (12)

where the function G : → represents the given initial data. A similar problem can be
formulated for cellular automata: given

si(t + 1) = f
(

si−r(t), si−r+1(t), . . . , si+r(t)
)

,

si(0) = g(i), (13)

find si(t) for t > 0, where the initial data is represented by the given function g : → G.
Here comes the crucial difference between PDEs and CA. For the initial value problem (12),
we can in some cases obtain an exact solution in the sense of a formula for u(x, t) involving
G(x). To give a concrete example, consider the classical Burgers equation

ut = uxx + uux. (14)

If u(x, 0) = G(x), one can show that for t > 0

u(x, t) = 2
∂

∂x
ln

{

1√
4πt

∫ ∞

−∞
exp

[

− (x − ξ)2

4t
− 1

2

∫ ξ

0
G(ξ ′)dξ ′

]

dξ

}

, (15)

which means that, at least in principle, knowing the initial condition u(x, 0), we can compute
u(x, t) for any t > 0. In most cases, however, no such formula is known, and we have to resort
to numerical PDE solvers, which bring in a whole set of problems related to their convergence,
accuracy, stability, etc.
For cellular automata, obtaining an exact formula for the solution of the initial value problem
(13) analogous to (15) is even harder than for PDEs. No such formula is actually known for
virtually any non-trivial CA. At best, one can find the solution if g(i) is simple enough. For
example, for the majority rule defined in eq. (1), if g(i) = i mod 2, then one can show without
difficulty that

si(t) = (i + t)mod 2, (16)

but such result can hardly be called interesting.1

1 By a mod 2 we mean the integer remainder of division of a by 2, which is 0 for even a and 1 for odd a.
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Nevertheless, for CA, unlike for PDEs, it is very easy to find the value of si(t) for any i ∈
and any t ∈ by direct iteration of the cellular automaton equation (10). Thus, in algorithmic
sense, problem (13) is always solvable – all one needs to do is to take the initial data g(x) and
perform t iterations. In contrast to this, initial value problem for PDE cannot be solved exactly
by direct iteration – all we can usually do is to obtain some sort of numerical approximation
of the solution.

2.2 Probabilistic initial value problem

Before we address basic simulation issues for CA, we need to present an alternative, and
usually more useful, way of posing the initial value problem for CA. Often we are interested
in a range of initial conditions, with a given probability distribution. How to handle the initial
value problem in such cases? This is best achieved by using some basic concepts of probability
theory, namely the notion of the cylinder set and the probability measure. A reader unfamiliar
with these concepts can skip to the end of this subsection.
An appropriate mathematical description of an initial distribution of configurations is a prob-
ability measure µ on S , where S is the set of all possible configurations, i.e., bi-infinite strings
of symbols.
Such a measure can be formally constructed as follows. If b is a block of symbols of length k,
that is, b = b0b1 . . . bk−1, then for i ∈ we define a cylinder set as

Ci(b) = {s ∈ S : si = b0, si+1 = b1 . . . , si+k−1 = bk−1}. (17)

The cylinder set is thus a set of all possible configurations with fixed values at a finite number
of sites. Intuitively, the measure of the cylinder set given by the block b = b0 . . . bk−1, denoted
by µ[Ci(b)], is simply a probability of occurrence of the block b in a position starting at i. If the
measure µ is shift-invariant, that is, µ(Ci(b)) is independent of i, we can drop the index i and
simply write µ(C(b)).
The Kolmogorov consistency theorem states that every probability measure µ satisfying the
consistency condition

µ[Ci(b1 . . . bk)] = ∑
a∈G

µ[Ci(b1 . . . bk, a)] (18)

extends to a shift invariant measure on S . For p ∈ [0, 1], the Bernoulli measure defined as
µp[C(b)] = pj(1 − p)k−j, where j is a number of ones in b and k − j is a number of zeros in b,
is an example of such a shift-invariant (or spatially homogeneous) measure. It describes a set
of random configurations with the probability that a given site is in state 1 equal to p.
Since a cellular automaton rule with global function F maps a configuration in S to another
configuration in S , we can define the action of F on measures on S . For all measurable subsets
E of S we define (Fµ)(E) = µ(F−1(E)), where F−1(E) is an inverse image of E under F.
The probabilistic initial value problem can thus be formulated as follows. If the initial config-
uration was specified by µ, what can be said about Ftµ (i.e., what is the probability measure
after t iterations of F)?
Often in practical applications we do not need to know Ftµ , but given a block b, we want to
know what is the probability of the occurrence of this block in a configuration obtained from
a random configuration (sampled, for example, according to the measure µp) after t iterations
of a given rule. In the simplest case, when b = 1, we will define the density of ones as

ρ(t) = (Fn
µp)(C(1)). (19)
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3. Simulation problems

The basic problem in CA simulations is often called the forward problem: given the initial
condition, that is, the state of cells of the lattice at time t = 0, what is their state at time t > 0?
On the surface, this is an easy question to answer: just iterate the CA rule t of times, and you
will find the answer. Nevertheless, upon closer inspection, some potential problems emerge.

• Infinite lattice problem: In the initial value problem (13), the initial condition is an
infinite sequence of symbols. How do we compute an image of an infinite sequence
under the cellular automaton rule?

• Infinite time problem: If we are interested in t → ∞ behavior, as we usually do in
dynamical system theory, how can simulations be used to investigate this?

• Speed of simulations: What if the lattice size and the number of iterations which inter-
est us are both finite, but large, and the running time of the simulation is too long? Can
we speed it up?

Some of these problems are interrelated, as will become clear in the forthcoming discussion.

4. Infinite lattice problem

In statistical and solid state physics, it is common to use the term “bulk properties”, indicating
properties of, for example, infinite crystal. Mathematically bulk properties are easier to han-
dle, because we do not have to worry about what happens on the surface, and we can assume
that the underlying physical system has a full translational invariance.
In simulations, infinite system size is of course impossible to achieve, and periodic boundary
conditions are used instead. In cellular automata, similar idea can be employed. Suppose
that we are interested in solving an initial value problem as defined by eq. (13). Obviously,
it is impossible to implement direct simulation of this problem because the initial condition
si(0) consists of infinitely many cells. Once can, however, impose boundary condition such
that g(i + L) = g(i). This means that the initial configuration is periodic with period L. It is
easy to show that if si(0) is periodic with period L, then si(t) is also periodic with the same
period. This means than in practical simulations one needs to store only the values of cells
with i = 0, 1, 2, . . . , L − 1, that is, a finite string of symbols.
If one is interested in some bulk property P of the system being simulated, it is advisable to
perform a series of simulations with increasing L, and check how P depends on L. Quite often,
a clear trend can be spotted, that is, as L increases, P converges to the “bulk” value. One has
to be aware, however, that some finite size effects are persistent, and may be present for any
L, and disappear only on a truly infinite lattice.
Consider, as a simple example, the well-know rule 184, for which the local rule is defined as

f (0, 0, 0) = 0, f (0, 0, 1) = 0, f (0, 1, 0) = 0, f (0, 1, 1) = 1,

f (1, 0, 0) = 1, f (1, 0, 1) = 1, f (1, 1, 0) = 0, f (1, 1, 1) = 1, (20)

or equivalently

si(t + 1) = si−1(t) + si(t)si+1(t)− si−1(t)si(t). (21)

Suppose that as the initial condition we take

si(0) = i mod 2 + δi,0 − δi,1, (22)

i

t

i

t
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(a)

i

t

(b)

i

t

Fig. 2. Spread of defects in rule 184.

where δi,j = 1 if i = j and δi,j = 0 otherwise. One can show that under the rule 184, at time
t > 1 we have the following solution of the initial value problem given by (21, 22),

si(t) = (i + t)mod 2 +
t

∑
k=0

δ−t+2k,i −

t

∑
k=0

δ−t+2k+1,i. (23)

This can be verified by substituting (23) into (21). It is also straightforward to verify that in
si(t) a pair of adjacent ones is always present, since s−t−1(t) = s−t(t) = 1 for all t ≥ 0, that is,
at time t, sites with coordinates i = −t − 1 and i = −t are in state 1.
Let us say that we are interested in the number of pairs 11 present in the configuration
in the limit of t → ∞, and we want to find it our by a direct simulation. Since the ini-
tial string si(0) consists of 1100 preceded and followed by infinite repetition of 10, that is,
si(0) = . . . 1010101100101010 . . ., we could take as the initial condition only part of this string
corresponding to i = −L to L + 1 for a given L, impose periodic boundary conditions on this
string, and compute t consecutive iterations, taking t large enough, for example, t = 2L. It
turns out that by doing this, we will always obtain a string which does not have any pair 11,
no matter how large L we take! This is illustrated in Figure 2a, where first 30 iterations of a
string given by eq. (22) with i = −20 to 21 and periodic boundary conditions is shown. Black
squares represent 1, and white 0. The initial string (t = 0) is shown as the top line, and is
followed by consecutive iterations, so that t increases in the downward direction. It is clear
that we have two “defects”, 11 and 00, moving in opposite direction. On a truly infinite lattice
they would never meet, but on a periodic one they do meet and annihilate each other. This
can be better observed in Figure 2b, in which the location of the initial defect has been shifted
to the left, so that the annihilation occurs in the interior of the picture.
The disappearance of 11 (and 00) is an artifact of periodic boundaries, which cannot be elim-
inated by increasing the lattice size. This illustrates that extreme caution must be exercised
when we draw conclusions about the behaviour of CA rules on infinite lattices from simula-
tions of finite systems.

5. Infinite time problem

In various papers on CA simulations one often finds a statement that simulations are to be
performed for long enough time so that the system “settles into equilibrium”. The notion of
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equilibrium is rarely precisely defined, and this is somewhat understandable: mathematically,
the definition of the “equilibrium” in spatially extended dynamical system such as CA is far
from obvious.
The idea of the “equilibrium” can be better understood if we note that it has its roots in dy-
namical systems theory. Consider a difference equation xn+1 = f (xn), where f is a given
function. Point a which has the property f (a) = a is called a fixed point. In many applications
and mathematical models, the prevailing type of fixed points is the so-called hyperbolic fixed
point, satisfying | f ′(a)| �= 1. Suppose that a is hyperbolic with | f ′(a)| < 1. One can then show
(Devaney, 1989) that for every initial value x0 in some open interval around a, if we iterate
xn+1 = f (xn) starting from that initial value, we have limn→∞ xn = a,
and that there exists nonnegative A < 1 such that

|xn − a| ≤ An|x0 − a|. (24)

This indicates that xn approaches the fixed point a exponentially fast (or faster). It turns out that
the hyperbolicity is a very common feature of dynamical systems, even in higher dimensions,
and that exponential approach to a fixed point is also a very typical behavior.
In cellular automata, the notion of the fixed point can be formulated in the framework of both
deterministic and probabilistic initial value problem. The deterministic fixed point of a given
CA rule f is simply a configuration s such that the if the rule f is applied to s, one obtains the
same configuration s. Deterministic fixed points in CA are common, but they are usually not
that interesting.
A far more interesting is the fixed point in the probabilistic sense, that is, a probability measure
µ which remains unchanged after the application of the rule. Using a more practical language,
we often are interested in a probability of some block of symbols, and want to know how this
probability changes with t. In the simplest case, this could be the probability of occurrence of
1 in a configuration at time t, which is often referred to as the density of ones and denoted by
ρ(t). In surprisingly many cases, such probability tends to converge to some fixed value, and
the convergence is of the hyperbolic type.
Consider, as an example, a rule which has been introduced in connection with models of the
spread of innovations (Fukś and Boccara, 1998). Let us assume that, similarly as in the majority
voting rule, we have a group of individuals arranged on an infinite line. Each individual can
be in one of two states: adopter (1) and non-adopter (0). Suppose that each time step, each
non-adopter becomes adopter if and only if exactly one of his neighbours is an adopter. Once
somebody becomes adopter, he stays in this state forever. Local function for this rule is defined
by f (1, 0, 1) = f (0, 0, 0) = 0, and f (x0, x1, x2) = 1 otherwise.
Let us say that we are interested in the density of ones, that is, the density of adopters at time
t, to be denoted by ρ(t). Assume that we start with a random initial configuration with the
initial density of adopters equal to p < 1. This defines a probabilistic initial value problem
with an initial Bernoulli measure µp. In (Fukś and Boccara, 1998) it has been demonstrated
that

ρ(t) = 1 − p2(1 − p)− p
(1 − p)3

2 − p
−

[

1 − p2 +
p(1 − p)2

p − 2

]

(1 − p)2t+1, (25)

and

lim
t→∞

ρ(t) = 1 − p2(1 − p)− p
(1 − p)3

2 − p
. (26)

It is now clear that ρ(∞) − ρ(t) ∼ At, where A = (1 − p)2, meaning that ρ(t) approaches
ρ(∞) exponentially fast, similarly as in the case of hyperbolic fixed point discussed above. If
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Fig. 3. Plot of ρ(∞)− ρ(t) as a function of time for simulation of rule 222 on a lattice of length
50000 starting from randomly generated initial condition with initial density p = 0.1.

we now simulate this rule on a finite lattice, ρ(t) will initially exponentially decrease toward
ρ(∞), so that ρ(∞)− ρ(t) plotted as a function of t in a semi-log graph will follow a straight
line, and then, due to finite size of the lattice, it will level off, as shown in Figure 3. This
plateau level is usually referred to as an “equilibrium”. Note that the plateau is reached very
quickly (in less then 60 iterations in this example), but it corresponds to a value of ρ(t) slightly
below the “true” value of ρ(∞). This is an extremely common behavior encountered in many
CA simulations: we reach the plateau very quickly, but it is slightly off the “true” value. A
proper way to proceed, therefore, is to record the value of the plateau for many different (and
increasing) lattice sizes L, and from there to determine what happens to the plateau in the
limit of L → ∞. This is a much more prudent approach than simply “iterating until we reach
the equilibrium”, as it is too often done.
Of course, in addition to the behaviour analogous to the convergence toward a hyper-
bolic fixed point, we also encounter in CA another type of behaviour, which resembles a
non-hyperbolic dynamics. Again, in order to understand this better, let us start with one-
dimensional dynamical system. This time, consider the logistic difference equation

xt+1 = λxt(1 − xt), (27)

where λ is a given parameter λ ∈ (0, 2). This equation has two fixed points x(1) = 0 and

x(2) = 1 − 1/λ. For any initial value x0 ∈ (0, 1), when λ < 1, xt converges to the first of these
fixed points, that is, xt → 0, and otherwise it converges to the second one, so that xt → 1− 1/λ
as t → ∞.
In the theory of iterations of complex analytic functions, it is possible to obtain an approximate
expressions describing the behavior of xt near the fixed point as t → ∞. This is done using
a method which we will not describe here, by conjugating the difference equation with an
appropriate Möbius transformation, which moves the fixed point to ∞. Applying this method,
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one obtains formulas for the asymptotic behavior of xt which can be summarized as follows:

xt − x∞ ∼







λ
t if λ < λc,

1/t if λ = λc,
(2 − λ)t if λ > λc,

(28)

where λc = 1. We can see that the approach toward the fixed point is exponential if λ �= 1, and
that it slows down as λ is getting closer to 1. At λ = 1, the decay toward the fixed point is not
exponential, but takes a form of a power law, indicating that the fixed point is non-hyperbolic.
This phenomenon, which is called a transcritical bifurcation, has a close analog in dynamics
of cellular automata. In order to illustrate this, consider the following problem. Let s be an
infinite string of binary symbols, i.e., s = . . . s−1s0s1 . . .. We will say that the symbol si has
a dissenting right neighbour if si−1 = si �= si+1. By flipping a given symbol si we will mean
replacing it by 1 − si. Suppose that we simultaneously flip all symbols which have dissenting
right neighbours, as shown in the example below.

· · · 0 0 1 0 0 1 1 1 0 1 0 1 · · ·




�





�





�

· · · 0 1 1 0 1 1 1 0 0 1 0 1 · · ·

(29)

Assuming that the initial string is randomly generated, what is the probability Pdis(t) that a
given symbol has a dissenting right neighbour after t iterations of the aforementioned proce-
dure?
It is easy to see that the process we have described is nothing else but a cellular automaton
rule 142, with the following local function

f (0, 0, 0) = 0, f (0, 0, 1) = 1, f (0, 1, 0) = 1, f (0, 1, 1) = 1, (30)

f (1, 0, 0) = 0, f (1, 0, 1) = 0, f (1, 1, 0) = 0, f (1, 1, 1) = 1,

which can also be written in an algebraic form

f (x0, x1, x2) = x1 + (1 − x0)(1 − x1)x2 − x0x1(1 − x2). (31)

In (Fukś, 2006), it has been demonstrated that the desired probability Pdis(t) is given by

Pdis(t) = 1 − 2q −
t+1

∑
j=1

j

t + 1

(

2t + 2

t + 1 − j

)

(2q)t+1−j(1 − 2q)t+1+j, (32)

where q ∈ [0, 1/2] is the probability of occurrence of the block 10 in the initial string. It is
possible to show that in the limit of t → ∞

lim
t→∞

Pdis(t) =

{

2q if q < 1/4,
1 − 2q otherwise,

(33)

indicating that q = 1/4 is a special value separating two distinct “phases”.
Suppose now that we perform a simulation of rule 142 as follows. We take a finite lattice with
randomly generated initial condition in which the proportion of blocks 10 among all blocks
of length 2 is equal to q. We iterate rule 142 starting from this initial condition t times, and we
count what is the proportion of sites having dissenting neighbours. If we did this, we would
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Fig. 4. Decay time as a function of q for rule 142.

observe that most of the time the number of dissenting neighbours behaves similarly to what
we have seen in rule 222 (Figure 3), that is, quickly reaches a plateau. However, when q gets
closer and closer to 1/4, it takes longer and longer to get to this plateau.
A good way to illustrate this phenomenon is by introducing a quantity which can be called a
decay time,

τ =
∞

∑
t=0

|Pdis(t)− Pdis(∞)|. (34)

Decay time will be finite if Pdis(t) decays exponentially toward Pdis(∞), and will become in-
finite when the decay is non-exponential (of power-law type). One can approximate τ in
simulations by truncating the infinite sum at some large value tmax, and by using the fraction
of sites with dissenting neighbours in place of Pdis(t). An example of a plot of τ obtained this
way as a function of q for simulations of rule 142 is show in Figure 4. We can see that around
q = 1/4, the decay shows a sign of divergence, and indeed for larger values of tmax the height
of the peak at q = 1/4 would increase. Such divergence of the decay indicates that at q = 1/4
the convergence to “equilibrium” is no longer exponential, but rather is analogous to an ap-
proach to a non-hyperbolic fixed point. In fact, it has been demonstrated (Fukś, 2006) that at
q = 1/4 we have |Pdis(t) − Pdis(∞)| ∼ t−1/2. Similar divergence of the decay time is often
encountered in statistical physics in systems exhibiting a phase transition, and it is sometimes
called “critical slowing down”.
This example yields the following practical implications for CA simulations. If the CA rule or
initial conditions which one investigates depend on a parameter which can be varied continu-
ously, it is worthwhile to plot the decay time as a function of this parameter to check for signs
of critical slowing down. Even if there is no critical slowing down, the decay time is an useful
indicator of the rate of convergence to “equilibrium” for different values of the parameter, and
it helps to discover non-hyperbolic behavior.
One should also note at this point that in some cellular automata, decay toward the “equilib-
rium” can be much slower than in the q = 1/4 case in the above example. This is usually
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the case when the rule exhibits complex propagating spatiotemporal structures. For example,
it has been found that in rule 54, the number of some particle-like spatiotemporal structures
tends to zero as approximately t−0.15 (Boccara et al., 1991). In cases like this, simulations are
computationally very expensive, that is, very large number of iterations is required in order
to get sufficiently close to the “equilibrium”.

6. Improving simulation performance

If the decay toward the equilibrium is non-hyperbolic, the speed of simulations becomes an
issue. The speed of simulations can be improved either in software, or by using a specialized
hardware. We will discuss only selected software methods here, only mentioning that spe-
cialized CA hardware has been build in the past (for example, CAM-6 and CAM-8 machines,
field programmable gate arrays), and some novel hardware schemes have been proposed or
speculated upon (implementation of CA using biological computation, nanotechnology, or
quantum devices). Additionally, CA simulations are very suitable for parallel computing en-
vironments – a topic which deserves a separate review, and therefore will not be discussed
here.
Typically, CA simulations are done using integer arrays to store the values of si(t). A basic
and well-know method for computing si(t + 1) knowing si(t) is to use a lookup table – that
is, table of values of the local function f for all possible configurations of the neighbourhood.
Two arrays are needed, one for si(t) (let us call it “s”) and one for si(t + 1) (“snew”). Once
“s” is computed using the lookup table, one only needs to swap pointers to “s” and “snew”.
This avoids copying of the content of “snew” to “s”, which would decrease simulation perfor-
mance.
Beyond these basic ideas, there are some additional methods which can improve the speed of
simulations, and they will be discussed in the following subsections.

6.1 Self-composition

If f and g are CA rules of radius 1, we can define a composition of f and g as

( f ◦ g)(x0, x1, x2, x3, x4) = f (g(x0, x1, x2), g(x1, x2, x3), g(x2, x3, x4)). (35)

Similar definition can be given for rules of higher radius. If f = g, f ◦ f will be called a
self-composition. Multiple composition will be denoted by

f n = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

. (36)

The self-composition can be used to speed-up CA simulations. Suppose that we need to iterate
a given CA t times. We can do it by iterating f t times, or by first computing f 2 and iterate it
t/2 times. In general, we can compute f n first, and then perform t/n iterations of f n, and in
the end we will obtain the same final configuration. Obviously, this decreases the number of
iterations and, therefore, can potentially speed-up simulations. There is, however, some price
to pay: we need to compute f n first, which also takes some time, and, moreover, iterating f n

will be somewhat slower due to the fact that f n has a longer lookup table than f . It turns
out that in practice the self-composition is advantageous if n is not too large. Let us denote
by Tn the running time of the simulation performed using f n as described above. The ratio
Tn/T1 (to be called a speedup factor) as a function of n for simulation of rule 18 on a lattice of
106 sites is shown in Figure 5. As one can see, the optimal value of n appears to be 7, which
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Fig. 5. Plot of the speedup factor Tn/T1 as a function of n for self-composition of rule 18.

speeds up the simulation by 58%. Increasing n beyond this value does not bring any further
improvement – on the contrary, the speedup factor rapidly decreases beyond n = 7, and at
n = 10 we actually see a significant decrease of the running time compared to n = 1.
The optimal value of n = 7 is, of course, not universal, and for different simulations and dif-
ferent rules it needs to be determined experimentally. Self-composition is especially valuable
if one needs to iterate the same rule over a large number of initial conditions. In such cases,
it pays off to determine the optimal n first, then pre-compute f n, and use it in all subsequent
simulations.

6.2 Euler versus Langrage representation

In some cases, CA may posses so-called additive invariants, and these can be exploited to
speed-up simulations. Consider again the rule 184 defined in eq (20) and (21). The above
definition can also be written in a form

si(t + 1) = si(t) + J(si−1(t), si(t))− J(si(t), si+1(t)), (37)

where J(x1, x2) = x1(1 − x2). Clearly, for a periodic lattice with N sites, when the above
equation is summed over i = 1 . . . N, one obtains

N

∑
i=1

si(t + 1) =
N

∑
i=1

si(t), (38)

due to cancellation of terms involving J. This means that the number of sites in state 1 (often
called “occupied” sites) is constant, and does not change with time. This is an example of ad-
ditive invariant of 0-th order. Rules having this property are often called number-conserving
rules.
Since the number-conserving CA rules conserve the number of occupied sites, we can label
each occupied site (or “particle”) with an integer n ∈ , such that the closest particle to the
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Fig. 6. Motion representation of rule 184 interpreted as a simplified road traffic model. The
upper row represents configuration of cars/particles at time t, and the lower row at time t+ 1.

right of particle n is labeled n + 1. If yn(t) denotes the position of particle n at time t, we can
then specify how the position of the particle at the time step t + 1 depends on positions of the
particle and its neighbours at the time step t. For rule 184 one obtains

yn(t + 1) = yn(t)+ min{yn+1(t)− yn(t)− 1, 1}. (39)

This can be described in very simple terms: if a “particle” is followed by an empty site, it
moves to the right, otherwise it stays in the same place. This is illustrated in Figure 6, where
“particles” are depicted as “cars”. Although this can hardly be called a realistic traffic flow
model, it nevertheless exhibits some realistic features and can be further extended (Chowd-
hury et al., 2000).
Equation (39) is sometimes referred to as the motion representation. For arbitrary CA rule with
additive invariant it is possible to obtain the motion representation by employing an algorithm
described in (Fukś, 2000). The motion representation is analogous to Lagrange representation
of the fluid flow, in which we observe individual particles and follow their trajectories. On
the other hand, eq. (37) could be called Euler representation, because it describes the process
at a fixed point in space (Matsukidaira and Nishinari, 2003).
Since the number of “particles” is normally smaller than the number of lattice sites, it is often
advantageous to use the motion representation in simulations. Let ρ be the density of par-
ticles, that is, the ratio of the number of occupied sites and the total number of lattice sites.
Furthermore, let TL and TE be, respectively, the execution time of one iteration for Lagrange
and Euler representation. A typical plot of the speedup factor TE/TL as a function of ρ for rule
184 is shown in Figure 7. One can see that the speedup factor is quite close to 1/ρ, shown as
a continuous line in Figure 7. For small densities of occupied sites, the speedup factor can be
very significant.

6.3 Bitwise operators

One well known way of increasing CA simulation performance is the use of bitwise operators.
Typically, CA simulations are done using arrays of integers to store states of individual cells.
In computer memory, integers are stored as arrays of bits, typically 32 or 64 bits long (to be
called MAXBIT). If one wants to simulate a binary rule, each bit of an integer word can be set
independently, thus allowing to store MAXBIT bit arrays in a single integer array.
In C/C++, one can set and read individual bits by using the following macros:

#define GETBIT(x, n) ((x>>n)&1)

#define SETBIT(x, n) (x | (1<<n))
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Fig. 7. Plot of the speedup factor TE/TL as a function of density ρ for rule 184.

#define ZEROBIT(x,n) (x & (~(1<<n)))

For example, if x is an integer variable, then

x=SETBIT(x,5)

x=ZEROBIT(x,4)

sets respectively the 5-th bit of x to value 1 and the 4-th bit to 0. Using these macros, we can,
for instance, prepare MAXBIT different initial conditions, and store them in one integer array.
The main advantage of such bit packing lies in the fact that we can then use bitwise operators
to perform operations on all bits simultaneously. Consider, as an example, rule 184 again, as
defined in eq. (20). It is easy to check that the local function for this rule can be written using
logical “and” (∧) and “or” (∨) operators,

f (x0, x1, x2) = (x0 ∧ x1) ∨ (x1 ∧ x2), (40)

where x denotes the negation of x. In C/C++ program, we can apply this rule to all BITMAX
bits of the array as follows:

for(i=0; i<L; i++)

snew[i]=(s[i-1] & ~s[i]) | (s[i] & s[i+1])

where L is the length of the lattice, s[i] denotes the state of site i, and snew[i] is the new state
of this site. This method can potentially speed up simulations BITMAX times.

7. HCELL CA simulation library

Many software tools exist which are suitable for CA simulations, ranging from very special-
ized ones to very broad simulation environments. Partial list of these programs can be found
in (Ilachinski, 2001). Most of these packages are great for “visual” explorations of CA, but
they usually miss functions which a more mathematically inclined user would require.
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For speed and flexibility in simulations, it is usually best to write the simulation in a compiled
language, such as C/C++. For one dimensional cellular automata, the author developed a
C++ library named HCELL, which is freely available under GNU Public License (Fukś, 2005).
It allows fast simulation of deterministic and probabilistic CA, supports Wolfram rule num-
bering, four basic symmetry transformations, composition of rules (using operator overload-
ing), totalistic rules, minimal rules etc. Spatial set entropy and spatial measure entropy can be
computed for a given lattice configuration, assignment operator can be used for rules and lat-
tices, rules can be tested for additive invariants, currents of additive quantities are computed
in a symbolic form. Although this is not a visualization package, spatiotemporal patterns can
be exported as EPS and Asymptote files.
HCELL allows to create two types of objects, CA rules and lattices. These objects can be ma-
nipulated using member functions and operators, and rules can be applied to lattices. Various
global functions taking as arguments rules and lattices are also defined. In order to illustrate
the use of HCELL in practical simulations, we will give some examples.

7.1 Example 1: the parity problem

As a first example, consider solution of the so-called parity problem for CA. For a finite binary
string s, parity of s equals to 1 if the number of ones in the string is odd, otherwise it is zero.
The parity problem is to find a CA which, when iterated starting from s and using periodic
boundary conditions, will converge to all 1’s if the parity of s is 1, otherwise it will converge
to all 0’s. Although it has been proven that there does not exist a single CA which would
perform this task, in (Lee et al., 2001) a solution involving more than one rule has been found.
For instance, if the lattice size is L = 2q and q is odd, then applying the operator

G = F
⌊L/2⌋
254 F76(F

⌊L/2⌋
132 F

⌊L/2⌋
222 )⌊L/2⌋ (41)

to s produces a configuration with the desired property, that is, consisting of all 0’s if the
parity of s is 0, and consisting of all 1’s otherwise. In the above, Fm denotes the global function
associated with elementary cellular automaton rule with Wolfram number m. The following
C++ program utilizing HCELL generates a random string or length 90, applies G to it, and
prints the resulting configuration:

001 #include <hcell/hcell.h>

002 #include <iostream>

003 #include <math.h>

004 using namespace std;

005

006 int main()

007 {

008 //define needed rules

009 CArule1d r254(1,254), r76(1,76), r132(1,132), r222(1,222);

010 //create lattice

011 int L=90; Lattice lat(L);

012 //initialize RNG

013 r250 init(1234);

014 //seed lattice randomly to get exactly 10 % sites occupied

015 lat.PreciseSeed(0.1);

016 int i, j;

017 for(j=0; j<L/2; j++)

018 {

019 for(i=0; i<L/2 ; i++) Evolve(&lat, r222);
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020 for(i=0; i<L/2 ; i++) Evolve(&lat, r132);

021 }

022 Evolve(&lat, r76);

023 for(i=0; i<L/2 ; i++) Evolve(&lat, r254);

024 //print the resulting configuration

025 lat.Print();

026

027 return 0;

028 }

As we can see, all required operations are encapsulated. Elementary cellular automata rules
are constructed by the statement CArule1d r254(1,254), which is equivalent to “construct
1D CA rule with radius 1 and rule number 254, and name it r254”. Applying a given rule to
a lattice requires only a simple call to “Evolve” function, as shown in lines 19, 20 and 23.
Figure 8 shows an example of a spatiotemporal patterns generated from five different initial
conditions by applying the operator given by eq. (41). This figure has been produced by
ca2asy tool included with HCELL. As expected, configurations with the parity 1 converge to
all ones, and those with the parity 0 converge to all zeros.

7.2 Example 2: operations on rules

HCELL also allows various operations on rules. One can, in particular, construct composition
of rules by using the overloaded ⋆ operator. For example, in order to verify that

f60 ◦ f43 = f184 ◦ f60, (42)

one only needs to check that the Hamming distance between rule tables f60 ◦ f43 and f184 ◦ f60

is zero, which in HCELL is as simple as

CArule1d r60(1,60), r184(1,184), r43(1,43);

cout << Hamming(r60*r43, r184*r60);

In addition to the composition, two other operators are overloaded as well: + can be used to
add rules (mod 2), and = can be used as an assignment operator for both rules and lattices.
This allows to write formulas for rules in a natural fashion. For example, one could define a
new rule f = f60 ◦ f43 ⊕ f184 ◦ f60, where ⊕ represents mod 2 addition. Using HCELL, this
could be achieved as

CArule1d r60(1,60), r184(1,184), r43(1,43), r;

r=r60*r43 + r184*r60;

One can also obtain transformed rules very easily, by calling appropriate member functions
of CArule1d, for example,

rr=r.Reflected(void);

rc=r.Conjugated(void);

This constructs, respectively, the spatially reflected rule rr and the conjugated rule rc, where
by Boolean conjugation we mean the interchange of 0’s and 1’s in the rule table.
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(a) (b) (c) (d) (e) (f)

Fig. 8. Parity problem solution for lattice of length 14 and initial configuration with 1 (a), 2 (b),
3 (c), 6 (d) and 9 (e) sites in state 1.

7.3 Example 3: probabilistic density classification

In addition to these and many other capabilities for deterministic CA, HCELL also supplies a
basic functionality for handling of probabilistic rules. To demonstrate this, let us denote by

P(si(t + 1))|si−1(t), si(k), si+1(t)) (43)

the probability that the site si(t) with nearest neighbors si−1(k), si+1(k) changes its state to
si(t + 1) in a single time step. Consider a special probabilistic CA rule which is known to
solve the so-called probabilistic density classification problem. If this rule is iterated starting
from some initial string, the probability that all sites become eventually occupied is equal to
the density of occupied sites in the initial string (Fukś, 2002). The following set of transition
probabilities defines the aforementioned CA rule:

P(1|0, 0, 0) = 0 P(1|0, 0, 1) = p P(1|0, 1, 0) = 1 − 2p P(1|0, 1, 1) = 1 − p

P(1|1, 0, 0) = p P(1|1, 0, 1) = 2p P(1|1, 1, 0) = 1 − p P(1|1, 1, 1) = 1, (44)
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Fig. 9. Fraction of sites in state 1 N(t)/L as a function of time t for two sample trajectories
starting from initial configurations with N(0) = 30, L = 100, p = 0.3. The third line (almost
horizontal) represents average of 1000 trajectories.

where p ∈ (0, 1/2]. The remaining eight transition probabilities can be obtained using
P(0|a, b, c) = 1 − P(1|a, b, c) for a, b, c ∈ {0, 1}. In HCELL, this rule can be defined as

ProbabilisticRule1d r(1); //rule of radius 1

double p=0.25;

r.lookuptable[0]=0.0;

r.lookuptable[1]=p;

r.lookuptable[2]=1.0-2.0*p;

r.lookuptable[3]=1.0-p;

r.lookuptable[4]=p;

r.lookuptable[5]=2.0*p;

r.lookuptable[6]=1.0-p;

r.lookuptable[7]=1.0;

where we choose p = 0.25. The consecutive entries in the “lookuptable” are simply proba-
bilities of eq. (44), in order of increasing neighbourhood code. Once the probabilistic rule is
defined, it can be applied to a lattice lat by invoking the function Evolve(&lat,r), just
as in the case of deterministic rules. All the required calls to the random number generator
are encapsulated and invisible to the user. Figure 9 shows two sample plots of N(t)/L as a
function of time, where N(t) is the number of sites in state 1 and L is the length of the lattice.
The value of N(t)/L has been obtained by using the member function Lattice.Density()

at every time step. The third line in Figure 9 represents an average of 1000 realizations of the
process, and one can clearly see that indeed the probability of being in state 1 for any site is
equal to the fraction of “occupied” sites in the initial condition, which is 0.3 in the illustrated
case. These curves can be generated by HCELL in less than 20 line of code.
It is worthwhile to mention at this point that in HCELL, probabilistic rules can also be recon-
structed from lattices. Suppose that lat1 is the lattice state at time t, and lat2 at time t + 1,
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where lat2 has been obtained from lat1 by applying an unknown rule r. Rule r can then be
reconstructed by calling a special form of the constructor of probabilistic rules,

ProbabilisticRule1d r(&la1, &lat2, rad);

where rad is the desired rule radius. Of course, such reconstruction will only be approximate,
and the accuracy of reconstruction will increase with the lattice size.
Many other features of HCELL, not mentioned here, are described in the documentation and
examples which accompany source files. New version is currently under development. It
will remove some limitations of the existing version. In particular, support for non-binary
rules and numbering schemes for arbitrary rules is planned (current version supports Wol-
fram numbering for rules up to radius 2).

8. Conclusions

We presented an overview of basic issues associated with CA simulations, concentrating on
selected problems which, in the mind of the author, deserve closer attention. We also demon-
strated how HCELL can be used to perform some typical CA simulation tasks.
Obviously, many important topics have been omitted. In particular, the issue of dimensional-
ity of space has not been addressed, and yet many important CA models require 2D, 3D, and
higher dimensional lattices. Some collective phenomena in CA can only occur in high dimen-
sions, and in terms of mathematical theory, dimensions higher than one often require quite
different approach than 1D case. The reader is advised to consult the literature mentioned in
the introduction to learn more about these topics.
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H. Fukś. Dynamics of the cellular automaton rule 142. Complex Systems, 16:123–138, 2006.

www.intechopen.com



Cellular automata simulations - tools and techniques 243
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