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1. Introduction 
 

The golden ratio   has been well known in mathematics, science, biology, art, architecture, 
nature and beyond (Sen & Agarwal, 2008), which is the irrational algebraic number 

 1 5 2 1.618033989  . It’s interesting to find that the golden ratio exists in the point sink 

induced consolidation settlement of a homogeneous isotropic poroelastic half space. 
Examples of the golden ratio in engineering include the study of shear flow in porous half 
space (Puri & Jordan, 2006) and classical mechanics of coupled-oscillator problem 
(Moorman & Goff, 2007). 
Land subsidence due to groundwater withdrawal is a well-known phenomenon (Poland, 
1984). The pore water pressure is reduced in the withdrawal region when an aquifer pumps 
groundwater. It leads to increase in effective stress between the soil particles and subsidence 
of ground surface. 
The three-dimensional consolidation theory presented by Biot (1941, 1955) is generally 
regarded as the fundamental theory for modeling land subsidence. Based on Biot’s theory, 
Booker and Carter (1986a, 1986b, 1987a, 1987b), Kanok-Nukulchai and Chau (1990), Tarn and 
Lu (1991) presented solutions of subsidence by a point sink embedded in saturated elastic 
half space at a constant rate. In the studies of Booker and Carter (1986a, 1986b, 1987a, 1987b), 
the flow properties are considered as isotropic or cross-anisotropic whereas the elastic 
properties of the soil are treated as isotropic with pervious half space boundary. Tarn and 
Lu (1991) found that groundwater withdrawal from an impervious half space induces a 
larger amount of consolidation settlement than from a pervious one. Chen (2002, 2005) 
presented analytical solutions for the steady-state response of displacements and stresses in 
a half space subjected to a point sink. Lu and Lin (2006) displayed transient ground surface 
displacement produced by a point heat source/sink through analog quantities between 
poroelasticity and thermoelasticity. Hou et al. (2005) found that pumping induced ground 
horizontal velocities range from 31 to 54 mm/yr towards azimuths 247° to 273° in the 
Pingtung Plain of Taiwan. Their results show that ground horizontal displacement occurred 
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when pumping from an aquifer. Nevertheless, the consolidation settlement due to pumping 
were not thoroughly discussed in the above theoretical studies. 
The aquifer is modeled as an isotropic saturated pervious elastic half space in this analytical 
research. Using Laplace and Hankel integral transform techniques, the transient horizontal 
and vertical displacements of the ground surface due to a point sink are obtained. The study 
also focused on the distributions of excess pore water pressure of the half space on the 
consolidation history. Results are illustrated and compared to display the time dependent 
consolidation settlement due to pumping.  

 
2. The Golden Ratio 
 

The golden ratio   can be derived from a geometrical line segment in extreme and mean 
ratio as shown in Fiqure 1, where the ratio of the full length 1  to the length of x  is equal to 
the ratio of section part x  to shorter section 1 x : 
 

 1
1

x
x x



. (1) 

 
Assuming, 1x  , hence,   satisfies 
 
 2 1 0    . (2) 
 
The golden ratio is the positive root of Eq. (2): 
 

 1 5
2

 
 . (3) 

 

 
Fig. 1. Dividing the unit interval according to the golden ratio 

 

 
Fig. 2. The golden rectangle 
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Ratio of two successive numbers of Fibonacci series Value 

1/1 1.0000000000 
2/1 2.0000000000 
3/2 1.5000000000 
5/3 1.6666666667 
8/5 1.6000000000 

13/8 1.6250000000 
21/13 1.6153846154 
34/21 1.6190476190 
55/34 1.6176470588 
89/55 1.6181818182 

144/89 1.6179775281 
233/144 1.6180555556 

Table 1. The ratio of two successive numbers of Fibonacci series approaches golden ratio   
 
Figure 2 displayed another geometric description of golden ratio through the golden 
rectangle. Giving a rectangle with sides’ ratio a : b, the removing of square section leaves the 
remaining rectangle with the same ratio as original rectangle, i.e., 
 

 b a
a b b




. (4) 

 
Thus, this solution is the golden ratio  : 
 

 1 5
2

a
b

 
  . (5) 

 
The golden ratio is a remarkable number that arises in various areas of mathematics, natures 
and arts. There are many interesting mathematical properties of  . For example,   can be 
expressed as a continuous fraction with the single number 1 (Livio, 2002): 
 

 11 11 11 11
1

  







. (6) 

 
Also, the golden ratio   can be expressed as a continuous square root of the number 1: 
 

 1 1 1 1      . (7) 
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However, the most interesting is that   is within Fibonacci series (Livio, 2002; Dunlap, 
1997). The Fibonacci series is a set of numbers that begins with two 1s and each term 
therefore is the sum of the prior two terms, i.e., 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... . 
The relationship between two successive numbers of Fibonacci series tends to approach   
as shown in Table 1. 
Based on Biot’s (1941, 1955) three-dimensional consolidation theory of porous media, this 
study modeled the saturated aquifer as a homogeneous isotropic poroelastic half space. 
Closed-form solutions of the transient and long-term consolidation deformations and excess 
pore water pressures due to a point sink are presented in this paper. It’s interesting to find 
that the golden ratio   appears in the point sink induced maximum ground surface 
horizontal displacement and corresponding settlement of a poroelastic half space. 

 
3. Mathematical Models 
 

3.1 Basic Equations 
Figure 3 presents a point sink buried in a saturated porous elastic aquifer at a depth h . The 
aquifer is considered as a homogeneous isotropic porous medium with a vertical axis of 
symmetry. Assuming the model is decoupled, i.e., the flow field is independent from the 
displacement field. Considering a point sink of constant strength Q  located at point  0,h , 
the basic governing equations of the elastic saturated aquifer for linear axially symmetric 
deformation can be expressed in terms of displacements iu  and excess pore water pressure 
p  in the cylindrical coordinates  , ,r z  as follows (Lu & Lin, 2006, 2008): 

 

 2

2
0

1 2
r

r

G u pG u G
r r r



 

    
  

, (8a) 

 2 0
1 2z

G pG u
z z



 

   
  

, (8b) 

      2 0
2w

k p Qp n r z h u t
t r

  
 


     


, (8c) 

 
where 2 2 2 2 21r r r z           is the Laplacian operator. The excess pore fluid pressure 
p  is positive for compression. The displacements ru  and zu  are in the radial and axial 

directions, and r r zu r u r u z         is the volume strain of the porous medium. The 
quantities  , G , k , n , w  and  denote the saturated aquifer’s Poisson’s ratio, shear 
modulus, aquifer permeability, porosity, pore water unit weight and compressibility, 
respectively. The functions  x  and  u t  are Dirac delta and Heaviside unit step function, 
respectively. 
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Fig. 3. Point sink induced land subsidence model 

 
3.2 Boundary Conditions 
The saturated aquifer is considered as a homogeneous isotropic half space and the 
constitutive behavior of the aquifer can be express by the total stress components 

2 2
1 2ij ij ij ij

G G p   


  


, where r
rr

u
r

 



, ru
r  , z

zz

u
z

 



, respectively; and ij  is the 

Kronecker delta. In this paper, the half space surface, 0z  , is considered as a traction-free 
pervious boundary for time 0t  . From the constitutive relationships shown above, the 
mechanical boundary conditions at 0z   are expressed in terms of ru  and zu  by 
 

        ,0, ,0, 2 1 ,0,2 0
1 2 1 2

r r zu r t u r t G u r tG
r r z


 
   

       
, (9a) 

    ,0, ,0,
0r zu r t u r t

G
z r

  
    

. (9b) 

 
An additional condition is provided by considering the half space as pervious and the 
mathematical statement of the flow condition at the boundary 0z   is given by 
 
  ,0, 0p r t  . (9c) 
 
The boundary conditions at z   due to the effect of the point sink vanish when 0t  . 

 
3.3 Initial Conditions 
Assuming no initial changes in displacements and seepage of the aquifer, the initial 
conditions of the mathematical model at time 0t   are 

  , ,0 0ru r z  ,  , ,0 0zu r z  , and  , ,0 0p r z  . (10) 
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4. Analytic Solutions 
 

4.1 Laplace and Hankel Transforms Solutions 
The governing partial differential equations (8a)-(8c) are reduced to ordinary differential 
equations by performing Laplace and Hankel transforms (Sneddon, 1951) with respect to the 
time variable t  and the radial coordinate r : 

 

  
2

2

2

12 2 1 0z
r

d duu p
dz dz G

         
 

  , (11a) 

  
2

2

2

12 1 2 0r
z

du d dpu
dz dz G dz

         
 

  , (11b) 

  
2

2

2
0

2w

k d Qp n sp z h
dz s

  
 

       
 

  , (11c) 

 
where   and s  are Hankel and Laplace transform parameters. The parameter 

   1 1 2      and the symbols ru , zu , p  are defined as 
 

       1
0

; , , ,r ru z s rL u r z t J r dr 


  , (12a) 

       0
0

; , , ,z zu z s rL u r z t J r dr 


  , (12b) 

       0
0

; , , ,p z s rL p r z t J r dr 


  , (12c) 

 
in which  J x  represents the first kind of Bessel function of order  . The Laplace 
transforms in equations (12a)-(12c) with respect to ru , zu  and p  are denoted by 

 

       
0

, , , ,r rL u r z t u r z t exp st dt


  , (13a) 

       
0

, , , ,z zL u r z t u r z t exp st dt


  , (13b) 

       
0

, , , ,L p r z t p r z t exp st dt


  . (13c) 

 
The general solutions of equations (11a)-(11c) are obtained as 
 
          1 2 3 4; ,ru z s C exp z C zexp z C exp z C zexp z           

 2 2
5 6
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c c

 
   
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   
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where the parameter wc k n  and  1, 2, , 6iC i    are functions of the transformed 
variables   and s  which are determined from the transformed boundary conditions. The 
upper and lower signs in Eq. (14b) are for the conditions of   0z h   and   0z h  , 
respectively. 

 
4.2 Transformed Boundary Conditions 
Taking Hankel and Laplace transforms for Eqs. (9a)-(9c), the mechanical and flow boundary 
conditions at 0z   of the transformed domains are derived as follows: 
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dz


     


 ,    0; ,
0; , 0r

z

du s
u s
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

  


 ,  and  0; , 0p s  , (15) 

 
where ru , zu  and p  follow the definitions in Eqs. (12a)-(12c). 
The constants  1, 2, , 6iC i    of the general solutions are determined by the transformed 
half space boundary conditions at 0z   and z  . Finally, the desired quantities ru , zu  
and p  are obtained by applying appropriate inverse Hankel and Laplace transformations 
(Erdelyi, et al., 1954). 

 
4.3 Expressions for Ground Surface Displacements 
The focus of the study is on horizontal and vertical displacements of the ground surface, 

0z  , due to a point sink. The transformed ground surface displacements are derived from 
Eqs. (14a)-(14b) with the help of transformed boundary conditions and they are obtained as 
follows: 
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Applying the Hankel inversion formulae lead to the following displacements: 
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in which the Laplace inversions are defined as 
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Using Eqs. (17a)-(17b) and (18a)-(18b), the transient horizontal displacement  ,0,ru r t  and 

vertical settlement  ,0,zu r t  of the pervious ground surface due to a point sink are obtained 
as follows: 
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where  erf x  and  erfc x  are error function and complementary error function, 

respectively; and  I x  is known as the modified Bessel function of the first kind of order 
 . The long-term ground surface horizontal and vertical displacements are obtained when 
t  : 
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vertical settlement  ,0,zu r t  of the pervious ground surface due to a point sink are obtained 
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where  erf x  and  erfc x  are error function and complementary error function, 

respectively; and  I x  is known as the modified Bessel function of the first kind of order 
 . The long-term ground surface horizontal and vertical displacements are obtained when 
t  : 
 

 

     2 2 2 2
,0,

4 2 1 ( )
w

r

Q hru r
Gk h r h r h


 

  
   

, (20a) 

     2 2
,0,

4 2 1
w

z

Q hu r
Gk h r


 

 
 

. (20b) 

 
The maximum long-term ground surface horizontal displacement maxru  and settlement maxzu  
of the half space due to a point sink are derived from Eqs. (20a) and (20b) by letting 

1.272r h h   and 0r  , respectively: 
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in which  1 5 2 1.618     is known as the golden ratio (Livio, 2002; Dunlap, 1997). The 

value r h  is derived when  ,0,rdu r dr  is equal to zero, i.e., 
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This leads to solutions of (1 5) 2r h    and (1 5) 2r h   , however only 

(1 5) 2r h   is realistic for  0,r  . 
It’s interesting to find that the golden ratio   not only appears in the point sink induced 
maximum ground surface horizontal displacement but also on the corresponding settlement 
by letting r h  in Eq. (20b). Hence, we have: 
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w
z z z
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  

   
 

. (23) 

 
This shows that the ground surface settlement at r h , where the maximum ground 
surface horizontal displacement maxru  occurred, is around 61.8% of the maximum ground 
surface settlement maxzu . 
All of the displacement figures are normalized to the maximum ground surface settlement 

maxzu . Besides, the Eqs. (21a)-(21b) show that the maximum long-term horizontal 
displacement and settlement are not directly dependent on the pumping depth h . 
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4.4 Expression for Excess Pore Water Pressure 
The study also addressed the excess pore water pressure of the porous elastic half space due 
to a point sink. The transformed excess pore water pressure is obtained from Eq. (14c) with 
the help of transformed flow boundary conditions, and it can be expressed as following: 
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The Hankel inversion formula is applied as: 
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where the Laplace inversion is defined as 
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The transient excess pore water pressure  , ,p r z t  of the saturated pervious half space due 
to a point sink is obtained as following: 
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The long-term excess pore water pressure is derived when t  . It leads to 
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5. Numerical Results 
 

5.1 Normalized Numerical Consolidation Results 
The particular interest is the settlement of stratum at each stage of the consolidation process. 
The average consolidation ratio U  is defined as following: 

 Settlement at time
Settlement at end of compression

tU  . (29) 

 
The average consolidation ratio U  of the saturated pervious half space can be derived as 
below: 
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The long-term excess pore water pressure is derived when t  . It leads to 
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5.1 Normalized Numerical Consolidation Results 
The particular interest is the settlement of stratum at each stage of the consolidation process. 
The average consolidation ratio U  is defined as following: 
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The average consolidation ratio U  of the saturated pervious half space can be derived as 
below: 
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Figure 4 shows the average consolidation ratio U  at r h  0, 1, 2, 5, and 10 for the saturated 
pervious half space. The figure shows that U  initially decreases rapidly, and then the rate of 
settlement reduces. As U  approaches 100% asymptotically, the theoretical consolidation is 
never achieved. The trend revealed in this model agrees with previous models by Sivaram 
and Swamee (1977) that U  initially decreases rapidly, and then the rate of settlement slows 
down. 
The profiles of normalized vertical and horizontal displacements at the ground surface 

0z   for different dimensionless time factor 2ct h  are shown in Figures 5 and 6, 
respectively. The ground surface reveals significant horizontal displacement. For example, 
Fig. 6 shows that the maximum surface horizontal displacement is around 30% of the 
maximum ground settlement at 1.272r h  , which can also be found from the ratio of Eqs. 
(21a) and (21b).  
From equations (27) and (28), the profiles of normalized excess pore water pressure 
 , , 4wp r z t Q kh     of the pervious half space at four different dimensionless time factors 

2ct h   1, 2, 3, and   are illustrated in Fig. 7(a)-(d), respectively. The changes in excess 

pore water pressure have negative value  , ,p r z t  which is caused by suction of 
groundwater withdrawal. Besides, the larger magnitude of subsidence is due to a wider 
region influenced by the pumping. 
 
 

 
Fig. 4. Average consolidation ratio U  for saturated pervious half space 

 
 

www.intechopen.com



Modeling, Simulation and Optimization – Tolerance and Optimal Control36

 

 
Fig. 5. Normalized vertical displacement profile at the ground surface 0z   for saturated 
pervious half space 

 
 
 

 
Fig. 6. Normalized horizontal displacement profile at the ground surface 0z   for saturated 
pervious half space 
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Fig. 5. Normalized vertical displacement profile at the ground surface 0z   for saturated 
pervious half space 

 
 
 

 
Fig. 6. Normalized horizontal displacement profile at the ground surface 0z   for saturated 
pervious half space 
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(d) 

Fig. 7. Distribution of normalized excess pore water pressure  , , 4wp r z t Q kh     for 
saturated pervious half space 

 
5.2 Practical Example 
The typical values for the elastic coefficients and permeability used in the practical example 
of the saturated medium dense sand are listed in Table 2. 
If the groundwater withdrawal can be regarded as a point sink and the pumping rate of 
constant strength 2 330 3 10Q l s m s   , then it can have a long-term maximum horizontal 
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displacement and settlement at the ground surface of 1.42 cm  and 4.68 cm , respectively. It is 
noticed from Eqs. (21a) and (21b) that the magnitude of long-term ground surface horizontal 
displacement and settlement are not directly dependent on the pumping depth h  of the 
point sink. 
 

Parameter Symbol Value Units 
Shear modulus G  620 10  2N m  
Poisson’s ratio   0.3    

Permeability k  51 10  m s  

Unit weight of groundwater w  9,810  3N m  
Table 2. Typical values of the elastic properties and the permeability of a saturated medium 
dense sand 

 
6. Conclusions 
 

Closed-form solutions of the transient consolidation due to pumping from pervious 
saturated elastic half space were obtained by using Laplace and Hankel transformations. 
The study investigated the vertical and horizontal displacements of the ground surface. It 
also addressed the excess pore water pressure of the porous elastic half space due to a point 
sink. The results show: 
1. The maximum ground surface horizontal displacement is around 30% of the maximum 

surface settlement at 1.272,r h    where  1 5 2 1.618     is known as the 

golden ratio. It’s interesting to find that the golden ratio   also appears in the 
corresponding settlement of the poroelastic half space. The ground surface settlement at 
r h  is around 61.8% of the maximum ground surface settlement. 

2. From the average consolidation ratio U  at r h  0, 1, 2, 5, and 10, it shows that U  
initially decreases rapidly, and then the rate of settlement reduces.  

3. The magnitude of long-term maximum ground surface horizontal displacement and 
settlement are independent on the pumping depth h  of the point sink. 
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Parameter Symbol Value Units 
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Poisson’s ratio   0.3    

Permeability k  51 10  m s  

Unit weight of groundwater w  9,810  3N m  
Table 2. Typical values of the elastic properties and the permeability of a saturated medium 
dense sand 
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9. Notation of Symbols 
 

c  Parameter, wc k n  (m2/s) 

   erf x erfc x  Error function/complementary error function (Dimensionless) 
G  Shear modulus of the isotropic porous aquifer (Pa) 
h  Pumping depth (m) 
 I x  Modified Bessel function of the first kind of order   (Dimensionless) 

 J x  First kind of the Bessel function of order   (Dimensionless) 
k  Permeability of the isotropic porous aquifer (m/s) 
n  Porosity of the porous aquifer (Dimensionless) 
p  Excess pore fluid pressure (Pa) 
p  Hankel and Laplace transforms of p , Eq. (12c) 
Q  Pumping rate (m3/s) 
 , ,r z  Cylindrical coordinates system (m, radian, m) 
s  Laplace transform parameter (s-1) 
t  Time (s) 
 u t  Heaviside unit step function (Dimensionless) 

r zu u  Radial/axial displacement of the porous aquifer (m) 

max maxr zu u  Maximum ground surface horizontal/vertical displacement of the porous 
aquifer (m) 

r zu u 
 Hankel and Laplace transforms of r zu u , Eqs. (12a)-(12b) 

  Compressibility of groundwater (Pa-1) 
w  Unit weight of groundwater (N/m3) 
 x  Dirac delta function (m-1) 

ij  Kronecker delta (Dimensionless) 
  Volume strain of the porous aquifer (Dimensionless) 

ij  Strain components of the porous aquifer (Dimensionless) 
  Parameter,    1 1 2      (Dimensionless) 
  Poisson’s ratio of the isotropic porous aquifer (Dimensionless) 
  Hankel transform parameter (m-1) 

ij  Total stress components of the porous aquifer (Pa) 
  Golden ratio, 1.618   (Dimensionless) 
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