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1. Introduction

The purpose of this chapter is to present the application of the factorization method of linear
elliptic boundary value problems to overdetermined problems. The factorization method of
boundary value problems is inspired from the computation of the optimal feedback control in
linear quadratic optimal control problems. This computation uses the invariant embedding
technique of R. Bellman (1): the initial problem is embedded in a family of similar problems
starting from the current time with the current position. This allows to express the optimal
control as a linear function of the current state through a gain that is built using the solution of
a Riccati equation. The idea of boundary value problem factorization is similar with a space-
wise invariant embedding. The method has been presented and justified in (5) in the simple
situation of a Poisson equation in a cylinder. In this case the family of spatial subdomains is
simply a family of subcylinders. The method can be generalized to other elliptic operators
than the laplacian (7) and more general spatial embeddings (6). The output of the method is
to furnish an equivalent formulation of the boundary value problem as the product of two
uncoupled Cauchy initial value problems that are to be solved successively in a spatial di-
rection in opposite ways. These problems need the knowledge of a family of operators that
satisfy a Riccati equation and that relate on the boundaries of the subdomains the Dirichlet
and Neumann boundary conditions. This factorization can be viewed as an infinite dimen-
sional generalization of the block Gauss LU factorization. It inherits the same properties: once
the factorization is done (i.e. the Riccati equation has been solved), solving the same problem
with new data needs only the integration of the two Cauchy problems.
Here we consider the situation where one wants to simulate a phenomenon described by a
model using an elliptic operator with physical boundary conditions but using also an addi-
tional information that may come from boundary measurements. In general this extra infor-
mation is not compatible with the model and one explains it as a small disturbance of the data
of the model that is to be minimized. That is to say that we want to solve the model satisfying
all the boundary conditions but the equation is to be solved in the least mean square sense.
Then the factorization method is applied to the normal equations for this least square problem.
It will need now the solution of two equations for operators: one is the same Riccati equation
as for the well-posed problem and the second is a linear Lyapunov equation. It preserves the
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property of reducing the solution of the problem for extra sets of data or measurements to two
Cauchy problems.
This chapter is organized in the following way: section 2 states the well-posed and overde-
termined problems to be solved. Section 3 gives a reformulation of the well-posed problem
as a control problem which gives a clue to the factorization method. In section 5 the normal
equations for the problem with additional boundary conditions are derived. In section 4 the
factorization method for the well-posed elliptic problem is recalled. Section 6 gives the main
result of the chapter with the derivation of the factorization of the normal equation of the
overdetermined problem. Section 7 presents mathematical properties of the operators P and
Q and of the equations they satisfy.

2. Position of the problem

Let Ω be the cylinder Ω =]0, 1[×O, x′ = (x, y) ∈ R
n, where x is the coordinate along the

axis of the cylinder and O, a bounded open set in R
n−1, is the section of the cylinder. Let

Σ =]0, 1[×∂O be the lateral boundary, Γ0 = {0} × O and Γ1 = {1} × O be the faces of the
cylinder.
We consider the following Poisson equation with mixed boundary conditions

(P0)























−∆z = −
∂2z

∂x2
− ∆yz = f in Ω,

z|Σ = 0,

−
∂z

∂x
|Γ0

= z0, z|Γ1
= z1.

(1)

If f ∈ L2(Ω), z0 ∈ (H1/2
00 (O))′ and z1 ∈ H1/2

00 (O), problem (P0) has an unique solution in

Z = {z ∈ H1(Ω) : ∆z ∈ L2(Ω), z|Σ = 0}.

We also assume that we want to simulate a system satisfying the previous equation but we
want also to use an extra information we have on the “real” system which is a measurement
of the flux on the boundary Γ1. The problem is now overdetermined so, we will impose
to satisfy both Dirichlet and Neumann boundary conditions on Γ1, the state equation being
satisfied only in the mean square sense. That will define problem (P1) that we shall make
precise in section 5.

3. Associated control problem

In this section, for the sake of simplicity, we consider z0 = 0. We define an optimal control
problem that we will show to be equivalent to (P0). The control variable is v and the state
z verifies equation (2) below. Let U = L2(O) be the space of controls. For each v ∈ U , we
represent by z(v) the solution of the problem:







∂z

∂x
= v in Ω,

z(1) = z1.
(2)

We consider the following set of admissible controls:

Uad = {v ∈ U : z(v) ∈ Xz1}
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where
Xz1 = {h ∈ L2(0, 1; H1

0(O)) ∩ H1(0, 1; L2(O)) : h(1) = z1}.

The cost function is

J(v) = ‖z(v)− zd‖
2
L2(0,1;H1

0 (O))
+ ‖v‖2

L2(Ω) =
∫ 1

0
‖∇yz(v)−∇yzd‖

2
L2(O)dx+

+
∫ 1

0

∫

O
v2dxdy, v ∈ Uad.

The desired state zd is defined in each section by the solution of







−∆y ϕ(x) = f (x) in O,

ϕ|∂O = 0,
(3)

where ϕ ∈ L2(0, 1; H1
0O). Consequently, we have

zd = (−∆y)
−1 f ∈ L2(0, 1; H1

0(O)).

Now we look for u ∈ Uad, such that

J(u) = inf
v∈Uad

J(v).

Taking into account that Uad is not a closed subset in L2(Ω), we cannot apply the usual tech-
niques to solve the problem, even it is not clear under that form that this problem has a so-
lution. Nevertheless we can rewrite it as an equivalent minimization problem with respect to
the state

Uad =

{

∂h

∂x
: h ∈ Xz1

}

and, consequently
J(u) = inf

v∈Uad

J(v) = inf
h∈Xz1

J̄(h) = J̄(z)

where ∂z
∂x = u, and

J̄(h) = ‖h − zd‖
2
L2(0,1;H1

0 (O))
+ ‖

∂h

∂x
‖2

L2(Ω) =
∫ 1

0
‖∇yh −∇yzd‖

2
L2(O)dx+

+
∫ 1

0

∫

O

∣

∣

∣

∣

∂h

∂x

∣

∣

∣

∣

2

dxdy.

We remark that Xz1 is a closed convex subset in the Hilbert space

X = L2(0, 1; H1
0(O)) ∩ H1(0, 1; L2(O))

and ( J̄(h))
1
2 is a norm equivalent to the norm in X. Then by Theorem 1.3, chapter I, of (8),

there exists a unique z ∈ Xz1 , such that:

J̄(z) = inf
h∈Xz1

J̄(h)
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which is uniquely determined by the condition

J̄′(z)(h − z) ≥ 0, ∀h ∈ Xz1 .

But X0 is a subspace, and so the last condition is equivalent to

J̄′(z)(h) = 0, ∀h ∈ X0. (4)

Now we have

J̄′(z)(h) = 0 ⇔ lim
θ→0+

1

θ
[ J̄(z + θh)− J̄(z)] = 0 ⇔

∫ 1

0

∫

O
∇y(z − zd).∇yhdxdy+

+
∫ 1

0

∫

O

∂z

∂x

∂h

∂x
dxdy = 0, ∀h ∈ X0

which implies that

∫ 1

0

〈

−∆y(z − zd), h
〉

H−1(O)×H1
0 (O) dx +

∫ 1

0

∫

O

∂z

∂x

∂h

∂x
dxdy = 0, ∀h ∈ X0.

Then, taking into account that zd = (−∆y)−1 f , we obtain

∫ 1

0

〈

−∆y(z)− f , h
〉

H−1(O)×H1
0 (O) dx +

∫ 1

0

∫

O

∂z

∂x

∂h

∂x
dxdy = 0, ∀h ∈ X0.

If we consider h ∈ D(Ω), then

〈

−∆yz −
∂2z

∂x2
− f , h

〉

D′(Ω)×D(Ω)
= 0, ∀h ∈ D(Ω)

so, we may conclude that −∆z = f in the sense of distributions. But f ∈ L2(Ω), and so we
deduce that z ∈ Y, where

Y =
{

v ∈ Xz1 : ∆v ∈ L2(Ω)
}

.

We now introduce the adjoint state:







∂p

∂x
= −∆yz − f in Ω,

p(0) = 0.

We know that −∆yz − f ∈ L2(0, 1; H−1(O)). For each h ∈ X0

∫ 1

0

〈

−∆yz − f , h
〉

H−1(O)×H1
0 (O) dx =

∫ 1

0

〈

∂p

∂x
, h

〉

H−1(O)×H1
0 (O)

dx =

= −

∫ 1

0

∫

O
p

∂h

∂x
dxdy

and so p ∈ L2(Ω). Using the optimality condition (4), we obtain:

∫ 1

0

∫

O

(

−p +
∂z

∂x

)

∂h

∂x
dxdy = 0, ∀h ∈ X0,
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which implies

−p +
∂z

∂x
∈ H1(0, 1; L2(O)) ⊂ C([0, 1] ; L2(O))

and
∂

∂x
(−p +

∂z

∂x
) = 0.

Then there exists c(y) ∈ L2(O), such that:

(−p +
∂z

∂x
)|Γs

= c(y), ∀s ∈ [0, 1] .

On the other hand, integrating by parts, we obtain:

∫

O
c(y) h|Γ0

(y)dy = 0, ∀h ∈ X0,

and consequently c(y) = 0. It follows that −p +
∂z

∂x
= 0.

We have thus shown that problem

(P1,z1
)















∂z

∂x
= p in Ω, z (1) = z1,

∂p

∂x
= −∆yz − f in Ω, p (0) = 0,

(5)

admits a unique solution {z, p} ∈ H1
0(Ω)× L2(Ω), where z is the solution of (P0).

We can represent the optimality system (5) in matrix form as follows:

A









p

z









=









0

f









, z(1) = z1, p(0) = 0, (6)

with

A =





−I ∂
∂x

− ∂
∂x −∆y



 .

4. Factorization of problem (P0) by invariant embedding

Following R. Bellman (1), we embed problem (P1,z1
) in the family of similar problems defined

on Ωs =]0, s[×O, 0 < s ≤ 1:

(Ps,h)































∂ϕ

∂x
− ψ = 0 in Ωs, ϕ(s) = h,

ϕ|Σ = 0,

−
∂ψ

∂x
− ∆y ϕ = f in Ωs, ψ(0) = −z0,

(7)
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where h is given in H1/2
00 (O). When s = 1 and h = z1 we obtain problem (P1,z1

). Due to the
linearity of the problem, the solution

{

ϕs,h, ψs,h

}

of (Ps,h) verifies

ψs,h(s) = P(s)h + r(s), (8)

where P(s) and r(s) are defined as follows:
1) We solve































∂β

∂x
− γ = 0 in Ωs, β (s) = h,

β|Σ = 0,

−
∂γ

∂x
− ∆yβ = 0 in Ωs, γ (0) = 0.

(9)

This defines P(s) as:
P(s)h = γ(s).

We remark that P(s) is the Dirichlet-to-Neumann operator on Γs relative to the domain Ωs.
2) We solve































∂η

∂x
− ξ = 0 in Ωs, η (s) = 0,

η|Σ = 0,

−
∂ξ

∂x
− ∆yη = f in Ωs, ξ (0) = −z0.

(10)

The remainder r(s) is defined by:
r(s) = ξ(s).

Furthermore, the solution {z, p} of (P1,z1
) restricted to ]0, s[ satisfies (Ps,z|Γs

), for s ∈]0, 1[, and
so one has the relation

p(x) = P(x)z(x) + r(x), ∀x ∈]0, 1[. (11)

>From (11) and the boundary conditions at x = 0, we easily deduce that

P(0) = 0, r(0) = −z0.

Formally, taking the derivative with respect to x on both sides of equation (11), we obtain:

∂p

∂x
(x) =

dP

dx
(x)z(x) + P(x)

∂z

∂x
(x) +

dr

dx
(x)

and, substituting from (5) and (11) we conclude that:

−∆yz − f =
dP

dx
(x)z(x) + P(x)(P(x)z(x) + r(x)) +

dr

dx
⇔

(
dP

dx
+ P2 + ∆y)z +

dr

dx
+ Pr + f = 0.

(12)
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Then, taking into account that z(x) = h is arbitrary, we obtain the following decoupled sys-
tem:

dP

dx
+ P2 + ∆y = 0, P(0) = 0, (13)

∂r

∂x
+ Pr = − f , r(0) = −z0, (14)

∂z

∂x
− Pz = r, z(1) = z1, (15)

where P and r are integrated from 0 to 1, and finally z is integrated backwards from 1 to 0. We
remark that P is an operator on functions defined on O verifying a Riccati equation.
We have factorized problem (P0) as:

“ − ∆” = −

(

d

dx
+ P

)(

d

dx
− P

)

.

This decoupling of the optimality system (5) may be seen as a generalized block LU factoriza-
tion. In fact, for this particular problem, we may write

A =









I 0

−P − d
dx − P

















−I I

I 0

















I −P

0 d
dx − P









.

We will see in section 7 that P is self adjoint. So, the first and third matrices are adjoint of one
another and are, respectively, lower triangular and upper triangular.

5. Normal equations for the overdetermined problem

>From now on, we suppose z0 ∈ H1/2
00 (O), z1 ∈ H3/2

0 (O), z2 ∈ H1/2
00 (O), f ∈ H5/2(Ω) and

(∆ f )|Σ = 0.
Assuming we have an extra information, given by a Neumann boundary condition at point 1,
we consider the overdetermined system

A









p

z









=









0

f









, z(1) = z1, p(0) = −z0,
∂z

∂x
(1) = z2. (16)

If the data are not compatible with (5), this system should be satisfied in the least square sense.
We introduce a perturbation,

A









p

z









=









δg

f + δ f









, z(1) = z1, p(0) = −z0,
∂z

∂x
(1) = z2. (17)

We want to minimize the norm of the perturbation,

J(δ f , δg) =
1

2

∫ 1

0

(

‖δ f ‖2
L2(O) + ‖δg‖2

L2(O)

)

dx, (18)
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subject to the constraint given by (17). This defines problem (P1).
We remark that, like in section 3, this is an ill-posed problem. We could solve it by regu-

larization, taking
∂ δg

∂x
∈ L2(Ω), δg(0) = δg(1) = 0 and considering the problem of the

minimization of the functional

Jε(δ f , δg) = J(δ f , δg) +
ε

2

∫ 1

0

∥

∥

∥

∥

∂ δg

∂x

∥

∥

∥

∥

2

L2(O)
dx, (19)

subject to the constraint given by (17), which is a well-posed problem.
However, like in section 3, the final optimality problem is well-posed. >From now on we
consider the final problem and take the corresponding Lagrangian.
Taking, for convenience, the Lagrange multiplier of the second equation of (17) as z̄ − f ,

L (δ f , δg, z, p, z̄, p̄) = J (δ f , δg) +
∫ 1

0

(

p̄,
∂z

∂x
− p − δg

)

L2(O)
dx+

+
∫ 1

0

(

z̄ − f ,−
∂p

∂x
− ∆yz − f − δ f

)

L2(O)
dx +

(

µ,
∂z

∂x
(1)− z2

)

L2(O)
.

(20)

Taking into account that ∂z
∂x (1) = p (1) + δg (1), we obtain

(

∂L

∂z
, ϕ

)

=
∫ 1

0

(

z̄ − f ,−∆y ϕ
)

L2(O)
dx +

∫ 1

0

(

p̄,
∂ϕ

∂x

)

L2(O)
dx, ∀ϕ ∈ Y ,

where

Y =

{

ϕ ∈ Z :
∂ϕ

∂x
(0) = 0, ϕ(1) = 0

}

and, integrating by parts, we derive

(

∂L

∂z
, ϕ

)

=
∫ 1

0

(

−∆y(z̄ − f ), ϕ
)

L2(O) dx − ( p̄(0), ϕ(0)) +
∫ 1

0

(

−
∂ p̄

∂x
, ϕ

)

L2(O)
dx.

Now, if p̄ (0) = 0, and because all the functions are null on Σ, we conclude that:

∂L

∂z
= 0 ⇔ −

∂ p̄

∂x
− ∆y z̄ = −∆y f .

On the other hand

(

∂L

∂p
, ψ

)

=
∫ 1

0

(

z̄ − f ,−
∂ψ

∂x

)

L2(O)
dx +

∫ 1

0
( p̄,−ψ)L2(O) dx+

(µ, ψ (1))L2(O) =
∫ 1

0

(

∂ (z̄ − f )

∂x
, ψ

)

L2(O)
dx + (z̄ (0)− f (0) , ψ (0))−

− (z̄ (1)− f (1) , ψ (1)) +
∫ 1

0
(− p̄, ψ)L2(O) dx + (µ, ψ (1))

and, if ψ (0) = 0 and z̄ (1)− f (1) = µ arbitrary, then

∂L

∂p
= 0 ⇔

∂z̄

∂x
− p̄ =

∂ f

∂x
.
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We have thus obtained:














∂z̄

∂x
− p̄ = f1 :=

∂ f

∂x
, z̄ (1) arbitrary,

−
∂ p̄

∂x
− ∆y z̄ = f2 := −∆y f , p̄ (0) = 0.

(21)

We finally evaluate the optimal values for δ f and δg. We have:

(

∂L

∂(δ f )
, γ

)

=
∫ 1

0
(δ f , γ)L2(O)dx +

∫ 1

0
(z̄ − f ,−γ)L2(O)dx, ∀γ ∈ L2(Ω)

and for all ξ ∈ L2(Ω) such that ∂ξ
∂x ∈ L2(Ω),

(

∂L

∂(δg)
, ξ

)

=
∫ 1

0
(δg, ξ)L2(O)dx +

∫ 1

0
( p̄,−ξ)L2(O)dx.

At the minimum, we must have

∂L

∂(δ f )
= 0 ⇔ δ f = z̄ − f

and
∂L

∂(δg)
= 0 ⇔ δg = p̄.

In conclusion, we obtain

A





p

z



 =





δg

f + δ f



 =





p̄

z̄



 , (22)

and the normal equation is given by

A
2





p

z



 =





f1

f2



 , p(0) = −z0, z(1) = z1,
∂z

∂x
(1) = z2, −

∂z

∂x
(0) = z0. (23)

>From (23), we have

− ∆z̄ = −
∂2 z̄

∂x2
− ∆y z̄ =

∂2 f

∂x2
− ∆y f = −∆ f (24)

and, from (23) and (24),

−∆ f = −∆z̄ = −∆

(

−
∂p

∂x
− ∆yz

)

= −∆

(

∂ p̄

∂x
−

∂2z

∂x2
− ∆yz

)

= −∆
(

−∆y z̄ + ∆y f − ∆z
)

= ∆
2z + ∆y (∆z̄ − ∆ f ) = ∆

2z

We now notice that

∂2 p̄

∂x2
=

∂

∂x

(

∆y f − ∆y z̄
)

= ∆y

(

∂ f

∂x
−

∂z̄

∂x

)

= −∆y p̄
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and, remarking that p̄(0) = 0, we derive −∆y p̄(0) = 0 which implies that

∂(∆z)

∂x
(0) =

∂2 p

∂x2
(0)−

∂z̄

∂x
(0) = −∆y p̄(0)− p̄(0)−

∂ f

∂x
(0) = −

∂ f

∂x
(0)

Now we can write the normal equation as

(P2)



































∆
2z = −∆ f , in Ω,

z|Σ = 0, ∆z|Σ = 0,

−
∂z

∂x
(0) = z0,

∂∆z

∂x
(0) = −

∂ f

∂x
(0),

z(1) = z1,
∂z

∂x
(1) = z2.

(25)

6. Factorization of the normal equation by invariant embedding

In order to factorize problem (25) we consider an invariant embedding using the family of

problems (Ps,h,k) defined in Ωs =]0, s[×O, for each h ∈ H
3
2 (O) and each k ∈ (H

1
2
00(O))

′
.

These problems can be factorized in two second order boundary value problems. Afterwards
we will show the relation between (Ps,h,k) for s = 1 and problem (25).

(Ps,h,k)































∆
2z = −∆ f , in Ωs,

z|Σ = 0, ∆z|Σ = 0,

−
∂z

∂x
(0) = z0,

∂∆z

∂x
(0) = −

∂ f

∂x
(0),

z|Γs
= h, ∆z|Γs

= k.

(26)

Due to the linearity of the problem, for each s ∈]0, 1], h, k, the solution of (Ps,h,k) verifies:

∂z

∂x
(s) = P(s)h + Q(s)k + r̃(s). (27)

In fact, let us consider the problem































∆
2γ1 = 0, in Ωs,

γ1|Σ = 0, ∆γ1|Σ = 0,

∂γ1

∂x
(0) = 0,

∂∆γ1

∂x
(0) = 0,

γ1|Γs
= h, ∆γ1|Γs

= 0.

(28)

This problem reduces to:


















∆γ1 = 0, in Ωs,

γ1|Σ = 0,

∂γ1

∂x
(0) = 0, γ1|Γs

= h.

(29)
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Setting P1(s)h =
∂γ1

∂x
(s), from (9) we may conclude that P1 = P. On the other hand, given































∆
2γ2 = 0, in Ωs,

γ2|Σ = 0, ∆γ2|Σ = 0,

∂γ2

∂x
(0) = 0,

∂∆γ2

∂x
(0) = 0,

γ2|Γs
= 0, ∆γ2|Γs

= k,

(30)

we define:

Q(s)k =
∂γ2

∂x
(s).

Problem (30) can be decomposed in two second order boundary value problems. Finally, we
solve:































∆
2β = −∆ f , in Ωs,

β|Σ = ∆β|Σ = 0,

−
∂β

∂x
(0) = z0,

∂∆β

∂x
(0) = −

∂ f

∂x
(0),

β|Γs
= ∆β|Γs

= 0

(31)

and set:

r̃(s) =
∂β

∂x
(s).

Then, the solution of the normal equation restricted to ]0, s[, verifies (Ps,z|Γs ,∆z|Γs
), for s ∈]0, 1[.

So, one has the relation
∂z

∂x
|Γs

= P(s)z|Γs
+ Q(s)∆z|Γs

+ r̃(s). (32)

>From (32), it is easy to see that Q(0) = 0 and r̃(0) = −z0. On the other hand, we may
consider the following second order problem on ∆z as a subproblem of problem (26)































∆(∆z) = −∆ f , in Ωs,

∆z|Σ = 0,

∂∆z

∂x
(0) = −

∂ f

∂x
(0),

∆z|Γ1
= c,

(33)

where c is to be determined later, in order to be compatible with the other data. >From (14)
and (15), it admits the following factorization:











∂t

∂x
+ Pt = −∆ f , t(0) = −

∂ f

∂x
(0),

−
∂∆z

∂x
+ P∆z = −t, ∆z(1) = c.

(34)

Formally, taking the derivative with respect to x on both sides of (32), we obtain:

∂2z

∂x2
(x) =

dP

dx
(x)z(x) + P(x)

∂z

∂x
(x) +

dQ

dx
(x)∆z(x) + Q(x)

∂∆z

∂x
(x) +

dr̃

dx
(x)
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and, substituting from (32) and (34), we obtain:

∆z − ∆yz =
dP

dx
z + P(Pz + Q∆z + r̃) +

dQ

dx
∆z + Q(P∆z + t) +

dr̃

dx
(35)

or which is equivalent

(
dP

dx
+ P2 + ∆y) + (

dQ

dx
+ PQ + QP − I)∆z +

dr̃

dx
+ Pr̃ + Qt = 0. (36)

Now, taking into account that z|Γs
= h and ∆z|Γs

= k are arbitrary, we derive

dP

dx
+ P2 + ∆y = 0, P(0) = 0, (37)

dQ

dx
+ PQ + QP = I, Q(0) = 0, (38)

∂t

∂x
+ Pt = −∆ f , t(0) = −

∂ f

∂x
(0), (39)

∂r̃

∂x
+ Pr̃ = −Qt, r̃(0) = −z0, (40)

∂∆z

∂x
− P∆z = t, ∆z(1) = c, (41)

∂z

∂x
− Pz = Q∆z + r̃, z(1) = z1. (42)

It is easy to see, from the definition, that Q(1) is a bijective operator from (H
1
2
00(O))

′
to H

1
2 (O),

so we can define (Q(1))−1. >From (27) and the regularity assumptions made at beginning of
this section, we can define:

c = (Q(1))−1(z2 − P(1) z1 − r̃(1)). (43)

Once again we can remark the interest of the factorized form if the same problem has to be
solved many times for various sets of data (z1, z2). Once the problem has been factorized, that
is P and Q have been computed, and t and r̃ are known, the solution for a data set (z1, z2) is
obtained by solving (43) and then the Cauchy initial value problems (41), (42) backwards in x.
We have factorized problem (P2). We may write

A2 =









− d
dx − P 0

−Q − d
dx − P

















0 −I

−I 0

















d
dx − P −Q

0 d
dx − P









.

We will see in section 7 that P and Q are self adjoint. So, the first and third matrices are adjoint
of one another and are, respectively, lower triangular and upper triangular.

7. Some properties of P and Q

The Riccati equation (37) was studied in (3), using a Yosida regularization.
1− For each s ∈ [0, 1], P(s) ∈ L(H1

0(O), L2(O)).
2− For each s ∈ [0, 1], P(s) is a self-adjoint and positive operator. In fact, the property is obvi-
ously true when s = 0. On the other hand, let s ∈]0, 1], h1, h2 ∈ L2(O), and {β1, γ1},{β2, γ2}
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the corresponding solutions of (9) to h1 and h2. From the definition of P we may conclude that

P(s)hi =
∂βi

∂x
|Γs

, where βi is the solution of:































−∆βi = 0 in Ωs,

βi|Σ = 0,

−
∂βi

∂x
|Γ0

= 0, βi|Γs
= hi.

We then have that:

0 =
∫

Ωs

(−∆β1)β2dxdy =
∫

Ωs

∇β1∇β2dxdy −
∫

∂Ωs

∂β1

∂x
β2dσ

and, taking into account that β2|Σ = 0,
∂β1

∂x
|Γ0

= 0 and β2|Γs
= h2, we conclude that:

(P(s)h1, h2) =
∫

Γs

∂β1

∂x
(s)β2(s)dσ =

∫

Ωs

∇β1∇β2dxdy

which shows that P(s) is a self-adjoint and positive operator.
3−

‖P(s)h‖L2(O) ≤ ‖h‖H1
0 (O), ∀h ∈ H1

0(O), ∀s ∈ [0, 1].

4− For each s ∈ [0, 1], Q(s) is an operator from (H1/2
00 (O))′ into H1/2

00 (O) and from L2(O) into

H1
0(O).

5− For each s ∈ [0, 1], Q(s) is a linear, self-adjoint, non negative operator in L2(O), and it is
positive if s �= 0. In fact, the result is obviously verified if s = 0. On the other hand, if s ∈]0, 1],
ki ∈ L2(O), and γi are the solutions of the problems:















































∆
2γi = 0, in Ωs,

γi|Σ = 0, ∆γi|Σ = 0,

∂γi

∂x
(0) = 0,

∂∆γi

∂x
(0) = 0,

γi|Γs
= 0, ∆γi|Γs

= ki, i = 1, 2,

(44)

then, by Green’s formula, noticing that γ1|Σ = γ1|Γs
= 0 and ∂∆γ2

∂x (0) = 0, we have:

0 =
∫

Ωs

γ1∆
2γ2dxdy = −

∫

Ωs

∇γ1∇(∆γ2)dxdy

and, again by Green’s formula, remarking that ∆γ2|Σ = 0 and ∂γ1

∂x (0) = 0, we obtain

(Q(s)k1, k2) =
∫

Γs

∂γ1

∂x
(s)∆γ2(s)dσ =

∫

Ωs

∆γ1∆γ2dxdy
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which shows that Q(s) is a self-adjoint non negative operator in L2(O). On the other hand

〈Q(s)k, k〉 = 0 ⇔
∫

Ωs

(∆γ)2dxdy = 0 ⇒ ∆γ = 0 in Ωs ⇒ k = ∆γ|Γs
= 0

and so Q(s) is positive for s ∈]0, 1].
6− For each x ∈ [0, 1], −P(x) is the infinitesimal generator of a strongly continuous semigroup
of contractions in L2(O).
In fact we know that, for each x ∈ [0, 1], P(x) is an unbounded and self-adjoint operator from
L2(O) into L2(O) with domain H1

0(O). By (4), proposition II.16, page 28, −P(x) is a closed
operator. On the other hand

(−P(x)h, h) ≤ 0, ∀h ∈ H1
0(O)

so, −P(x) is a dissipative operator. Finally, by (9), Corollary 4.4, page 15, −P(x) is
the infinitesimal generator of a strongly continuous semigroup of contractions in L2(O),
{exp(−tP(x)}t≥0.

It is easy to see that the family {−P(x)}x∈[0,1] verifies the conditions of Theorem 3.1, with
the slight modification of remark 3.2, of (9). This implies that there exists a unique evolution
operator U(x, s) in L2(O), that is, a two parameter family of bounded linear operators in
L2(O), U(x, s), 0 ≤ s < x ≤ 1, verifying U(x, x) = I, U(x, r)U(r, s) = U(x, s), 0 ≤ s ≤
r ≤ x ≤ 1, and (x, s) �−→ U(x, s) is strongly continuous for 0 ≤ s ≤ x ≤ 1. Moreover,
‖U(x, s)‖L(L2(O)) ≤ 1 and

∂

∂s
U(x, s)h = U(x, s)P(s)h, ∀h ∈ H1

0(O), a.e. in 0 ≤ s ≤ x ≤ 1.

Formally, from equation (38), we have:

∂

∂s
(U(x, s)Q(s)U∗(x, s)) = U(x, s)U∗(x, s).

Integrating from 0 to x, and remarking that Q(0) = 0,

Q(x) =
∫ x

0
U(x, s)U∗(x, s) ds.

We define a mild solution of (38) by

(Q(x)h, h̄) =
∫ x

0
(U∗(x, s)h, U∗(x, s)h̄) ds, ∀h, h̄ ∈ H1

0(O).

By the preceeding remarks, equation (38) has a unique mild solution.

Again formally, from equation (39), we have

∂

∂s
(U(x, s)t(s)) = U(x, s)

∂t

∂s
+ U(x, s)P(s)t = −U(x, s)∆ f ,

so we define a mild solution of (39) by

t(x) = −U(x, 0)
∂ f

∂x
(0)−

∫ x

0
U(x, s)∆ f ds.

For equations (40), (41) and (42) we proceed in a similar way, noting that for (41) and (42) the
integral is taken between x and 1.

www.intechopen.com



Factorization of overdetermined boundary value problems 221

8. References

[1] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.
[2] A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite

Dimensional Systems, Birkhäuser, 2007.
[3] N. Bouarroudj, J. Henry, B. Louro and M. Orey, On a direct study of an operator Riccati

equation appearing in boundary value problems factorization. Appl. Math. Sci. (Ruse),
Vol. 2, no. 46 (2008), 2247–2257

[4] H. Brézis, Analyse fonctionnelle, Dunod, 1999.
[5] J. Henry and A. M. Ramos, Factorization of Second Order Elliptic Boundary Value Prob-

lems by Dynamic Programming, Nonlinear Analysis. Theory, Methods & Applications, 59,
(2004) 629-647.

[6] J. Henry, B. Louro and M. C. Soares, A factorization method for elliptic problems in a
circular domain, C. R. Acad. Sci. Paris, série 1, 339 (2004) 175-180.

[7] J. Henry, On the factorization of the elasticity system by dynamic programming “Optimal Con-
trol and Partial Differential Equations” en l’honneur d’A. Bensoussan. ed J.L. Menaldi, E.
Rofman, A. Sulem, IOS Press 2000, p 346-352.

[8] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer
Verlag, 1971.

[9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer Verlag, 1983.

www.intechopen.com



Modeling, Simulation and Optimization – Tolerance and Optimal Control222

www.intechopen.com



Modeling Simulation and Optimization - Tolerance and Optimal

Control

Edited by Shkelzen Cakaj

ISBN 978-953-307-056-8

Hard cover, 304 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Parametric representation of shapes, mechanical components modeling with 3D visualization techniques using

object oriented programming, the well known golden ratio application on vertical and horizontal displacement

investigations of the ground surface, spatial modeling and simulating of dynamic continuous fluid flow process,

simulation model for waste-water treatment, an interaction of tilt and illumination conditions at flight simulation

and errors in taxiing performance, plant layout optimal plot plan, atmospheric modeling for weather prediction,

a stochastic search method that explores the solutions for hill climbing process, cellular automata simulations,

thyristor switching characteristics simulation, and simulation framework toward bandwidth quantization and

measurement, are all topics with appropriate results from different research backgrounds focused on tolerance

analysis and optimal control provided in this book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jacques Henry, Bento Louro and Maria Orey (2010). Factorization of Overdetermined Boundary Value

Problems, Modeling Simulation and Optimization - Tolerance and Optimal Control, Shkelzen Cakaj (Ed.), ISBN:

978-953-307-056-8, InTech, Available from: http://www.intechopen.com/books/modeling-simulation-and-

optimization-tolerance-and-optimal-control/factorization-of-overdetermined-boundary-value-problems



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


