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Abstract. In this contribution we introduce to the topic of Random Variational Inequalities
(RVI) and present some of our recent results in this field. We show how the theory of mono-
tone RVI, where random variables occur both in the operator and the constraints set, can be
applied to model nonlinear equilibrium problems under uncertainty arising from economics
and operations research, including migration and transportation science. In particular we
treat Wardrop equilibria in traffic networks. We describe an approximation procedure for the
statistical quantities connected to the equilibrium solution and illustrate this procedure by
means of some small sized numerical examples.
Keywords: Random Variational Inequality, Random Set, Monotone Operator, Averag-
ing,Truncation, Approximation Procedure, Cassel-Wald Equilibrium, Distributed Market
Equilibrium, Spatial Price Equilibrium, Migration Equilibrium, Traffic Network, Wardrop
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1. Introduction

Although relatively recent, the Variational Inequality (V.I.) approach to a variety of equilib-
rium problems arising in various fields of applied sciences, such as economics, game theory
and transportation science, has developped very rapidly (see e.g. (10), (23), (8), (19)). Since the
data of most of the above mentioned problems are often affected by uncertainty, the question
arises of how to introduce this uncertainty, or randomness, in their V.I. formulation. In fact,
while the topic of stochastic programming is already a well established field of optimization
theory (see e.g.(25), (6)), the theory of random (or stochastic) variational inequalities is much
less developped.
In (14) the author studied a class of V.I. with a linear random operator, presented an exis-
tence and discretization theory and applied this theory to a unilateral boundary value prob-
lem stemming from mechanics, where the coefficients of the elliptic differential operator are
admitted to be random to model uncertainty in material parameters. The functional setting in-
troduced therein, and extended in (15) in order to include randomness also in the constraints
set, can also be utilized to model many finite dimensional random equilibrium problems,
which only in special cases admit an optimization formulation (see e.g.(16)). Furthermore,
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recently in (17), the authors have extended the theory in (15) to the monotone nonlinear case,
while formulating their results in an abstract Hilbert space setting. However, apart from the
generalization of the previous theory, this extension is motivated by the need to cope with the
nonlinearity in many equilibrium problems arising in operations research, such as the random
traffic equilibrium problem which is studied in detail in this article.
For a comparison between our approach and other ways to treat randomness in variational
inequalities we refer the interested reader to (16). Here we just quote (11), (12), for the solu-
tion of stochastic variational inequalities with a (nonlinear) Fréchet differentiable mapping on
a polyhedral subset in finite dimension via the sample-path method, (21) presenting a regular-
ization method for stochastic programs with complementarity constraints, and (28), (29) for a
systematic study of stochastic programs under equilibrium constraints.
The paper is structured in 6 sections. In the following Sect. 2 we specialize the abstract for-
mulation of (17) to the case in which the deterministic variables belong to a finite dimensional
space, so as to make our theory readily applicable to economics and operations research prob-
lems; in Sect. 3 we consider the special case where the deterministic and the random vari-
ables are separated; in Sect. 4 we recall and refine the approximation procedure given in
(17). Then in Sect. 5, we show how the theory of monotone RVI, where random variables
occur both in the operator and the constraints set, can be applied to model various nonlin-
ear equilibrium problems under uncertainty arising from economics and operations research,
including migration. In the last Sect. 6 we focus on the modelling of the nonlinear random
traffic equilibrium problem and, in order to explain the role of monotonicity, we also discuss
the fact that this problem (as every network equilibrium problem) can be formulated by us-
ing two different sets of variables, connected by a linear transformation. Finally we illustrate
our approximation procedure by two small sized numerical examples of traffic equilibrium
problems.

2. The Pointwise and the Integral Formulation

Let (Ω,�,µ) be a complete σ-finite measure space. For all ω ∈ Ω, let �(ω) be a closed, convex
and nonempty subset of R

k. Consider a random vector λ and a Carathéodory function F :
Ω × R

k �→ R
k, i.e. for each fixed x ∈ R

k, F(⋅, x) is measurable with respect to �, and for every
ω ∈ Ω , F(ω, ⋅) is continuous. Moreover, for each ω ∈ Ω , F(ω, ⋅) a monotone operator on R

k,
i.e. ⟨F(ω, x)− F(ω,y), x − y⟩ ≥ 0, ∀x,y ∈ R

k.
With these data we consider the following

Problem 1. For each ω ∈ Ω, find X̂(ω) ∈ �(ω) such that

⟨F(ω, X̂(ω)), x − X̂(ω)⟩ ≥ ⟨λ(ω), x − X̂(ω)⟩ , ∀x ∈ �(ω) . (1)

Now we consider the set-valued map Σ : Ω →֒R
k which, to each ω ∈ Ω, associates the solution

set of (1). The measurability of Σ (with respect to the algebra ℬ(Rk) of the Borel sets on R
k and

to the σ-algebra � on Ω) has been proved in (15) for the case of a bilinear form on a general
separable Hilbert space. However, the proof given therein can be adapted straightforwardly
to nonlinear operators.
To progress in our analysis we shall confine ourselves to the case of strongly monotone op-
erators, since it is known that the strong monotonicity assumption guarantees the existence
of a unique solution to (1) (see (18)). Moreover we shall need the following sharpening of
monotonicity.
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Definition 2.1. We call F uniformly strongly monotone, if there is some constant c0 > 0 such that

⟨F(ω, x)− F(ω,y), x − y⟩ ≥ c0∥x − y∥2 ∀x,y ∈ R
k ,∀ω ∈ Ω .

In many applications, such as the traffic equilibrium problem, the modelling is often done
with polynomial cost functions. We are then led to require the growth condition

∥F(ω,z)∥ ≤ α(ω) + β(ω)∥z∥p−1 ∀z ∈ R
k, (2)

for some p ≥ 2.
Since our final aim is to calculate statistical quantities such as the mean value or the variance
of the solution of (1), we shall use the following result which has been proved in (17):

Theorem 2.1. Let (Ω,�,µ) a complete σ-finite measure space, and F(ω, ⋅) a strongly monotone
operator on R

k for all ω ∈ Ω. Then the variational inequality (1) admits a unique solution X̂ : ω ∈
Ω �→ X̂(ω) ∈ �(ω). Moreover, suppose that, F is uniformly strongly monotone, that the random
vector λ belongs to Lp(Ω,µ,Rk), that the growth condition (2) is satisfied and that there exists z0 ∈

L(p−1)p(Ω,µ,Rk)
∩

Lp(Ω,µ,Rk) such that z0(ω) belongs to �(ω). Then X̂ ∈ Lp(Ω,µ,Rk).

Let us now introduce a probability space (Ω,�, P) and for fixed p ≥ 2, the reflexive Banach
space Lp(Ω, P,Rk) of random vectors V from Ω to R

k such that the expectation

EP∥V∥p =
∫

Ω

∥V(ω)∥pdP(ω) < ∞ . (3)

Furthermore we define the convex and closed set

K := {V ∈ Lp(Ω, P,Rk) : V(ω) ∈ �(ω),P-almost sure} .

Under the growth condition (2) with α ∈ Lp(Ω, P), β ∈ L∞(Ω, P), and assuming that λ ∈
Lp(Ω, P,Rk), the integrals

∫
Ω

⟨F(ω,U(ω)),V(ω)− U(ω) ⟩dP(ω),
∫

Ω

⟨λ(ω),V(ω)− U(ω)⟩dP(ω)

are well defined for all U,V ∈ Lp(Ω, P,Rk). Therefore, we can consider the following

Problem 2. Find U ∈ K such that, ∀V ∈ K,
∫

Ω

⟨F(ω,U(ω)), V(ω)− U(ω)) ⟩dP(ω) ≥
∫

Ω

⟨λ(ω),V(ω)− U(ω)⟩dP(ω) . (4)

Under our assumptions, (4) has a unique solution U ∈ Lp(Ω, P,Rk). Thus, by uniqueness,
Problem 1 and Problem 2 are equivalent in the sense that from the integral formulation in
Problem 2 we obtain a pointwise solution that is only defined P-a.e. on Ω and that coincides
there with the pointwise solution of Problem 1.
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3. The Separable Case

Here and in the sequel we shall posit further assumptions on the structure of the random set
and on the operator. More precisely, with a matrix A ∈ R

m×k and a random m - vector D being
given, we consider the random set

M(ω) := {x ∈ R
k : Ax ≤ D(ω)}, ω ∈ Ω .

Moreover, let G, H : R
k → R

k be two (nonlinear) maps; b, c ∈ R
k fixed vectors and R and

S two real valued random variables on Ω. Thus, we simplify Problem 1 to that of finding
X̂ : Ω → R

k, such that X̂(ω) ∈ M(ω) (P-a.s.) and the following inequality holds for P-almost
every elementary event ω ∈ Ω and ∀x ∈ M(ω)

⟨S(ω)G(X̂(ω)) + H(X̂(ω)), x − X̂(ω)⟩ ≥ ⟨b + R(ω) c, x − X̂(ω)⟩ . (5)

We assume that S ∈ L∞(Ω) and R ∈ Lp(Ω), while the operator F defined by

F(ω, x) := S(ω)G(x) + H(x)

is uniformly strongly monotone. The uniform strong monotonicity of F is ensured by the
strong monotonicity of s G and H , where s is a positive constant such that there holds S ≥ s
P - a.s. (almost sure). We also require that F satisfies the growth condition (2).
Moreover, we assume that D ∈ L

p
m(Ω) := Lp(Ω, P,Rm). Hence we can introduce the following

closed convex nonvoid subset of L
p
k (Ω):

MP := {V ∈ L
p
k (Ω) : A V(ω) ≤ D(ω), P − a.s.}

and consider the following problem:
Find Û ∈ MP such that, ∀V ∈ MP,
∫

Ω

⟨S(ω)G(Û(ω)) + H(Û(ω)),V(ω)− Û(ω)⟩dP(ω)≥
∫

Ω

⟨b + R(ω) c,V(ω)− Û(ω)⟩dP(ω) .

(6)
The r.h.s. of (6) defines a continuous linear form on L

p
k (Ω), while the l.h.s. defines a con-

tinuous form on L
p
k (Ω) which inherits strong monotonicity from the strong monotonicity of

s G + H. Therefore, (see e.g. (18)), there exists a unique solution in MP to problem (6). By
uniqueness, problems (5) and (6) are equivalent.
In order to get rid of the abstract sample space Ω, we consider the joint distribution P of the
random vector (R,S, D) and work with the special probability space (Rd,ℬ(Rd),P), where
the dimension d := 2 + m. To simplify our analysis we shall suppose that R, S and D are
independent random vectors. Let r = R(ω), s = S(ω), t = D(ω), y = (r, s, t). For each y ∈ R

d,
consider the set

M(y) := {x ∈ R
k : Ax ≤ t}

Then the pointwise version of our problem now reads:
Find x̂ such that x̂(y) ∈ M(y), P - a.s., and the following inequality holds for P - almost every
y ∈ R

d and ∀x ∈ M(y),

⟨s G(x̂(y)) + H(x̂(y)), x − x̂(y)⟩ ≥ ⟨b + r c, x − x̂(y)⟩ . (7)
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In order to obtain the integral formulation of (7), consider the space Lp(Rd,P,Rk) and intro-
duce the closed convex nonvoid set

MP := {v ∈ Lp(Rd,P,Rk) : Av(r, s, t) ≤ t, P − a.s.} .

This leads to the problem:
Find û ∈ MP such that, ∀v ∈ MP,

∫
Rd

⟨s G(û(y)) + H(û(y)),v(y)− û(y)⟩dP(y) ≥
∫

Rd
⟨b + r c,v(y)− û(y)⟩dP(y) . (8)

By using the same arguments as in the ω-formulation in section 2, problems (7) and (8) are
equivalent.

Remark 3.1. Our approach and analysis here and in the next section readily applies also to more
general finite Karhunen-Loève expansions

λ(ω) = b +
L

∑
l=1

Rl(ω) cl , F(ω, x) = H(x) +
LF

∑
l=1

Sl(ω)Gl(x) .

However, such an extension does not only need a more lengthy notation, but - more impor-
tantly - leads to more computational work; see (15) for a more thorough discussion of those
computational aspects.

4. An Approximation Procedure by Discretization of Distributions

Without loss of generality, we can suppose that R ∈ Lp(Ω, P) and D ∈ L
p
m(Ω, P) are nonnega-

tive (otherwise we can use the standard decomposition in the positive part and the negative
part). Moreover, we assume that the support (the set of possible outcomes) of S ∈ L∞(Ω, P)
is the interval [s, s) ⊂ (0,∞). Furthermore we assume that the distributions PR, PS, PD are
continuous with respect to the Lebesgue measure, so that according to the theorem of Radon-
Nikodym, they have the probability densities ϕR, ϕS, ϕDi

i = 1, . . . ,m, respectively. Hence, P =
PR ⊗ PS ⊗ PD, dPR(r) = ϕR(r)dr, dPS(s) = ϕS(s)ds and dPDi

(ti) = ϕDi
(ti)dti for i = 1, . . . ,m.

Let us note that v ∈ Lp(Rd,P,Rk) means that (r, s, t) �→ ϕR(r)ϕS(s)ϕD(t)v(r, s, t) belongs to
the standard Lebesgue space Lp(Rd,Rk) with respect to the Lebesgue measure, where shortly
ϕD(t) := ∏i ϕDi

(ti). Thus we arrive at the probabilistic integral formulation of our problem:
Find û ∈ MP such that, ∀v ∈ MP,

∫ ∞

0

∫ s

s

∫
Rm

+

⟨s G(û) + H(û),v − û⟩ ϕR(r)ϕS(s)ϕD(t)dy ≥

∫ ∞

0

∫ s

s

∫
Rm

+

⟨b + r c,v − û⟩ ϕR(r)ϕS(s)ϕD(t)dy .

In order to give an approximation procedure for the solution û, let us start with a discretization
of the space X := Lp(Rd,P,Rk) and introduce a sequence {πn}n of partitions of the support
Υ := [0,∞)× [s, s)×R

m
+ of the probability measure P induced by the random elements R,S, D.

To be precise, let πn = (πR
n ,πS

n ,πD
n ), where

πR
n := (r0

n, . . . ,r
NR

n
n ), πS

n := (s0
n, . . . , s

NS
n

n ), πDi
n := (t0

n,i, . . . , tN
Di
n

n,i )
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0 = r0
n < r1

n < . . . r
NR

n
n = n

s = s0
n < s1

n < . . . s
NS

n
n = s

0 = t0
n,i < t1

n,i < . . . tN
Di
n

n,i = n (i = 1, . . . ,m)

∣πR
n ∣ := max{r

j
n − r

j−1
n : j = 1, . . . , NR

n } → 0 (n → ∞)

∣πS
n ∣ := max{sk

n − sk−1
n : k = 1, . . . , NS

n } → 0 (n → ∞)

∣πDi
n ∣ := max{thi

n,i − thi−1
n,i : hi = 1, . . . , NDi

n } → 0 (i = 1, . . . ,m;n → ∞) .

These partitions give rise to the exhausting sequence {Υn} of subsets of Υ, where each Υn is
given by the finite disjoint union of the intervals:

In
jkh := [r

j−1
n ,r

j
n)× [sk−1

n , sk
n)× In

h ,

where we use the multiindex h = (h1, ⋅ ⋅ ⋅ , hm) and

In
h := Πm

i=1 [t
hi−1
n,i , thi

n,i) .

For each n ∈ N let us consider the space of the R
l-valued simple functions (l ∈ N) on Υn,

extended by 0 outside of Υn:

Xl
n := {vn : vn(r, s, t) = ∑

j
∑
k

∑
h

vn
jkh1In

jkh
(r, s, t) ,vn

jkh ∈ R
l}

where 1I denotes the {0,1}-valued characteristic function of a subset I.
To approximate an arbitrary function w ∈ Lp(Rd,P,R) we employ the mean value truncation
operator µn

0 associated to the partition πn given by

µ
n
0 w :=

NR
n

∑
j=1

NS
n

∑
k=1

∑
h

(µn
jkhw)1In

jkh
, (9)

where

µ
n
jkhw :=

⎧

⎨

⎩

1

P(Ijkh)

∫

In
jkh

w(y)dP(y) if P(In
jkh) > 0;

0 otherwise.

Likewise for a Lp vector function v = (v1, . . . ,vl), we define µn
0 v := (µn

0 v1, . . . ,µn
0 vl). From

Lemma 2.5 in ((14)) (and the remarks therein) we obtain the following result.

Lemma 4.1. For any fixed l ∈ N, the linear operator µn
0 : Lp(Rd,P,Rl)→ Lp(Rd,P,Rl) is bounded

with ∥µn
0∥ = 1 and for n → ∞, µn

0 converges pointwise in Lp(Rd,P,Rl) to the identity.
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This lemma reflects the well-known density of the class of the simple functions in a Lp space. It
shows that the mean value truncation operator µn

0 , which acts as a projector on Lp(Rd,P,Rl),
can be understood as a conditional expectation operator introduced by Kolmogorov in 1933,
see also (7), and thus our approximation method is a projection method according to the ter-
minology of (20).
In order to construct approximations for

MP = {v ∈ Lp(Rd,P,Rk) : Av(r, s, t) ≤ t , P − a.s.}

we introduce the orthogonal projector q : (r, s, t) ∈ R
d �→ t ∈ R

m and let, for each elementary
quadrangle In

jkh,

qn
jkh = (µn

jkhq) ∈ R
m, (µn

0 q) = ∑
jkh

qn
jkh 1In

jkh
∈ Xm

n .

Thus we arrive at the following sequence of convex, closed sets

Mn
P

:= {v ∈ Xk
n : Avn

jkh ≤ qn
jkh , ∀j,k, h} .

Note that the sets Mn
P

are of polyhedral type. In (17) it has been proved that the sequence
{Mn

P
} approximate the set MP in the sense of Mosco ((1), (22)), i.e.

weak-limsupn→∞
Mn

P
⊂ MP ⊂ strong-liminfn→∞

Mn
P

.

Moreover we want to approximate the random variables R and S and introduce

ρn =
NR

n

∑
j=1

r
j−1
n 1

[r
j−1
n ,r

j
n)
∈ Xn, σn =

NS
n

∑
k=1

sk−1
n 1[sk−1

n ,sk
n)
∈ Xn .

We observe that σn(r, s, t) → σ(r, s, t) = s in L∞(Rd,P) while, as a consequence of the Cheby-
shev inequality (see e.g. (3)), ρn(r, s, t)→ ρ(r, s, t) = r in Lp(Rd,P).
Thus we are led to consider, ∀n ∈ N, the following substitute problem:
Find ûn ∈ Mn

P
such that, ∀vn ∈ Mn

P
,

∫
Rd

⟨σn(y)G(ûn(y))+ H(ûn(y)),vn(y)− ûn(y)⟩dP(y)≥
∫

Rd
⟨b+ ρn(y) c,vn(y)− ûn(y)⟩dP(y) .

(10)
We observe that (10) splits in a finite number of finite dimensional strongly monotone varia-
tional inequalities:
For ∀n ∈ N, ∀j,k, h find ûn

jkh ∈ Mn
jkh such that, ∀vn

jkh ∈ Mn
jkh,

⟨F̃n
k (û

n
jkh),v

n
jkh − ûn

jkh⟩ ≥ ⟨c̃n
j ,vn

jkh − ûn
jkh⟩ , (11)

where

Mn
jkh := {vn

jkh ∈ R
k : Avn

jkh ≤ qn
jkh} ,

F̃n
k := sk−1

n G + H , c̃n
j := b + r

j−1
n c .

Clearly, this gives

ûn = ∑
j

∑
k

∑
h

ûn
jkh 1In

jkh
∈ Xk

n .

Now, we can state the following convergence result (whose proof can be found in (17)).
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Theorem 4.1. The sequence ûn generated by the substitute problems in (10) converges strongly in
Lp(Rd,P,Rk) for n → ∞ to the unique solution û of (8).

This theorem can be refined under the additional assumption of Lipschitz continuity, because
in this case (and in virtue of uniform strong monotonicity), it is enough to solve the finite
dimensional substitute problem (10) only inaccurately.

Theorem 4.2. Suppose, both maps G and H are uniformly strongly monotone and Lipschitz continu-
ous. Let εn > 0. Introduce the monotone operator Tn by

Tn(u)(y) := σn(y)G(u)(y) + H(u)(y) − b − ρn(y) c

and the associated natural map

Fnat
n (u) = u − ProjMn

P
[u − Tn(u)] ,

both acting in Xl
n(R

d,P,Rk) (where Proj is the minimum norm projection). Let ũn ∈ Mn
P

satisfy

∥Fnat
n (ũn)∥ ≤ εn . (12)

Suppose that in (12), εn → 0 for n → ∞. Then the sequence ũn converges strongly in Lp(Rd,P,Rk)
to the unique solution û of (8).

Proof. It will be enough to show that limn ∥ũn − ûn∥ = 0.

Let us observe that obviously a zero ûn of Fnat
n is an exact solution of (10). Instead we solve

(10) only inaccurately. In fact, we can estimate (see (8) Volume I, Theorem 2.3.3)

∥ũn − ûn∥ ≤
Ln + 1

cn
∥Fnat

n (ũn)∥ ,

where Ln, respectively cn is the Lipschitz constant, respectively the uniform monotonicity
constant of Tn. Since the support of the random variable S ∈ L∞(Ω, P) is the interval [s, s) ⊂
(0,∞) and sG + H is uniformly strongly monotone with some constant c0 > 0, respectively
sG + H is Lipschitz continuous with some constant L0, we have 0 < c0 ≤ cn, Ln ≤ L0 < ∞.
Therefore by construction, limn ∥ũn − ûn∥ = 0 follows.

5. Some Random Nonlinear Equilibrium Problems

In this section we describe some simple equilibria problems from economics and migration
theory, while equilibrium problems using a more involved network structure are deferred to
the next section. Here we discuss where uncertainty can enter in the data of the problems
and show how our theory of RVI, where we can admit that random variables occur both in
the operator and the constraints set, can be applied to model those nonlinear equilibrium
problems under uncertainty.
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5.1 A random Cassel-Wald economic equilibrium model

We follow (19) and describe a Cassel-Wald type economic equilibrium model. This model
deals with n commodities and m pure factors of production. Let ck be the price of the k-th
commodity, let bi be the total inventory of the i-th factor, and let aij be the consumption rate
of the i-th factor which is required for producing one unit of the j-th commodity, so that we
set c = (c1, . . . , cn)T ,b = (b1, . . . ,bm)T , A = (aij)m×n. Next let xj denote the output of the j-th

commodity and pi denote the shadow price of the i-th factor, so that x = (x1, . . . , xn)T and
p = (p1, . . . , pm)T . In this model it is assumed that the prices are dependent on the outputs,
so that c : R

n
+ → R

n
+ is a given mapping. Now in contrast to (19) we do not consider b as a

fixed vector, but we admit that the total inventory vector may be uncertain and model it as a
random vector b = B(ω). Thus we arrive at the following
Problem CW-1. For each ω ∈ Ω, find X̂(ω) ∈ R

n
+, P̂(ω) ∈ R

n
+ such that

⟨c(X̂(ω)), X̂(ω)− x⟩+ ⟨P̂(ω), Ax − AX̂(ω)⟩ ≥ 0, ∀x ∈ R
n
+ ;

⟨p − P̂(ω), B(ω)− AX̂(ω)⟩ ≥ 0, ∀p ∈ R
n
+ .

This is nothing but the optimality condition for the variational inequality problem:
Problem CW-2. For each ω ∈ Ω, find X̂(ω) ∈ �(ω) such that

⟨c(X̂(ω)), X̂(ω)− x⟩ ≥ 0, ∀x ∈ �(ω) ,

where here

�(ω) = {x ∈ R
n ∣ x ≥ 0, Ax ≤ B(ω)} .

Both problems CW-1 and CW-2 are special instances of the general Problem 1, where random-
ness in CW-1 only occurs via the generally nonlinear mapping c, while randomness in CW-2
also affects the comstraints set.

5.2 A random distributed market equilibrium model

We follow (13) and consider a single commodity that is produced at n supply markets and
consumed at m demand markets. There is a total supply gi in each supply market i, where
i = 1, . . . ,n. Likewise there is a total demand f j in each demand market j, where j = 1, . . . ,m.
Since the markets are spatially separated, xij units of the commodity are transported from i to
j. Introducing the excess supply si and the excess demand tj we must have

gi =
m

∑
j=1

xij + si , i = 1, . . . ,n; (13)

f j =
n

∑
i=1

xij + tj , j = 1, . . . ,m; (14)

Moreover the transportation from i to j gives rise to unit costs πij. Further we associate with
each supply market i a supply price pi and with each demand market j a demand price qj.
We assume there is given a fixed minimum supply price pi ≥ 0 (’price floor’) for each supply
market i and also a fixed maximum demand price q̄j > 0 (’price ceiling’) for each demand
market j. These bounds can be absent and the standard spatial price equilibrium model due
to Dafermos ((5), see also (19)) results, where the markets are required to be cleared, i.e.

si = 0 for i = 1, . . . ,n; tj = 0 for j = 1, . . . ,m
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are required to hold. Since si ≥ 0 and tj ≥ 0 are admitted, the model is also termed a disequi-
librium model. As is common in operations research models, we also include upper bounds
x̄ij > 0 for the transportation fluxes xij on our bipartite graph of distributed markets.
Let us group the introduced quantities in vectors omitting the indices i and j: We have the
total supply vector g ∈ R

n, the supply price vector p ∈ R
n, the total demand vector f ∈ R

m,
the demand price vector q ∈ R

m, the flux vector x ∈ R
nm, and the unit cost vector π ∈ R

nm.
Thus in our constrained distibuted market model the feasible set for the unknown vector
u = [p,q, x] is given by the product set

M :=
n

∏
i=1

[pi,∞)×
m

∏
j=1

[0, q̄j]×
n

∏
i=1

m

∏
j=1

[0, x̄ij] .

As soon as the given bounds are uncertain and we model these bounds as random variables,
we obtain the random constraints set

ℳ(ω) :=
n

∏
i=1

[pi(ω),∞)×
m

∏
j=1

[0, q̄j(ω)]×
n

∏
i=1

m

∏
j=1

[0, x̄ij(ω)] .

Assuming perfect equilibrium the economic market conditions take the following form

si > 0 ⇒ pi = pi , pi > pi ⇒ si = 0 i = 1, . . . ,n; (15)

tj > 0 ⇒ qj = q̄j , qj < q̄j ⇒ tj = 0 j = 1, . . . ,m; (16)

pi + πij

⎧

⎨

⎩

≥ qj if xij = 0

= qj if 0 < xij < x̄ij

≤ qj if xij = x̄ij

i = 1, . . . ,n ; j = 1, . . . ,m . (17)

The last condition (17) extends the classic equilibrium conditions in that pi +πij < qj can occur
because of the flux constraint xij ≤ x̄ij. As in unconstrained market equilibria ((5)) we assume
that we are given the functions

g = ğ(p) , f = f̆ (q) ,π = π̆(x) .

Then under the natural assumptions that for each i = 1, . . . ,n; j = 1, . . . ,m there holds

qj = 0 ⇒ f̆ j(q) ≥ 0 ; xij > 0 ⇒ π̆ij(x) > 0 .

it can be shown (see (13)) that a market equilibrium u = (p,q, x) introduced above by the
conditions (13) – (17) can be characterized as a solution to the following Variational Inequality:
Find u = (p,q, x) ∈ M such that

n

∑
i=1

(ği(p)−
m

∑
j=1

xij)( p̃i − pi) −
m

∑
j=1

( f̆ j(q)−
n

∑
i=1

xij)(q̃j − qj)

+
n

∑
i=1

m

∑
j=1

(pi + π̆ij(x)− qj)(x̃ij − xij) ≥ 0 , ∀ũ = ( p̃, q̃, x̃) ∈ M .

Now also the functions ğ, f̆ , π̆ may be not precisely known, but are affected by uncertainness,
so may be modelled as random. Thus we obtain the random distributed market problem:
Problem DM. For each ω ∈ Ω, find (P̂, Q̂, X̂)(ω) ∈ℳ(ω) such that
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n

∑
i=1

(ği(ω, P̂(ω))−
m

∑
j=1

X̂ij(ω))( p̃i − P̂i(ω))

−
m

∑
j=1

( f̆ j(ω, Q̂(ω))−
n

∑
i=1

X̂ij)(ω))(q̃j − Q̂j(ω))

+
n

∑
i=1

m

∑
j=1

(P̂i(ω)+ π̆ij(ω, X̂)− Q̂j(ω))(x̃ij − X̂ij(ω)) ≥ 0 , ∀ũ = ( p̃, q̃, x̃) ∈ℳ(ω) .

Obviously Problem DM is a special instance of Problem 1 with randomness both in the oper-
ator and in the constraints set.

5.3 A random migration equilibrium model

We follow (19) in simplifying a more involved migration model of (23). This model involves
a set of nodes (locations) N. For each i ∈ N let bi denote the the initial fixed population in
location i; let hij denote the value of the migration flow from i to j, and let xi denote the
current population in location i. Set x = {xi∣i ∈ N} and h = {hij∣i, j ∈ N, i ∕= j} . Because of
nonnegativity of the migration flow and due to the conservation of flows while preventing
any chain migration we have the feasible set

M := {(x, h) ∣h ≥ 0, ∑
j ∕=i

hij ≤ bi ,

xi = bi + ∑
j ∕=i

hji − ∑
j ∕=i

hij , ∀i ∈ N} .

With each location i there is associated the utility ui that is assumed to be dependent on the
population, i.e. ui = ŭi(x). Also with each pair of loactions i, j; i ∕= j there is associated the
migration cost cij that is assumed to be dependent on the migration flow, i.e. cij = c̆ij(h). Now
a pair (x, h) ∈ M is considered to be in equilibrium, if (note the similarities to the equlibrium
conditions (15) and (17)!)

ŭi(x)− ŭj(x)+ c̆ij(h)+ µi

{

≥ 0 if hij = 0,

= 0 if hij > 0;
∀i, j ∈ N, i ∕= j ;

µi

{

≥ 0 if ∑l ∕=i hil = bi ,
= 0 if ∑l ∕=i hil < bi ;

∀i ∈ N .

These equilibrium conditions can be equivalently expressed in the form of the variational
inequality:
Find a pair (x, h) ∈ M such that

∑
i∈N

ŭi(x)(xi − x̃i) + ∑
i,j∈N,i ∕=j

c̆ij(h)(h̃ij − hij) ≥ 0 , ∀(x̃, h̃) ∈ M .

Now the functions ŭi, c̆ij may be not precisely known, but are affected by uncertainness, so
may be modelled as random. Thus we obtain the random migration problem:
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Problem M. For each ω ∈ Ω, find (X̂, Ĥ)(ω) ∈ M such that

∑
i∈N

ŭi(ω, X̂(ω))(X̂i(ω)− x̃i) + ∑
i,j∈N,i ∕=j

c̆ij(ω, Ĥ(ω))(h̃ij − Ĥij(ω)) ≥ 0 , ∀(x̃, h̃) ∈ M .

Obviously Problem DM is a special instance of Problem 1 now with randomness only in the
operator.

6. A Random Traffic Equilibrium Problem

In this Section 6 we apply our results to network equilibrium problems. A common charac-
teristic of these problems is that they admit two different formulations based either on link
variables or on path variables. These are actually related to each other through a linear trans-
formation; we stress that in general, in the path approach, the strong monotonicity assumption
is not reasonable. However, we are able to fill this gap by proving a Mosco convergence result
for the transformed sequence of sets and working in the “right” group of variables. To be
more precise we need first some notation commonly used to state the standard traffic equilib-
rium problem from the user’s point of view in the stationary case (see for instance (27), (4),
(24)).
A traffic network consists of a triple (N, A,W) where N = {N1, . . . , Np}, p ∈ N, is the set of
nodes, A = (A1, . . . , An), n ∈ N, represents the set of the directed arcs connecting couples of
nodes and W = {W1, . . . ,Wm} ⊂ N × N, m ∈ N is the set of the origin– destination (O, D) pairs.
The flow on the arc Ai is denoted by fi, this gives the arc flow vector f = ( f1, . . . , fn); for the
sake of simplicity we shall consider arcs with infinite capacity. We call a set of consecutive
arcs a path, and assume that each (Oj, Dj) pair Wj is connected by rj, rj ∈ N, paths whose set
is denoted by Pj, j = 1, . . . ,m. All the paths in the network are grouped in a vector (R1, . . . , Rk),
k ∈ N, We can describe the arc structure of the paths by using the arc–path incidence matrix

∆ =
(

δir

)

i=1,...,n
r=1,...,k

with the entries δir =

{

1 if Ai ∈ Rr

0 if Ai /∈ Rr
. (18)

To each path Rr there corresponds a flow Fr. The path flows are grouped in a vector (F1, . . . , Fk)
which is called the path (network) flow. The flow fi on the arc Ai is equal to the sum of the
flows on the paths which contain Ai, so that f = ∆F. Let us now introduce the unit cost of
transversing Ai as a given real-valued function ci( f ) ≥ 0 of the flows on the network, so
that c( f ) = (c1( f ), . . . , cn( f )) denotes the arc cost vector on the network. The meaning of the
cost is usually that of the travel time. Analogously, one can define a cost on the paths as
C(F) = (C1(F), . . . ,Ck(F)). Usually Cr(F) is just the sum of the costs on the arcs which build
that path, hence Cr(F) = ∑

n
i=1 δirci( f ) or in compact form,

C(F) = ∆
T c(∆ F) . (19)

For each (O, D) pair Wj there is a given traffic demand Dj ≥ 0, so that (D1, . . . , Dm) is the
demand vector. Feasible flows are nonnegative flows which satisfy the demands, i.e. belong
to the set

K =
{

F ∈ R
k : Fr ≥ 0 for any r = 1, . . . ,k and ΦF = D

}

,
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where Φ is the pair–path incidence matrix whose elements, say ϕjr, j = 1, . . . ,m, r = 1, . . . ,k, are

ϕjr =

{

1 if the path Rr connects the pair Wj

0 elsewhere
.

A path flow H is called an equilibrium flow or Wardrop Equilibrium, if and only if H ∈ K and
for any Wj ∈ W and any Rq, Rs ∈ Pj there holds

Cq(H) < Cs(H) =⇒ Hs = 0. (20)

This statement is equivalent (see for instance (4) and (27)) to

H ∈ K and ⟨C(H), F − H⟩ ≥ 0, ∀F ∈ K. (21)

Roughly speaking, the meaning of Wardrop Equilibrium is that the road users choose min-
imum cost paths. Let us note that condition (20) implies that all the used paths of a given
(O, D) pair have the same cost.
Although the Wardrop equilibrium principle is expressed in the path variables, it is clear that
the “physical” (and measured) quantities are expressed in the arc (link) variables; moreover,
the strong monotonicity hypothesis on c( f ) is quite common, but as noticed for instance in
(2) this does not imply the strong monotonicity of C(F) in (19), unless the matrix ∆

T
∆ is non-

singular. Although one can give a procedure for buildings networks preserving the strong
monotonicity property (see for instance (9)), the condition fails for a generic network, even
for a very simple one as we shall illustrate in the sequel. Thus, it is useful to consider the
following variational inequality problem:

h ∈ ∆K and ⟨c(h), f − h⟩ ≥ 0 ∀ f ∈ ∆K. (22)

If c is strongly monotone, one can prove that for each solution H of (21), C(H) =const., i.e.
all possibly nonunique solutions of (21) share the same cost. From an algorithmic point of
view it is worth noting that one advantage in working in the path variables is the simplicity
of the corresponding convex set but the price to be paid is that the number of paths grows
exponentially with the size of the network.
Let us now consider the random version of (21) and (22), which results from an uncertain
demand and uncertain costs. In the path-flow variables the random Wardrop equilibrium
problem reads:
For each ω ∈ Ω, find H(ω) ∈ K(ω) such that

⟨C(ω, H(ω)), F − H(ω)⟩ ≥ 0, ∀F ∈ K(ω), (23)

where, for any ω ∈ Ω,

K(ω) =
{

F ∈ R
k : Fr ≥ 0 for any r = 1, . . . ,k and ΦF = D(ω)

}

,

Analogously in the link-flow variables the random Wardrop equilibrium problem reads:
For each ω ∈ Ω, find h(ω) ∈ ∆K(ω) such that

⟨c(ω, h(ω)), f − h(ω)⟩ ≥ 0, ∀ f ∈ ∆K(ω) . (24)

Clearly (23) is equivalent to the random Wardrop principle: For any ω ∈ Ω, for any H(ω) ∈
K(ω), and for any Wj ∈ W, Rq, Rs ∈ Pj, there holds

Cq(ω, H(ω)) < Cs(ω, H(ω)) =⇒ Hs(ω) = 0.
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Moreover, both problems are special instances of Problem 1 (pointwise formulation).
In order to use our approximation scheme we require the separability assumption . However
this assumption is very natural in many applications where the random perturbation is treated
as a modulation of a deterministic process. Under the above mentioned assumptions, (23)
assumes the particular form:

S(ω)⟨A(H(ω)), F − H(ω)⟩ ≥ R(ω)⟨b, F − H(ω)⟩, ∀F ∈ K(ω) (25)

In equation (25), both the l.h.s. and the r.h.s. can, be replaced with any (finite) linear com-
bination of monotone and separable terms, where each term satisfies the hypothesis of the
previous sections:

∑
i

Si(ω)⟨Ai(H(ω)), F − H(ω)⟩ ≥ ∑
j

Rj(ω)⟨bj, F − H(ω), ∀F ∈ K(ω) . (26)

In this way, in (25) R(ω),S(ω) can be replaced by a random vector, respectively by a random
matrix.
Hence, in the traffic network, we could consider the case where the random perturbation has
a different weight for each path.

Remark 6.1. When applying our theory to the random traffic equilibrium problem we shall consider
the integrated form of (25), which, after the transformation to the image space, is defined on the feasible
set:

KP = {F ∈ Lp(Rd,P,Rk) : ΦF(r, s, t) = t, F(r, s, t) ≥ 0 P − a.s.}

Let Kn
P

be the approximate sets constructed as described in section 4. It can be easily verified that the
sets Kn

P
are uniformly bounded. Moreover, the arc-path incidence matrix ∆ induces a linear operator

mapping Lp(Rd,P,Rk) to Lp(Rd,P,Rn). This operator, which by abuse of notation is still denoted by
∆, is weak-weak, as well as strong-strong continuous. Thus, from the Mosco convergence Kn

P
→ KP it

follows easily that also ∆Kn
P
→ ∆KP in Mosco’s sense.

In what follows we present two examples of small size. In the first example we build a
small network and we study the random variational inequality in the path-flow variables.
The network is built in such a way that if the cost operator is strongly monotone in the link-
flow variables, the transformed operator, is still strongly monotone in the path-flow variables.
Moreover, this small network can be considered as an elementary block of an arbitrarily large
network with the same property of preserving strong monotonicity. On the other hand, the
second example, which we solve exactly, shows that even very simple networks can fail to
preserve the strong monotonicity of the operator when passing from the link to the path-flow
variables. In this last case, two possible strategies can be followed. The first possibility is
to work from the beginning in the link-variables and use the previous remark to apply our
approximation procedure. The other option is to regularize (in the sense of Tichonov) the
problem in the path-variables. We stress the fact that if one is interested in the cost shared by
the network users, it does not matter which solution is obtained from the regularized problem,
because, thanks to the particular structure of the operator, the cost is constant on the whole
solution set.

Example 6.1. In the network under consideration, (see Fig.1), there are 7 links and one origin-
destination pair, 1 − 6, which can be connected by 3 paths, namely:
R1 = A1 A2 A7
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N ⟨F1⟩ ⟨F2⟩ ⟨F3⟩ σ2
1 σ2

2 σ2
3

10 4.5396 1.4756 4.4346 0.0153 0.0017 0.0148

100 4.5590 1.4821 4.4537 0.0154 0.0017 0.0149

1000 4.5610 1.4821 4.4556 0.0154 0.0017 0.0149

10000 4.5612 1.4828 4.4558 0.0154 0.0017 0.0149

Table 1. Mean values corresponding to various approximations for d ∈ [10,11] and ρ = 0.1

R2 = A1 A6 A4

R3 = A5 A3 A4

The traffic demand is represented by the non negative random variable d, so that F1 + F2 +
F3 = d, while link-cost functions are given by:

t1 = ρ f 2
1 + f1; t5 = ρ f 2

5 + f5

t2 = ρ f 2
2 + 2 f2; t6 = ρ f 2

6 + 2 f6

t3 = ρ f 2
3 + f3; t7 = ρ f 2

7 + f7 + 0.5 f5

t4 = ρ f 2
4 + 2 f4 + f6.

The linear part of the operator above is represented by a nonsymmetric positive definite
matrix, while the nonnegative parameter ρ represents the weight of the non linear terms.
Such a functional form is quite common in many network equilibrium problems ((23)). Since
we want to solve the variational inequality associated to the Wardrop Equilibrium we have to
perform the transformation to the path-flow variables, which yields for the cost functions the
following expressions:

C1 = 3ρF2
1 + ρF2

2 + 2ρF1F2 + 4F1 + F2 + 0.5F3;

C2 = ρF2
1 + 3ρF2

2 + ρF2
3 + 2ρF1F2 + 2ρF2F3 + F1 + 6F2 + 2F3;

C3 = ρF2
2 + 3ρF2

3 + 2ρF2F3 + 4F3 + 3F2

For the numerical solution of the discretized, finite dimensional variational inequalities, many
algorithms are available. Due to the simple structure of our example we employ the extragra-
dient algorithm, see e.g. (8).
In the tables 3 and 4 we show mean values and variances for various choices of the parameters
in the case of uniform distribution. We observe that the variances in the second table are quite
large. This is due to the fact that if ρ = 1, when the other parameter varies the equilibrium
pattern changes qualitatively. In particular, near d = 10 there is a zero component (H2) in the
solution, while in most of the interval the equilibrium solution has nonzero components.

Example 6.2. We consider the simple network of Fig. 2 below which consists of four arcs and
one origin–destination pair, which can be connected by four different paths. Let us assume
that the traffic demand between O and D is given by a random variable t ∈ R, and that the
link cost functions are given by c1 = 2 f1, c2 = 3 f2, c3 = f3, c4 = f4. The link flows belong to the
set

{

f ∈ R
4 : ∃F ∈ K(t), f = ∆F

}

,
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N ⟨F1⟩ ⟨F2⟩ ⟨F3⟩ σ2
1 σ2

2 σ2
3

10 3.1602 2.6005 4.6891 4.2853 2.3442 0.1010

100 3.6964 2.1968 4.6017 3.0077 1.6456 0.0759

1000 3.6460 2.2390 4.6143 3.1668 1.7326 0.0791

10000 3.6505 2.2436 4.6157 3.1837 1.7418 0.0794

Table 2. Mean values corresponding to various approximations for d ∈ [10,11] and ρ = 1

where K(t) is the feasible set in the path flow variables

K(t) =
{

F1, F2, F3, F4 ≥ 0 such that F1 + F2 + F3 + F4 = t, t ∈ [0, T]},

and ∆ is the link-path matrix. Hence, if F is known, one can derive f from the equations

f1 = F1 + F2,

f2 = F3 + F4,

f3 = F1 + F3,

f4 = F2 + F4.

The path–cost functions are given by the relations

C1 = c1 + c3 = 3F1 + 2F2 + F3,

C2 = c1 + c4 = 2F1 + 3F2 + F4,

C3 = c2 + c3 = F1 + 4F3 + 3F4,

C4 = c2 + c4 = F2 + 3F3 + 4F4

The associated variational inequality can be solved exactly (see e.g. (9) for a non iterative
algorithm) and the solution expressed in term of the second path variable is

(3t

5
− G(t), G(t), G(t)−

t

10
,−G(t) +

t

2

)

where G : [0, T] �→ R is any functions which satisfies the constraint G(t) ∈
[

t
10 , t

2

]

. Let us
observe that for each feasible choice of G(t) the cost at the corresponding solution is always
equal to 17

10 t
(

1,1 ,1 ,1
)

. One can also solve the variational inequality in the link variables by
using the relations

f1 + f2 = t,

f3 + f4 = t.

We are then left with the problem:

(

c2 − c1

)(

f2 − h2(t)
)

+
(

c4 − c3

)(

f4 − h4(t)
)

≥ 0,

which yields

h(t) = t
(3

5
,
2

5
,
1

2
,
1

2

)

.
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As an example we assume that our random parameter follows the lognormal distribution. This
statistical distribution is used for numerous applications to model random phenomena de-
scribed by nonnegative quantities. It is also known as the Galton Mc Alister distribution and,
in economics, is sometimes called the Cobb-Douglas distribution, and has been used to model
production data. Thus, let:

gµ,σ2 (x) =
1√
2πσ

e
− (x−µ)2

2σ2

the normal distribution, then, the lognormal distribution is defined by:

{

(1/x)gµ,σ2 (log x), if x > 0

0, if x ≤ 0

The numerical evaluation of the mean values and variances, corresponding to µ = 0 and σ = 1
yields:

( ⟨h1⟩, ⟨h2⟩, ⟨h3⟩, ⟨h4⟩ ) = 1.64(3/5,2/5,1/2,1/2)

(σ2(h1), σ2(h2), σ2(h3),σ
2(h4) ) = 4.68(3/5,2/5,1/2,1/2).

Fig. 1. Network which preserves strong monotonicity

Fig. 2. Loss of strong monotonicity through a linear mapping
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