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1. Introduction 

Mobile robots using topological navigation require of being able to react to dynamical 
obstacles in their environment.  Reactive obstacle avoidance is also an essential capability 
needed by a mobile robot evolving in a cluttered dynamic environment. Scenarios like 
offices where people and robots share a common workspace are difficult to be modeled by 
static maps. In such scenarios, robots need to avoid people and obstacles when executing 
any other task involving its motion. 
 
Another application for reactive obstacle avoidance arises when the robot is building a map 
of an unknown environment. The robot will need to react to different events during its 
exploring task. For example, the robot needs to be able to avoid a wall not previously 
known or to evade another moving object in its neighborhood.  
 
In the past, several researchers have proposed reactive navigation methods. Some examples 
of these methods are: The artificial potential field (Khatib, 1986) and the elastic band 
approach (Quinlan & Khatib, 1993; Lamiraux & Laumond, 2004) proposed originally both 
by Khatib; the vector field histogram (Borenstein & Koren, 1990), the dynamic window 
approach proposed by (Fox et al., 1997) and the nearness diagram, recently proposed by 
(Minguez & Montano, 2004). 
 
Our approach is to build an artificial protection field around the robot and to survey it by 
fusing laser range finder and odometry measurements. In this work, an approach to reactive 
obstacle avoidance for service robots is proposed. We use the concept of an artificial 
protection field along a robot pre-planned path. The artificial protection field is a dynamic 
geometrical neighborhood of the robot and a set of situation assessment rules that determine 
if the robot needs to evade an object not present in its map when its path was planned. This 
combination results in a safety zone where no other object can be present when the robot is 
executing a motion primitive; a zone where the robot needs to recalculate its path; and some 
other zones where the object can perform successfully its navigation task, even if obstacles 
are detected near the robot path. During the execution of a motion primitive, dynamical 
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obstacles are detected by using a laser range finder. If the obstacles detected in the 
neighborhood of the robot path enter the artificial protection field of the robot, reactive 
behaviours are launched to recalculate the path online in order to avoid collisions with 
them. Our method has been tested in an experimental setup both in a simulation platform 
and in the real robot in a qualitative manner. The robot has demonstrated successful 
evolution on these tests for static and dynamic scenarios. 
 
The structure of the chapter will be as follows: Firstly, we are going to review recent 
approaches in reactive navigation for robots. We will also review their usefulness in 
topological navigation approaches. A second section will describe in detail what are the 
specific features of the proposed artificial protection field approach and a critical 
comparison of its characteristics against some other algorithms for obstacle evasion in the 
recent literature. Test protocols used to validate our approach will be inspected in detail in a 
subsequent section. We will show results in a custom-developed robotic simulation platform 
for our robot. We will also show experimental tests that have been implemented on a 
Pioneer P3-AT mobile robot named XidooBot under several scenarios. Our main findings 
will then be discussed and we finish our proposal with a section giving our conclusions and 
perspectives of future work. 

 
2. Reactive Navigation Methods 

Robot navigation using reactive methods has been studied extensively. Here we present 
main approaches and recent methods proposed in literature. 
 
One of the first approaches used for reactive navigation is the potential field (PF) approach. 
(Khatib, 1986) proposed the generation of an artificial potential field that repels the robot 
from the obstacles and that attracts it toward its goal. Main problem of this method is the 
emergence of isopotential regions because of the potential selection for the environment 
elements; that traps the robot in local minima regions, impeding it to attain its goal. This 
drawback limits the applicability of the method in complex environments. Recently (Antich 
& Ortiz, 2005) have proposed to define a behaviour based navigation function that 
combined with the PF approach can partially overcome main drawbacks of the PF approach. 
PF methods are global planning methods so they can be used also for motion planning. 
 
A variation of the PF methods is known as the elastic band (EB) approach. EB methods 
propose to deform an a-priori computed path when obstacles not considered at planning 
time are detected during the execution of a give trajectory. Some examples of this approach 
are the works by (Quinlan & Khatib, 1993) for manipulator robots and (Lamiraux & 
Laumond, 2004; Lamiraux et al., 2004) for mobile robots. As said before, EB methods require 
a pre-planned path, so they can not be used for exploration tasks. 
 
The vector field histogram (VFH) is a reactive navigation method proposed by (Borenstein 
& Koren, 1991). The main idea is to represent the free space surrounding the current 
position of a robot using an occupancy grid. A polar histogram is created and the robot  
selects the direction with the maximal cell count of free space as a preferential orientation 
for its motion. This method is essentially a local navigation method to avoid obstacles. 

 

(Fox et al., 1997) have originally proposed the dynamic window (DW) approach to avoid 
collision with obstacles in a reactive way. In this method, the dynamic restrictions of 
differential and synchro-drive steered robots are taken into account to generate arc motion 
primitives that avoid intruding elements. The optimization of the motion primitives find the 
optimal values for the translational and rotational velocities with respect to the current 
target heading, robot velocity and clearance. 
 
A more recent approach is presented by (Minguez & Montano, 2004; Minguez, 2005; 
Vikenmark & Minguez, 2006) as the nearness diagram (ND) approach. This method models 
objects and free space in the proximity of the robot. The robot recognizes its situation with 
respect to the task to be done. The robot takes then consequent actions (motion laws) 
according to the assessment. Recently, (Li et al., 2006) have proposed the hybridization of 
this technique with the DW approach. Main contribution of this improvement is to increase 
the speed of the mobile robot even in troublesome scenarios.  
 
Some other methods have also been proposed recently for reactive navigation. Some of them 
use fuzzy logic to control the reactive motion of the robot. Some examples of this approach 
are the works by (Mester, 2008) and (Larson et al., 2005). Some other consider also the 
identification of the behaviours associated to dynamic obstacles by using Bayesian 
approaches, as for example, (Lopez-Martinez & Fraichard, 2008) and (Laugier et al., 2008). 
However, they are not very related with our approach even if they are alternatives for 
reactive robot motion.  

 
3. The Artificial Protection Field Approach  
 

Our approach is based in the concurrent execution of two tasks: the execution of a 
navigation command and the obstacle detection task. The navigation commands implement 
the planned path in a static and known environment configuration. We define the robot 
pose by using the   (x,y , )  coordinates. The motion primitives link two poses by using 
advance and rotate primitives. Nevertheless, each time an obstacle is detected the motion 
command is stopped and a re-planning process is spawned. In the following, we give the 
details of the above procedure implemented in a mobile robot platform. 

 
3.1 Obstacle Detection 
In any reactive navigation method, the robot needs to acquire information about its 
surroundings in order to detect obstacles. In our robot, obstacles are detected by using the 
laser range finder (LRF) sensor. The LRF measures acquired by the mobile robot are 
classified to determine a safety condition for it. In particular, they are classified according to 
its closeness to a protection zone around the robot. We call such safety zone an artificial 
protection field (APF).    

 
3.2 Artificial Protection Field 
The APF is defined in terms of three restrictions: 
Firstly, we consider a region where the robot can freely execute the motion commands 
without re-planning its path, namely the minimal obstacle free space  E . The shape of the 
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obstacles are detected by using a laser range finder. If the obstacles detected in the 
neighborhood of the robot path enter the artificial protection field of the robot, reactive 
behaviours are launched to recalculate the path online in order to avoid collisions with 
them. Our method has been tested in an experimental setup both in a simulation platform 
and in the real robot in a qualitative manner. The robot has demonstrated successful 
evolution on these tests for static and dynamic scenarios. 
 
The structure of the chapter will be as follows: Firstly, we are going to review recent 
approaches in reactive navigation for robots. We will also review their usefulness in 
topological navigation approaches. A second section will describe in detail what are the 
specific features of the proposed artificial protection field approach and a critical 
comparison of its characteristics against some other algorithms for obstacle evasion in the 
recent literature. Test protocols used to validate our approach will be inspected in detail in a 
subsequent section. We will show results in a custom-developed robotic simulation platform 
for our robot. We will also show experimental tests that have been implemented on a 
Pioneer P3-AT mobile robot named XidooBot under several scenarios. Our main findings 
will then be discussed and we finish our proposal with a section giving our conclusions and 
perspectives of future work. 

 
2. Reactive Navigation Methods 

Robot navigation using reactive methods has been studied extensively. Here we present 
main approaches and recent methods proposed in literature. 
 
One of the first approaches used for reactive navigation is the potential field (PF) approach. 
(Khatib, 1986) proposed the generation of an artificial potential field that repels the robot 
from the obstacles and that attracts it toward its goal. Main problem of this method is the 
emergence of isopotential regions because of the potential selection for the environment 
elements; that traps the robot in local minima regions, impeding it to attain its goal. This 
drawback limits the applicability of the method in complex environments. Recently (Antich 
& Ortiz, 2005) have proposed to define a behaviour based navigation function that 
combined with the PF approach can partially overcome main drawbacks of the PF approach. 
PF methods are global planning methods so they can be used also for motion planning. 
 
A variation of the PF methods is known as the elastic band (EB) approach. EB methods 
propose to deform an a-priori computed path when obstacles not considered at planning 
time are detected during the execution of a give trajectory. Some examples of this approach 
are the works by (Quinlan & Khatib, 1993) for manipulator robots and (Lamiraux & 
Laumond, 2004; Lamiraux et al., 2004) for mobile robots. As said before, EB methods require 
a pre-planned path, so they can not be used for exploration tasks. 
 
The vector field histogram (VFH) is a reactive navigation method proposed by (Borenstein 
& Koren, 1991). The main idea is to represent the free space surrounding the current 
position of a robot using an occupancy grid. A polar histogram is created and the robot  
selects the direction with the maximal cell count of free space as a preferential orientation 
for its motion. This method is essentially a local navigation method to avoid obstacles. 

 

(Fox et al., 1997) have originally proposed the dynamic window (DW) approach to avoid 
collision with obstacles in a reactive way. In this method, the dynamic restrictions of 
differential and synchro-drive steered robots are taken into account to generate arc motion 
primitives that avoid intruding elements. The optimization of the motion primitives find the 
optimal values for the translational and rotational velocities with respect to the current 
target heading, robot velocity and clearance. 
 
A more recent approach is presented by (Minguez & Montano, 2004; Minguez, 2005; 
Vikenmark & Minguez, 2006) as the nearness diagram (ND) approach. This method models 
objects and free space in the proximity of the robot. The robot recognizes its situation with 
respect to the task to be done. The robot takes then consequent actions (motion laws) 
according to the assessment. Recently, (Li et al., 2006) have proposed the hybridization of 
this technique with the DW approach. Main contribution of this improvement is to increase 
the speed of the mobile robot even in troublesome scenarios.  
 
Some other methods have also been proposed recently for reactive navigation. Some of them 
use fuzzy logic to control the reactive motion of the robot. Some examples of this approach 
are the works by (Mester, 2008) and (Larson et al., 2005). Some other consider also the 
identification of the behaviours associated to dynamic obstacles by using Bayesian 
approaches, as for example, (Lopez-Martinez & Fraichard, 2008) and (Laugier et al., 2008). 
However, they are not very related with our approach even if they are alternatives for 
reactive robot motion.  

 
3. The Artificial Protection Field Approach  
 

Our approach is based in the concurrent execution of two tasks: the execution of a 
navigation command and the obstacle detection task. The navigation commands implement 
the planned path in a static and known environment configuration. We define the robot 
pose by using the   (x, y , )  coordinates. The motion primitives link two poses by using 
advance and rotate primitives. Nevertheless, each time an obstacle is detected the motion 
command is stopped and a re-planning process is spawned. In the following, we give the 
details of the above procedure implemented in a mobile robot platform. 

 
3.1 Obstacle Detection 
In any reactive navigation method, the robot needs to acquire information about its 
surroundings in order to detect obstacles. In our robot, obstacles are detected by using the 
laser range finder (LRF) sensor. The LRF measures acquired by the mobile robot are 
classified to determine a safety condition for it. In particular, they are classified according to 
its closeness to a protection zone around the robot. We call such safety zone an artificial 
protection field (APF).    

 
3.2 Artificial Protection Field 
The APF is defined in terms of three restrictions: 
Firstly, we consider a region where the robot can freely execute the motion commands 
without re-planning its path, namely the minimal obstacle free space  E . The shape of the 
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boundary of this region can be arbitrarily defined by using a polar defined function   r() . 
The value of this function  r  is taken as the maximal distance being free of obstacles at an 

orientation   with respect to a robot-centered coordinate system. That is,  
 

  
E  ( ,r) 0  r  r ,r  r(),   2 , 2





 .  (1) 

 
In our particular application, we have used a half-ellipse boundary referenced in the robot 
as shown in Figure 1. 
 
The second restriction considers the distance of the current position of the robot with respect 
to the goal of the motion primitive, named 

 
dg . That is, we do not want to react to an obstacle 

in  E  which is farther than the goal. The zone satisfying this restriction is represented by  G  
in Figure 1, and it is shown in yellow.  Given that we take a Euclidean distance metric, the 
shape of  E  is a half circle centred on the robot reference point, that is 
 

  
G  ( ,r) 0  r  dg ,   2 , 2





 .   (2) 

 
Finally, the critical space  C  (see Figure 1) is a safety zone to avoid collisions of the robot 
with obstacles. If we take a critical distance  dc , region  C  is defined as follows: 
 

  
C  ( ,r) 0  r  dc ,   2 , 2





 .   (3) 

 

 
Fig. 1. Description of the interest regions around a mobile robot. 

 
3.3. Situation Assessment 
Reactive behaviours of the robot are launched after recognizing a danger context.  To 
recognize which behaviour has to be taken by the robot, we use the LRF measures as input 
information. As usual, the sensor provides us with a range distance to the next obstacle at a 

 

pre-defined set of orientations. We process this set of measurements to infer the free zone L 
in front of the current position of the mobile robot. We assess then the situation that the 
robot is facing. Our goal is to classify the situational context of the robot as a class of the 
following list of exhaustive states: Obstacle free situation (labelled as 

 
O f ), a low risk 

situation (labelled as  Ol ), a medium risk situation ( Om )  and a high risk situation ( Oh ). 
 
Obstacle Free Situation 

 
O f  

This is the ideal situation for the robot because it has not detected an obstacle in E. That 
situation lets the robot to continue with the execution of the current motion primitive. 
Formally this is represented by: 
 

 
LE   O f .  (4) 

 
Low Risk Situation  Ol  
 
When an object invades the minimal free space of the robot, we consider the event as a low 
risk situation if the obstacle is farther than the goal position, i.e., 
 

  L EG
__

  Ol .  (5) 

  
Medium Risk Situation Om  
 
The robot is facing a medium risk situation if the following three conditions are fulfilled: 

 There is an object invading the minimal free space. 
 The target position for the motion primitive is closer than the current position of 

the robot. 
 The obstacle does not enter into the critical space  C . 

 
Formally, that implies, 
 

  LEGC
__

  Om .   (6) 

 
High Risk Situation  Oh  
 
A high risk situation is the event where the robot has detected an object invading ist critical 
space. In a formal way,   
 

 LC   Oh .   (7) 
 
Figure 2 shows how obstacles are detected and used to assess the robot situation. 
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boundary of this region can be arbitrarily defined by using a polar defined function   r() . 
The value of this function  r  is taken as the maximal distance being free of obstacles at an 

orientation   with respect to a robot-centered coordinate system. That is,  
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In our particular application, we have used a half-ellipse boundary referenced in the robot 
as shown in Figure 1. 
 
The second restriction considers the distance of the current position of the robot with respect 
to the goal of the motion primitive, named 

 
dg . That is, we do not want to react to an obstacle 

in  E  which is farther than the goal. The zone satisfying this restriction is represented by  G  
in Figure 1, and it is shown in yellow.  Given that we take a Euclidean distance metric, the 
shape of  E  is a half circle centred on the robot reference point, that is 
 

  
G  ( ,r) 0  r  dg ,   2 , 2





 .   (2) 

 
Finally, the critical space  C  (see Figure 1) is a safety zone to avoid collisions of the robot 
with obstacles. If we take a critical distance  dc , region  C  is defined as follows: 
 

  
C  ( ,r) 0  r  dc ,   2 , 2





 .   (3) 
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3.3. Situation Assessment 
Reactive behaviours of the robot are launched after recognizing a danger context.  To 
recognize which behaviour has to be taken by the robot, we use the LRF measures as input 
information. As usual, the sensor provides us with a range distance to the next obstacle at a 

 

pre-defined set of orientations. We process this set of measurements to infer the free zone L 
in front of the current position of the mobile robot. We assess then the situation that the 
robot is facing. Our goal is to classify the situational context of the robot as a class of the 
following list of exhaustive states: Obstacle free situation (labelled as 

 
O f ), a low risk 

situation (labelled as  Ol ), a medium risk situation ( Om )  and a high risk situation ( Oh ). 
 
Obstacle Free Situation 

 
O f  

This is the ideal situation for the robot because it has not detected an obstacle in E. That 
situation lets the robot to continue with the execution of the current motion primitive. 
Formally this is represented by: 
 

 
LE   O f .  (4) 

 
Low Risk Situation  Ol  
 
When an object invades the minimal free space of the robot, we consider the event as a low 
risk situation if the obstacle is farther than the goal position, i.e., 
 

  L EG
__

  Ol .  (5) 

  
Medium Risk Situation Om  
 
The robot is facing a medium risk situation if the following three conditions are fulfilled: 

 There is an object invading the minimal free space. 
 The target position for the motion primitive is closer than the current position of 

the robot. 
 The obstacle does not enter into the critical space  C . 

 
Formally, that implies, 
 

  LEGC
__

  Om .   (6) 

 
High Risk Situation  Oh  
 
A high risk situation is the event where the robot has detected an object invading ist critical 
space. In a formal way,   
 

 LC   Oh .   (7) 
 
Figure 2 shows how obstacles are detected and used to assess the robot situation. 
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Fig. 2. Situation assessment in a service robot using the APF. 

 
3.4. Reactive Behaviour 
During the execution of a motion command, the robot is polling its sensors in order to assess 
the navigation situation. When a no risk (

 
O f ) or low risk ( Ol ) situation is detected, the 

motion primitive continues its execution. A medium risk situation   Om  causes the robot to 
execute the following actions:  1) Stop motion execution, 2) Re-plan its path to get an 
obstacle free trajectory, and 3) Execute the modified path. If a high risk situation  Oh  is 
recognized, the service robot interrupts inmediately ist motion to avoid collision with the 
intruding object. An activity diagram of the actions taken as a reaction to the situation 
assessment is shown in Figure 3. 

 
3.5 Path Re-Planning 
If the robot recognizes a medium risk situation, it stops execution of the current motion 
primitive. It also launches a path re-planning process that uses LRF measurements as input 
information. The purpose of this process is to find an intermediate goal 

  
sg

*  in the free space 

perceived by the robot and that minimizes some metric related to the path. 
 
To do so, we analyse some points in the free-space  L (see Section 3.3) detected by the LRF. 
The feasible intermediate target goal 

 
Sg  consists of all the points in a given set of radial 

distances from the current position of the robots that belong also to L. Another characteristic 
that all points in Sg  have is that an inspection windos W centered on them presents no 
collision  with any obstacle. The inspection window extendes from an angle     to an 
angle    , where   is the angular coordinate of the point in Sg  being tested with respect 
to the robot-centered coordinate system, and   is the width of the inspection window. 

 

All target goals in Sg  are then attainable. We carry out an optimization process over all 
these points and we choose the optimal one according to the objective function being 
optimized. 
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Fig. 3. Activity diagram for the reactive behaviour of the service robot.  
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Fig. 3. Activity diagram for the reactive behaviour of the service robot.  
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Let us consider, for example that our objective is to minimize closeness to the target position 
st  in the interrupted motion command. Then, for all sk  in Sg : 
 

f (sk )  st  sk .  (8) 
 
and then 
 

sg
*  sk  f (sk )  min

sk Sg
st  sk .  (9) 

 
where for example,   could be an Euclidean norm. 

 
4. Test and Results 

We have run tests firstly in a custom-developed simulation platform. The goal of these 
experiments was to define the best parameters for the implementation on a real P3-AT 
robotics platform named XidooBot. We have then executed motion scripts that tested 
exhaustively all the contexts that could arise in the reactive navigation task. 
 
The first set of tests has been performed in a custom-developed simulation environment. A 
scenario with multiple objects is shown in Figure 4. Here, we can observe the re-planning of 
a new trajectory once the robot finds an obstacle in its APF. After that, an obstacle-free 
trajectory is executed until it reaches its goal. The half-elliptical safety zone at the end of the 
trajectory is specifically indicated in the Figure. 
 

 
Fig. 4. Simulation of a script composed of a single straight-line segment. 
 
In Figure 5, the simulation of a more complex trajectory is given. Here, point A is an 
intermediate goal and the final one is point B. We observe a reactive behaviour zone in the 

 

trajectory between the start point and point A. From A to B, its necessary beginning with a 
continuous re-planning of the trajectory until the goal is attained executing a straight 
trajectory. 
 

 
Fig. 5. Execution of a script composed of multiple straight-line segments.  
 
A second phase of tests was run in the real platform for robotics experiments. We have also 
setup scenario configurations that cover all the cases foreseen in the APF approach. The 
reactive navigation system has been tested qualitatively. The test procedure includes the 
execution of a set of paths in an environment where obstacles were added dynamically 
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Let us consider, for example that our objective is to minimize closeness to the target position 
st  in the interrupted motion command. Then, for all sk  in Sg : 
 

f (sk )  st  sk .  (8) 
 
and then 
 

sg
*  sk  f (sk )  min

sk Sg
st  sk .  (9) 

 
where for example,   could be an Euclidean norm. 
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A second example is shown in Figure 7. When the motion execution is launched, the robot 
detects a medium risk situation, so it re-plans its trajectory. We can see in Figure 7 what are 
the sub-goals chosen by the robot in order to reach the originally planned target position. 
 
A more complex environment is shown in Figure 8. We have several obstacles near the 
planned path (shown in blue). In the figure, we can see the executed path (shown in red) 
after reacting to the presence of obstacles. 
 
A closed path execution is shown in Figure 9. Our reactive strategy is applied when during 
the execution of a path segment an obstacle appears. We show the planned path in blue and 
the modified executed path in red. As we can see, the robot passes by the control points of 
the motion primitive sequences without problems. 
 

 
Fig. 7. A reactive navigation scenario (case II) for a Pioneer P3-AT. 
 

 
Fig. 8. A reactive navigation scenario (case III) for a Pioneer P3-AT. 
  
 

 

 
Fig. 9. A reactive navigation scenario (case IV) for a Pioneer P3-AT.  

 
5. Conclusion and Perspectives 
 

In this work, we have presented a reactive obstacle avoidance approach based on a situated-
activity paradigm. Our system has demonstrated to be robust in qualitative tests developed 
on a dynamically changing environment. We have shown tests in a custom-developed 
simulation platform and in the real robot. Our approach is based in the risk assessment 
made by the robot by using an artificial protection field to avoid moving obstacles. 
 
In the near future, we will evaluate quantitative performance of the method by analyzing 
pose errors after the re-planning step both in simulation and in the real robotic platform 
XidooBot. Fusion of several sensors information will be done in order to improve the 
robustness of this approach. This method will be integrated with a topological navigation 
system. 
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