
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Topological Mapping and Navigation using  
a Developmental Learning Approach based on Imitation through Sensory-motor Maps 563

Topological Mapping and Navigation using a Developmental Learning 
Approach based on Imitation through Sensory-motor Maps

Raquel Frizera Vassallo, Hans Jörg Andreas Schneebeli and José Santos-Victor

0

Topological Mapping and Navigation using a

Developmental Learning Approach based
on Imitation through Sensory-motor Maps

Raquel Frizera Vassallo1, Hans Jörg Andreas Schneebeli1

and José Santos-Victor2

1Universidade Federal do Espírito Santo and 2Instituto Superior Técnico
Brazil and Portugal

1. Introduction

Over the past decades, we have witnessed a massive utilization of robots in industrial settings.
The use of robotic manipulators with high precision and repeatability were fundamental for
the increase of efficiency of many manufacturing processes and mass production. Due to the
complete predictability of the factory environment, each robot is programmed a priori, and
repeats the same set of movements for weeks or even months. In spite of the limited sensory
information available, these robots can complete their tasks in an extremely efficient manner.
Recent progress in computer vision, robot navigation, estimation theory, reasoning and com-
puting have afforded engineers with the tools to build more flexible robots able to “live” in
more unpredictable environments and interact with (non-technical) humans in a rich and so-
phisticated manner. In the long-run, this research effort will contribute to the ubiquitous pres-
ence of robots in our homes and offices to assist, entertain and work together with humans.
For this to become true, there are two very challenging questions that need to be addressed.
Firstly, there is the issue of complexity, as such systems are likely to be much more complex
than industrial robots with regard to the number of motor and perceptual degrees of freedom
and will have to operate in a highly unpredictable environment. Secondly, there is the ques-
tion of programming or commanding these robots, as they will interact over extended periods
of time with non-technical users, who are not expected to write sophisticated computer pro-
grams each time the robot is required to perform a new task. As some of these challenges are
common to many biological social species, we will borrow inspiration from biology, develop-
mental psychology and neuroscience in our approach.
Many animals can be seen as complex and flexible systems, able to learn and adapt through a
simultaneous motor, sensorial and cognitive development. Studies in developmental psychol-
ogy clearly show how human infants progressively learn how to acquire more sophisticated
skills over time, through interaction with their own body, the environment and caretakers. At
birth, many motor and perceptual capabilities are not yet in place and the acquisition of some
skills is a pre-requisite to acquire more complex ones. It would otherwise be very difficult to
handle the overwhelming flow of sensory-motor information.
In this work, we adopt the approach of developmental robotics Fitzpatrick et al. (2003); Lun-
garella & Pfeifer (2001); Metta, Sandini, Natale, Manzotti & Panerai (2001) to build systems
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able to acquire complex sensory, motor and cognitive skills, in a progressive manner, guided
through different levels of interaction with the environment.
With regard to the second challenge of “programming” such complex robotic systems without
the need to explicitly writing computer programs, we can again see how knowledge and skills
are transferred amongst individuals of some animal species. Imitation seems to be a powerful
social learning and adaptation modality in social species, Dautenhahn (1995); Dautenhahn &
Nehaniv (2002). Imitation avoids the need to undergo through extensive trial and error, since
the imitator can learn directly from the teacher’s experience.
Similarly, endowing a robot with the ability to imitate tasks performed by a demonstrator
could become an intuitive and yet extremely powerful way of “programming” such robots
by non-technical users. Learning by imitation has been addressed by several researchers with
interesting results for task learning, skill acquisition and communication Billard (2002); Billard
& Hayes (1997); Matáric (2002). Other works in robotics inspired by imitation in animals can
be seen in Dautenhahn & Nehaniv (2002).
It is clear how imitation can be a powerful learning mechanism and how it can avoid having
to pre-program the robot for every new task. Then, the developmental approach would de-
fine the set of skills the robot needs to acquire, in an incremental manner, modulated by the
interaction with the environment, objects and people.
Recent findings in neuroscience have shed new insight as to the brain mechanisms possibly
implied in imitative behavior. We are referring to the discovery of the mirror neurons in area
F5 of monkey’s brain Fadiga et al. (2000); Gallese et al. (1996), that fire during the execution of
a goal directed (grasp) action by the animal as well as with the observation of similar actions
performed by others Rizzolatti & Arbib (1998); Rizzolatti et al. (2002).
These findings suggest that the recognition of actions may be facilitated by the ability to exe-
cute that same action, the same brain circuitry being used for both purposes. In addition, these
results show the importance of motor information for perception and action understanding
tasks. It indicates that recognition is done with motor data as opposed to visual information.
In our work, we explore the inspiration from mirror neurons and rely on motor representa-
tions for our robot to execute or recognize “actions”. We will show how this becomes a very
natural way of representing, learning and executing robotic tasks. The fact that mirror neurons
are located in the motor area of the brain, suggests that observed actions are first “converted”
to motor information, before recognition may take place.
The existence of a visuo-motor mapping that converts visual information into motor measure-
ments is also supported by biology. When newborns look to their hands and own movements,
they are probably learning the relationship between motor action and visual stimuli (sensory-
motor coordination). Through this visuo-motor mapping, children become able to recognize
and repeat movements. Some works have explored these visuo-motor mappings for learn-
ing how to grasp objects with manipulators, Fitzpatrick et al. (2003); Lopes & Santos-Victor
(2003a;b); Metta, Sandini & Natale (2001).
In this work we propose an approach for building robots able to learn and adapt in an open-
ended manner, while interacting with humans. The approach is based on three main ideas:
(i) use of artificial ontogenetic development as a means for the robot to acquire complex skills
under controlled complexity, (ii) use of imitation learning as the main form of “programming”
such robots and (iii) exploiting the use of motor representations for action recognition, learn-
ing and executions. The proposed developmental architecture is illustrated in Figure 1.
The first stage in this developmental pathway is that of sensory-motor coordination or learn-
ing sensory-motor maps. Sensory-motor maps relate motor actions to sensor (visual, propri-
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Fig. 1. Robot learning and adaptation approach.

oceptive or auditive) percepts and vice-versa. The forward map allows to predict the new
sensory observations resulting from a certain motor action (e.g. the arm configuration in the
retina arising from the activation of a set of muscles). Conversely, the inverse map is useful
to determine which motor actions need to be taken to produce given sensory percept (e.g.
determine the muscle activations to reach a certain point in space) or to recognize movements
from sensory information. Figure 2 illustrates the use of the forward and inverse versions of
sensory-motor maps.

Sensory-motor
Map

Space Space

Sensorial Motor

Fig. 2. Using the sensory-motor map in a dual way.

Sensory-motor maps can either be computed analytically (whenever calibration information
is available) or learned directly from data through the observation of the robot’s own move-
ments.
Once the sensory-motor maps are in place, the system can move to the next developmental
stage and learn a repertoire (or a vocabulary) of elementary motor actions that require the
coordination of various degrees of freedom. It is important to notice that this repertoire results
from two types of constraints. It is tightly related to the robot’s own kinematic constraints but,
more importantly, it is modulated by the interaction with the environment (co-development)
and other agents (either humans or robots).
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Hence, interaction allows the robot to organize its own (low-level) movements and learn task-
specific actions that are not defined a priori. These actions are coded according to the robot’s
motor capabilities (using the learned sensory-motor maps) and this approach can thus be
applied to different robots, working in different environments and addressing different tasks.
Whenever the application changes, a new set of actions can be taught. There is no need to
program every action needed to accomplish a task.
At this level, the robot represents actions in a symbolic manner, while the fine motor con-
trol is handled by the sensory-motor maps previously learned. This hierarchy of move-
ments/actions follows a close parallelism with the central and peripheral nervous system of
many animals, where the brain triggers high-level actions and the spinal cord is responsible
for the individual muscle activation (e.g. in locomotion).
In the next stage of development, the system will be able to learn how to use this action vo-
cabulary to solve specific tasks. The idea is that the system can observe actions performed by
others and map the observed actions to those it knows how to perform (the action vocabu-
lary). Usually, this requires combining these elementary actions in a task-specific manner, to
solve different day to day tasks.
This strategy for learning and adaptation is a very flexible way of mapping the desired task
(and the way it should be performed), to the robot’s motor capabilities. Different robots can
learn the same action vocabulary and different vocabularies can be taught if very different
environments or task domains are required.

1.1 Application to mapping and navigation

In order to illustrate the approach applicability, we chose the task of topological mapping and
navigation for a mobile robot, where vision is the primary sensor modality.
The level of sensory-motor coordination corresponds to the system’s ability to relate visual
stimuli (image motion) to motor/proprioceptive data (egomotion). The process to estimate
the motor information from image flow is based on the particular geometry of an omnidirec-
tional camera and benefits from the use of enlarged fields of view.
In the second level of development, the system relies on vision to follow a person. Through
this stage, an egomotion estimation process is utilized to convert visual motion to motor data.
In the motor space, the system will learn how to categorize the most frequent actions. Those
actions result both from the system’s kinematics as well as the shape of the environment and
the guidance of the human assistant. For example, if the system would be taught in a world
composed of circular hallways, then rotational motion would be very dominant in the action
vocabulary.
In the final level of development, the system engages in social learning through imitation.
The idea is that one person can now act as a guide and show the workspace to the robot. By
following the person, the robot will then be able to create a topological map of the environ-
ment, expressed in terms of the motor vocabulary. Then, for a navigation task like "going to
a place B", the system will just need to localize itself using the visual information and invoke
the motor programs (actions) to move to the next sub-goal (e.g. turn right, go ahead, etc). The
implementation steps are illustrated in Figure 3.
By using the proposed learning and adaptation approach, the robot performs mapping and
navigation without the need for programming every action required for the task. The basic
actions are learned while interacting with an user. Later on, these actions are used for map-
ping and navigating. Besides illustrating the proposed methodology, the task of topological
mapping has not been addressed in many previous works done on imitation.
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Fig. 3. Topological mapping and navigation application.

1.2 Structure of this chapter

In Section 2 we present the motor and sensory spaces defined for the used robot and the pro-
posed egomotion estimation process responsible for the visuo-motor mapping. Sections 3 and
4 describe how to learn the motor vocabulary and the mobile robot application. Experiments
and results are listed in Section 5 while our conclusions and future work are discussed in
Section 6.

2. Visuo-motor coordination: egomotion estimation

As we discussed previously, the goal of the visuo-motor coordination is to build maps that
relate visual stimuli to motor data. In the task of mapping and navigation for a mobile robot,
this corresponds to estimating the camera egomotion from optical flow measurements ob-
tained from a sequence of images.
The robot used in this work is a differential plataform, capable of moving in the ground plane
and rotating about the Z-axis by receiving motor commands for the linear velocity Ty and
angular velocity ωz. Thus its motor space can be defined by its linear velocity on the XY
plane and the angular velocity about the Z-axis.
The robot is equipped with an omnidirectional camera aligned with the platform’s rotation
axis. It is a catadioptric system formed by a B&W camera and a spherical mirror Baker & Na-
yar (1998). The robot also has a color (perspective) camera pointing to the forward direction,
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that is used for the person-following behavior. The robot and both vision systems can be seen
in Figure 4.

X

Y

front

Fig. 4. The robot, the vision systems and the adopted robot reference frame.

The sensory space is defined by spherical optical flow measurements, calculated from omni-
direcional images and used for egomotion estimation. In what follows, we will show how
to obtain a spherical optical flow from a sequence of omnidirectional images, and how the
visuo-motor mapping converts visual information into motor data.
The reason for using omnidirectional images for egomotion estimation is that the problem
becomes easier if a spherical motion field is used instead of a planar field obtained with per-
spective cameras Nelson & Aloimonos (1988). We start by calculating the optical flow field
from a sequence of omnidirectional images. Then, the image flow vectors are remapped to the
surface of the unit sphere, through an image Jacobian matrix. On such hemispherical motion
field, we know that either the focus of expansion (FOE) or the focus of contraction (FOC) must
be visible. Finally, motor information is estimated from the motion field adapting an egomo-
tion algorithm designed for planar projection to spherical projection Vassallo et al. (2002a).
In previous works, the Jacobian matrix needed to remap image flow vectors was defined ac-
cording to the system projection model Gluckman & Nayar (1998). Instead, we use a general
projection model defined by Geyer & Daniilidis (2000a;b) to define a general Jacobian. This
projection model can represent different omnidirectional systems (with a single projection
center) by combining a mapping of a 3D point P to a sphere, followed by a projection to the
image plane. The center of the sphere C(0, 0, 0) lies on the optical axis of the projection to
the plane and represents the origin of the reference frame. The general projection model is
illustrated in Figure 5.
The parameters l and m can be adjusted to model different camera types (mirror shapes) and
correspond to the distances from the sphere center C to the projection center O and to the

image plane
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l

O

P

p(x, y)

image plane

P(X, Y, Z)

^

m

B

C

Fig. 5. The general projection model for single projection center cameras.

projection plane. According to the model, the image projection p(x, y) of a 3D point P(X, Y, Z),
can be defined by:

[

x
y

]

=
l + m

lR − Z

[

X
Y

]

with R =
√

X2 + Y2 + Z2 (1)

Back-projecting an image point (x, y), we can obtain a point on the unit sphere P̂(X̂, Ŷ, Ẑ) cor-
responding to the direction of the incoming ray from the original 3D point P(X, Y, Z) Gaspar
et al. (2001). The back-projection is described by Equation 2.

[

X̂

Ŷ

]

=
lA + sign(A)

√

(x2 + y2)(1 − l2) + (A)2

x2 + y2 + (A)2

[

x
y

]

A = l + m Ẑ = ±
√

1 − X̂2 − Ŷ2 (2)

where Ẑ becomes negative if |l + m|/l >

√

x2 + y2 and positive otherwise. Note that the
camera intrinsic parameters, image center and focal length are not considered in the above
expression.
To reproject flow vectors from the image plane to the sphere surface, a general Jacobian matrix
J is defined by differentiating the spherical coordinates (X̂, Ŷ, Ẑ) on the back-projection equa-
tion with respect to the image coordinates (x, y) Vassallo et al. (2002a). It maps image velocity
vectors to the unit sphere surface, transforming a planar flow field to a hemispherical motion
field that will help estimate egomotion (see Equation 3 and Figure 6).

[

˙̂X ˙̂Y ˙̂Z
]T

= J
[

ẋ ẏ
]T

with J =







∂X̂
∂x

∂Ŷ
∂x

∂Ẑ
∂x

∂X̂
∂y

∂Ŷ
∂y

∂Ẑ
∂y







T

(3)

Egomotion is estimated by adapting the Bruss & Horn (1983) algorithm designed for planar
perspective projection to spherical projection. The motion field U at a point P̂ on the unit
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Fig. 6. Image velocities remapped to the unit sphere surface.

sphere is a function of the camera rotation Ω, translation T and the corresponding 3D point

depth R =
√

X2 + Y2 + Z2 (Eq. 4).

U(P̂) =
1

R
((T · P̂)P̂ − T) − Ω × P̂ (4)

Depth dependency is removed by taking the cross product with P̂ and the dot product with
T, resulting in Equation 5. Estimation was done through an iterative process using non-linear
minimization considering |T| = 1, since the linear velocity can only be determined up to a
scale factor.

T · (P̂ × (U + (Ω × P̂))) = 0 (5)

The process for egomotion estimation that we have just described can be interpreted as a
visuo-motor map that converts visual information to motor measurements, T(Tx, Ty, Tz) and
Ω(ωx, ωy, ωz). It is important to stress that this process is intimately related to the robot’s
motor and visual capabilities.
Some egomotion results obtained with the mobile robot used for the experiments are shown
in Figure 7. Image flow vectors were calculated using Lucas & Kanade (1981) method and
then remapped to the unit sphere by the general Jacobian (Equation 3). The first example cor-
responds to a translation, the second is a rotation and the third a combined motion, translation
plus rotation. The robot can translate in the XY plane (the ground plane) and rotate around
the Z-axis. The vectors (Tx, Ty) and ωz obtained by egomotion estimation can also be seen in
Figure 7.
Table 1 presents estimated values and errors calculated by comparing the results with the
nominal values. For the translation vectors, just the error on direction was computed, once
it is not possible to recover the absolute velocity values from egomotion estimation. For the
angular velocity, the errors were mesured along the Z-axis in o/s.
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Fig. 7. Examples of (a) Translation, (b) Rotation and (c) Combined move. Egomotion vectors
(Tx,Ty) and ωz indicated in the middle of the hemispherical flow.

Translation Rotation

(a) T (Tx Ty) Ω (ωz) (o/s)

nominal T = [0 1] Ω = [0]

estimation T̂ = [0.0128 0.9999] Ω̂ = [−0.0132]

error et = 0.734o eΩ = [−0.0132]

(b) T (Tx Ty) Ω (ωz) (o/s)

nominal T = [0 0] Ω = [−3.1255]

estimation T̂ = [0 0] Ω̂ = [−3.4965]

error et = 0o eΩ = [−0.371]

(c) T (Tx Ty) Ω (ωz) (o/s)

nominal T = [0 − 1] Ω = [3.8776]

estimation T̂ = [0.0252 − 0.9997] Ω̂ = [4.3284]

error et = 1.45o eΩ = [0.4508]

Table 1. Egomotion estimations/errors.

A set of 608 different movements were executed for testing the egomotion method used as
visuo-motor mapping. All the results were compared to the nominal values and the errors
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analysed. The mean error found for the direction of translation was 1.44o and for the angular
velocity was 0.56o/s. The errors for translation and rotation are shown in Figures 8 and 9.
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Fig. 8. Errors on direction of translation.

Although the translation and rotation estimation errors were in the order of 5o and 2o/s for
some experiments, the results were satisfactory for the envisaged application. The mean er-
rors do not have a large impact on the direction of translation and on the angular velocity
estimation, when the robot travels small distances (instantaneous measurements).
At this point, we have defined the nature of the visuo-motor map that will be used throughout
the remainder of the chapter. It allows the system to convert purely visual information to its
motor variables, the egomotion.

3. Learning a purposive motor vocabulary through imitation

The first stage of development endows the system with the ability to map the motion of the
visual world onto the robot’s motor variables. In this second level of development, this motor
information will be organized onto more complex actions. From that point onwards, such
actions can be used to solve more sophisticated tasks, without the need to consider the details
of motion execution.
The way motor signals are organized to build a vocabulary of actions depends on the envi-
ronment where the robot usually operates and will be modulated by the typical tasks it will
execute. Hence, we rely on imitation, in the form of a person-following mechanism, to drive
this process.
The idea is that the robot is guided through the workspace by a human operator. The corre-
spondence problem for imitation was solved by a person-following behavior. While following
the guide, the robot continuously maps the observed visual motion to its own motor variables

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Error on angular velocity

Samples

error  °/s
mean error =0.559°/s

www.intechopen.com



Topological Mapping and Navigation using  
a Developmental Learning Approach based on Imitation through Sensory-motor Maps 573

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12
Error on direction of translation

Samples

error °
mean error =1.44°

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Error on angular velocity

Samples

error  °/s
mean error =0.559°/s

Fig. 9. Errors on angular velocity.

using the visuo-motor map (egomotion estimation). In this motor space, one can identify what
are the most typical executed movements to create a basis of elementary actions.
For simplicity, we assume that the person-to-follow carries a distinctive green-colored rectan-
gle. The target is first detected using the hue channel of frontal images captured by a color
camera. Noise in the resulting binary image is filtered through morphological operators and
the largest remaining blob is selected. The contour is detected and the rectangle lines are esti-
mated by a robust fitting procedure Fischler & Bolles (1981). Finally, the corners coordinates
are determined from the lines intersection, as shown in Figure 10. A visual servoing strategy
was used so that the robot could follow the green rectangle at a predefined distance (1m) and
oriented toward its center Vassallo et al. (2002b).
While the robot follows a person, it uses its visuo-motor map (egomotion) to perceive its own
movements. This motor information is classified into clusters by an unsupervised learning
method based on K-means. In our implementation, the number of desired clusters is defined
by the user but it could be learned in an automatic manner. The different clusters (and associ-
ated centroids) represent the learned characteristic movements and will constitute the motor
vocabulary. If needed, labels can also be associated to each movement as they were motor
words.
During the tests, a set of person-following experiments were done to learn this motor vocabu-
lary. Egomotion values were normalized and classified into clusters defining the motor words.
As we discussed before, the motor variables for a robot with differential kinematics, are the
angular velocity ωz and the robot forward velocyty, Ty. We estimate both the values for Tx

and Ty. The values for Tx are usually non-zero (albeit small) due to sliding of the robot wheels
or noise in the estimation process. Once these values are small, they will not be considered for
defining the motor vocabulary, but just Ty and ωz.
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Fig. 10. The green rectangle’s corners detection: the rgb-image, the hue channel, the image
segmentation and processing until the corners estimation.

The clusters found in the (Ty, ωz) space are shown in Figure 11. The mean values are repre-
sented by asterisks and Voronoi lines separating the various clusters are drawn. The centroids
represent the purposive motor vocabulary. Names were given to each cluster defining motor
words which are detailed in Table 2.
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Fig. 11. Clusters of the created vocabulary. Black/gray points indicate inliers/outliers.
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N Motor Word Ty ωz (degress/s)

W 1 left turn 0 4.4722

W 2 front right 0.9948 -2.4749

W 3 back left -0.9927 3.8223

W 4 back right -0.9927 -3.6440

W 5 right turn 0 -4.3646

W 6 back -0.9972 0.0386

W 7 front left 0.9973 2.1350

W 8 front 0.9974 0.0488

W 9 stopped 0 0

Table 2. Motor words for each cluster.

It is important to stress that this level of development allows the system to organize move-
ments onto more complex motor actions. Motor actions can be seen as the result of several
motor programs and treated in a more symbolic level when compared to individual move-
ments.
The motor vocabulary is determined by two main factors: the environment and the
user/demonstrator. If the environment were exclusively constituted of curved sections, recti-
linear movements would not be part of the vocabulary. Similarly, if the demonstrator always
uses right-turns, then left-turns would not be represented in the vocabulary. This is advan-
tageous because the vocabulary adapts to the structure of the environment as well as to the
“behavior” of the demonstrator.
Now that the motor action vocabulary is created, the robot can define and recognize move-
ments of interest and use those to perform a desired task. Movement recognition is done
in motor space, using the Euclidean distance as the discriminant function, instead in visual
space, which depends on frame orientation and position, and environment illumination.

4. Solving a task: Topological Mapping and Navigation

This section shows how we used the visuo-motor map and the learned motor vocabulary
for a mobile robot application: topological mapping and navigation. This task appears at
the end of a sequence of (developmental) steps where the robot acquires progressively more
sophisticated skills:

1. Definition of a visuo-motor map for the mobile robot, in the form of an egomotion
estimation process.

2. A person-following (imitation) behavior was used to allow the robot to learn a purpo-
sive motor action vocabulary. These actions depend both on the environment structure
and the demonstrator pattern of actions. These actions are “discrete” and are built upon
the elementary motor signals acquired though the visuo-motor mapping process.

3. Finally, the learned vocabulary is used for building topological maps and for naviga-
tion.

During the map building phase, we assume that the robot is guided through the environment
by a user or a demonstrator. While moving, the robot creates a topological map, in the form
of a graph. Nodes of this graph correspond to omnidirectional images captured during the
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robot motion, while the links are associated to motor actions, resulting from the egomotion
estimates projected onto the motor vocabulary.
The decision of whether or not inserting a new node in the map is taken based on two criteria:
(i) a comparison with the previously stored reference image or (ii) abrupt changes in motion. A
new node is added to the map whenever the sum of squared differences (SSD) between successive
images exceeds a threshold or the robot motion changes suddenly. Once a new node is stored,
the most frequently recognized motor word (to introduce robutsness) is attributed to the link
between the current and previous nodes.
Navigation with the created map comprises several steps. First, the robot determines its initial
position. Then, the robot searches a path in the graph leading from the initial position to the
goal destination. During navigation, progress along the route is monitored by comparing the
captured images against the current image node and the subsequent one in the path. Image
correlation is based on the same SSD metric that is used for map building. To determine
whenever the robot position should be updated, we adopt a hill-climbing strategy in such a
way that a new node is accepted whenever a persistent increase in the SSD values is detected
after a clear-cut minimum (“valley”).
Every time a new map position (node) is reached, the motor word stored in the subsequent
link determines the next motor command. This behavior goes on until the final location is
reached. Navigating through the map can be seen as executing a concatenation of the motor
actions sampled from the motor vocabulary. Such commands are directly retrieved from the
map, as that information was stored during the mapping phase. In other words, it can be
considered a "motor program" formed by "motor words". Some experiments and results are
shown in the next section, a natural way of expressing and representing navigation tasks.

5. Experiments and Results

The robot used in the experiments described in this paper is a Pioneer DX2 equipped with an
onboard computer (Pentium II MMX - 266 MHz - 128 MRAM). An omnidirectional camera is
mounted on the top of the robot with its axis aligned with the platform’s rotation axis. It is a
catadioptric system formed by a B&W camera and a spherical mirror Baker & Nayar (1998).
In addition, the robot is equipped with a color (perspective) camera pointing to the forward
direction. The robot and both vision systems were already shown in Figure 4.
The omnidirectional system is used for defining the visuo-motor mapping, based on the ego-
motion estimation process, and for performing the topological mapping task. The color cam-
era is used for implementing the imitation/following behavior.
As we have seen before the mobile robot imitation (person following) behavior was used in
two distinc ways. First, it is used to build a visuo-motor mapping and for the robot to learn
elementary motor actions, coded according to the robot’s motion repertoire. Secondly, the
following behavior is used to combine such basic actions for topological mapping and navi-
gation. These maps become motor representations of the environment, which main advantage
is to be adapted to the used robot and environmental structure.
Several mapping and navigation experiments were conducted for testing the proposed
method. For that purpose, we have used an experimental arena adapted to the robot size
and camera height. One of the mapping tests is shown in Figure 12. The executed path for
map building is plotted and the places where images were selected as topological map nodes
are indicated by asterisks
In this experiment, a total of 16 omidirectional images were selected for map nodes. These im-
ages were subsampled twice down to 166 x 166 pixels. As described, motor words extracted
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Fig. 12. Robot trajectory (odometry) during map building. Asterisks indicate map nodes.

from the learned vocabulary were associated to the links between images, according to robot
motion. Whenever possible, the dual (symmetric) motion of each motor word was also as-
sociated to the map link. This strategy allows the robot to navigate in each link in opposite
directions. Figure 13 shows the omnidirectional images overlaid the map nodes.
Some navigation experiments for the created map are shown in Figure 14. The robot was
asked to navigate between different points accross the map. It involved traversing some of
the map links in the direction opposite to that learned during mapping.
The places where the robot updated its (qualitative) position are indicated by asterisks. Al-
though some points correspond to the same node in the map, the asterisks did not happen
exactly in the same coordinates but in the same region, associated to a common “qualitative”
location. The robot solved the navigation tasks succesfully in about 90% of the trials. It only
fails in cases where it encountered obstacles during the mission, since we did not include
any obstacle avoidance scheme. Instead, our efforts were directed to testing the task learning
method and the use of motor information for topological map building and navigation. We
therefore found the results very encouraging.

6. Conclusions and Future Work

In this work, we have proposed an approach that allows a robot to use motor representations
for learning a complex task through imitation. Our approach is inspired after developmental
psychology and some findings in neuroscience. The framework relies on development as the
process allowing the robot to acquire sophisticated capabilities over time, as a sequence of
simpler (learning) steps. At the first level, the robot learns about sensory-motor coordination.
Then, motor actions are identified based on lower level, raw signals. Finally, these motor
actions are stored in a topological map and retrieved in an efficient way during navigation.
The entire methodology is grounded on hierarchical motor representations as suggested by
experiments in Mirror Neurons.
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Fig. 13. The 16 omnidirectional images of each map node.
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Fig. 14. Robot trajectories (odometry) when map navigating. Asterisks are position updates.

We illustrated the approach with an application with a mobile robot. An egomotion estimation
process was used to perform visuo-motor mapping. It transforms optical flow measurements

www.intechopen.com



Topological Mapping and Navigation using  
a Developmental Learning Approach based on Imitation through Sensory-motor Maps 579

Im11

Im13

Im14

Im1

Im15Im12

Im2 Im3

Im8

Im7Im6

Im9

Im10Im16

Im5Im4

Navigation Tests (cm)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

on omnidirectional images to motor information, matching the motor capabilities (kinematics)
of the differential robot chosen for the task. Extensive tests were performed to test and analyze
the egomotion implementation validating the visuo-motor map.
In a subsequent stage of development, a person following behavior was implemented. The
robot was able to learn a set of elementary actions, based on the visuo-motor mapping, that
form a motor vocabulary.
Finally, the robot builds a topological map of the workspace, while it is guided through the
environment by a human operator. During this process, the robot selects omnidirectional
images to store as map nodes and uses the motor vocabulary to associate basic actions to
links. After that, navigating through the map was considered a higher level action, composed
by basic motor movements.
It is important to stress that the learning process occurs throughout the entire action hierarchy:
during the self-knowledge phase when the visuo-motor map was defined; learning through
imitation when basic actions are encoded in motor space and, finally, executing a desired task
by composing more complex actions based on the elementary ones. This approach thus avoids
the need to program every action or situation that robot must execute or encounter during its
lifetime.
We consider that the main contributions of this work are multi-fold: (i) to make a robot able to
rely on interaction with a user to learn sets of movements that were not programmed or de-
fined a priori; (ii) to provide a natural manner of adapting the desired application and the way
it is executed to the robot’s motion repertoire; (iii) a methodology for open-ended robot learn-
ing and adaptation that can be applied to different robots, applications and environments.
The sensory-motor maps and the created motor vocabulary are defined according to robot’s
body and sensory system. Whenever the application or environment changes, one can either
teach the robot a new set of movements or modify the current motor vocabulary.
More specifically, we show that the use of omnidirectional images is beneficial both for ego-
motion estimation as well as for the mapping and navigation processes. Large fields of view
help finding and tracking objects and allows more of the environment to be caught in just
one image. Also, using motor representations to define the links in a topological map allows
representing the environment in a motor way, adapted to the robot used for the task.
The results obtained are encouraging. Future work will focus on further extending these ideas
and conducting tests with other robots and applications. We are also working on a way of
learning the visuo-motor mapping instead of computing it explicitly through egomotion equa-
tions. We have already got some results using neural networks based on perceptrons Vassallo
et al. (2004).
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