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1. Introduction 
 

Simultaneous Localization and Mapping (SLAM) has been developed for mobile robot 
applications to obtain navigation information. SLAM is a strategy for building up maps in 
unknown environments and figuring out its position without any prior map information. To 
implement SLAM, various kinds of sensors such as laser range finders, ultrasonic sensors, 
vision sensors, etc. (Sheng Fu et al., 2007) can be considered. Each configuration often 
depends upon the required performance and cost condition. 
In this chapter, we suggest a vision-based SLAM method to improve the navigation 
performance of mobile robot. It consists of a set of vision sensors and encoders which are 
equipped on mobile robot’s wheels (Leonard & Durrant-Whyte, 1991). The heading and 
position of a mobile robot can be independently estimated with only 2 encoders. However 
the result often yields large inaccuracies due to errors and the noise of sensors (i.e. a vision 
sensor and encoders).  
On the other hand, as the vision sensor is incorporated, a feature point tracking algorithm 
must be used (it’s not mentioned in this chapter, because it’s out of focus). In the integrated 
system, the relative position between feature points and the mobile robot is continuously 
estimated using information (i.e. feature points), so the position and heading errors are 
compensated using the filter estimation results (Hugh Durrant-Whyte & Tim Bailey, 2006). 
The Extended Kalman Filter (EKF) has been widely used for SLAM (Jing Wu & Hong Zhang, 
2007). Additionally, a particle filter is occasionally used with landmark or geometric 
constraints to enhance performance (Sukhan Lee & Seongsoo Lee, 2006), because the 
measurement model of the vision sensor is not linear. In comparison with previous works, 
this chapter takes a distributed particle filter approach without landmark information and 
geometric constraints. The distributed particle filter is known to have powerful performance 
under nonlinear, multi-modal models and features points in varying conditions (Ristic et al., 
2004). 
In addition to a vision sensor, range sensors are generally used to compute the 3-D position 
of feature points, because it is difficult to estimate the position in case of a single vision 
sensor system. This chapter uses a delayed initialization method instead of range sensors to 
compute the feature point position using single vision sensor system (Philip J. Schneider & 
David H. Eberly, 2003). 
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Computer simulations are conducted to demonstrate the performance of the suggested 
algorithm. The navigation performance is enhanced compared to the encoder only system 
during simulation. It depends upon the number of particles, feature points and the angle of 
vision sensor. Furthermore, using landmarks, which are from a previous known position, 
also improve the performance. 

 
2. SLAM 
 

Many vision sensor applications have been developed in recent years due to low costs, low 
power consumption and the development of high speed processors. Vision sensors can 
provide continuous image data. If there are some points that are not changed in the whole 
images during the image acquisition time, they can be continuously distinguishable from 
other objects (background or moving object) for some periods of time. Then the 
distinguishable points in the image data are referred to as feature points. Through tracking 
feature points, the amount of vision sensor’s moving can be estimated. 
There are many kinds of image types (gray scale, RGB, etc). In this chapter, 8 bits gray scale 
image is used, which expresses an image with 256 step intensity (Rafael C & Gonzalez, 2004). 
On image plan, intensity of pixel is changed by location (x, y) and acquisition time (t). Thus, 
the image (I) can be denoted by the following expression (Carlo Tomasi & Takeo Kanade, 
1991). 
 

I(x, y, t)                                 (1) 
 

Let’s assume that there are displacements (d = (ξ , η)) and the time difference (τ) is small on 
continuous 2 images, then the relation can be expressed as below. 
 

I(x, y, t+τ) = I(x-ξ,  y-η,  t)                        (2) 
 

It is observed that displacements are proportional to the movement of the vision sensor. If 
the displacements of a feature point are estimated, the movement of vision sensor can be 
obtained. Usually, feature point can be selected by using Harris Corner Detection 
(Konstantinos G. Derpanis, 2004), SUZAN (S. M. Smith & J. M. Brady, 1997) or Fast Corner 
Detection (Edward Rosten and Tom Drummond, 2005), which can be further used for the 
continuous tracking of feature point positions on the whole image. 
 

 
Fig. 1. Concpt of vision based SLAM (vSLAM) 
 

 

Conventional SLAM algorithms using the vision sensor are adapted for the system 
integration. Using the vision sensor, feature points are selected and tracked on continuous 
frames. The vision sensor also provides bearing, elevation or range information from the 
feature point, which is deduced from the feature points tracking data. Other sensor output 
goes to SLAM block with vision sensor data. Navigation information (position, velocity, 
attitude, etc.) and errors in sensors are estimated by integrating information from vision and 
other sensor. Assuming feature points are fixed and not movable in the local coordinate 
frame, navigation errors come mainly from sensor outputs. Thus, by compensating 
estimated errors from sensor output, navigation data can be precisely calculated. 
 

VisionVision

SensorSensor

SLAMSLAM

Errors in sensor

+

-

Navigation
Solution

VisionVision

SensorSensor

SLAMSLAM

Errors in sensor

+

-

Navigation
Solution

 
Fig. 2. Basic algorithm of a vision based SLAM 

 
3. System Modeling 
 

Figure 3 shows a simple mobile robot platform having only planar dynamics. It has a vision 
sensor and 2 encoders. A vision sensor acquires image continuously, then feature points are 
selected and tracked. The encoders are equipped on wheels and provide wheel rotation data. 
Given the information about wheel radius, the distance between the 2 wheels and pulses per 
rotation of encoder, range and heading information can be numerically computed. There are, 
however, various kinds of errors; wheel radius error, wheel distance error, slips error, 
conversion factor error, etc. The overall effect from the above mentioned sources resulted in 
accumulated errors and degraded navigation performance, which necessitated error 
compensation using aided sensors and filters. 
 

 
 

Fig. 3. Mobile robot equippd with encoders and vision sensor 
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compensation using aided sensors and filters. 
 

 
 

Fig. 3. Mobile robot equippd with encoders and vision sensor 

www.intechopen.com



Mobile Robots Navigation160

 

3.1 Dynamic Model 
 

 
Fig. 4. Coordinate system of mobile robot 
 
In Figure 4, X-Y denotes navigation frame and x-y denotes body frame on Figure 4. Position 
and heading of mobile robot can be expressed using the following equations. 
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L and R are movements of the left and right wheel, respectively. X, Y denotes position in 
each axis and ψ is heading. D is the distance between two wheels. ,R LS S  are scale factor 

errors of the encoder, so it is a kind of bias. We consider , ,R LS S D  as a random constant. 
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To estimate navigation error, the system model was changed into the following form using 
perturbation. 
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Applying a perturbed model and small angle assumption, (3) can be changed into (4). State 
vector consists of position error (X, Y), heading error, scale factor error (R, L) and wheel 
distance error. 
The following state space equation is an error model of the system. 

 
[      ]TR LY X S S D   X  
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                (6) 

 
3.2 Measurement Model 
A vision sensor provides sequential images. Feature points are selected and tracked through 
these images. The feature point position is not changed on the navigation frame. So a 
measured feature point position is used for reference, when the mobile robot position is 
estimated. 
 

, ,n n nx y z

, ,b b bx y z

np

b
sbp , ,s s sx y z







Navigation 
Frame

Body Frame

Sensor Frame

Feature Point
, ,x y z

, ,n n nx y z

, ,b b bx y z

np

b
sbp , ,s s sx y z







Navigation 
Frame

Body Frame

Sensor Frame

Feature Point
, ,x y z

 
Fig. 5. Coordinate of vision based SLAM 
 
Figure 5 shows the relation between the feature point and frames. The reference frame is a 
navigation frame; however, the feature point is measured on the sensor frame, so a 
coordinate transform is needed. 
Equation (7) denotes a feature point position on the sensor frame. Using equation (6) and (7), 
the feature point position can be predicted. 
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3.2 Measurement Model 
A vision sensor provides sequential images. Feature points are selected and tracked through 
these images. The feature point position is not changed on the navigation frame. So a 
measured feature point position is used for reference, when the mobile robot position is 
estimated. 
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Figure 5 shows the relation between the feature point and frames. The reference frame is a 
navigation frame; however, the feature point is measured on the sensor frame, so a 
coordinate transform is needed. 
Equation (7) denotes a feature point position on the sensor frame. Using equation (6) and (7), 
the feature point position can be predicted. 
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Equation (8) is the measurement model. Measurement vector contains bearing and elevation 
angle, which are readily calculated from the feature point position information. 
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4. Integration Filter 
 

4.1 Particle Filter 
In the filter system implementation, the measurement model of a vision sensor is observed 
to be nonlinear, which requires for a nonlinear filter approach. Extended Kalman Filter, 
Unscented Kalman Filter (UKF) and Gaussian Sum Filter are common nonlinear filter (Ristic 
et al., 2004). In this chapter, a particle filter (PF) is used for state estimation, which is a 
technique for implementing a recursive Bayesian filter by Monte Carlo simulation. The key 
point of PF is to represent the posterior density function by a set of random samples with its 
associated weight and to compute estimates based on these samples and weights. 
It can be shown that, at the time instant k, the particles   
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k
x i i N   can be recursively obtained by the following algorithm (Ristic et al., 

2004): 
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p x being represented in terms of weighted samples (i.e. particles). 
4. Resample: Resample independently N times from the above discrete distribution. 

The resulting particles   : 1, 2, ,
k
x i i N  which satisfies 
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5. The prediction, update and resample step form a single iteration and is recursively 
applied each time k. 

 
4.2 Integration Filter 
The following figure shows the structure of a vision based SLAM. An indirect filter structure 
is used to reduce computation time and power. 

 

 
 

Fig. 6. Structure of vision based SLAM 
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In the encoder block, the position is locally calculated using large sensor errors. In the vision 
sensor block, the image data is acquired and feature points are selected. Then, the feature 
points are tracked via feature point tracker block, where the tracking information is stored 
in the database and sent to integration filter block simultaneously. Using encoder 
measurements and feature point database, the next feature point position can be predicted 
on the image frame. In the integration filter block, the measured feature point position is 
compared with the predicted position, and navigation errors are estimated. Estimated errors 
go to the encoder block, and finally compensate the navigation data. 
Figure 7 shows the structure of the distributed filter which has several local filters. The 
distributed filter has good performance with respect to computation time and power, fault 
detection, isolation, variation in measurements number, etc. The number of local filters is 
varying in proportion to the number of feature points, which depends on visible 
environment. The estimated errors from each local filter are combined in the master filter for 
data integration. Finally, the estimated errors are fed into an encoder to compensate for the 
position data. In the chapter, error estimate and covariance of master filter is not fed into the 
local filters for simplicity. 
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Fig. 7. Structure of distributed filter 

 
5. Simulation Results 
 

Computer simulation is done to demonstrate the performance of the suggested algorithm. 
For simulation, 10m x 10m square track and 10 feature points are used. The time step for 
each epoch is set to 0.01sec with total epoch number of 4790. A detailed description is shown 
in Table 1. 
 

Filter Particle filter 
(number of particle: 200) 

Wheel radius 50 ± 1 mm 
Encoder error ± 6.3 mm/rotation 

Velocity 2 m/sec 
Track 10m x 10m 

Feature points 200 in 40m x 40m 

Simulation frequency Positioning: 100 Hz 
Error Compensation: 10 Hz 

 

Table 1. Simulation paraeters 
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Fig. 8. Simulation track 
 
The navigation performance of a vision based SLAM integrated system is compared 
together with that of a standalone encoder system. First, Figure  9 is the simulation result 
showing the navigation performance of an encoder only system. The red line denotes the 
true trajectory and the blue line denotes the estimated trajectory. As time increases, 
cumulative errors are increased, which results in an unbounded deviation from the true 
track. Error characteristics illustrates that the dominant error source of the encoder is scale 
factor and the distance between two wheels. 
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Fig. 9. Estimated position of encoder only navigation (left) and vision based SLAM (right) 
 

In the vision based SLAM case, the navigation performance is greatly enhanced. The 
estimated position has a bounded error from the true trajectory, which does not diverge as 
time increases. Throughout the trajectory, properly deployed feature points compensate 
error accumulation from the encoder and the initial heading bias produced a slightly 
deviated square trajectory. 
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In the encoder block, the position is locally calculated using large sensor errors. In the vision 
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on the image frame. In the integration filter block, the measured feature point position is 
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go to the encoder block, and finally compensate the navigation data. 
Figure 7 shows the structure of the distributed filter which has several local filters. The 
distributed filter has good performance with respect to computation time and power, fault 
detection, isolation, variation in measurements number, etc. The number of local filters is 
varying in proportion to the number of feature points, which depends on visible 
environment. The estimated errors from each local filter are combined in the master filter for 
data integration. Finally, the estimated errors are fed into an encoder to compensate for the 
position data. In the chapter, error estimate and covariance of master filter is not fed into the 
local filters for simplicity. 
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Fig. 7. Structure of distributed filter 

 
5. Simulation Results 
 

Computer simulation is done to demonstrate the performance of the suggested algorithm. 
For simulation, 10m x 10m square track and 10 feature points are used. The time step for 
each epoch is set to 0.01sec with total epoch number of 4790. A detailed description is shown 
in Table 1. 
 

Filter Particle filter 
(number of particle: 200) 

Wheel radius 50 ± 1 mm 
Encoder error ± 6.3 mm/rotation 

Velocity 2 m/sec 
Track 10m x 10m 

Feature points 200 in 40m x 40m 

Simulation frequency Positioning: 100 Hz 
Error Compensation: 10 Hz 

 

Table 1. Simulation paraeters 
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Fig. 8. Simulation track 
 
The navigation performance of a vision based SLAM integrated system is compared 
together with that of a standalone encoder system. First, Figure  9 is the simulation result 
showing the navigation performance of an encoder only system. The red line denotes the 
true trajectory and the blue line denotes the estimated trajectory. As time increases, 
cumulative errors are increased, which results in an unbounded deviation from the true 
track. Error characteristics illustrates that the dominant error source of the encoder is scale 
factor and the distance between two wheels. 
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Fig. 9. Estimated position of encoder only navigation (left) and vision based SLAM (right) 
 

In the vision based SLAM case, the navigation performance is greatly enhanced. The 
estimated position has a bounded error from the true trajectory, which does not diverge as 
time increases. Throughout the trajectory, properly deployed feature points compensate 
error accumulation from the encoder and the initial heading bias produced a slightly 
deviated square trajectory. 
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Fig. 10. Position error comparison between encoder only navigation and vision based SLAM 
 
Figure 10 shows the position error of the two methods. In case of the encoder, the error 
diverges with sinusoid-like fluctuation. The fluctuation comes from the encoder output scale 
factor error at every turn. The estimation error of the SLAM aided integration system is 
error bound by about 1m. 
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Fig. 11. Position error through changing the number of particles (left) and feature points 
(right) 
 

In implementing the navigation computer, the computing time highly depends on the 
particle number and the feature point number, which constrains the particle size in each 
particle filter. Figure 11 shows position error when the numbers of particles on filter changes. 
The number of feature points is fixed as 10. When there are particles of more than 50, the 
error is below 1.5m during operation times. The number of feature points is changed from 1 
to 10, and the number of particles is fixed at 100. In the figure, even though #FP 1 and 3 
cases have large error boundaries, the position error does not diverge and shows better 
estimation performance than the encoder only system. The maximum position error is 
observed to be smaller than 1m when there are more than 5 feature points. Table 2 
summarizes the data at the epoch 1000, 2000, 3000 and 4000 in Figure 11. 

 

Epoch  
#FP 1000 2000 3000 4000 Mean Maximum 

Error 
Encoder 

Only 1.26 1.98 3.14 3.56 2.58 5.99 

1 0.81 3.00 2.49 2.89 2.12 3.17 
3 0.82 1.41 3.50 0.31 1.49 3.79 
5 0.71 0.38 0.40 0.68 0.50 0.81 
7 0.77 0.27 0.73 0.33 0.48 0.90 

10 0.47 0.28 0.48 0.30 0.34 0.67 
 

Table 2. Position error through changing the number of feature points 
 
In #FP 1 and 3 cases, the position error is larger than the other cases at early stage, thus 
these large errors affect all over the stage, so estimated trajectory become inaccurate. In 
other cases, the error is decreased and has boundary. Compared with the mean error of the 
encoder only case at 4000 epoch, the #FP 7 case has 82% smaller error and in the #FP 10 case 
has an 87 % smaller error than the encoder only case. In conclusion, when the number of 
particles is set to 100 for low computational burden, the number of particles over 5 is 
required for better performance. 
For further verification of suggested algorithm, the simulation condition is changed. A 
difference in simulation is an angle of the vision sensor. Figure 12 (left) illustrates attached 
angle of vision sensor. The angle is changed from 0 to 180 degree. 
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Fig. 12. Attached angle of a vision sensor and position error through the changing of 
attached angle 
 

Figure 12 (right) shows the position error through the changing of the angle. The error is 
below 1m when the angle is changed from 60 to 120, whereas the other cases have larger 
errors.  
In other words, if the vision sensor looks toward the top direction (90 degree), the feature 
point position of the horizontal direction is detected and measured more precisely. So the 
quality of measurement is better than the other cases. For this reason, the horizontal error 
can be decreased. Since the angle is far from 90 degree, the quality of measurements on 
horizontal direction becomes poor. That affects the position and heading error. 
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Fig. 10. Position error comparison between encoder only navigation and vision based SLAM 
 
Figure 10 shows the position error of the two methods. In case of the encoder, the error 
diverges with sinusoid-like fluctuation. The fluctuation comes from the encoder output scale 
factor error at every turn. The estimation error of the SLAM aided integration system is 
error bound by about 1m. 
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Fig. 11. Position error through changing the number of particles (left) and feature points 
(right) 
 

In implementing the navigation computer, the computing time highly depends on the 
particle number and the feature point number, which constrains the particle size in each 
particle filter. Figure 11 shows position error when the numbers of particles on filter changes. 
The number of feature points is fixed as 10. When there are particles of more than 50, the 
error is below 1.5m during operation times. The number of feature points is changed from 1 
to 10, and the number of particles is fixed at 100. In the figure, even though #FP 1 and 3 
cases have large error boundaries, the position error does not diverge and shows better 
estimation performance than the encoder only system. The maximum position error is 
observed to be smaller than 1m when there are more than 5 feature points. Table 2 
summarizes the data at the epoch 1000, 2000, 3000 and 4000 in Figure 11. 
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Only 1.26 1.98 3.14 3.56 2.58 5.99 

1 0.81 3.00 2.49 2.89 2.12 3.17 
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7 0.77 0.27 0.73 0.33 0.48 0.90 
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Table 2. Position error through changing the number of feature points 
 
In #FP 1 and 3 cases, the position error is larger than the other cases at early stage, thus 
these large errors affect all over the stage, so estimated trajectory become inaccurate. In 
other cases, the error is decreased and has boundary. Compared with the mean error of the 
encoder only case at 4000 epoch, the #FP 7 case has 82% smaller error and in the #FP 10 case 
has an 87 % smaller error than the encoder only case. In conclusion, when the number of 
particles is set to 100 for low computational burden, the number of particles over 5 is 
required for better performance. 
For further verification of suggested algorithm, the simulation condition is changed. A 
difference in simulation is an angle of the vision sensor. Figure 12 (left) illustrates attached 
angle of vision sensor. The angle is changed from 0 to 180 degree. 
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Fig. 12. Attached angle of a vision sensor and position error through the changing of 
attached angle 
 

Figure 12 (right) shows the position error through the changing of the angle. The error is 
below 1m when the angle is changed from 60 to 120, whereas the other cases have larger 
errors.  
In other words, if the vision sensor looks toward the top direction (90 degree), the feature 
point position of the horizontal direction is detected and measured more precisely. So the 
quality of measurement is better than the other cases. For this reason, the horizontal error 
can be decreased. Since the angle is far from 90 degree, the quality of measurements on 
horizontal direction becomes poor. That affects the position and heading error. 
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Fig. 13. Position error in case of using the landmark 
 
If there are some points which are known positions with previous information, the 
navigation performance can be increased. In this chapter, such a point is called the 
'Landmark'. The landmark has precise position information, so it is used for accurate 
measurements when it is observed. In the integration filter, feature point estimation step 
will be skipped because the position is already known. In Figure 13, landmark aids position 
estimation performance to be increased compare with general case (without landmark). The 
landmark aiding case has 0.2567m RMS error (mean), which is smaller than 0.4656m in 
general cases. This means that precise measurements (landmark) prevent a divergence of 
estimation error sand improve the estimation performance in mobile robot navigation. 

 
6. Conclusion 
 

In this chapter, a vision based SLAM and encoder integrated system is presented for mobile 
robot navigation. By considering the nonlinear measurement model and feature point 
availability around the trajectory, a distributed particle filter approach is applied. 
Simulation results demonstrate the performance of the implemented mobile robot. Further 
results confirm that the estimation performance largely depends on the number of feature 
points and particles, which will be mutually associated while implementing the embedded 
navigation computer. It also depends on the attached angle of a vision sensor and the 
landmark. 
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If there are some points which are known positions with previous information, the 
navigation performance can be increased. In this chapter, such a point is called the 
'Landmark'. The landmark has precise position information, so it is used for accurate 
measurements when it is observed. In the integration filter, feature point estimation step 
will be skipped because the position is already known. In Figure 13, landmark aids position 
estimation performance to be increased compare with general case (without landmark). The 
landmark aiding case has 0.2567m RMS error (mean), which is smaller than 0.4656m in 
general cases. This means that precise measurements (landmark) prevent a divergence of 
estimation error sand improve the estimation performance in mobile robot navigation. 
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