
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 329

Navigation for mobile autonomous robots and their formations: An
application of spatial reasoning induced from rough mereological
geometry

Lech Polkowski and Pawel Osmialowski

X

Navigation for mobile autonomous robots and
their formations: An application of spatial

reasoning induced from rough
mereological geometry

Lech Polkowski and Pawel Osmialowski

Polish - Japanese Institute of Information Technology
Poland

1. Introduction

This Chapter is intended as a sequel to our Chapter 21 in the book on "Mobile Robots
Motion Planning. New Challenges" by this Publisher. It is now commonly accepted that
problems of planning and navigation are inseparable: "Most recent contribution to the field
combine effective algorithms tested on significant problems, along with some formal
guarantees of performance" (J.-C. Latombe in Foreword to "Principles of Robot Motion.
Theory, Algorithms and Implementations" by H. Choset et al.). Therefore, as with the former
Chapter, we provide in this Chapter planning mechanisms along with navigation tests and a
theoretical analysis of underlying constructs. We extend our scope of analysis by
considering formations of mobile autonomous robots. We introduce a definition of a robot
formation, based on the spatial relation of betweenness and we give a treatment of planning
and navigation problems for robot formations. In our investigations into problems of multi-
robot planning and navigation, we apply rough mereological theory of spatial reasoning.
This theory is briefly recalled in this Chapter for completeness sake. The software system
Player/Stage is employed as means of simulation and visualization of robot trajectories to
chosen goals. To this end, it has been provided with SQL functions rendering predicates of
rough mereological geometry. Robotics of autonomous mobile robots presents the most
intricate field for applications of techniques of artificial intelligence, decision making and
cognitive methods. Among the basic problems in this area are planning and navigation
problems and we are concerned with them both in their mutual bond.The planning and
navigation problem for mobile robots is addressed from many angles and a multitude of
approaches and techniques have emerged; it suffices to mention a division of planners
according to assumptions about robot equipment and abilities as well theoretical principles
used in planner construction, from simple bug-type algorithms though potential functions
and potential field based strategies to roadmaps constructed by exploiting visibility in
configuration spaces, metric-based ideas like Voronoi diagrams and graphs, cell
decompositions of various types, and probabilistic (sampling) planners allowing for
incremental space exploration by building trees of configuration points like EST-trees or

16

www.intechopen.com

Mobile Robots Navigation330

RRT-trees, see (Choset et al., 2005) for an excellent account of these approaches.Path
planning methods, according to (Latombe, 1991) can be divided into centralized, in which
case planning considers all robots in a team, or decoupled, when path is planned for each
robot independently. Another division of path planning methods consists in local vs. global
approach; in the local method, planning is provided for some neighborhood of a robot,
whereas in the global approach, the whole environment is taken into consideration. Path
planning consists in finding controls which secure the desired path of a robot toward a goal
with, e.g., obstacle avoidance. As with a single robot, the path planning problem arises for
teams of robots. In particular, centralized methods for single robots are extended to teams of
robots see, e.g., (Švestka&Overmars, 1998) where such planning is applied with help of
relational structures called super-graphs on which admissible paths are searched for. This
approach however assumes that the situation is static, i.e., no changes in the environment
happen during plan execution. The assumption of environment stability is not valid in real
world situations and the reactive approach (Arkin, 1998) to planning considers simple,
sensor - actuator coupling schemes expressible as low-level behaviors (Urdiales et al., 2006) ;
in these schemes, potential field methods, vector field histograms, dynamic window
approach are used (Urdiales et al., 2006). Some reactive methods use dynamic variants of
search algorithms like A*, e.g., D* (Brumitt et al., 2001).

From among those methods, we choose to adopt the method of potential field, see sect.5. In
classical setting, the potential field is built as the sum of two components: repulsive, induced
by obstacles, and attractive, induced by goals. The field force is defined as the gradient of
the repulsive, respectively, attractive, potential, see (Choset et al., 2005). In either case, the
potential is defined with the use of a metric, in analogy to classical physical examples of a
potential field like Coulomb or gravitational fields. Our approach is different: the potential
field is constructed by means of a chosen rough inclusion - the primitive predicate of rough
mereology, see sect.5. A robot is driven to the goal by following areas of increasing density
of the field as shown in sect.5. The problem for a single robot is presented fully in
(Polkowski&Osmialowski, 2009) where mereological potential fields have been constructed
and applied in planning of paths and robot navigation.

Problems of cooperative mobile robotics are even more demanding as they require an
accounting for group behavior of many autonomous mobile robots. There is the increasing
need for making use of such teams in practical problems of performing complex tasks
inaccessible for a single robot (like pushing large objects, rescue operations, assembling);
there is also a theoretical interest in research on aspects of their behavior: cooperative
mechanisms, leadership, conflict resolution, consensus making, many of which belong as
well in biology and environmental studies, see, e.g., (Balch&Arkin, 1998; Brumitt et al., 2001;
Chen&Luh, 1998; Leonard&Fiorelli, 2001; Shao et al., 2005) and also a discussion in (Cao et
al., 1997). These motifs have propelled research in direction of multi-robot planning.

Cooperative behavior is perceived by many authors, see, e.g., (Cao et al., 2005) and
references therein, as a specialization of collective behavior having the tint of achieving
jointly some goal. The goal may mean an economic advantage, reaching a specified position,
learning jointly a feature or a category of objects, etc., etc. Main directions of research in this
area of schemes for cooperative mobile robotics, include, as distinguished in the literature,

see, e.g., (Cao et al., 2005; Kramer&Scheutz, 2007), a study on group architectures, conflicts
of resources, motivations for cooperation, learning of a cooperative behavior,
spatiotemporal aspects: path planning, moving to formations, pattern generation.

In this work, which extends our earlier results (Osmialowski, 2009; Polkowski&Osmialowski,
2008a), we are concerned with the last aspect, i.e., moving to formations and path planning in
order to make robots into a given formation. Alongside, we are concerned with problems of
repairing formations and navigating formations in static environments. We study the problem
of path planning in order to make robots in a team into a formation. We apply as a theoretical
framework for our approach, a qualitative theory of spatial reasoning as provided by Rough
Mereology, see, e.g., (Polkowski&Osmialowski, 2008). In this framework, we give a definition
of a formation by a team of robots, by means of a rough mereological betweenness relation
among them, see (Osmialowski, 2009; Polkowski & Osmialowski, 2008). In the same
framework, we study the problem of path planning for moving into a given formation. We
propose some procedures to this end. We model our robots on Roomba1 robots by iRobot(R),
i.e., we assume our robots to be planar disk-shaped objects. We use Player/Stage system, see
(Osmialowski, 2007; 2009; http://playerstage.sourceforge.net) , as a tool for simulation and
visualization.

2. On formations of autonomous mobile robots

A study of the concept of a robot formation was initially based on a perception of animal
behavior like herding, swarming, flocking or schooling. In this respect, a few principles
emerged, see, e.g., (Balch&Arkin, 1998), keeping all animals within a certain distance from
one another (e.g., to ensure mutual visibility), moving away when the distance becomes too
close (to avoid congestion, collision, or resource conflict), adapting own movement to
movement of neighbors (e.g., velocity of motion), orienting oneself on a leader.

From those observations a geometric approach to formations has been derived: a formally
simplest approach (Balch&Arkin, 1998), uses referencing techniques; reference is made
either to the team center or to the team leader, or to a specified neighbor in a coordinate
system given by the position of the team center or the leader along with the orientation
given by the nearest navigation point; positions are determined, e.g., with the help of GPS or
dead reckoning. Another method for forming a geometric formation relies on a direct usage
of a metric, say rho, see, e.g., (Chen&Luh,1998; Sugihara&Suzuki,1990): given a threshold δ,
and a parameter ε, for each robot r in a team, its farthest neighbor r1 and the nearest
neighbor r2, if ρ(r, r1) > δ then r moves toward r1, if ρ(r, r1) < δ – ε then r moves away from
r1, if δ – ε < ρ(r, r1) < δ then r moves away from r2. By this method, robots are arranged on a
circle. Some methods rely on the potential field technique (Leonard& Fiorelli, 2001); in this
approach, the potential of the field is defined dependent on the distance among robots in the
team in order to keep distances among them as prescribed. In addition, also the technique of
a virtual leader is involved to keep robots in a team at a prescribed distance from their
current leaders; in some approaches the relation the leader - the follower is expressed by
means of control laws in a given coordinate system (Das et al., 2002; Shao et al., 2005), with
execution of movement controlled by an omnidirectional camera.

1 Roomba is the trademark of iRobot Inc.

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 331

RRT-trees, see (Choset et al., 2005) for an excellent account of these approaches.Path
planning methods, according to (Latombe, 1991) can be divided into centralized, in which
case planning considers all robots in a team, or decoupled, when path is planned for each
robot independently. Another division of path planning methods consists in local vs. global
approach; in the local method, planning is provided for some neighborhood of a robot,
whereas in the global approach, the whole environment is taken into consideration. Path
planning consists in finding controls which secure the desired path of a robot toward a goal
with, e.g., obstacle avoidance. As with a single robot, the path planning problem arises for
teams of robots. In particular, centralized methods for single robots are extended to teams of
robots see, e.g., (Švestka&Overmars, 1998) where such planning is applied with help of
relational structures called super-graphs on which admissible paths are searched for. This
approach however assumes that the situation is static, i.e., no changes in the environment
happen during plan execution. The assumption of environment stability is not valid in real
world situations and the reactive approach (Arkin, 1998) to planning considers simple,
sensor - actuator coupling schemes expressible as low-level behaviors (Urdiales et al., 2006) ;
in these schemes, potential field methods, vector field histograms, dynamic window
approach are used (Urdiales et al., 2006). Some reactive methods use dynamic variants of
search algorithms like A*, e.g., D* (Brumitt et al., 2001).

From among those methods, we choose to adopt the method of potential field, see sect.5. In
classical setting, the potential field is built as the sum of two components: repulsive, induced
by obstacles, and attractive, induced by goals. The field force is defined as the gradient of
the repulsive, respectively, attractive, potential, see (Choset et al., 2005). In either case, the
potential is defined with the use of a metric, in analogy to classical physical examples of a
potential field like Coulomb or gravitational fields. Our approach is different: the potential
field is constructed by means of a chosen rough inclusion - the primitive predicate of rough
mereology, see sect.5. A robot is driven to the goal by following areas of increasing density
of the field as shown in sect.5. The problem for a single robot is presented fully in
(Polkowski&Osmialowski, 2009) where mereological potential fields have been constructed
and applied in planning of paths and robot navigation.

Problems of cooperative mobile robotics are even more demanding as they require an
accounting for group behavior of many autonomous mobile robots. There is the increasing
need for making use of such teams in practical problems of performing complex tasks
inaccessible for a single robot (like pushing large objects, rescue operations, assembling);
there is also a theoretical interest in research on aspects of their behavior: cooperative
mechanisms, leadership, conflict resolution, consensus making, many of which belong as
well in biology and environmental studies, see, e.g., (Balch&Arkin, 1998; Brumitt et al., 2001;
Chen&Luh, 1998; Leonard&Fiorelli, 2001; Shao et al., 2005) and also a discussion in (Cao et
al., 1997). These motifs have propelled research in direction of multi-robot planning.

Cooperative behavior is perceived by many authors, see, e.g., (Cao et al., 2005) and
references therein, as a specialization of collective behavior having the tint of achieving
jointly some goal. The goal may mean an economic advantage, reaching a specified position,
learning jointly a feature or a category of objects, etc., etc. Main directions of research in this
area of schemes for cooperative mobile robotics, include, as distinguished in the literature,

see, e.g., (Cao et al., 2005; Kramer&Scheutz, 2007), a study on group architectures, conflicts
of resources, motivations for cooperation, learning of a cooperative behavior,
spatiotemporal aspects: path planning, moving to formations, pattern generation.

In this work, which extends our earlier results (Osmialowski, 2009; Polkowski&Osmialowski,
2008a), we are concerned with the last aspect, i.e., moving to formations and path planning in
order to make robots into a given formation. Alongside, we are concerned with problems of
repairing formations and navigating formations in static environments. We study the problem
of path planning in order to make robots in a team into a formation. We apply as a theoretical
framework for our approach, a qualitative theory of spatial reasoning as provided by Rough
Mereology, see, e.g., (Polkowski&Osmialowski, 2008). In this framework, we give a definition
of a formation by a team of robots, by means of a rough mereological betweenness relation
among them, see (Osmialowski, 2009; Polkowski & Osmialowski, 2008). In the same
framework, we study the problem of path planning for moving into a given formation. We
propose some procedures to this end. We model our robots on Roomba1 robots by iRobot(R),
i.e., we assume our robots to be planar disk-shaped objects. We use Player/Stage system, see
(Osmialowski, 2007; 2009; http://playerstage.sourceforge.net) , as a tool for simulation and
visualization.

2. On formations of autonomous mobile robots

A study of the concept of a robot formation was initially based on a perception of animal
behavior like herding, swarming, flocking or schooling. In this respect, a few principles
emerged, see, e.g., (Balch&Arkin, 1998), keeping all animals within a certain distance from
one another (e.g., to ensure mutual visibility), moving away when the distance becomes too
close (to avoid congestion, collision, or resource conflict), adapting own movement to
movement of neighbors (e.g., velocity of motion), orienting oneself on a leader.

From those observations a geometric approach to formations has been derived: a formally
simplest approach (Balch&Arkin, 1998), uses referencing techniques; reference is made
either to the team center or to the team leader, or to a specified neighbor in a coordinate
system given by the position of the team center or the leader along with the orientation
given by the nearest navigation point; positions are determined, e.g., with the help of GPS or
dead reckoning. Another method for forming a geometric formation relies on a direct usage
of a metric, say rho, see, e.g., (Chen&Luh,1998; Sugihara&Suzuki,1990): given a threshold δ,
and a parameter ε, for each robot r in a team, its farthest neighbor r1 and the nearest
neighbor r2, if ρ(r, r1) > δ then r moves toward r1, if ρ(r, r1) < δ – ε then r moves away from
r1, if δ – ε < ρ(r, r1) < δ then r moves away from r2. By this method, robots are arranged on a
circle. Some methods rely on the potential field technique (Leonard& Fiorelli, 2001); in this
approach, the potential of the field is defined dependent on the distance among robots in the
team in order to keep distances among them as prescribed. In addition, also the technique of
a virtual leader is involved to keep robots in a team at a prescribed distance from their
current leaders; in some approaches the relation the leader - the follower is expressed by
means of control laws in a given coordinate system (Das et al., 2002; Shao et al., 2005), with
execution of movement controlled by an omnidirectional camera.

1 Roomba is the trademark of iRobot Inc.

www.intechopen.com

Mobile Robots Navigation332

It seems desirable to propose an approach which in principle would be metric independent
and which would take into account only relative positions of robots one to another. In this
work we propose a definition of a formation which is based on spatial predicates defined
within rough mereological theory of spatial reasoning, see, e.g., (Polkowski, 2001;
Polkowski&Osmialowski, 2008; 2008a).

3. Qualitative spatial reasoning: a nutshell reminder

In this Section, we recall elements of spatial theory induced in the rough mereological
framework which have already been presented extensively elsewhere, in particular in
(Polkowski&Osmialowski, 2008), Ch. 21. Qualitative Spatial Reasoning emerged on basis of
an idea by (A. N. Whitehead, 1929; Leonard & Goodman, 1940) of an extension, dual to a
notion of part in mereology theory (Lesniewski,1916;1982), reformulated as a theory of
Connection (Leonard&Goodman, 1940; Clarke, 1981). Qualitative Spatial Reasoning is a
basic ingredient in a variety of problems in mobile robotics, see, e.g., (Kuipers&Byun, 1987).
Spatial reasoning which deals with objects like solids, regions etc., by necessity refers to and
relies on mereological theories of concepts based on the opposition part - whole (Gotts et al.,
1996). Mereological ideas have been early applied toward axiomatization of geometry of
solids, see (De Laguna, 1922; Tarski,1929).

Mereological theories rely either on the notion of a part (Lesniewski, 1916; 1982), or on the
notion of objects being connected (Clarke, 1981; Gotts et al., 1996). Our approach to spatial
reasoning is developed within the paradigm of rough mereology. Rough mereology, see,
e.g., (Polkowski, 2003; 2004; 2008), is based on the predicate of being a part to a degree,
called a rough inclusion and thus it is a natural extension of mereology based on part
relation, as proposed by (Lesniewski, 1916; 1982). A rough inclusion, cf., (Polkowski, 2008),
is a ternary relation μ such that for any pair of objects u, v and real r the formula μ(u, v, r)
means that u is a part of v to a degree of r where]1,0[r .

In our applications to spatial reasoning, objects will be regions in Euclidean spaces, notably
rectangles, in particular squares, or discs in 2-dimensional space, and the rough inclusion
applied will predominantly be the one defined by the equation,

 μ0(u, v, r) if and only if r
u
vu

 (1)

where |u| is the area of the region u.

On the basis of a given rough inclusion μ, we can introduce predicates of a certain geometry of
regions in low-dimensional spaces. Points in such geometries are recovered usually be means
of the technique proposed by Alfred Tarski of ultrafilters of regions, see (Tarski, 1929).

4. Mereogeometry: a geometry of regions

We are interested in introducing into the mereological world defined by μ0 a geometry in
whose terms it will be possible to express spatial relations among objects; a usage for this
geometry will be found in navigation and control tasks of multi-agent mobile robotics.

4.1 A notion of a quasi-distance
We first introduce a notion of a quasi-distance κ in our rough mereological universe by
letting,

 κ(u, v) = min{argmaxrμ0(u, v, r), argmaxsμ0(v, u, s)} (2)

Observe that mereological distance differs essentially from the standard distance: the closer
are objects, the greater is the value of κ : κ(u, v) = 1 means u = v, whereas κ(u, v) = 0 means
disjointness in the sense of μ0 of u and v regardless of the Euclidean distance between them.

4.2 Nearness and Betweenness: Van Benthem's variant
We apply the distance κ to define in our context the predicate N of nearness proposed in
(van Benthem, 1983),

 N(z, u, v) <=> (κ(z, u) = r, κ(u, v) = s => s < r) (3)

Here, nearness means that z is closer to u than v is to u.

We make an essential use of the betweenness predicate BT proposed by van Benthem [3],
in analogy to the Tarski betweenness (Tarski,1959) on the basis of the nearness predicate,

 TB(z, u, v) <=> [for all w (z is w or N(z, u, w) or N(z, v, w))] (4)

Example 1. We consider a context in which objects are rectangles positioned regularly, i.e.,
having edges parallel to axes in R2. The measure μ is μ0 of (1). In this setting, given two
disjoint rectangles C, D, the only object between C and D in the sense of the predicate TB is
the extent ext(C, D) of C, D, i.e., the minimal rectangle containing the union DC . As
linear stretching or contracting along an axis does not change the area relations, it is
sufficient to consider two unit squares A, B of which A has (0, 0) as one of vertices whereas B
has (a, b) with a, b > 1 as the lower left vertex (both squares are regularly positioned). Then

the distance κ between the extent ext(A, B) and either of A, B is
)1)(1(

1
 ba

. For a

rectangle R: [0, x] x [0, y] with)1,(aax ,)1,(bby , we have that κ(R, A) =

xy
byax))((

 = κ(R, B). For ø(x, y) =
xy

byax))((
, we find that

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 333

It seems desirable to propose an approach which in principle would be metric independent
and which would take into account only relative positions of robots one to another. In this
work we propose a definition of a formation which is based on spatial predicates defined
within rough mereological theory of spatial reasoning, see, e.g., (Polkowski, 2001;
Polkowski&Osmialowski, 2008; 2008a).

3. Qualitative spatial reasoning: a nutshell reminder

In this Section, we recall elements of spatial theory induced in the rough mereological
framework which have already been presented extensively elsewhere, in particular in
(Polkowski&Osmialowski, 2008), Ch. 21. Qualitative Spatial Reasoning emerged on basis of
an idea by (A. N. Whitehead, 1929; Leonard & Goodman, 1940) of an extension, dual to a
notion of part in mereology theory (Lesniewski,1916;1982), reformulated as a theory of
Connection (Leonard&Goodman, 1940; Clarke, 1981). Qualitative Spatial Reasoning is a
basic ingredient in a variety of problems in mobile robotics, see, e.g., (Kuipers&Byun, 1987).
Spatial reasoning which deals with objects like solids, regions etc., by necessity refers to and
relies on mereological theories of concepts based on the opposition part - whole (Gotts et al.,
1996). Mereological ideas have been early applied toward axiomatization of geometry of
solids, see (De Laguna, 1922; Tarski,1929).

Mereological theories rely either on the notion of a part (Lesniewski, 1916; 1982), or on the
notion of objects being connected (Clarke, 1981; Gotts et al., 1996). Our approach to spatial
reasoning is developed within the paradigm of rough mereology. Rough mereology, see,
e.g., (Polkowski, 2003; 2004; 2008), is based on the predicate of being a part to a degree,
called a rough inclusion and thus it is a natural extension of mereology based on part
relation, as proposed by (Lesniewski, 1916; 1982). A rough inclusion, cf., (Polkowski, 2008),
is a ternary relation μ such that for any pair of objects u, v and real r the formula μ(u, v, r)
means that u is a part of v to a degree of r where]1,0[r .

In our applications to spatial reasoning, objects will be regions in Euclidean spaces, notably
rectangles, in particular squares, or discs in 2-dimensional space, and the rough inclusion
applied will predominantly be the one defined by the equation,

 μ0(u, v, r) if and only if r
u
vu

 (1)

where |u| is the area of the region u.

On the basis of a given rough inclusion μ, we can introduce predicates of a certain geometry of
regions in low-dimensional spaces. Points in such geometries are recovered usually be means
of the technique proposed by Alfred Tarski of ultrafilters of regions, see (Tarski, 1929).

4. Mereogeometry: a geometry of regions

We are interested in introducing into the mereological world defined by μ0 a geometry in
whose terms it will be possible to express spatial relations among objects; a usage for this
geometry will be found in navigation and control tasks of multi-agent mobile robotics.

4.1 A notion of a quasi-distance
We first introduce a notion of a quasi-distance κ in our rough mereological universe by
letting,

 κ(u, v) = min{argmaxrμ0(u, v, r), argmaxsμ0(v, u, s)} (2)

Observe that mereological distance differs essentially from the standard distance: the closer
are objects, the greater is the value of κ : κ(u, v) = 1 means u = v, whereas κ(u, v) = 0 means
disjointness in the sense of μ0 of u and v regardless of the Euclidean distance between them.

4.2 Nearness and Betweenness: Van Benthem's variant
We apply the distance κ to define in our context the predicate N of nearness proposed in
(van Benthem, 1983),

 N(z, u, v) <=> (κ(z, u) = r, κ(u, v) = s => s < r) (3)

Here, nearness means that z is closer to u than v is to u.

We make an essential use of the betweenness predicate BT proposed by van Benthem [3],
in analogy to the Tarski betweenness (Tarski,1959) on the basis of the nearness predicate,

 TB(z, u, v) <=> [for all w (z is w or N(z, u, w) or N(z, v, w))] (4)

Example 1. We consider a context in which objects are rectangles positioned regularly, i.e.,
having edges parallel to axes in R2. The measure μ is μ0 of (1). In this setting, given two
disjoint rectangles C, D, the only object between C and D in the sense of the predicate TB is
the extent ext(C, D) of C, D, i.e., the minimal rectangle containing the union DC . As
linear stretching or contracting along an axis does not change the area relations, it is
sufficient to consider two unit squares A, B of which A has (0, 0) as one of vertices whereas B
has (a, b) with a, b > 1 as the lower left vertex (both squares are regularly positioned). Then

the distance κ between the extent ext(A, B) and either of A, B is
)1)(1(

1
 ba

. For a

rectangle R: [0, x] x [0, y] with)1,(aax ,)1,(bby , we have that κ(R, A) =

xy
byax))((

 = κ(R, B). For ø(x, y) =
xy

byax))((
, we find that

www.intechopen.com

Mobile Robots Navigation334

0)1(2

y
b

x
a

x

, and, similarly, 0

y

, i.e., ø is increasing in x, y reaching the

maximum when R becomes the extent of A, B. An analogous reasoning takes care of the case
when R has some (c, d) with c, d > 0 as the lower left vertex.

The betweenness predicate allows for definitions of various patterns Pt. For instance, we
define a line pattern. We let,

 Pt(u, v, z) <=> z is TB(u, v) or u is TB(z, v) or v is TB(u, z) (5)

We will say that a finite sequence u1, u2, ..., un of objects belong in a line segment whenever
Pt(ui, ui+1, ui+2) for i = 1, ..., n - 2; formally, we introduce the functor Line of finite arity
defined via

 Line(u1, u2, ..., un) <=> for all i < n – 1 : Pt(ui, ui+1, ui+2) (6)

Example 2. With reference to Example 1, rectangles C, D and their extent ext(C, D) form a
line segment.

5. Mereological potential fields

As mentioned in sect.2, the technique of potential fields, see (Krogh, 1984; Khatib, 1986) for
seminal ideas, cf., (Choset et al., 2005; Latombe, 1991), well-known from planning in case of
a single robot, has been extended to the case of robot teams. An example of this approach is
given in (Leonard&Fiorelli, 2001), where robots in a team are organized around a set of
beacons called leaders, and are subjected to repulsive and attractive forces induced by
potential fields generated for pairs of robots and pairs of the form robot–leader in such a
way as to prevent too close distance among robots and to keep them along leaders.

In our case, we apply the idea already exposed, see (Osmialowski, 2009; Osmialowski&
Polkowski,2009; Polkowski&Osmialowski, 2008a), of building a potential field from the
rough inclusion μ0. Our path planner accepts target point coordinates and provides a list of
waypoints from a given robot position to the goal. It takes as an input a map of static
obstacles that a robot should avoid while approaching the target point. A robot and a target
should both lay within the area delimited by surrounding static obstacles that form borders
of the robot environment. There can be other static obstacles within the area, all marked on
the provided map. After the path is proposed, a robot is lead through the path until it
reaches given target. If a robot cannot move towards the target position for some longer
time (e.g., it keeps on hitting an other robot reaching its target or some unknown non-static
obstacle), a new path is proposed.We tested our planner by running simulations in which
we have had a model of Roomba robot, see (Tribelhorn&Dodds, 2007) traveling inside an
artificially created environment. Real Roomba robots are disc-shaped and therefore easy to
model, but they do not provide many useful sensor devices (except bumpers which we were
using to implement lower-level reaction to hitting unexpected obstacles). Also, odometry of

Roomba robots is unreliable (loc.cit) hence we assume that simulated robots are equipped
with a global positioning system.Right after the target position is given, our planner builds
the mereological potential field filled with squared areas each of the same size. The field is
delimited by environment's borders. Only space free of obstacles is filled.
The algorithm for building the potential field is the following.

SQUARE_FILL_ALGORITHM
Structure: a queue Q
1. Add to the queue Q, x and y coordinates of a given goal together with 0 as current
distance from current squared area to the next neighboring area (so they will be part of each
other to the maximal degree). Also put clockwise as current direction of exploration. These
are initial values.
2. Spin in the main loop until there are no more elements in the queue Q:
2.1. Extract x, y, current distance and current direction of exploration from the beginning of
queue Q.
2.2. Check if there is any other squared area already present in potential field to which the
distance from current x and y coordinates is equal or shorter than current distance. If so,
skip taken element and run new main loop turn.
2.3. Form new squared area with current x and y as the coordinates of the centroid of this
new area. Check if there are any common part with any static obstacle within this new
squared area. If so, skip taken element and run new main loop turn.
2.4. Add new squared area to the potential field.
2.5. Increase current distance by 0.01.
2.6. Add eight neighbor areas to the queue Q (for each area add these data: x and y
coordinates, current distance and direction of exploration opposite to current); if direction is
clockwise neighbors are: left, left-up, up, right-up, right, right-down, down, left-down; if
direction is anti-clockwise neighbors are: left-down, down, right-down, right, right-up, up,
left-up, left.
2.7. Run new main loop turn.

Fig. 1. Map of our artificial world edited by the uDig application (created and maintained by
Refractions Research). The map consists of number of layers whose can be edited
individually; on the figure we can see how solid obstacles are situated within obstacles layer

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 335

0)1(2

y
b

x
a

x

, and, similarly, 0

y

, i.e., ø is increasing in x, y reaching the

maximum when R becomes the extent of A, B. An analogous reasoning takes care of the case
when R has some (c, d) with c, d > 0 as the lower left vertex.

The betweenness predicate allows for definitions of various patterns Pt. For instance, we
define a line pattern. We let,

 Pt(u, v, z) <=> z is TB(u, v) or u is TB(z, v) or v is TB(u, z) (5)

We will say that a finite sequence u1, u2, ..., un of objects belong in a line segment whenever
Pt(ui, ui+1, ui+2) for i = 1, ..., n - 2; formally, we introduce the functor Line of finite arity
defined via

 Line(u1, u2, ..., un) <=> for all i < n – 1 : Pt(ui, ui+1, ui+2) (6)

Example 2. With reference to Example 1, rectangles C, D and their extent ext(C, D) form a
line segment.

5. Mereological potential fields

As mentioned in sect.2, the technique of potential fields, see (Krogh, 1984; Khatib, 1986) for
seminal ideas, cf., (Choset et al., 2005; Latombe, 1991), well-known from planning in case of
a single robot, has been extended to the case of robot teams. An example of this approach is
given in (Leonard&Fiorelli, 2001), where robots in a team are organized around a set of
beacons called leaders, and are subjected to repulsive and attractive forces induced by
potential fields generated for pairs of robots and pairs of the form robot–leader in such a
way as to prevent too close distance among robots and to keep them along leaders.

In our case, we apply the idea already exposed, see (Osmialowski, 2009; Osmialowski&
Polkowski,2009; Polkowski&Osmialowski, 2008a), of building a potential field from the
rough inclusion μ0. Our path planner accepts target point coordinates and provides a list of
waypoints from a given robot position to the goal. It takes as an input a map of static
obstacles that a robot should avoid while approaching the target point. A robot and a target
should both lay within the area delimited by surrounding static obstacles that form borders
of the robot environment. There can be other static obstacles within the area, all marked on
the provided map. After the path is proposed, a robot is lead through the path until it
reaches given target. If a robot cannot move towards the target position for some longer
time (e.g., it keeps on hitting an other robot reaching its target or some unknown non-static
obstacle), a new path is proposed.We tested our planner by running simulations in which
we have had a model of Roomba robot, see (Tribelhorn&Dodds, 2007) traveling inside an
artificially created environment. Real Roomba robots are disc-shaped and therefore easy to
model, but they do not provide many useful sensor devices (except bumpers which we were
using to implement lower-level reaction to hitting unexpected obstacles). Also, odometry of

Roomba robots is unreliable (loc.cit) hence we assume that simulated robots are equipped
with a global positioning system.Right after the target position is given, our planner builds
the mereological potential field filled with squared areas each of the same size. The field is
delimited by environment's borders. Only space free of obstacles is filled.
The algorithm for building the potential field is the following.

SQUARE_FILL_ALGORITHM
Structure: a queue Q
1. Add to the queue Q, x and y coordinates of a given goal together with 0 as current
distance from current squared area to the next neighboring area (so they will be part of each
other to the maximal degree). Also put clockwise as current direction of exploration. These
are initial values.
2. Spin in the main loop until there are no more elements in the queue Q:
2.1. Extract x, y, current distance and current direction of exploration from the beginning of
queue Q.
2.2. Check if there is any other squared area already present in potential field to which the
distance from current x and y coordinates is equal or shorter than current distance. If so,
skip taken element and run new main loop turn.
2.3. Form new squared area with current x and y as the coordinates of the centroid of this
new area. Check if there are any common part with any static obstacle within this new
squared area. If so, skip taken element and run new main loop turn.
2.4. Add new squared area to the potential field.
2.5. Increase current distance by 0.01.
2.6. Add eight neighbor areas to the queue Q (for each area add these data: x and y
coordinates, current distance and direction of exploration opposite to current); if direction is
clockwise neighbors are: left, left-up, up, right-up, right, right-down, down, left-down; if
direction is anti-clockwise neighbors are: left-down, down, right-down, right, right-up, up,
left-up, left.
2.7. Run new main loop turn.

Fig. 1. Map of our artificial world edited by the uDig application (created and maintained by
Refractions Research). The map consists of number of layers whose can be edited
individually; on the figure we can see how solid obstacles are situated within obstacles layer

www.intechopen.com

Mobile Robots Navigation336

Fig. 2. The playernav program can be used to indicate the goal position for given robot and to
show trajectory computed by underlying planer. In his situation, our mereological planner
computed the trajectory.

Fig. 3. Obstacles layer together with potential field layer (potential field generated for given
goal is stored as another map layer, here called roomba0). Observe increasing density
towards the goal.

6. A definition of a formation of robots

We propose a theory of many robot structures, based on the predicates of rough
mereological geometry, of which foremost is the predicate TB of betweenness. A Roomba
robot is a disc-shaped robot and due to this we model it as the square circumscribing the
robot with edges parallel to coordinate axes of the reference system. This allows for the
extent of two given robots to be always oriented as a regular rectangle, i.e., with edges
parallel to coordinate axes. In particular, this feature allows for translational and rotational
invariance of extents, more generally under affine transformations of the plane.

Definition 1. We say that a robot B is between robots A and C, in symbols (between B A C), in case
the rectangle ext(B) is contained in the extent of rectangles ext(A), ext(C), i.e., μ0(ext(B), ext(ext(A),
ext(C)), 1).

This allows as well for a generalization to the notion of partial betweenness which models in a
more precise manner spatial relations among A, B, C (we say in this case that robot B is
between robots A and C to a degree of at least r): in symbols,

(between-deg r B A C) (7)

if and only if

μ0(ext(B), ext[ext(A), ext(C)], r) (8)

We now give the central definition in this work: the definition of a formation. By a
formation, we mean a set of robots along with a structure imposed on it as a set of spatial
relations among robots.

Definition 2. For a team of robots, T(r1, r2, …, rn) = {r1, r2; …, rn}, an ideal formation IF on T(r1,
r2, …, rn) is a betweenness relation (between …) on the set T(r1, r2, …, rn) of robots.

In practice, ideal formations will be given as a list of expressions of the form,

 (between r0 r1 r2) (9)

indicating that the object r0 is between r1; r2, for all such triples, along with a list of
expressions of the form,

 (not-between r0 r1 r2) (10)

indicating triples which are not in the given betweenness relation.

To account for dynamic nature of the real world, in which due to sensory perception
inadequacies, dynamic nature of the environment, etc., etc., we allow for some deviations
from ideal formations by allowing that the robot which is between two neighbors can be
between them to a degree in the sense of (7).

This leads to the notion of a real formation.

Definition 3. For a team of robots, T(r1, r2, …, rn) = {r1, r2, …, rn}, a real formation RF on T(r1,
r2, …, rn) is a betweenness to degree relation (between-deg …) on the set T(r1, r2, …, rn) of robots.

In practice, real formations will be given as a list of expressions of the form,

 (between-deg δ r0 r1 r2) (11)

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 337

Fig. 2. The playernav program can be used to indicate the goal position for given robot and to
show trajectory computed by underlying planer. In his situation, our mereological planner
computed the trajectory.

Fig. 3. Obstacles layer together with potential field layer (potential field generated for given
goal is stored as another map layer, here called roomba0). Observe increasing density
towards the goal.

6. A definition of a formation of robots

We propose a theory of many robot structures, based on the predicates of rough
mereological geometry, of which foremost is the predicate TB of betweenness. A Roomba
robot is a disc-shaped robot and due to this we model it as the square circumscribing the
robot with edges parallel to coordinate axes of the reference system. This allows for the
extent of two given robots to be always oriented as a regular rectangle, i.e., with edges
parallel to coordinate axes. In particular, this feature allows for translational and rotational
invariance of extents, more generally under affine transformations of the plane.

Definition 1. We say that a robot B is between robots A and C, in symbols (between B A C), in case
the rectangle ext(B) is contained in the extent of rectangles ext(A), ext(C), i.e., μ0(ext(B), ext(ext(A),
ext(C)), 1).

This allows as well for a generalization to the notion of partial betweenness which models in a
more precise manner spatial relations among A, B, C (we say in this case that robot B is
between robots A and C to a degree of at least r): in symbols,

(between-deg r B A C) (7)

if and only if

μ0(ext(B), ext[ext(A), ext(C)], r) (8)

We now give the central definition in this work: the definition of a formation. By a
formation, we mean a set of robots along with a structure imposed on it as a set of spatial
relations among robots.

Definition 2. For a team of robots, T(r1, r2, …, rn) = {r1, r2; …, rn}, an ideal formation IF on T(r1,
r2, …, rn) is a betweenness relation (between …) on the set T(r1, r2, …, rn) of robots.

In practice, ideal formations will be given as a list of expressions of the form,

 (between r0 r1 r2) (9)

indicating that the object r0 is between r1; r2, for all such triples, along with a list of
expressions of the form,

 (not-between r0 r1 r2) (10)

indicating triples which are not in the given betweenness relation.

To account for dynamic nature of the real world, in which due to sensory perception
inadequacies, dynamic nature of the environment, etc., etc., we allow for some deviations
from ideal formations by allowing that the robot which is between two neighbors can be
between them to a degree in the sense of (7).

This leads to the notion of a real formation.

Definition 3. For a team of robots, T(r1, r2, …, rn) = {r1, r2, …, rn}, a real formation RF on T(r1,
r2, …, rn) is a betweenness to degree relation (between-deg …) on the set T(r1, r2, …, rn) of robots.

In practice, real formations will be given as a list of expressions of the form,

 (between-deg δ r0 r1 r2) (11)

www.intechopen.com

Mobile Robots Navigation338

indicating that the object r0 is to degree of δ in the extent of r1, r2, for all triples in the
relation (between-deg …), along with a list of expressions of the form,

 (not-between r0 r1 r2) (12)

indicating triples which are not in the given betweenness relation.

In Fig. 4, we sketch some cases of instances of relations (between-deg δ r0 r1 r2).

Fig. 4. Object r0 is in extent of r1 and r2 to degree δ.

7. On complexity of formation description

Description of formations, as proposed in Def. 1, 2 of sect. 6, can be a list of relation
instances of large cardinality, cf., Examples 3 and 4, below. The problem can be posed of
finding a minimal set of instances wholly describing a given formation. It turns out
(Polkowski&Osmialowski,2008) that the problem is intractable. We have

Proposition 1. The problem of finding a minimum size description of a given formation is NP-hard.

8. Implementation in Player/Stage software system

Player/Stage is an Open-Source software system designed for many UNIX-compatible
platforms, widely used in robotics laboratories (Kramer&Scheutz, 2007; Osmialowski, 2007;
http://playerstage.sourceforge.net) . Main two parts are Player - message passing server
(with bunch of drivers for many robotics devices, extendable by plug-ins) and Stage - a
plug{in for Player's bunch of drivers which simulates existence of real robotics devices that
operate in the simulated 2D world.

Player/Stage offers client-server architecture. Many clients can connect to one Player server,
where clients are programs (robot controllers) written by a user who connects to Player
client-side API. Player itself uses drivers to communicate with devices and in this activity it
does not make distinction between real and simulated hardware. It gives the user means for
testing programmed robot controller in both real and simulated world.

Among all Player drivers that communicate with devices (real or simulated), there are
drivers not intended for controlling hardware, instead those drivers offer many facilities for
sensor data manipulation, for example, camera image compression, retro-reflective

detection of cylindrical markers in laser scans, path planning. One of the new features
added to Player version 2.1 is the PostGIS2 driver: it connects to PostgreSQL database in
order to obtain and/or update stored vector map layers.

Fig. 5. Five Roomba robots inside simulated world

PostGIS itself is an extension to the PostgreSQL object-relational database system which
allows GIS (Geographics Information Systems) objects to be stored in the database. It also
offers new SQL functions for spatial reasoning. Maps which are to be stored in SQL
database can be created and edited by graphical tools like uDig or by C/C++ programs
written using GEOS library of GIS functions. PostGIS, uDig and GEOS library are projects
maintained by Refractions Research. A map can have many named layers, and for each layer
a table in SQL database is created. We can assume that the layer named obstacles consists of
objects which a robot cannot walk through. Other layers can be created in which we can
divide robot's workspace into areas with an assigned attribute which for example tells
whether a given area is occupied by an obstacle or not. During our experimentations, we
have created a plug-in for Players bunch of drivers which constantly tracks changes of
position of every robot and updates obstacles layer so robots are marked as obstacles. As a
result, the map stored in SQL database is kept always up to date. This feature is also useful
in multi-agent environments: at any time a robot controller can send a query to SQL
database server regarding every other robot position.

8.1. SQL queries representing rough mereogeometric predicates
A roboticist can write a robot controller using Player client-side API which obtains
information about current situation through the vectormap interface. Additionally, to write
such a program, PostgreSQL client-side API can be used in order to open direct connection
to the database server on which our mereogeometry SQL functions are stored together with

2 PostGis is an intelectual property of Refractions Research, Inc.

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 339

indicating that the object r0 is to degree of δ in the extent of r1, r2, for all triples in the
relation (between-deg …), along with a list of expressions of the form,

 (not-between r0 r1 r2) (12)

indicating triples which are not in the given betweenness relation.

In Fig. 4, we sketch some cases of instances of relations (between-deg δ r0 r1 r2).

Fig. 4. Object r0 is in extent of r1 and r2 to degree δ.

7. On complexity of formation description

Description of formations, as proposed in Def. 1, 2 of sect. 6, can be a list of relation
instances of large cardinality, cf., Examples 3 and 4, below. The problem can be posed of
finding a minimal set of instances wholly describing a given formation. It turns out
(Polkowski&Osmialowski,2008) that the problem is intractable. We have

Proposition 1. The problem of finding a minimum size description of a given formation is NP-hard.

8. Implementation in Player/Stage software system

Player/Stage is an Open-Source software system designed for many UNIX-compatible
platforms, widely used in robotics laboratories (Kramer&Scheutz, 2007; Osmialowski, 2007;
http://playerstage.sourceforge.net) . Main two parts are Player - message passing server
(with bunch of drivers for many robotics devices, extendable by plug-ins) and Stage - a
plug{in for Player's bunch of drivers which simulates existence of real robotics devices that
operate in the simulated 2D world.

Player/Stage offers client-server architecture. Many clients can connect to one Player server,
where clients are programs (robot controllers) written by a user who connects to Player
client-side API. Player itself uses drivers to communicate with devices and in this activity it
does not make distinction between real and simulated hardware. It gives the user means for
testing programmed robot controller in both real and simulated world.

Among all Player drivers that communicate with devices (real or simulated), there are
drivers not intended for controlling hardware, instead those drivers offer many facilities for
sensor data manipulation, for example, camera image compression, retro-reflective

detection of cylindrical markers in laser scans, path planning. One of the new features
added to Player version 2.1 is the PostGIS2 driver: it connects to PostgreSQL database in
order to obtain and/or update stored vector map layers.

Fig. 5. Five Roomba robots inside simulated world

PostGIS itself is an extension to the PostgreSQL object-relational database system which
allows GIS (Geographics Information Systems) objects to be stored in the database. It also
offers new SQL functions for spatial reasoning. Maps which are to be stored in SQL
database can be created and edited by graphical tools like uDig or by C/C++ programs
written using GEOS library of GIS functions. PostGIS, uDig and GEOS library are projects
maintained by Refractions Research. A map can have many named layers, and for each layer
a table in SQL database is created. We can assume that the layer named obstacles consists of
objects which a robot cannot walk through. Other layers can be created in which we can
divide robot's workspace into areas with an assigned attribute which for example tells
whether a given area is occupied by an obstacle or not. During our experimentations, we
have created a plug-in for Players bunch of drivers which constantly tracks changes of
position of every robot and updates obstacles layer so robots are marked as obstacles. As a
result, the map stored in SQL database is kept always up to date. This feature is also useful
in multi-agent environments: at any time a robot controller can send a query to SQL
database server regarding every other robot position.

8.1. SQL queries representing rough mereogeometric predicates
A roboticist can write a robot controller using Player client-side API which obtains
information about current situation through the vectormap interface. Additionally, to write
such a program, PostgreSQL client-side API can be used in order to open direct connection
to the database server on which our mereogeometry SQL functions are stored together with

2 PostGis is an intelectual property of Refractions Research, Inc.

www.intechopen.com

Mobile Robots Navigation340

map database. These functions can be called using this connection and results are sent back
to the calling program. This gives robot controller program ability to perform spatial
reasoning based on rough mereology. Using PostGIS SQL extensions we have created our
mereogeometry SQL functions, see (Ladanyi, 1997). Rough mereological distance is defined
with help of the following SQL function meredist.

CREATE FUNCTION meredist(object1 geometry, object2 geometry)
RETURNS DOUBLE PRECISION AS
$$

SELECT min(degrees.degree) FROM
((SELECT

ST Area(ST Intersection(extent($1), extent($2)))
/ ST Area(extent($1))
AS degree)

UNION (SELECT
ST Area(ST Intersection(extent($1), extent($2)))
/ ST Area(extent($2))
AS degree))

AS degrees;
$$ LANGUAGE SQL STABLE;

Having mereological distance function we can derive nearness predicate:

CREATE FUNCTION merenear(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT meredist($1, $2) > meredist($3, $2)
$$ LANGUAGE SQL STABLE;

The equi-distance can be derived as such:

CREATE FUNCTION mereequ(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT (NOT merenear($1, $2, $3))
AND (NOT merenear($1, $3, $2));

$$ LANGUAGE SQL STABLE;

Our implementation of the betweenness predicate makes use of a function
that produces an object which is an extent of given two objects:

CREATE FUNCTION mereextent(object1 geometry, object2 geometry)
RETURNS geometry AS
$$

SELECT GeomFromWKB(AsBinary(extent(objects.geom))) FROM
((SELECT $1 AS geom)

UNION (SELECT $2 AS geom))
AS objects;

$$ LANGUAGE SQL STABLE;

The betweenness predicate is defined as follows:

CREATE FUNCTION merebetb(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT
meredist($1, $2) = 1
OR meredist($1, $3) = 1
OR

(meredist($1, $2) > 0
AND meredist($1, $3) > 0
AND meredist(mereextent($2, $3),

mereextent(mereextent($1, $2), $3)) = 1);
$$ LANGUAGE SQL STABLE;

Using the betweenness predicate we can check if three objects form a pattern:

CREATE FUNCTION merepattern(object1 geometry, object2 geometry, object3 geometry)
RETURNS BOOLEAN AS
$$

SELECT merebetb($3, $2, $1)
OR merebetb($1, $3, $2)
OR merebetb($2, $1, $3);

$$ LANGUAGE SQL STABLE;

Also having pattern predicate we can check if four objects form a line:

CREATE FUNCTION mereisline4(obj1 geometry, obj2 geometry, obj3 geometry, obj4
geometry)
RETURNS BOOLEAN AS
$$

SELECT merepattern($1, $2, $3) AND merepattern($2, $3, $4);
$$ LANGUAGE SQL STABLE;

To figure out if a set of objects form a line an aggregate can be used:

CREATE FUNCTION mereisline_state(state array geometry[4], input data geometry)
RETURNS geometry[4] AS
$$

SELECT ARRAY[$1[2], $1[3], $2, result.object]
FROM (SELECT CASE
WHEN $1[4] IS NOT NULL

THEN $1[4]

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 341

map database. These functions can be called using this connection and results are sent back
to the calling program. This gives robot controller program ability to perform spatial
reasoning based on rough mereology. Using PostGIS SQL extensions we have created our
mereogeometry SQL functions, see (Ladanyi, 1997). Rough mereological distance is defined
with help of the following SQL function meredist.

CREATE FUNCTION meredist(object1 geometry, object2 geometry)
RETURNS DOUBLE PRECISION AS
$$

SELECT min(degrees.degree) FROM
((SELECT

ST Area(ST Intersection(extent($1), extent($2)))
/ ST Area(extent($1))
AS degree)

UNION (SELECT
ST Area(ST Intersection(extent($1), extent($2)))
/ ST Area(extent($2))
AS degree))

AS degrees;
$$ LANGUAGE SQL STABLE;

Having mereological distance function we can derive nearness predicate:

CREATE FUNCTION merenear(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT meredist($1, $2) > meredist($3, $2)
$$ LANGUAGE SQL STABLE;

The equi-distance can be derived as such:

CREATE FUNCTION mereequ(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT (NOT merenear($1, $2, $3))
AND (NOT merenear($1, $3, $2));

$$ LANGUAGE SQL STABLE;

Our implementation of the betweenness predicate makes use of a function
that produces an object which is an extent of given two objects:

CREATE FUNCTION mereextent(object1 geometry, object2 geometry)
RETURNS geometry AS
$$

SELECT GeomFromWKB(AsBinary(extent(objects.geom))) FROM
((SELECT $1 AS geom)

UNION (SELECT $2 AS geom))
AS objects;

$$ LANGUAGE SQL STABLE;

The betweenness predicate is defined as follows:

CREATE FUNCTION merebetb(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT
meredist($1, $2) = 1
OR meredist($1, $3) = 1
OR

(meredist($1, $2) > 0
AND meredist($1, $3) > 0
AND meredist(mereextent($2, $3),

mereextent(mereextent($1, $2), $3)) = 1);
$$ LANGUAGE SQL STABLE;

Using the betweenness predicate we can check if three objects form a pattern:

CREATE FUNCTION merepattern(object1 geometry, object2 geometry, object3 geometry)
RETURNS BOOLEAN AS
$$

SELECT merebetb($3, $2, $1)
OR merebetb($1, $3, $2)
OR merebetb($2, $1, $3);

$$ LANGUAGE SQL STABLE;

Also having pattern predicate we can check if four objects form a line:

CREATE FUNCTION mereisline4(obj1 geometry, obj2 geometry, obj3 geometry, obj4
geometry)
RETURNS BOOLEAN AS
$$

SELECT merepattern($1, $2, $3) AND merepattern($2, $3, $4);
$$ LANGUAGE SQL STABLE;

To figure out if a set of objects form a line an aggregate can be used:

CREATE FUNCTION mereisline_state(state array geometry[4], input data geometry)
RETURNS geometry[4] AS
$$

SELECT ARRAY[$1[2], $1[3], $2, result.object]
FROM (SELECT CASE
WHEN $1[4] IS NOT NULL

THEN $1[4]

www.intechopen.com

Mobile Robots Navigation342

WHEN $1[3] IS NULL
THEN NULL

WHEN ($1[2] IS NULL) AND (meredist($1[3], $2) > 0)
THEN NULL

WHEN ($1[2] IS NULL) AND (meredist($1[3], $2) = 0)
THEN $2

WHEN ($1[1] IS NULL) AND merepattern($1[2], $1[3], $2)
THEN NULL

WHEN ($1[1] IS NULL) AND (NOT merepattern($1[2], $1[3], $2))
THEN $2

WHEN merepattern($1[1], $1[2], $1[3]) AND merepattern($1[2], $1[3], $2)
THEN NULL

ELSE $2
END AS object)

AS result;
$$ LANGUAGE SQL STABLE;

CREATE FUNCTION mereisline_final(state array geometry[4])
RETURNS BOOLEAN AS
$$

SELECT ($1[4] IS NULL)
AND ($1[3] IS NOT NULL)
AND ($1[2] IS NOT NULL);

$$ LANGUAGE SQL STABLE;

CREATE AGGREGATE mereisline
(
SFUNC = mereisline_state,
BASETYPE = geometry,
STYPE = geometry[],
FINALFUNC = mereisline_final,
INITCOND = 'fg'
);

For our convenience we have derived betweenness predicate in more general form:

CREATE FUNCTION merebet(object geometry, object1 geometry, object2 geometry)
RETURNS BOOLEAN AS
$$

SELECT (
ST Area(ST Intersection(extent($1), mereextent($2, $3)))
/ ST Area(extent($1))
) = 1.0;

$$ LANGUAGE SQL STABLE;

8.2. A driver for Player server to maintain formations
We have created a plug-in driver (written in C++ programming language) for Player server
that keeps on tracking all robots in a team in order to make sure their positions form desired
formation. If formation is malformed, our driver tries to repair it by moving robots to their
proper positions within the formation. Also our driver is responsible for processing
incoming orders: position commands which are dispatched to formation leader (selected
member of a team) and geometry queries which are replied with information about current
formation extent size and its global position. As such, our driver can be considered as a
finite state machine which by default is constantly switching between two states: process
orders and formation integrity check. If formation integrity check fails it switches to repair
formation state.

Formation integrity check is done according to a given description. As pointed earlier,
description of formation is a list of s-expressions (LISP-style symbolic expressions). To parse
those descriptions efficiently we have used sfs-exp programming library written by Matthew
Sottile (sfsexp). Each relation between robots in given description is checked and if related
robots positions do not fulfill requirements, error value is incremented. Also while
traversing through a description, overall error value is computed in order to figure out what
could be the maximum error value for the given description. Finally, error value derived
from each robot position is divided by computed overall error value which gives the
normalized formation fitness value between 0 (all requirements were fulfilled) and 1 (none
of requirements were fulfilled). If the fitness value is below some threshold (typically 0.2),
then we can conclude that robots are in their desired positions.

Typical formation description may look like below.

Example 3.
(cross

(set
(max-dist 0.25 roomba0 (between roomba0 roomba1 roomba2))
(max-dist 0.25 roomba0 (between roomba0 roomba3 roomba4))
(not-between roomba1 roomba3 roomba4)
(not-between roomba2 roomba3 roomba4)
(not-between roomba3 roomba1 roomba2)
(not-between roomba4 roomba1 roomba2)

)
)

This is a description of a formation of five Roomba robots arranged in a cross shape. The
max-dist relation is used to bound formation in space by keeping all robots close one to
another.
Example below describes diamond shape formed by team of eight Roomba robots.

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 343

WHEN $1[3] IS NULL
THEN NULL

WHEN ($1[2] IS NULL) AND (meredist($1[3], $2) > 0)
THEN NULL

WHEN ($1[2] IS NULL) AND (meredist($1[3], $2) = 0)
THEN $2

WHEN ($1[1] IS NULL) AND merepattern($1[2], $1[3], $2)
THEN NULL

WHEN ($1[1] IS NULL) AND (NOT merepattern($1[2], $1[3], $2))
THEN $2

WHEN merepattern($1[1], $1[2], $1[3]) AND merepattern($1[2], $1[3], $2)
THEN NULL

ELSE $2
END AS object)

AS result;
$$ LANGUAGE SQL STABLE;

CREATE FUNCTION mereisline_final(state array geometry[4])
RETURNS BOOLEAN AS
$$

SELECT ($1[4] IS NULL)
AND ($1[3] IS NOT NULL)
AND ($1[2] IS NOT NULL);

$$ LANGUAGE SQL STABLE;

CREATE AGGREGATE mereisline
(
SFUNC = mereisline_state,
BASETYPE = geometry,
STYPE = geometry[],
FINALFUNC = mereisline_final,
INITCOND = 'fg'
);

For our convenience we have derived betweenness predicate in more general form:

CREATE FUNCTION merebet(object geometry, object1 geometry, object2 geometry)
RETURNS BOOLEAN AS
$$

SELECT (
ST Area(ST Intersection(extent($1), mereextent($2, $3)))
/ ST Area(extent($1))
) = 1.0;

$$ LANGUAGE SQL STABLE;

8.2. A driver for Player server to maintain formations
We have created a plug-in driver (written in C++ programming language) for Player server
that keeps on tracking all robots in a team in order to make sure their positions form desired
formation. If formation is malformed, our driver tries to repair it by moving robots to their
proper positions within the formation. Also our driver is responsible for processing
incoming orders: position commands which are dispatched to formation leader (selected
member of a team) and geometry queries which are replied with information about current
formation extent size and its global position. As such, our driver can be considered as a
finite state machine which by default is constantly switching between two states: process
orders and formation integrity check. If formation integrity check fails it switches to repair
formation state.

Formation integrity check is done according to a given description. As pointed earlier,
description of formation is a list of s-expressions (LISP-style symbolic expressions). To parse
those descriptions efficiently we have used sfs-exp programming library written by Matthew
Sottile (sfsexp). Each relation between robots in given description is checked and if related
robots positions do not fulfill requirements, error value is incremented. Also while
traversing through a description, overall error value is computed in order to figure out what
could be the maximum error value for the given description. Finally, error value derived
from each robot position is divided by computed overall error value which gives the
normalized formation fitness value between 0 (all requirements were fulfilled) and 1 (none
of requirements were fulfilled). If the fitness value is below some threshold (typically 0.2),
then we can conclude that robots are in their desired positions.

Typical formation description may look like below.

Example 3.
(cross

(set
(max-dist 0.25 roomba0 (between roomba0 roomba1 roomba2))
(max-dist 0.25 roomba0 (between roomba0 roomba3 roomba4))
(not-between roomba1 roomba3 roomba4)
(not-between roomba2 roomba3 roomba4)
(not-between roomba3 roomba1 roomba2)
(not-between roomba4 roomba1 roomba2)

)
)

This is a description of a formation of five Roomba robots arranged in a cross shape. The
max-dist relation is used to bound formation in space by keeping all robots close one to
another.
Example below describes diamond shape formed by team of eight Roomba robots.

www.intechopen.com

Mobile Robots Navigation344

Example 4.
(diamond

(set
(max-dist 0.11 roomba1 (between roomba1 roomba0 roomba2))
(max-dist 0.11 roomba3 (between roomba3 roomba1 roomba4))
(max-dist 0.11 roomba5 (between roomba5 roomba4 roomba6))
(max-dist 0.11 roomba7 (between roomba7 roomba0 roomba6))
(between roomba1 roomba0 roomba2)
(between roomba1 roomba0 roomba3)
(between roomba1 roomba2 roomba7)
(between roomba1 roomba3 roomba7)
(between roomba3 roomba2 roomba4)
(between roomba3 roomba2 roomba5)
(between roomba3 roomba1 roomba5)
(between roomba3 roomba1 roomba4)
(between roomba5 roomba4 roomba6)
(between roomba5 roomba4 roomba7)
(between roomba5 roomba3 roomba7)
(between roomba5 roomba3 roomba6)
(between roomba7 roomba0 roomba6)
(between roomba7 roomba0 roomba5)
(between roomba7 roomba1 roomba5)
(between roomba7 roomba1 roomba6)
(not-between roomba1 roomba0 roomba4)
(not-between roomba1 roomba2 roomba6)
(not-between roomba1 roomba2 roomba3)
(not-between roomba3 roomba0 roomba4)
(not-between roomba3 roomba2 roomba6)
(not-between roomba3 roomba1 roomba2)
(not-between roomba5 roomba6 roomba7)
(not-between roomba5 roomba2 roomba6)
(not-between roomba5 roomba0 roomba4)
(not-between roomba7 roomba5 roomba6)
(not-between roomba7 roomba2 roomba6)
(not-between roomba7 roomba0 roomba4)
(not-between roomba0 roomba1 roomba5)
(not-between roomba0 roomba3 roomba7)
(not-between roomba2 roomba1 roomba5)
(not-between roomba2 roomba3 roomba7)
(not-between roomba4 roomba1 roomba5)
(not-between roomba4 roomba3 roomba7)
(not-between roomba6 roomba1 roomba5)
(not-between roomba6 roomba3 roomba7)

)

)

If formation is malformed our driver can try to repair it. A run-time parameter of the driver
indicates which one of three methods should be used to move robots into their desired
positions within the formation.

8.2.1. Three methods of formation repairing
We propose three methods for restoring a team to its prescribed formation shape. The first
method is behavioral and does not use any planning. The second one is decoupled as
planning is made for each robot separately, and global as all robots are taken into
consideration at the same time. The third method is decoupled and global, and in addition is
behavioral, as all robots move simultaneously.

Fig. 6. States of our formation keeping driver for Player server

Method 1. Pure behavioral. Each robot (except a selected leader) moves to the goal
position. Whenever collision is detected (on the robot bumper device), robot goes back for a
while then turns left or right for a while and from this new situation, it tries again to go
towards goal position. Due to the nature of this method, formation repair process is time-
consuming (reactions to possible collisions take additional time) and may be even
impossible. Formation is repaired relatively to one selected member of a team called a leader
(therefore this selected member sticks in place while all other robot moves to their
positions). If formation is not repaired after some grace time, a next member of a team is
selected to be the new leader (therefore this new selected member sticks in place while all
other robot moves which changes whole situation). If there are no members left to be new
leaders, this method signals that the formation shape is impossible to be restored.

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 345

Example 4.
(diamond

(set
(max-dist 0.11 roomba1 (between roomba1 roomba0 roomba2))
(max-dist 0.11 roomba3 (between roomba3 roomba1 roomba4))
(max-dist 0.11 roomba5 (between roomba5 roomba4 roomba6))
(max-dist 0.11 roomba7 (between roomba7 roomba0 roomba6))
(between roomba1 roomba0 roomba2)
(between roomba1 roomba0 roomba3)
(between roomba1 roomba2 roomba7)
(between roomba1 roomba3 roomba7)
(between roomba3 roomba2 roomba4)
(between roomba3 roomba2 roomba5)
(between roomba3 roomba1 roomba5)
(between roomba3 roomba1 roomba4)
(between roomba5 roomba4 roomba6)
(between roomba5 roomba4 roomba7)
(between roomba5 roomba3 roomba7)
(between roomba5 roomba3 roomba6)
(between roomba7 roomba0 roomba6)
(between roomba7 roomba0 roomba5)
(between roomba7 roomba1 roomba5)
(between roomba7 roomba1 roomba6)
(not-between roomba1 roomba0 roomba4)
(not-between roomba1 roomba2 roomba6)
(not-between roomba1 roomba2 roomba3)
(not-between roomba3 roomba0 roomba4)
(not-between roomba3 roomba2 roomba6)
(not-between roomba3 roomba1 roomba2)
(not-between roomba5 roomba6 roomba7)
(not-between roomba5 roomba2 roomba6)
(not-between roomba5 roomba0 roomba4)
(not-between roomba7 roomba5 roomba6)
(not-between roomba7 roomba2 roomba6)
(not-between roomba7 roomba0 roomba4)
(not-between roomba0 roomba1 roomba5)
(not-between roomba0 roomba3 roomba7)
(not-between roomba2 roomba1 roomba5)
(not-between roomba2 roomba3 roomba7)
(not-between roomba4 roomba1 roomba5)
(not-between roomba4 roomba3 roomba7)
(not-between roomba6 roomba1 roomba5)
(not-between roomba6 roomba3 roomba7)

)

)

If formation is malformed our driver can try to repair it. A run-time parameter of the driver
indicates which one of three methods should be used to move robots into their desired
positions within the formation.

8.2.1. Three methods of formation repairing
We propose three methods for restoring a team to its prescribed formation shape. The first
method is behavioral and does not use any planning. The second one is decoupled as
planning is made for each robot separately, and global as all robots are taken into
consideration at the same time. The third method is decoupled and global, and in addition is
behavioral, as all robots move simultaneously.

Fig. 6. States of our formation keeping driver for Player server

Method 1. Pure behavioral. Each robot (except a selected leader) moves to the goal
position. Whenever collision is detected (on the robot bumper device), robot goes back for a
while then turns left or right for a while and from this new situation, it tries again to go
towards goal position. Due to the nature of this method, formation repair process is time-
consuming (reactions to possible collisions take additional time) and may be even
impossible. Formation is repaired relatively to one selected member of a team called a leader
(therefore this selected member sticks in place while all other robot moves to their
positions). If formation is not repaired after some grace time, a next member of a team is
selected to be the new leader (therefore this new selected member sticks in place while all
other robot moves which changes whole situation). If there are no members left to be new
leaders, this method signals that the formation shape is impossible to be restored.

www.intechopen.com

Mobile Robots Navigation346

Fig. 7. Pure behavioral method of repairing the formation

Fig. 8.Trails of robots that moved to their positions using pure behavioral method of
repairing the formation

Method 2. One robot at a time. The procedure is repeated for each robot in a team: a path is
planned by using any available planner (e.g., wavefront planner shipped with Player, or
mereonavigator planner created during our experimentations (Osmialowski, 2009)); then, a
robot moves to the goal position. This is the most reliable method, however it is time too
consuming for bigger teams.

Fig. 9. One robot at a time method for repairing the formation

Fig. 10. Trails of robots moved to their positions on planned paths (one robot at a time method)

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 347

Fig. 7. Pure behavioral method of repairing the formation

Fig. 8.Trails of robots that moved to their positions using pure behavioral method of
repairing the formation

Method 2. One robot at a time. The procedure is repeated for each robot in a team: a path is
planned by using any available planner (e.g., wavefront planner shipped with Player, or
mereonavigator planner created during our experimentations (Osmialowski, 2009)); then, a
robot moves to the goal position. This is the most reliable method, however it is time too
consuming for bigger teams.

Fig. 9. One robot at a time method for repairing the formation

Fig. 10. Trails of robots moved to their positions on planned paths (one robot at a time method)

www.intechopen.com

Mobile Robots Navigation348

Method 3. All robots at a time. Paths are planned and executed for all robots
simultaneously. Whenever collision occurs during plan execution, lower level behavior
causes involved robots to go back for a while, turn left or right for a while and new paths for
those robots are planned. This is the fastest method and despite the fact that it is not
collision aware, it is reliable enough.

Fig. 11. All robots at a time method of repairing the formation

Fig. 12. Trails of robots moved to their positions on planned paths (all robots at a time method)

9. Navigation by obstacles with robot formations. Formation changing
and repairing

The final stage of planning is in checking its soundness by navigating robots in an
environment with obstacles. We show results of navigating with a team of robots in the
initial formation of cross-shape in a crowded environment, see Fig. 13. In order to bypass a
narrow avenue between an obstacle and the border of the environment, the formation
changes to a line, and after bypassing it can use repairing to restore to the initial formation
(if it is required), see Figs.14-18. The initial cross-shaped formation is shown in Fig. 13 along
with obstacles in the environment.

Fig. 13. Initial formation of robots and the obstacle map

Fig. 14. Trails of robots moved to their positions on the cross formation

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 349

Method 3. All robots at a time. Paths are planned and executed for all robots
simultaneously. Whenever collision occurs during plan execution, lower level behavior
causes involved robots to go back for a while, turn left or right for a while and new paths for
those robots are planned. This is the fastest method and despite the fact that it is not
collision aware, it is reliable enough.

Fig. 11. All robots at a time method of repairing the formation

Fig. 12. Trails of robots moved to their positions on planned paths (all robots at a time method)

9. Navigation by obstacles with robot formations. Formation changing
and repairing

The final stage of planning is in checking its soundness by navigating robots in an
environment with obstacles. We show results of navigating with a team of robots in the
initial formation of cross-shape in a crowded environment, see Fig. 13. In order to bypass a
narrow avenue between an obstacle and the border of the environment, the formation
changes to a line, and after bypassing it can use repairing to restore to the initial formation
(if it is required), see Figs.14-18. The initial cross-shaped formation is shown in Fig. 13 along
with obstacles in the environment.

Fig. 13. Initial formation of robots and the obstacle map

Fig. 14. Trails of robots moved to their positions on the cross formation

www.intechopen.com

Mobile Robots Navigation350

Reaching the target requires passing by a narrow passage between the border and the
rightmost obstacle. To carry out this task, robots in the formation are bound to change the
initial formation. They try the line formation, see Figs. 14-15.

However, making the line formation at the entrance to narrow passage is coupled with some
difficulties: when the strategy all robots at a time is applied, robots at the lower part of the
formation perceive robots at the upper part as obstacles and wait until the latter move into
passage, which blocks whole routine as it is assumed that from the start each robot has a
plan until it does reach goal or until it does collide with another robot.

To avoid such blocking of activity the behavior wander was added, see clouded area in Figs.
15, 16, which permitted robots to wander until they find that they are able to plan their
paths into the line. It can be observed that this wandering consumes some extra time. When
the strategy one robot at a time is applied it is important to carefully select the order in which
robots are moved: the robots that have a clear pass to their target positions should go first.

Surprisingly, pure behavioral strategy showed good performance in managing with these
difficulties, however, (as we expected) when this strategy is applied, it is time -consuming to
reshape the formation. After the line was formed and robots passed through the passage,
see Figs. 17-18, the line formation could be restored to the initial cross-shape, if necessary,
with the help of a strategy for repairing formations of section 8.2.1. The results presented in
Figs. 14-19 have been witnessing that our approach has proved its usefulness and validity:
in quite complicated obstacle-ridden environments, robots are able to reach the goal. The
important feature of this approach is the invariance of the notion of formation with respect
to metric relations among robots: as no metric constraint bounds robots, they are able to
disperse when facing an obstacle with the only requirement being to keep spatial
relationships as set by the betweenness relation imposed upon them.

Fig. 15. Trails of robots moved to their positions on the line formation

Fig. 16. Trails of robots moving in the line formation through the narrow passage

Fig. 17.Trails of robots moving in the line formation through and after the passage

Fig. 18. Yet another formation change: back to the cross formation

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 351

Reaching the target requires passing by a narrow passage between the border and the
rightmost obstacle. To carry out this task, robots in the formation are bound to change the
initial formation. They try the line formation, see Figs. 14-15.

However, making the line formation at the entrance to narrow passage is coupled with some
difficulties: when the strategy all robots at a time is applied, robots at the lower part of the
formation perceive robots at the upper part as obstacles and wait until the latter move into
passage, which blocks whole routine as it is assumed that from the start each robot has a
plan until it does reach goal or until it does collide with another robot.

To avoid such blocking of activity the behavior wander was added, see clouded area in Figs.
15, 16, which permitted robots to wander until they find that they are able to plan their
paths into the line. It can be observed that this wandering consumes some extra time. When
the strategy one robot at a time is applied it is important to carefully select the order in which
robots are moved: the robots that have a clear pass to their target positions should go first.

Surprisingly, pure behavioral strategy showed good performance in managing with these
difficulties, however, (as we expected) when this strategy is applied, it is time -consuming to
reshape the formation. After the line was formed and robots passed through the passage,
see Figs. 17-18, the line formation could be restored to the initial cross-shape, if necessary,
with the help of a strategy for repairing formations of section 8.2.1. The results presented in
Figs. 14-19 have been witnessing that our approach has proved its usefulness and validity:
in quite complicated obstacle-ridden environments, robots are able to reach the goal. The
important feature of this approach is the invariance of the notion of formation with respect
to metric relations among robots: as no metric constraint bounds robots, they are able to
disperse when facing an obstacle with the only requirement being to keep spatial
relationships as set by the betweenness relation imposed upon them.

Fig. 15. Trails of robots moved to their positions on the line formation

Fig. 16. Trails of robots moving in the line formation through the narrow passage

Fig. 17.Trails of robots moving in the line formation through and after the passage

Fig. 18. Yet another formation change: back to the cross formation

www.intechopen.com

Mobile Robots Navigation352

Fig. 19. Trails of robots in the cross formation in the free workspace after the passage

10. Conclusions and future research

We have proposed a precise formal definition of a formation and we have presented a
Player driver for making formations according to our definition. Our definition of a
formation is based on a set of rough mereological predicates which altogether define a
geometry of the space. The definition of a formation is independent of a metric on the space
and it is invariant under affine transformations. We have examined three methods of
formation restoring, based on a reactive (behavioral) model as well as on decoupled way of
planning. We have performed simulations in Player/Stage system of planning paths for
formations with formation change. The results show the validity of the approach. Further
research will be directed at improving the effectiveness of execution by studying divisions
into sub-formations and merging sub-formations into formations as well as extending the
results to dynamic environments.

11. References

Arkin, R.C. (1998). Behavior-Based Robotics, MIT Press, ISBN 0-262-01165-4 , Cambridge MA
Balch, T. & Arkin, R.C. (1998). Behavior-based formation control for multi-robot teams. IEEE

Transactions on Robotics and Automation, 14(6), 926-939, ISSN 1042-296X
vanBenthem, J. (1983). The Logic of Time, Reidel, ISBN 9-027-71421-5, Dordrecht
Brumitt, B.; Stentz, A.; Hebert, M. & CMU UGV Group. (2001). Autonomous driving with

concurrent goals and multiple vehicles: Mission planning and architecture.
Autonomous Robots, 11, 103-115, ISSN 0929-5593

Uny Cao, Y.; Fukunaga, A.S. & Kahng, A.B. (1997). Cooperative mobile robotics: Antecede-
nts and directions. Autonomous Robots, 4, 7-27, ISSN 0929-5593

Chen, Q. & Luh, J. Y. S. (1998). Coordination and control of a group of small mobile robots,
Proceedings of IEEE Intern. Conference on Robotics and Automation, pp. 2315-2320,
ISBN 0-7803-4300-X, Leuven, May 1998, IEEE Press

Choset, H.; Lynch, K.M.; Hutchinson, S.; Kantor, G.; Burgard, W.; Kavraki, L.E.& Thrun,
S. (2005). Principles of Robot Motion. Theory, Algorithms, and Implementations, MIT
Press, ISBN 0-262-03327-5, Cambridge MA

Clarke, B. L. (1981). A calculus of individuals based on connection. Notre Dame Journal of
Formal Logic, 22(2), 204-218, ISSN 0029-4527

Das, A.; Fierro, R.; Kumar, V.; Ostrovski, J.P.; Spletzer, J. & Taylor, C.J. A vision-based
formation control framework. IEEE Transactions on Robotics and Automation, 18(5),
813-825, ISSN 1042-296X

Gotts, N.M.; Gooday, J.A. & Cohn, A.G. (1996). A connection based approach to common—
sense topological description and reasoning. The Monist , 79(1), 51-75

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotic Research , 5, 90-98, ISSN 0278-3649

Kramer, J. Scheutz, M. (2007). Development environments for autonomous mobile robots:
A survey. Autonomous Robots, 22, 101-132, ISSN 0929-5593

Krogh, B. (1984). A generalized potential field approach to obstacle avoidance control. SME-
I Technical paper MS84-484, Society of Manufacturing Engineers, Dearborn MI

Kuipers, B.J. & Byun, Y.T. (1987). A qualitative approach to robot exploration and map
learning, Proceedings of the IEEE Workshop on Spatial Reasoning and Multi-Sensor
Fusion, pp. 390-404, St. Charles IL, October 1987, Morgan Kaufmann, San Mateo
CA

Ladanyi, H. (1997). SQL Unleashed, Sams Publishing, ISBN 0-672-31133-X
De Laguna, T. (1922). Point, line, surface as sets of solids. J. Philosophy, 19, 449-461, ISSN

0022-362-X
Latombe, J. (1991). Robot Motion Planning, Kluwer, ISBN 0-792-39206-X, Boston
Ehrich Leonard, N. & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated

control of groups, Proceedings of the 40th IEEE Conference on Decision and Control,
ISBN 0-780-37061-9, pp. 2968-2973, Orlando Fla, December 2001, IEEE Press

Leonard, H. & Goodman, N. (1940). The calculus of individuals and its uses. The Journal of
Symbolic Logic, 5, 45-55, ISSN 0022-4812

Lesniewski, S. (1916). O Podstawach Ogolnej Teorii Mnogosci (On Foundations of General Theory
of Sets, in Polish), The Polish Scientific Circle in Moscow, Moscow

Lesniewski, S. (1982). On the foundations of mathematics, Topoi 2, 7-52, ISSN 0167-7411
Osmialowski, P. (2007). Player and Stage at PJIIT Robotics Laboratory, Journal of Automation,

Mobile Robotics and Intelligent Systems, 2, 21-28, ISSN 1897-8649
Osmialowski, P. (2009). On path planning for mobile robots: Introducing the mereological

potential field method in the framework of mereological spatial reasoning, Journal
of Automation, Mobile Robotics and Intelligent Systems, 3(2), 24-33, ISSN 1897-8649

Osmialowski, P. & Polkowski, L. (2009). Spatial reasoning based on rough mereology: path
planning problem for autonomous mobile robots, Transactions on Rough Sets. Lecture
Notes in Computer Science, in print, ISSN 0302-9743, Springer Verlag, Berlin

Player/Stage: Available at http://playerstage.sourceforge.net
Polkowski,L. (2001). On connection synthesis via rough mereology, Fundamenta Informaticae,

46, 83-96, ISSN 0169-2968

www.intechopen.com

Navigation for mobile autonomous robots and their formations:
An application of spatial reasoning induced from rough mereological geometry 353

Fig. 19. Trails of robots in the cross formation in the free workspace after the passage

10. Conclusions and future research

We have proposed a precise formal definition of a formation and we have presented a
Player driver for making formations according to our definition. Our definition of a
formation is based on a set of rough mereological predicates which altogether define a
geometry of the space. The definition of a formation is independent of a metric on the space
and it is invariant under affine transformations. We have examined three methods of
formation restoring, based on a reactive (behavioral) model as well as on decoupled way of
planning. We have performed simulations in Player/Stage system of planning paths for
formations with formation change. The results show the validity of the approach. Further
research will be directed at improving the effectiveness of execution by studying divisions
into sub-formations and merging sub-formations into formations as well as extending the
results to dynamic environments.

11. References

Arkin, R.C. (1998). Behavior-Based Robotics, MIT Press, ISBN 0-262-01165-4 , Cambridge MA
Balch, T. & Arkin, R.C. (1998). Behavior-based formation control for multi-robot teams. IEEE

Transactions on Robotics and Automation, 14(6), 926-939, ISSN 1042-296X
vanBenthem, J. (1983). The Logic of Time, Reidel, ISBN 9-027-71421-5, Dordrecht
Brumitt, B.; Stentz, A.; Hebert, M. & CMU UGV Group. (2001). Autonomous driving with

concurrent goals and multiple vehicles: Mission planning and architecture.
Autonomous Robots, 11, 103-115, ISSN 0929-5593

Uny Cao, Y.; Fukunaga, A.S. & Kahng, A.B. (1997). Cooperative mobile robotics: Antecede-
nts and directions. Autonomous Robots, 4, 7-27, ISSN 0929-5593

Chen, Q. & Luh, J. Y. S. (1998). Coordination and control of a group of small mobile robots,
Proceedings of IEEE Intern. Conference on Robotics and Automation, pp. 2315-2320,
ISBN 0-7803-4300-X, Leuven, May 1998, IEEE Press

Choset, H.; Lynch, K.M.; Hutchinson, S.; Kantor, G.; Burgard, W.; Kavraki, L.E.& Thrun,
S. (2005). Principles of Robot Motion. Theory, Algorithms, and Implementations, MIT
Press, ISBN 0-262-03327-5, Cambridge MA

Clarke, B. L. (1981). A calculus of individuals based on connection. Notre Dame Journal of
Formal Logic, 22(2), 204-218, ISSN 0029-4527

Das, A.; Fierro, R.; Kumar, V.; Ostrovski, J.P.; Spletzer, J. & Taylor, C.J. A vision-based
formation control framework. IEEE Transactions on Robotics and Automation, 18(5),
813-825, ISSN 1042-296X

Gotts, N.M.; Gooday, J.A. & Cohn, A.G. (1996). A connection based approach to common—
sense topological description and reasoning. The Monist , 79(1), 51-75

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotic Research , 5, 90-98, ISSN 0278-3649

Kramer, J. Scheutz, M. (2007). Development environments for autonomous mobile robots:
A survey. Autonomous Robots, 22, 101-132, ISSN 0929-5593

Krogh, B. (1984). A generalized potential field approach to obstacle avoidance control. SME-
I Technical paper MS84-484, Society of Manufacturing Engineers, Dearborn MI

Kuipers, B.J. & Byun, Y.T. (1987). A qualitative approach to robot exploration and map
learning, Proceedings of the IEEE Workshop on Spatial Reasoning and Multi-Sensor
Fusion, pp. 390-404, St. Charles IL, October 1987, Morgan Kaufmann, San Mateo
CA

Ladanyi, H. (1997). SQL Unleashed, Sams Publishing, ISBN 0-672-31133-X
De Laguna, T. (1922). Point, line, surface as sets of solids. J. Philosophy, 19, 449-461, ISSN

0022-362-X
Latombe, J. (1991). Robot Motion Planning, Kluwer, ISBN 0-792-39206-X, Boston
Ehrich Leonard, N. & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated

control of groups, Proceedings of the 40th IEEE Conference on Decision and Control,
ISBN 0-780-37061-9, pp. 2968-2973, Orlando Fla, December 2001, IEEE Press

Leonard, H. & Goodman, N. (1940). The calculus of individuals and its uses. The Journal of
Symbolic Logic, 5, 45-55, ISSN 0022-4812

Lesniewski, S. (1916). O Podstawach Ogolnej Teorii Mnogosci (On Foundations of General Theory
of Sets, in Polish), The Polish Scientific Circle in Moscow, Moscow

Lesniewski, S. (1982). On the foundations of mathematics, Topoi 2, 7-52, ISSN 0167-7411
Osmialowski, P. (2007). Player and Stage at PJIIT Robotics Laboratory, Journal of Automation,

Mobile Robotics and Intelligent Systems, 2, 21-28, ISSN 1897-8649
Osmialowski, P. (2009). On path planning for mobile robots: Introducing the mereological

potential field method in the framework of mereological spatial reasoning, Journal
of Automation, Mobile Robotics and Intelligent Systems, 3(2), 24-33, ISSN 1897-8649

Osmialowski, P. & Polkowski, L. (2009). Spatial reasoning based on rough mereology: path
planning problem for autonomous mobile robots, Transactions on Rough Sets. Lecture
Notes in Computer Science, in print, ISSN 0302-9743, Springer Verlag, Berlin

Player/Stage: Available at http://playerstage.sourceforge.net
Polkowski,L. (2001). On connection synthesis via rough mereology, Fundamenta Informaticae,

46, 83-96, ISSN 0169-2968

www.intechopen.com

Mobile Robots Navigation354

Polkowski, L. (2008). A unified approach to granulation of knowledge and granular
computing based on rough mereology: A survey, In: Handbook of Granular
Computing, Pedrycz, W.; Skowron, A. & Kreinovich, V., (Eds.), 375-400, John
Wiley and Sons, ISBN 987-0-470-03554-2, Chichester UK

Polkowski, L. & Osmialowski, P. (2008) Spatial reasoning with applications to mobile
robotics, In: Mobile Robots Motion Planning. New Challenges, Xing-Jian Jing, (Ed.), 43-
55, I-Tech Education and Publishing KG, , ISBN 978-953-7619-01-5, Vienna

Polkowski, L. & Osmialowski, P. (2008). A framework for multiagent mobile robotics:
Spatial reasoning based on rough mereology in Player/stage system, Lecture Notes
in Artificial Intelligence, 5306, 142-149, Springer Verlag, ISSN 0302-9743, Berlin

P. Ramsey, PostGIS Manual, in: postgis.pdf file downloaded from Refractions Research
home page.

J. Shao, G. ; Xie, J. Yu & Wang, L. (2005). Leader-following formation control of multiple
mobile robots, In: Proceedings of the 2005 IEEE Intern. Symposium on Intelligent
Control, pp. 808-813, ISBN 0-780-38936-0, Limassol, June 2005, IEEE Press

sfsexp: Available at http://sexpr.sourceforge.net
Sugihara, K. & Suzuki, I. (1990). Distributed motion coordination of multiple mobile robots,

In: Proceedings 5th IEEE Intern. Symposium on Intelligent Control, pp. 138-143, ISBN 9-
991-32943-9, Philadelphia PA, Sept. 1990, IEEE Press

Švestka, P. & Overmars, M.H. (1998). Coordinated path planning for multiple robots,
Robotics and Autonomous Systems, 23, 125-152, ISSN 0921-8890

Tarski, A. (1929) Les fondements de la géométrie des corps, In: Supplement to Annales de la
Sociéte Polonaise de Mathématique, 29-33, Krakow, Poland

Tarski, A. (1959). What is elementary geometry?, In: The Axiomatic Method with Special
Reference to Geometry and Physics, Henkin, L.; Suppes, P. & Tarski, A., (Eds)., 16-29,
North-Holland, Amsterdam

 Tribelhorn, B. & Dodds, Z. (2007). Evaluating the Roomba: A low-cost, ubiquitous platform
for robotics research and education, In: 2007 IEEE International Conference on
Robotics and Automation, ICRA 2007, pp. 1393-1399, ISBN 1-4244-0601-3, April 2007,
Roma, Italy, IEEE Press

Urdiales, C.; Perez, E.J.; Vasquez-Salceda, J.; Sanchez-Marrµe, M. & Sandoval, F. (2006). A
purely reactive navigation scheme for dynamic environments using Case-Based
Reasoning, Autonomous Robots , 21, 65-78, ISSN 0929-5593

Whitehead, A. N. (1979). Process and Reality. An Essay in Cosmology 2nd. ed., The Free Press,
ISBN 0-029-34570-7, New York NY

www.intechopen.com

Mobile Robots Navigation

Edited by Alejandra Barrera

ISBN 978-953-307-076-6

Hard cover, 666 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting

sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii)

mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv)

localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the

strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor

actions are determined and adapted to environmental changes. The book addresses those activities by

integrating results from the research work of several authors all over the world. Research cases are

documented in 32 chapters organized within 7 categories next described.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Lech Polkowski and Pawel Osmialowski (2010). Navigation for Mobile Autonomous Robots and Their

Formations: an Application of Spatial Reasoning Induced from Rough Mereological Geometry, Mobile Robots

Navigation, Alejandra Barrera (Ed.), ISBN: 978-953-307-076-6, InTech, Available from:

http://www.intechopen.com/books/mobile-robots-navigation/navigation-for-mobile-autonomous-robots-and-

their-formations-an-application-of-spatial-reasoning-ind

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

