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1. Motivation

Localization is an essential task for a meaningful application of a robotic system. The knowl-
edge about its 6DoF pose represented as a 3D position and the orientation in space allows
a system to execute tasks defined in the 3D workspace and to prevent collisions using the
knowledge about obstacles from a model of the environment. A system needs to be capable
of estimating its absolute location in the world and to track the changes in the position during
its motion. We speak in this context of global and relative localization capabilities. The lo-
calization task performs a registration of the sensor perception to a reference. The two above
localization alternatives differ in the way how this reference is defined. The global localization
requires an a-priori knowledge about the environment stored usually as a geometric model or
as an image database that needs to be registered to the current sensory perception, see (Thrun,
2002) for a comprehensive survey.
Since early work in the 1970’s, such as SRI’s Shakey (Nilsson, 1984) and Moravec’s Cart
(Moravec, 1983), there have been great strides in the development of vision-based navigation
methods for mobile robots operating both indoors and outdoors. Much of the efficiency and
robustness of the recent systems can be attributed to the use of special purpose architectures
and algorithms that are tailored to exploit domain specific image cues. For example, road

Fig. 1. The Z∞ algorithm estimates the rotation (red landmarks) and the translation up to scale
(blue landmarks) based on a monocular camera in an efficient way. Therefore, it fits well for
resource-limited systems like e.g. flying mobile robots.
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followers rely on finding the road boundary and lane markers (Dickmanns & Graefe, 1988;
Hebert et al., 1995) or landmarks (Fennema et al., 1990; Kuhnert, 1990; Lazanas & Latombe,
1992; Levitt et al., 1987) whereas mobile robots navigating in hallways have exploited uniform
texture of the floor (Horswill, 1992), floor/wall features (Kim & Navatia, 1995; Kriegman et al.,
1989), and overhead lights (Fukuda et al., 1995). Although these domain specializations lead
to impressive performance, they do so by imposing particular sensor cues and representa-
tions on low-level navigation. As a result, a system that works in one domain may require
substantial redesign before it can be used in another.
Another interesting localization approach for mobile navigation on predefined paths are the
Vision-Based Control approaches. In many cases it is not necessary to use sophisticated map-
based systems to control the paths of the robot—instead a simple teaching phase may be
sufficient to specify the robot’s nominal pathways. Consider for example mobile robots per-
forming delivery in office environments, serving as AGV’s in an industrial setting, acting
as a tour guide, or operating as a security guard or military sentry. In these situations, the
robot repeatedly follows the same nominal path, except for minor perturbations due to con-
trol/sensing errors, slippage, or transient/dynamic obstacles. Such a system has to be walked
in a teaching step through the environment. During this teaching phase the robot learns the
path based on sensor perception and then later repeats this path using the same sensors to-
gether with previously stored information. Teaching (showing) a robot its nominal pathways
has been considered by others including (Matsumoto et al., 1996; 1999; Ohno et al., 1996; Tang
& Yuta, 2001). One approach is to use a stored two or three-dimensional representation (map)
of the environment together with sensing. A learned path can be replayed by first construct-
ing a map during training and then continuously localizing the robot with respect to the map
during playback. However, it is not clear that building a metrically accurate map is in fact
necessary for navigation tasks which only involve following the same path continuously. An-
other approach would be to use no prior information, but rather to generate the control signals
directly from only currently sensed data. In this case no path specification at all is possible.
An approach based on an Image Jacobian was presented in (Burschka & Hager, 2001).
On the other hand, relative localization approaches track merely the incremental changes in
the pose of the robot and do not necessarily require any a-priori knowledge. In relative local-
ization approaches, the initial or sensor perception from the previous time step is used as a
reference.
There are several methods, how the pose of a camera system can be estimated. We can distin-
guish here: multi-camera and monocular approaches. Since a multi-camera system has a cal-
ibrated reference position of the mounted cameras, stereo reconstruction algorithms (Brown
et al., 2003; Hirschmüller, 2008) can be used to calculate the three-dimensional information
from the camera information and the resulting 3D data can be matched to an a-priori model
of the environment. Consequently, there has been considerable effort on the problem of mo-
bile robot localization and mapping. This problem is known as simultaneous localization and
mapping (SLAM) and there is a vast amount of literature on this topic (see e.g., (Thrun, 2002)
for a comprehensive survey). SLAM has been especially succesful in indoor structured envi-
ronments (Gonzalez-Banos & Latombe, 2002; Konolige, 2004; Tards et al., 2002).
Monocular navigation needs to solve an additional problem of the dimensionality reduction
in the perceived data due to the camera projection. A 6DoF pose needs to be estimated from
2D images. There exist solutions to pose estimation for 3 point correspondences for most
traditional camera models, such as for example orthographic, weak perspective (Alter, 1994),
affine, projective (Faugeras, 1993; Hartley & Zisserman, 2000) and calibrated perspective (Har-

2. : monocular motion estimation

2.1 Principle of
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alick et al., 1994). These approaches constrain the possible poses of the camera to up to four
pairs of solutions in the case of a calibrated perspective camera. At most one solution from
each pair is valid according to the orientation constraints and the other solution is the reflec-
tion of the camera center across the plane of the three points.
In the work from Nister (Nister, 2004), an approach sampling for the correct solution along
the rays of projection solving an octic polynomial to find the actual camera pose is presented
that is limited to exactly 3 points neglecting any possible additional information. A solution
provided by Davison consists of building a probabilistic 3D map with a sparse set of good
landmarks to track (Davison, 2003). Klein was able to achieve even more accurate results as
the EKF based approach of Davison by efficiently separating the tracking and the mapping
routines (Klein & Murray, 2008).
In this chapter we address the problem of the robust relative localization with monocular
video cameras. We propose a localization algorithm that does not require any a-priori knowl-
edge about the environment and that is capable not only of estimation of the 6 motion param-
eters together but also the uncertainty values describing the accuracy of the estimates. The
output of the system is an abstraction of a monocular camera to a relative motion sensing
unit that outputs the motion parameters together with the accuracy estimates for the current
reading. Only this additional accuracy information allows a meaningful fusion of the sensor
output in SLAM and other filtering approaches that are based on Kalman Filters.

2. Z∞: monocular motion estimation

One problem in estimating an arbitrary motion in 3D from a real sensor with noise and out-
liers is to quantify the error and to suppress outliers that deteriorate the result. Most known
approaches try to find all six degrees of freedom simultaneously. The error can occur in any
dimension and, therefore, it is difficult in such methods to weight or isolate bad measurements
from the data set. The erroneous data can be detected and rejected more effectively if the error
is estimated separately along all parameters instead of a global value. Thus, a separation of
the rotation estimation from the translation simplifies the computation and the suppression
of error prone data immensely. This is one major advantage of our Z∞ algorithm presented
in this chapter. We use the usually undesirable quantization effects of the camera projection
to separate translation-invariant from translation-dependent landmarks in the image. In fact,
we determine the rotational component of the present motion without ever considering the
translational one. Fast closed form solutions for the rotation and translation from optical flow
exist if the influences are separable. These allow an efficient and globally optimal motion es-
timation without any a-priori information.
In this section, we describe how we detect translation-invariant landmarks for rotation esti-
mation and how the whole algorithm is applied to an image sequence.

2.1 Principle of Z∞

Talking about the projective transformation and the pixel discretization of digital cameras,
these characteristics are usually considered to be the barriers for image based motion estima-
tion. However, splitting the motion in a rotational and translational part is based on just these
effects - Z∞ uses the projective transformation and pixel discretization to segment the tracked
features into a translation-invariant and a translation-dependent component.
We see from the basic camera projection equation
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(
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)

=
f

Z

(

X
Y

)

(1)

with f representing the focal length, that the X and Y, being 3D world coordinates of the
imaged point, are both divided by the landmark’s distance Z.
According to the projective transformation and the motion equation, which applies a rotation
R and a translation T to a point Pi,

P′
i = RT Pi − T (2)

the camera motion affects the landmarks mapped onto the image plane as follows.
Each point in the image of a calibrated camera can be interpreted as a ray from the optical
center to the 3D landmark intersecting the camera image at a point.

Pi = λi�ni (3)

The length λi of the vector�ni to the landmark i is unknown in the camera projection.
Applying a rotation to the camera appears to rotate the displayed landmarks in an opposite
direction by the angle of rotation . The rotation is not affected by the distance to a landmark.
This is not the case for translations. A translational motion of the camera results in a different
motion for each landmark depending on its distance to the camera.

λ′
i�n

′
i = R (λi�ni + �T) (4)

Due to the pixel discretization, the translation cannot be measured anymore if a landmark
exceeds a certain distance to the camera. This distance

z∞ =
f

sm
Tm (5)

depends on the translational component parallel to the camera plane, the focal length f and
the pixel size sm. Tm is the translation between frames of the video. Depending on the trans-
lational motion between two images z∞ can be quite close to the camera, e.g., if we move a
standard camera with a focal length of 8.6 mm, a pixel size of 9.6 µm and a framerate of 30 Hz
with a translational component parallel to the image plane of about 2 km/h this results in a
translation invariant distance threshold of 16.6 m. Fig. 2 illustrates these characteristics of the
camera projections.
The typical observed motion Tm is smaller than the value assumed above for a motion ob-
served by a camera looking parallel to the motion vector T. This would correspond to a
camera looking to the side during a forward or backward motion. An important observation
is that Tm is not only scaled by the distance to the observed point but that the measurable
translation vector depends also on the angle Ψ, included by the motion vector and the per-
pendicular to the projection ray, and the angle ϕ, included by the projection ray and the optical
axis (Fig. 3). We see directly from Equation 6 that a radial motion as it is the case for points
along the optical center but also any other the line of projection lets a point become a part of
the {Pk∞} set of points, from which the translation cannot be calculated (Fig. 3).

∆Tsm = cos ψm∆T

∆Tm =
∆Tsm

cos ϕm
=

cos ψm

cos ϕm
∆T

∆Tx =
cos ψx

cos ϕx
∆T ∧ ∆Ty =

cos ψy

cos ϕy
∆T

(6)

2.2 RANSAC revisited
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Fig. 2. Optical flow vector 1
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)

is shorter than vector 2 but it is closer to the optical
center. Therefore, both vectors result in the same projection. Vector 3 has the same length as
vector 1, but it is further from the image plane - therefore, the projection is much shorter. It
becomes so small, that the projection of P3 and P′

3 lie within the same pixel. If such a projection
results only from a translation then it would be translation-invariant, because the translation
has no measurable influence on it.

Therefore, image features can be split into a set which is translation-invariant and a set which
is translation-dependent. Tests on outdoor pictures have shown that the contrast of the sky to
the ground at the horizon generates many good features to track. Indeed, an average percent-
age of 60 % of the selected features lies in outdoor images at the horizon.
But how can we identify which feature corresponds to which set? We have no information
about the rotation, the translation or the distance of the landmarks visible in the image. The
solution is provided by the algorithm described in the next section.

2.2 RANSAC revisited
The Random Sampling Consensus algorithm (RANSAC) is an iterative framework to find
parameters for a given model from an data-set including outliers (Fischler & Bolles, 1981). In
each iteration, an as small as possible data subset is randomly chosen to calculate the model
parameters. This model is than applied to the residual data set and the elements are split
into fitting elements (inliers) and non-fitting elements (outliers). This step is repeated several
times and the best model, according to the number of inliers and their residual error, is chosen.
Preemptive RANSAC is a variant which allows the algorithm to leave the loop in case that a
certain quality criterion applies also before the maximum number of iterations is reached.
In our case, the estimated model is a rotation matrix for which the entries have to be calcu-
lated. Therefore, we take three corresponding points from the two subsequent images and we
estimate the rotation matrix based on them, as it is explained in Section 2.3. The estimated
rotation is applied to the residual data set. In case that the initial three correspondences were
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Fig. 3. This drawing visualizes how the measurable translational component ∆Tx can be calcu-
lated. In general the optical flow vectors become longer the more parallel they become to the
image plane and the closer they get to the image border. The orange auxiliary line illustrates
the projections onto the x-z plane.

from points in the world at a distance further than z∞ and so represent only the rotational
part, the true rotation is calculated. Otherwise, the translational component of the OF-vectors
results in a wrong rotation matrix. Applying the resulting rotation on the remaining data set
shows if the initial points where truly translational invariant.
In case that we find other feature sets resulting from the same rotation we can assume that
the first three vectors where translation-independent and we found a first estimate for a pos-
sible rotation. Another indication for a correct rotation estimate is that the back-rotated and
therefore purely translational vectors intersect all in one point in the image, the epipole. A
degenerated intersection point is also the infinity, where all resulting vectors are parallel in
the image. This is a result of a motion parallel to the image. If there are no further OF-pairs
agreeing with the calculated rotation, we can expect, that we had at least one translation-
dependent element. In case of success, a more accurate and general rotation is estimated on
all inlier found by the first estimate. The average error of the back-projection of the vector-
endpoints according to the result and the number of found inlier gives an accuracy measure
and permits a comparison of the results of each iteration.
The vectors identified as rotation-inliers overlap after the compensation of rotation in both

2.3 Rotation estimation
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images and are, therefore, translation-invariant. The rotation-outliers represent translation-
dependent optical flow vectors and real mismatches. Again, we use RANSAC to suppress
outliers for a robust translation estimation as described in Section 2.4.
The probability to find an initial set of three translation-invariant optical flow elements de-
pends on the percentage of such vectors in the data set. As mentioned earlier, tests have
shown, that an average of 60 % of the features are far enough to be translation-invariant. The
lower 5 % quantile was about 30 %. These results in approximately 37 iterations necessary to
assure that in 95 % of the cases RANSAC can determine the rotation and divide the data set.
Usually several rotation inliers can also be tracked in the next image. Such features are then
preferred for rotation estimation, because it can be assumed that these landmarks are still fur-
ther than z∞. Thus, the number of RANSAC iterations for rotation estimation is reduced to
one - in practice a few iterations are done to improve the robustness.

2.3 Rotation estimation
The rotation of a point cloud can be estimated in closed form based on the direction vectors
to the different landmarks. Therefore, three different registration methods exist: the rotation
can be calculated using quaternions (Walker et al., 1991), by singular value decomposition
(SVD) (Arun et al., 1987) or Eigenvalue decomposition (EVD) (Horn, 1987). We use the so
called Arun’s Algorithm, based on SVD (Arun et al., 1987). It is analogue to the more familiar
approach presented by Horn, which uses an EVD.
The corresponding points used for rotation estimation belong all to translation-invariant
points. Therefore, Equation 4 can be abbreviated to

P′
i = λ′

i
�n′

i = R ∗ Pi = R λi �ni = λi R �ni, with λ′
i ≈ λi ⇒ �n′

i = R �ni (7)

Thus, we must solve following least squares problem

min ∑
∥

∥RPi − P′
i

∥

∥

2
(8)

This is achieved by the Arun’s Algorithm which works as follows. The input for the algorithm
are the two corresponding point clouds {Pi} and

{

P′
i

}

, which are only rotated and whose
rotation we want to estimate. First the origin of the coordinate frame has to be moved to the
centroid of the point cloud:

P̄ =
1

n

n

∑
i=1

Pi, P̄′ =
1

n

n

∑
i=1

P′
i (9)

P∗
i = Pi − P̄, P′∗

i = P′
i − P̄′ (10)

Now, the non scaled sample cross-covariance matrix for these point clouds is calculated to

M̃ =
n

∑
i=1

P′∗
i P∗

i
T (11)

Therefore, 1
n M̃ is the sample cross-covariance matrix between {Pi} and

{

P′
i

}

. It can be shown
that the rotation matrix which minimizes Equation 8 also fulfills

R̃ = argmaxR̃ tr(RM̃) (12)

Is (Ũ, Σ̃, Ṽ) the SVD of M̃
M̃ = (Ũ, Σ̃, Ṽ) (13)
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then R̃ can be calculated to
R̃ = Ṽ Ũ

T (14)

R̃ is orthonormal, symmetric and positive definite. However, it can happen that all features
lie in a plane. In that case not the rotation matrix, put a mirroring matrix is calculated. Such a
result can be recognized by the determinant of R, if det(R̃) = −1 instead of +1. The rotation
matrix can then be calculated to

R̃
′ = Ṽ

′
Ũ

T, with Ṽ
′ =




v1

v2

−v3


 (15)

v1, v2 and v3 are the rows in V corresponding to the singular values λ1, λ2 and λ3, whereas
λ1 > λ2 > λ3 = 0.
The uncertainty estimate of the rotation estimation consists in the average reprojection error
and the percentage of rotation inliers in the data set.
Actually, the Arun’s Algorithm is thought to estimate both, rotation and translation, but to
estimate latter the origin of both point clouds must be the same, which is not the case for a
moving camera.

2.4 Translation estimation
Compared to the rotation estimation, the calculation of the translation is rather trivial. All the
points in

{
P′

i

}
are rotated back by RT and consist afterwards only of the translational part of

the motion.
P̂′ = R

T
P
′ = R

T ( R ( P + �T ) ) = P + �T (16)

�T �=! 0 because only translation-dependent features are used.

We know from epipolar constraints that these back-rotated optical flow vectors P̂′ − P meet
all in the epipole in theory. Due to noise, approximation and discretization issues this will
not be the case in real data. Therefore, we calculate the point cloud of all intersections. The
centroid of this point cloud is supposed to be the epipole. However, there are also several
short vectors from very distant points which contain only a small observable translational
component. These vectors are inaccurate for direction indication. Further, there are several
almost parallel vectors which are also ill-conditioned to calculate their intersection. It seems
reasonable to weight the intersection points by a quality criterion resulting from the angle
between the rays which form the intersection and their length.
As uncertainty value for the translation the euclidean distance between the calculated epipole
and the intersection of the optical flow vectors is used, as well as the weights used to calculate
the intersections’ centroid.

3. Experiments

In the following section some simulation and experimental results are presented. First, some
explanations to the experimental setup and the visualization of the Z∞ output are given. Then,
a few simulation results are shown and finally two experiments with real data are demon-
strated. Amongst others, the method is compared to an other visual localization approach
and to the estimates from an inertial measurement unit (IMU).

3.1 Explanation of the Visualization Encoding
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2.4 Translation estimation

3. Experiments

3.1 Explanation of the Visualization Encoding
In the following, the color encoding of the visualization is briefly explained. The landmarks
are marked green if they could be tracked from the last image or red if they were lost and
replaced by new good features to track (see Fig. 4(a)). The optical flow is represented as
green vectors, where the original position of the feature is marked by a circle and the tracked
location by a cross. The results of the rotation estimation are colored red. The endpoints of the
optical flow vectors are rotated back according to the computed rotation – they are marked
as crosses too. Thereby, translation-invariant features are represented by red vectors, while
the outlier of the rotation computation are magenta (see Fig. 4(b)). The translation estimation
is illustrated blue. Similar to the rotational result, the vectors, which were used for epipole
estimation, are dark blue, while the outlier and therefore wrong tracked features are light
blue. The black star (circle and cross) represents the computed epipole (see Fig. 4(c)). A result
of the obstacle avoidance is shown in Fig. 4(d) and consists in two parts: the main image shows
the optical flow vectors which are used for obstacle detection and the small sub-image shows
the computed obstacle map. The vectors are mapped regarding their angle to the calculated
epipole and a red line illustrates the suggested swerve direction (swerve angle) (please refer
also to Section 3.6).

(a) Tracking output. (b) Rotation estimation.

(c) Translation estimation. (d) Obstacle detection.

Fig. 4. Visualization example for the Z∞ output.
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3.2 Simulation results
The Z∞ algorithm has also been tested extensively with artificial, controllable data. Matlab
has been used as simulation environment. Six parameter sets have been chosen to show the
algorithms reliability and insensibility to white noise and outlier (see Table 1). The conditions
of this test are as follows:

white noise (σ2) outlier (%) pixel-discretization

parameter set 1 0 0 no
parameter set 2 0.05 0 no
parameter set 3 0.2 0 no
parameter set 4 0 5 no
parameter set 5 0 0 yes
parameter set 6 0.05 2 yes

Table 1. Characteristics of the parameter sets used for simulation.

A standard camera with 8.6 mm focal length, 8.6 µm pixel size, and a resolution of 768 × 576
pixel is simulated. The parameters are transformed to a unit focal lenght camera model first.
The simulated translation can randomly vary between −0.05 to +0.05 m in X- and Y-direction
and twice as much along the optical axis. Further, a rotation of up to 0.5◦ per axis is allowed.
At maximum 100 points are simulated in the field of view and they are located within a dis-
tance of 1 km and 100 m altitude. The camera is simulated to be in 50 m altitude. The translation
computation is executed every 10th frame. Fig. 5 and 6 show an example of such a rotation
and translation estimation on artificial data.
The simulated white noise is added after projection onto the camera plane and the outlier can
have a size of up to 10 pixels – a local tracker would not find any further correspondences
neither. Each parameter set is tested on a simulated image sequence of 2000 images. The most
important parameters during the simulation are:

• maximum number of iterations for rotation estimation: 40

• maximum number of iterations for translation estimation: 20

• maximum number of steps per translation estimation: 5

average rota-
tional error (◦)

average transl.
dir. error (◦)

failed rotation
calculations

failed transl.
calculations

parameter set 1 0.0109 1.71 0 0
parameter set 2 0.0150 2.59 0 1
parameter set 3 0.0295 4.74 1 1
parameter set 4 0.0098 3.82 2 10
parameter set 5 0.0188 2.82 0 2
parameter set 6 0.0213 6.10 1 1

Table 2. Average rotation and direction of translation error and the number of failed rotation
and translation computations for the simulation of the six parameter sets of Table 1.

The results of the simulation are shown in Table 2. While the rotation estimation is rather ro-
bust against noise and outliers, the translation computation suffers from these characteristics.
Too many outliers even prevent a successful translation estimation.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

=−1.7068=−1.7305 =−2.1151=−2.1124 =−1.775=−1.808

3.3 Experimental setup
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3.2 Simulation results Also other ill-conditioning circumstances can be considered. In the following, we depict a few
insights which could be verified based on the results of the simulations:

• The estimation of the rotation about the optical axis is ill-conditioned. This results in an
approximately twice as large error compared to the other two axes.

• While the rotation estimation does not depend at all on the translation, an error in the
computation of the rotation will also be reflected in the translational result. Large errors
at the rotation estimation even prevent the translation estimation – this is also a reason
for the large number of failed translation computations in Table 2.

• If the translation is quite small it is more probable to misguide the rotation estimation
because the translational component is within the error tolerance of the rotation com-
putation. This fact is also noticeable in the experiment of Section 3.4.

• If the camera motion is along the optical axis, the estimation of the direction of transla-
tion is conditioned best (see also Fig. 6). If the camera translation becomes perpendicu-
lar to the direction of view, small errors in the rotation estimation, noise or a few outliers
may yield a large error. An exact parallel motion would imply that the translational op-
tical flow vectors meet at infinity, which is computationally ill-conditioned. This fact
should be highly recommended when choosing a camera setup for the Z∞ algorithm. It
works best if the cameras are mounted in the direction of motion, if such a preference
exists.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

α=−1.7068=−1.7305 β=−2.1151=−2.1124 γ=−1.775=−1.808

Fig. 5. Simulation of the rotation estimation in Matlab.

3.3 Experimental setup
To test our algorithm, first feature correspondences have to be found. Therefore, the Kanade-
Lucas-Tomasi (KLT) tracker has been used (Lucas & Kanade, 1981). Good features are selected
according to (Shi & Tomasi, 1994). The tracker is a local tracker with subpixel accuracy. It has
been chosen due to its performance and robustness. Fig. 4(a) shows an example output of
the tracker with 500 features. However, also global tracker, like SURF have been successfully
tested (see Section 3.7).
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Fig. 6. Simulation of the translation estimation in Matlab.

Fig. 7 shows the processing times of a C++-implementation of the algorithm on a 1.6 GHz
Intel Core Duo processor T2300. The same parameters as in the simulations (Section 3.2) were
used. The code is not optimized for performance and the processing is only single-threaded.
The time was measured with the “gprof” profiling tool.

Fig. 7. The computation time for each module of the Z∞ algorithm in milliseconds. In total an
average time of 4.13 ms on a 4 years old notebook is required.

3.4 Comparison of Z∞ to stereo-supported visual localization (SSVL)
In this experiment the Z∞ algorithm is compared to an algorithm, which has proven to be
accurate enough even for short-range 3D-modeling (Strobl et al., 2009). The method has been
designed for such short-distance applications, but it has been shown to be also accurate and
reliable for mobile robots (Meier et al., 2009). Comparing this indoor and outdoor localization
algorithm, we want to highlight the advantages and disadvantages, the bottlenecks and the
limits of both approaches.
In the next section the modules of this SSVL approach are briefly described to improve the
understanding of the reader.

3.4.1 Stereo-supported visual navigation

3.4.2 Comparison results: - SSVL
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3.4 Comparison of to stereo-supported visual localization (SSVL)

3.4.1 Stereo-supported visual navigation
This visual localization method is indeed also based on monocular image processing. How-
ever, usually it is supported by a second camera. In a nutshell: A patch-based KLT tracker is
used to select good features and track them from image to image. Those features have to be
initialized for the subsequent pose estimation. Therefore, three different initialization possi-
bilities exist: structure from motion, structure from reference or structure from stereo. In order
to get the proper scale and to be independent from any modifications of the environment, a
fast subpixel-accurate stereo initialization has been invented and is typically used. The pose
is calculated by the so called robustified visual GPS (RVGPS) algorithm (Burschka & Hager,
2003). Every time the features get lost or are moving outside of the field of view, new fea-
tures are initialized using the stereo images. However, the old feature sets are not dropped,
but maintained by an intelligent feature set management. As soon as the camera comes back
to a location it has already been, the features are refound and reused for tracking. Thus, the
accumulated bias gets reduced again and the error is kept as small as possible. This method
does not provide any probabilistic filtering like Kalman or particle filters. Nevertheless, any
of these methods can be used to smooth the localization output and reject outlier. For further
details to this algorithm refer to (Mair et al., 2009).

3.4.2 Comparison results: Z∞ - SSVL
For this experiment two Marlin F046C cameras from Allied Vision have been mounted on
a stereo rig with 9 cm baseline on the top of a Pioneer3-DX from MobileRobots Inc. (Fig. 8).
The robot has been programmed to follow a circular path with 3 m diameter. During the run
1920 stereo image pairs were acquired. The cameras have been slightly tilted to the ground
to provide closer areas in the images, while keeping the horizon and the structures at infinity
well visible. Although, the odometry is rather imprecise, the Pioneer has been able to close
the circle with only a few centimeters of error.

Fig. 8. The Pioneer3-DX carrying the two Marlin cameras.

Fig. 9 shows the trajectory computed by the stereo supported localization. It is apparent that
there is no bundle adjustment applied: wrong initialized features lead to a wrong pose estima-
tion, but are usually immediately removed by the M-estimator in RVGPS. However, if there
are too many wrong features, it can last some images until they get removed from the current
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feature set. Such a behavior is visible in the lower half of the circle, where the computed tra-
jectory leaves the circular path and jumps back on it again after a while. Nevertheless, such
outlier could also be suppressed by a probabilistic filter, like e.g. a Kalman filter.
To provide an accurate stereo initialization with this baseline, all landmarks have to lie within
a range of approximately 10 m. This image sequence is therefore ill conditioned for RVGPS-
based localization due to several facts: only features in the lower half of the image can be
used for pose estimation, due to the large rotation the feature sets are leaving the field of view
quickly and the ground on which the robot is operating has only little structure which eases
miss-matches and the loss of features during tracking (see Fig. 11).
The large rotational component of the motion compared to the amount of translation prevents
the Z∞ algorithm to determine the direction of translation accurately. The small translation
yields in a z∞-range of 10 cm per image. Therefore, the translation can only be evaluated after
several images, when it gets accumulated to a measurable length. Further, the small transla-
tional component in the optical flow vectors yields the features to be tested as translational
invariant and therefore to be misleadingly used for rotation estimation and to be rejected
from further translation estimation. A large number of images for translation accumulation
increases also the probability of the features to get lost by the tracker – this is also favored by
the poor structured ground.
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Fig. 9. The computed trajectory by
the SSVL algorithm. The red square
is the starting point and the red circle
the endpoint of the path.
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Fig. 10. These figure compares the absolute angle
estimated by the Z∞ (red) and the SSVL (blue) al-
gorithm.

Fig. 10 illustrates the computed angle of the Z∞ and SSVL algorithm and Table 3 shows some
key-values regarding the result. The SSVL method proves its accuracy with only 3.8◦ absolute
error, even though the ill-conditioned images. On the other hand, Z∞ accumulates an absolute
error of 16◦ during the sequence. This seems to be a large error before taking into account two
facts: The difference between both rotation estimations is not zero-mean as expected. This
can be easily explained reminding again the problem to detect translation-variant landmarks
at such a small translational motion. Close landmarks are also used for rotation estimation,
as shown in Figure 12, and because the translation is always done in the same direction on a
circular path, the estimation error corresponds to a measurement bias.
The other advantage of the SSVL approach is its bias reduction strategy. As explained in
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Section 3.4.1, the pose estimation is based on initialized feature sets. The distance of each
feature is estimated by stereo triangulation and is not updated anymore. The poses are always
calculated respective to the image, where the landmarks were initialized. Thus, the only time,
where a bias can be accumulated is when SSVL switches to a new feature set. The memory
consumption grows continuously if the camera does not operate in a restricted environment.
That prevents the SSVL algorithm to be used on platforms operating in large workspaces like
outdoor mobile robots. In this experiment 116 sets were necessary. On the other hand, the
Z∞ method does not need to provide a feature management. It estimates the pose from image
to image, which makes it adequate for outdoor applications on resource-limited platforms
without environment restrictions. As a drawback, it suffers from an error accumulation like
all non-map-based algorithms without a global reference. Considering the relative error in the
sense of error per accumulation step, we achieve a much smaller error for the Z∞ algorithm
than the SSVL approach. For the Z∞ method with 1920 steps, an average error of 0.008◦

arises. Despite of the error accumulated by the mistakenly used translation-variant features,
this is almost 4 times less than with SSVL, where 116 steps yield an error of 0.03◦ each. In
Fig. 13 the computed angles for each frame are plotted. Only a few outliers can be identified,
whereas Z∞ has less outlier than SSVL. This is not so problematic for SSVL due to its global
pose estimation approach as described above. Fig. 14 shows again the differences between the
estimated rotations of both methods for each image. The mean difference corresponds to the
explained bias of −0.02◦ with a standard deviation of 0.14◦ .

Fig. 11. A screenshot of the SSVL algorithm
at work. Only close landmarks are used.

Fig. 12. The small translations in that exam-
ple yield also close features to be used for ro-
tation estimation.

abs. X-rot.
error (◦)

abs. Y-rot.
error (◦)

abs. Z-rot.
error (◦)

no. of
error accu-
mulations

aver. Y-
rot. error
per acc. (◦)

average ro-
tation (◦)

SSVL 3.8 2.87 -0.01 116 0.03 0.21
Z∞ 16.0 -1.14 1.37 1920 0.008 0.19

Table 3. Keyvalues of the comparison between Z∞ and SSVL for the circle experiment. The
absolute rotation error for all three axes, the number of error accumulations of each method,
the average rotational error about the Y-axis for each error accumulation and the average
rotation per frame are listed.
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Fig. 13. This figures shows the angles com-
puted for each frame - red the Z∞ and blue
the SSVL results. The crosses mark the an-
gle about the Y-axis. Only these marks can
be identified in the plot.
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Fig. 14. This plot shows the difference be-
tween the Z∞ and SSVL rotation estimates
along the Y-axis. Only a few outlier can be
identified, which are detected by the SSVL’s
M-estimator. Hence, they do not have any
effect on the final result.

3.5 Comparison of Z∞ to an inertial measurement unit
For this experiment the inertial measurement unit (IMU) “MTi” from Xsens has been mounted
on a Guppy F046C camera from Allied Vision (see Fig. 15). The IMU provides the absolute
rotation, based on the earth’s magnetic field and three gyroscopes, and the acceleration of the
device. The camera images and the IMU data were acquired with 25 Hz. Before the data can
be evaluated, a camera to IMU calibration is necessary.

Fig. 15. The Xsens IMU is mounted on a Guppy camera. The data sets were acquired by
holding the camera-IMU system out of a car.

3.5.1 Camera to IMU calibration
Again, we benefit from the Z∞ algorithm – this time to calibrate the camera to the IMU. To
speed up the calibration procedure we use a global tracker, namely SURF. The camera-IMU
setup was rotated along all the axes while logging the sensor’s data. From that data four
images were chosen for the final calibration (see Fig. 16). The relative rotations Rimurel and

3.5.2 Comparison results: - IMU
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3.5 Comparison of to an inertial measurement unit

3.5.1 Camera to IMU calibration

R
camrel were computed and the rotation between the two coordinate frames imuRcam can be

determined using the Euler axis-angle representation. The axis of the rotation between the
frames is the cross-product of the rotation axes of the two relative rotations, while the angle
corresponds to their dot-product.
An other way to calibrate the two coordinate frames would be to solve following equation

imu
Rcam R

camrel
imu

R
T
cam = Rimurel (17)

This problem is known as AX = XB problem and is not trivial – therefore, the upper approach
has been used.

Fig. 16. These four images were used for camera to IMU calibration.

3.5.2 Comparison results: Z∞ - IMU
An IMU provides accurate information about the rotational speed. Combined with a magnetic
field sensor, which measures the earth’s magnetic field, it becomes a powerful angle sensor.
The Xsens IMU comes up with an internal Kalman filter which fuses these two sensors. How-
ever, the accelerometer is a bad translation sensor, due to several facts. First, the measured
acceleration has to be integrated twice in order to get the translational motion and second,
this integration has to start when the device is static in order to get the proper velocity. An
other problem are the forces which are also measured by an accelerometer like the earth’s
gravitation and the centrifugal force in curves.
Fig. 17 visualizes two data sets1 acquired while holding the camera-IMU system out of a car.
The left image shows a sine trajectory on a slightly left bent street. The right image describes
the path through a turnaround. Again, this street is slightly left bent. Both runs prove the
Z∞ based direction of translation estimation to outperform the IMU based acceleration inte-
gration. The main problem are the centrifugal forces, which, ones integrated, they are not
removed from the velocity vector anymore and cause the estimated pose to drift away.
One of the main disadvantages of the Z∞ translation estimation is the lack of scale. Tests,
where we tried to keep at least the scale constant over a run, failed because of the numerical
conditions of the problem. Therefore, in this experiment the same scale resulting from the
IMU measurement is used for weighting the Z∞ based translation vector.
Fig. 18 shows the angles measured along the axis perpendicular to the street, when driving
the sinuous line illustrated in the left image of Fig. 17. Even though the IMU has a Kalman
filter integrated, the Z∞ algorithm provides a much smooth measurement with less outlier.
However, both, Z∞ and IMU have the problem to miss very small rotations, because the pixel
displacement is to small to be tracked or the rotation lies within the noise of the gyroscopes
respectively. This sensitivity problem can be solved at least for the Z∞ approach by simply
keeping the same image as reference frame instead of changing it with each iteration. The
algorithm can then swap respective to the magnitude of the measured rotation.

1 The pictures at the right hand-side are “Google maps” screen-shots: http://maps.google.com
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(b) Passing a turnaround.

Fig. 17. Two trajectories measured by the Z∞ algorithm (red) and the IMU (blue). In the
pictures at the right-hand side the driven trajectories are sketched in black.

3.6 Obstacle Avoidance
Potential obstacles can be detected by evaluating the optical flow. Long vectors correspond
to close or/and fast objects. The closer or the faster an object is moving respective to the
camera, the larger the optical flow vectors become. For obstacle avoidance this relation is
advantageous in a twofold manner. A certain length is identified, depending on the camera
and the application, which defines a “dangerous” object. In a static environment, where only
the camera is moving, such objects should be detected earlier if the motion of the camera is
fast. This gives enough time to consider the obstacle for trajectory planning. In a dynamic
environment, fast objects are much more dangerous than slow ones and, therefore, these
should be detected earlier.
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3.6 Obstacle Avoidance
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Fig. 18. This image shows the relative angle measured during the same run as in the left image
of Fig. 17. The Z∞ rotation estimation is red, while the IMU data is blue.

(a) Input images for the obstacle detection: the black star is the epipole and the green vectors are the
optical flow.

(b) These are the corresponding obstacle maps to the images above - the red line is the suggested swerve
direction for obstacle avoidance.

Fig. 19. The Z∞ algorithm provides also an obstacle detection and their avoidance according
to the built obstacle map.

The question remains how to determine where the objects are located. Without a global ref-
erence it is only possible to describe them relative to the camera. Therefore, the calculated
epipole is used and objects are detected respective to the direction of translation. An obstacle
map shows the characteristics of obstacles: their angle respective to the epipole, their level
of danger as length and a suggested swerve direction for obstacle avoidance. Fig. 19 shows
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the output of the obstacle avoidance module on an image sequence acquired by the Pioneer
equipped with a Marlin F046C camera as in the experiment of Section 3.4. The robot was
programmed to move straight forward for the time of acquisition.

3.7 SURF based Z∞

The Z∞ algorithm has also been successfully tested with the global tracker SURF. Like every
global tracker, SURF also provides much more outlier and the accuracy is in general worse
than with local trackers. We used SURF when processing images acquired by an Octocopter,
taking 10 megapixel pictures of the church in Seefeld, Germany. Fig. 20 shows the rotation and
translation estimation result for one such image pair. The images where made in quite large
distances. Thus, SURF features have been extracted and the rotation and also translation was
computed for each feature set. Despite the high percentage of outlier and the poor accuracy,
the Z∞ algorithm could successfully process the image sequence.

Fig. 20. Motion estimation based on SURF features.

4. Conclusion

We have presented a localization algorithm which is based on a monocular camera. It relies
on the principle of separate estimation of rotation and translation, which significantly simpli-
fies the computational problem. Instead of solving an octal polynomial equation, like it is the
case with the 8-point algorithm, the SVD of a 3 × 3 matrix and the calculation of the intersec-
tion point cloud and its centroid are sufficient for motion estimation. Further, this separation
allows an own uncertainty feedback for both motion components. No aprori knowledge is
required for the algorithms nor any information needs to be carried between the image pairs.
The algorithm requires very little processing time and is very memory-efficient. Nevertheless,
we achieve comparable results to other localization methods and we have shown its accuracy
in simulations and real world experiments. The drawback of the algorithm is its restriction
to outdoor applications. However, especially for such applications the processing time and
memory consumption is crucial and the proposed approach seems to fit the requirements
for outdoor localization on mobile resource-limited platforms very well. Although, the ro-
tation and translation is calculated analytically, the algorithm to separate these components,
RANSAC, is an iterative method. Nevertheless, as explained in Section 2.3, from the second
motion estimation on, the number of iterations necessary to split the data into translation-
dependent and translation-invariant is reduced to a few. Therefore, Z∞ is a motion estimation
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3.7 SURF based

4. Conclusion

algorithm based on a monocular camera for outdoor mobile robots applications. Unlike other
state of the art approaches, this image based navigation can run also on embedded, resource-
limited systems with small memory and little processing power, keeping a high level of accu-
racy and robustness.
In the future we plan to adapt the algorithm to work also indoor by down-sampling the im-
ages and provide a hierarchical, iterative rotation estimation. An other point of research is the
fusion of IMU and camera data, because experiments have shown that a camera and an IMU
are two sensors which complement each other very well.
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