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1. Introduction 
 

A multiagent system (Weiss, 2000); (Russell & Norving, 1995) is proposed as an approach to 
social phenomena and complex systems in recent years. Agents are connected with 
networks, and they cooperate and negotiate with each other to solve problems by 
exchanging information. In addition, many multiagent simulators (MAS) are proposed, and 
some frameworks for developing MAS are also developed. These frameworks make the 
amount of work reduce. But it is necessary to build models that are required to develop 
simulators from scratch. It becomes a burden to developers. The models correspond to a 
model of MVC (Model-View-Controller) pattern. These models would be specialized in the 
framework and lack in reusability. Problems of these simulator frameworks are shown in 
the following: 
• Implementing models takes time and cost. 
• Managing models is very difficult. 
• The reusability of models is low. 
To solve these problems, this paper proposes a graphical model editor that can build models 
diagrammatically and a simulator development method using the editor. The method is 
compared with a conventional method from the viewpoint of usability and workload. The 
proposed method is applied to some examples and the results show that our method is 
effective in construction of multiagent simulators. 

 
2. Multiagent Simulators 
 

A multiagent system consists of the following components: 
• Agent 
An agent is an actual piece of operating software. It senses an environment and acquires 
information. It acts according to the information. 
• Environment 
An environment is a field where agents act. It also includes objects.  
• Object 
An object is a non-autonomous entity arranged in an environment. It does not influence the 
environment and agents. 

10
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In addition to them, a multiagent simulator has schedules for simulations: 
• Schedule 
A schedule prescribes behaviour of agents, state transitions of an environment, etc. It is 
invisible for simulations. 
 
In a multiagent simulator, an agent works with other agents or an environment, and gives 
some influences. The MAS may show an unexpected aspect as a result. Such emergent 
phenomena are useful for analyzing complex systems. 

 
3. Frameworks for Multiagent Simulators 
 

A multiagent simulator is software for actually simulating behavior of agents on a computer. 
It is also called an agent base simulator. There are mainly two kinds of methods in building 
a multiagent simulator. One, you could develop it using existing programming languages 
from scratch. The other, you could also develop it implementing only required components 
(multiagent models) by the aid of simulator frameworks. The former, while flexibility is 
very high, the quality of the software depends on a developer's skill. Because all parts are 
implemented from scratch, the burden of development is very heavy. The latter, 
components common to simulations are already implemented, and the burden of 
development is cut down greatly. In addition to this, the latest simulator frameworks have 
various functions, and they become very convenient to analyze. This paper focuses on a 
development method that uses simulator frameworks. Typical existing simulator 
frameworks are listed in the following: 
 

• Swarm   • Repast  
• Mason   • StarLogo 
• KK-MAS  • Ascape 
• TeamBots  • Breve 

 
Among these frameworks, Repast (North et al., 2005) and Mason (Luke et al., 2003) are 
made to be target frameworks in the following. These two frameworks take many concepts 
from Swarm (Swarm Development Group, 2004), and their flexibility and functionality are 
very high. 

 
4. Graphical Model Editor 
 

In order to describe multiagent models by diagrams, a dedicated editor is needed for 
drawing the diagrams. This section proposes a graphical model editor. 

 
4.1 Definition of Drawing 
Data of agents, environments, objects, and schedules are required to define multiagent 
models. It is also necessary to determine which diagrams should be used to express these 
data. These data can be divided into static and dynamic ones. We use class diagrams for 
static data, and flowcharts for dynamic data respectively. Some examples of model 
diagrams are shown in Fig. 1. 
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Fig. 1. Examples of model diagrams. 

 
4.2 Definition of Model Structure 
In defining model structure, we use a meta-model. A meta-model is a meta-level model for 
defining specific models. It gives definitions using the data about agents, environments, 
objects, and schedules. Adding the definitions of model structure as constraints of the model 
editor, an editing that is contrary to the constraints is prohibited. 
 
The outline of the meta-model is shown in Fig. 2. In this figure, classes under the class object 
correspond to class diagrams, and classes under the schedule area to flowcharts. Some kinds 
of class objects and schedule objects are prepared, and these are used as nodes on the editor. 
The following two things are realized by using this meta-model in Eclipse: If you try to 
draw an entity that does not meet drawing constraints of the meta-model, the model editor 
would not allow us to do. When the model is stored, model structure is preserved in the 
same structure of the meta-model. The meta-model restricts users to use the editor 
semantically wrong. In addition, the editor use a format called XMI (XML Metadata 
Interchange) (OMG, 2008) when the model is stored. There is an advantage that this model 
can be used with other tools in future. This format can raise the reusability of the model. 
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Fig. 2. A definition of the model by a meta-model. 

 
4.3 Definition of Mapping 
Drawing information and model structure are defined separately. These data must be 
connected to each other. We define a mapping from a part of the meta-model to each 
drawing node. Without this mapping, a situation could happen that you cannot save it even 
if you can draw a node. The outline of mapping is shown in Fig. 3. Mapping from an 
attribute of the meta-model to a label of drawing objects enables us to deliver model 
information. 

 
Fig. 3. Mapping of a drawing node and a model structure definition. 
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Fig. 4. Technologies for transforming models into codes. 
 
It is necessary to modify the mapping if a definition of drawing, such as a form or colour of 
an object, is modified. But there is no necessity of changing the meta-model, and vice versa. 
Since the mapping is only tying up two items, so modification is very easy. Thereby, we can 
flexibly modify definitions of drawing and the meta-model. 

 
5. Development Method by Model-Code Transformation 
 

This section describes a simulator development method using the proposed graphical model 
editor. A transformation process of the method is shown in Fig. 4. 

 
5.1 Transforming Multiagent Models into Source Codes 
JET (Java Emitter Templates) (Marz & Aniszczyk, 2006) is used for transforming multiagent 
models into source codes. JET is one of Eclipse project results and it is a code generation 
technique for improvement in productivity. A code-generator is an important component of 
Model Driven Development (MDD). The goal of MDD is to develop a software system using 
abstract models (such as UML models or EMF/ECORE models), and then refine and 
transform these models into source codes. Although it is possible to create abstract models, 
and manually transform them into codes, the real power of MDD comes from automating 
these processes. Such transformations accelerate the MDD processes, and result in better 
code quality. In JET, codes are outputted using templates. Models can be applicable to 
various frameworks by changing templates. JET is useful to raise the reusability of models. 
It needs an XML file storing the model information and a template file for transforming the 
model into codes. The template file is described for every target language using XPath (XML 
Path Language). 
 
The model describes XML forms as a tree structure. A template corresponds to a medium 
which creates source codes by reading information of the model. The tags in the template 
are simplified tags of XPath, and it is possible to take out the information of input models by 
designating these tags directly. Source codes corresponding to each platform are generated 
on the basis of this information. 
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5.2 Templates 
A template is created for Java language because one of the target simulator frameworks, 
Repast, corresponds to Java. The flexibility of the template depends on the contents in the 
template. Existing many sample programs are referred to make template’s schema as 
general as possible. 
 

A part of the created template is shown in the following: 
 

<?xml version=”1.0” encoding=”utf-8”?> 
public class <c:get select=”$element/@elementName” /> { 
<c:iterate select=”$element/variables” var=”vari”> 

private <c:get select=”$vari/@type” /> 
 <c:get select=”$vari/@elementName” />; 

public void set<c:get select=”$vari/@elementName” /> ( 
<c:get select=”$vari/@type” /> <c:get 
select=”$vari/@elementName” />) { 

this.<c:get select=”$vari/@elementName” /> = <c:get 
select=”$vari/@elementName” />;} 

public <c:get select=”$vari/@type” /> get<c:get 
select=”$vari/@elementName” />() { 
return <c:get select=”$vari/@ elementName” />;} 

</c:iterate> 
<c:iterate select=”$element/methods” var=”meth”> 

public <c:get select=”$meth/@outputType” /> <c:get 
select=”$meth/@elementName” />(<c:get 
select=”$meth/@inputType” />){} 

</c:iterate> 
} 
 
6. Experimental Results and Evaluations 
 

To evaluate the proposed method, the method is applied to some multiagent simulators, 
and it is compared with a conventional method from the viewpoint of usability and 
workload. 

 
6.1 Model Editor 
The model editor enables us to edit models graphically and to add information in detail 
using a property sheet. Code based model generation could be replaced with diagram based 
model generation by the editor. The model editor is built using the framework of Eclipse, it 
can be customized, and easily changed. It also increases the reusability of the models created 
by the model editor. 
 
On the flowchart expression, there is a problem that it can not deal with multiplex loops. As 
a result, coding by hands still remains. Expressions used in the editor are similar to 
programming languages such as class diagrams and flowcharts, so that some knowledge is 
needed for understanding them. To solve these problems, it is necessary to improve the 
contents of drawing and to consider more intelligible expressions. 
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6.2 Automatic Code Generation 
Some sample simulators were developed using the model editor. The developed sample 
simulators are taken from sample programs of Repast (http://repast.sourceforge.net/ 
repast_3/examples/index.html) and reference (Yamakage & Hattori, 2002). We examined 
how much codes were generated automatically by this proposed method. To be more 
precise, we compared the amount of codes automatically generated by the model editor and 
model-code transformation with the amount of codes that are manually added. These 
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Fig. 5. Comparison of the proposed method and the conventional method. 

Sample name Total codes 
(lines)  (A) 

Automatically 
generated codes 

(lines)  (B) 

Automatic code 
generation rate 

(C)=(B)*100/(A) 
1 Heat Bug 585 261 44.62% 
2 Sugar Scape 490 233 47.55% 
3 Regression Office 580 239 41.21% 
4 Rabbit Population 364 192 52.75% 
5 Open map 296 164 55.41% 
6 Neural from file 186 74 39.78% 
7 Neural Office 647 199 30.76% 
8 Mousetrap 282 128 45.39% 
9 Game of life 555 196 35.32% 

10 JinGirNew 359 176 49.03% 
11 Jiggle Toy 310 116 37.42% 
12 Jain 332 142 42.77% 
13 Hypercycles 712 201 28.23% 
14 Hexa Bug 426 193 45.31% 
15 Gis Bug 184 85 46.20% 
16 Genetic Office 519 203 39.11% 
17 Enn 566 224 39.58% 
18 Asynchagents 435 178 40.92% 
19 Lotka-Volterra 478 247 51.67% 
20 Carry Drop 418 186 44.50% 

average 436.2 181.9 42.88% 
Table 1. Automatic code generation rate using the model editor.  
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Fig. 6. Automatic code generation rate. 
 
This table shows automatic code generation rates by using the model editor. Fig. 6 depicts 
the results graphically. It turns out that every sample automatically generates about 40% - 
50% of the total codes. The average rate of the automatic code generation attains about 43%. 
The automatic code generation rates tend to decrease with the increase of total codes. This 
tendency is caused by the model editor’s ability that cannot deal with complex logics. The 
larger the total codes are, the more codes you need to add by hand. It is necessary to 
improve the model editor as a future subject. 

 
6.3 Workloads 
This section investigates how much the proposed method reduces workload. Unless the 
workload of drawing models by the editor is less than that of developing models from 
scratch, it does not make the burden of development reduce. These two workloads were 
measured. We compare the automatic generated codes to the number of nodes placed on the 
model editor. The amount of lines per one node is computed in Table 2. The numeric value 
(E) of Table 2 expresses how many lines are generated from one node on average. The 
average value of (E) is 2.46. 
 
The workload of arranging one node (two clicks and some little things) seems to be less than 
that of writing by hand the codes of 2.46 lines (about 62 characters, (G) = (E)*(F)). It is 
difficult to compare these correctly, and we assume that the workload of arranging one node 
and that of writing one line are equivalent for the simplicity. Under this assumption, Fig. 7 
depicts how much workloads are reduced. First, in the area of automatic code generation, 
 

Nodes : Codes = 1 : 2.46 (1) 
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because the workload of arranging one node and that of writing one line are assumed to be 
equivalent, the proposed method can be suppressed in 41% (1*100/2.46) of the amount of 
workload of the conventional method. There is no difference in the area of the manual 
generation, since these parts are generated by hand for both the proposed method and the 
conventional one. The average automatic code generation rate (C) in the Table 1 is about 
43%. The workload of the nodes part corresponds to 18% (=43%*41%) as a whole. As a result, 
25% of the total workload is reduced as shown in the Fig. 7. The validity of the proposed 
method is also shown from the viewpoint of workloads. 
 

 
Sample name Total noses   

(D) 

Lines per 
node (E) 
=(B)/ (D) 

Average  
characters  
per line (F) 

Characters per 
node (G)=(E) * 

(F) 
1 Heat Bug 99 2.64 24.1 63.62 
2 Sugar Scape 72 3.24 23.7 76.58 
3 Regression Office 88 2.72 25.9 70.42 
4 Rabbit Population 67 2.87 26.8 76.81 
5 Open map 61 2.69 23.2 62.46 
6 Neural from file 22 3.36 31.4 105.47 
7 Neural Office 110 1.81 24.5 44.32 
8 Mousetrap 63 2.03 22.7 46.19 
9 Game of life 92 2.13 22.6 48.12 

10 JinGirNew 64 2.75 25.8 70.83 
11 Jiggle Toy 68 1.71 24.6 41.93 
12 Jain 57 2.49 25.2 62.76 
13 Hypercycles 110 1.83 24.0 43.77 
14 Hexa Bug 76 2.54 23.6 60.00 
15 Gis Bug 33 2.58 25.7 66.09 
16 Genetic Office 78 2.60 29.1 75.82 
17 Enn 100 2.24 23.6 52.85 
18 Asynchagents 71 2.51 28.3 70.83 
19 Lotka-Volterra 103 2.40 22.8 54.74 
20 Carry Drop 90 2.07 23.9 49.43 

average 76.2 2.46 25.1 62.15 
Table 2. The amount of codes per one node.  
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Fig. 7. Difference of the two methods. 

 
7. Conclusion 
 

This paper proposed a model editor that can create graphically multiagent models, and a 
simulator development method using the editor to build multiagent simulators. 
Development and management of the models became very easy. In addition, reusability of 
the models also became very high, and simulator platforms could be changed flexibly. The 
proposed method was applied to some multiagent simulators and the results show that our 
method is effective in developing multiagent models and simulators. 
 
As future problems, we must improve the model diagrams to increase automatic code 
generation rates, and prepare other templates for various frameworks. 
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