
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Graphical Development Method for Multiagent Simulators 147

A Graphical Development Method for Multiagent Simulators

Keinosuke Matsumoto, Tomoaki Maruo, Masatoshi Murakami and Naoki Mori

X

A Graphical Development Method
 for Multiagent Simulators

Keinosuke Matsumoto, Tomoaki Maruo, Masatoshi Murakami, Naoki Mori

Osaka Prefecture University
Japan

1. Introduction

A multiagent system (Weiss, 2000); (Russell & Norving, 1995) is proposed as an approach to
social phenomena and complex systems in recent years. Agents are connected with
networks, and they cooperate and negotiate with each other to solve problems by
exchanging information. In addition, many multiagent simulators (MAS) are proposed, and
some frameworks for developing MAS are also developed. These frameworks make the
amount of work reduce. But it is necessary to build models that are required to develop
simulators from scratch. It becomes a burden to developers. The models correspond to a
model of MVC (Model-View-Controller) pattern. These models would be specialized in the
framework and lack in reusability. Problems of these simulator frameworks are shown in
the following:
• Implementing models takes time and cost.
• Managing models is very difficult.
• The reusability of models is low.
To solve these problems, this paper proposes a graphical model editor that can build models
diagrammatically and a simulator development method using the editor. The method is
compared with a conventional method from the viewpoint of usability and workload. The
proposed method is applied to some examples and the results show that our method is
effective in construction of multiagent simulators.

2. Multiagent Simulators

A multiagent system consists of the following components:
• Agent
An agent is an actual piece of operating software. It senses an environment and acquires
information. It acts according to the information.
• Environment
An environment is a field where agents act. It also includes objects.
• Object
An object is a non-autonomous entity arranged in an environment. It does not influence the
environment and agents.

10

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications148

In addition to them, a multiagent simulator has schedules for simulations:
• Schedule
A schedule prescribes behaviour of agents, state transitions of an environment, etc. It is
invisible for simulations.

In a multiagent simulator, an agent works with other agents or an environment, and gives
some influences. The MAS may show an unexpected aspect as a result. Such emergent
phenomena are useful for analyzing complex systems.

3. Frameworks for Multiagent Simulators

A multiagent simulator is software for actually simulating behavior of agents on a computer.
It is also called an agent base simulator. There are mainly two kinds of methods in building
a multiagent simulator. One, you could develop it using existing programming languages
from scratch. The other, you could also develop it implementing only required components
(multiagent models) by the aid of simulator frameworks. The former, while flexibility is
very high, the quality of the software depends on a developer's skill. Because all parts are
implemented from scratch, the burden of development is very heavy. The latter,
components common to simulations are already implemented, and the burden of
development is cut down greatly. In addition to this, the latest simulator frameworks have
various functions, and they become very convenient to analyze. This paper focuses on a
development method that uses simulator frameworks. Typical existing simulator
frameworks are listed in the following:

• Swarm • Repast
• Mason • StarLogo
• KK-MAS • Ascape
• TeamBots • Breve

Among these frameworks, Repast (North et al., 2005) and Mason (Luke et al., 2003) are
made to be target frameworks in the following. These two frameworks take many concepts
from Swarm (Swarm Development Group, 2004), and their flexibility and functionality are
very high.

4. Graphical Model Editor

In order to describe multiagent models by diagrams, a dedicated editor is needed for
drawing the diagrams. This section proposes a graphical model editor.

4.1 Definition of Drawing
Data of agents, environments, objects, and schedules are required to define multiagent
models. It is also necessary to determine which diagrams should be used to express these
data. These data can be divided into static and dynamic ones. We use class diagrams for
static data, and flowcharts for dynamic data respectively. Some examples of model
diagrams are shown in Fig. 1.

www.intechopen.com

A Graphical Development Method for Multiagent Simulators 149

In addition to them, a multiagent simulator has schedules for simulations:
• Schedule
A schedule prescribes behaviour of agents, state transitions of an environment, etc. It is
invisible for simulations.

In a multiagent simulator, an agent works with other agents or an environment, and gives
some influences. The MAS may show an unexpected aspect as a result. Such emergent
phenomena are useful for analyzing complex systems.

3. Frameworks for Multiagent Simulators

A multiagent simulator is software for actually simulating behavior of agents on a computer.
It is also called an agent base simulator. There are mainly two kinds of methods in building
a multiagent simulator. One, you could develop it using existing programming languages
from scratch. The other, you could also develop it implementing only required components
(multiagent models) by the aid of simulator frameworks. The former, while flexibility is
very high, the quality of the software depends on a developer's skill. Because all parts are
implemented from scratch, the burden of development is very heavy. The latter,
components common to simulations are already implemented, and the burden of
development is cut down greatly. In addition to this, the latest simulator frameworks have
various functions, and they become very convenient to analyze. This paper focuses on a
development method that uses simulator frameworks. Typical existing simulator
frameworks are listed in the following:

• Swarm • Repast
• Mason • StarLogo
• KK-MAS • Ascape
• TeamBots • Breve

Among these frameworks, Repast (North et al., 2005) and Mason (Luke et al., 2003) are
made to be target frameworks in the following. These two frameworks take many concepts
from Swarm (Swarm Development Group, 2004), and their flexibility and functionality are
very high.

4. Graphical Model Editor

In order to describe multiagent models by diagrams, a dedicated editor is needed for
drawing the diagrams. This section proposes a graphical model editor.

4.1 Definition of Drawing
Data of agents, environments, objects, and schedules are required to define multiagent
models. It is also necessary to determine which diagrams should be used to express these
data. These data can be divided into static and dynamic ones. We use class diagrams for
static data, and flowcharts for dynamic data respectively. Some examples of model
diagrams are shown in Fig. 1.

Fig. 1. Examples of model diagrams.

4.2 Definition of Model Structure
In defining model structure, we use a meta-model. A meta-model is a meta-level model for
defining specific models. It gives definitions using the data about agents, environments,
objects, and schedules. Adding the definitions of model structure as constraints of the model
editor, an editing that is contrary to the constraints is prohibited.

The outline of the meta-model is shown in Fig. 2. In this figure, classes under the class object
correspond to class diagrams, and classes under the schedule area to flowcharts. Some kinds
of class objects and schedule objects are prepared, and these are used as nodes on the editor.
The following two things are realized by using this meta-model in Eclipse: If you try to
draw an entity that does not meet drawing constraints of the meta-model, the model editor
would not allow us to do. When the model is stored, model structure is preserved in the
same structure of the meta-model. The meta-model restricts users to use the editor
semantically wrong. In addition, the editor use a format called XMI (XML Metadata
Interchange) (OMG, 2008) when the model is stored. There is an advantage that this model
can be used with other tools in future. This format can raise the reusability of the model.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications150

Fig. 2. A definition of the model by a meta-model.

4.3 Definition of Mapping
Drawing information and model structure are defined separately. These data must be
connected to each other. We define a mapping from a part of the meta-model to each
drawing node. Without this mapping, a situation could happen that you cannot save it even
if you can draw a node. The outline of mapping is shown in Fig. 3. Mapping from an
attribute of the meta-model to a label of drawing objects enables us to deliver model
information.

Fig. 3. Mapping of a drawing node and a model structure definition.

Canvas

Class Object

Variable Method

Schedule Connection

Schedule Object Connection

0..* 0..*

0..* 0..* 0..*

0..*

0..*

Variable

-name:String
-type:String

Method

-name:String
-inputType:String

-name:String

Class Object

Meta-model

Drawing node

www.intechopen.com

A Graphical Development Method for Multiagent Simulators 151

Fig. 2. A definition of the model by a meta-model.

4.3 Definition of Mapping
Drawing information and model structure are defined separately. These data must be
connected to each other. We define a mapping from a part of the meta-model to each
drawing node. Without this mapping, a situation could happen that you cannot save it even
if you can draw a node. The outline of mapping is shown in Fig. 3. Mapping from an
attribute of the meta-model to a label of drawing objects enables us to deliver model
information.

Fig. 3. Mapping of a drawing node and a model structure definition.

Canvas

Class Object

Variable Method

Schedule Connection

Schedule Object Connection

0..* 0..*

0..* 0..* 0..*

0..*

0..*

Variable

-name:String
-type:String

Method

-name:String
-inputType:String

-name:String

Class Object

Meta-model

Drawing node

Fig. 4. Technologies for transforming models into codes.

It is necessary to modify the mapping if a definition of drawing, such as a form or colour of
an object, is modified. But there is no necessity of changing the meta-model, and vice versa.
Since the mapping is only tying up two items, so modification is very easy. Thereby, we can
flexibly modify definitions of drawing and the meta-model.

5. Development Method by Model-Code Transformation

This section describes a simulator development method using the proposed graphical model
editor. A transformation process of the method is shown in Fig. 4.

5.1 Transforming Multiagent Models into Source Codes
JET (Java Emitter Templates) (Marz & Aniszczyk, 2006) is used for transforming multiagent
models into source codes. JET is one of Eclipse project results and it is a code generation
technique for improvement in productivity. A code-generator is an important component of
Model Driven Development (MDD). The goal of MDD is to develop a software system using
abstract models (such as UML models or EMF/ECORE models), and then refine and
transform these models into source codes. Although it is possible to create abstract models,
and manually transform them into codes, the real power of MDD comes from automating
these processes. Such transformations accelerate the MDD processes, and result in better
code quality. In JET, codes are outputted using templates. Models can be applicable to
various frameworks by changing templates. JET is useful to raise the reusability of models.
It needs an XML file storing the model information and a template file for transforming the
model into codes. The template file is described for every target language using XPath (XML
Path Language).

The model describes XML forms as a tree structure. A template corresponds to a medium
which creates source codes by reading information of the model. The tags in the template
are simplified tags of XPath, and it is possible to take out the information of input models by
designating these tags directly. Source codes corresponding to each platform are generated
on the basis of this information.

Multiagent
models
（XML）

JET JET

Template
file

Source
Codes

JET

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications152

5.2 Templates
A template is created for Java language because one of the target simulator frameworks,
Repast, corresponds to Java. The flexibility of the template depends on the contents in the
template. Existing many sample programs are referred to make template’s schema as
general as possible.

A part of the created template is shown in the following:

<?xml version=”1.0” encoding=”utf-8”?>
public class <c:get select=”$element/@elementName” /> {
<c:iterate select=”$element/variables” var=”vari”>

private <c:get select=”$vari/@type” />
 <c:get select=”$vari/@elementName” />;

public void set<c:get select=”$vari/@elementName” /> (
<c:get select=”$vari/@type” /> <c:get
select=”$vari/@elementName” />) {

this.<c:get select=”$vari/@elementName” /> = <c:get
select=”$vari/@elementName” />;}

public <c:get select=”$vari/@type” /> get<c:get
select=”$vari/@elementName” />() {
return <c:get select=”$vari/@ elementName” />;}

</c:iterate>
<c:iterate select=”$element/methods” var=”meth”>

public <c:get select=”$meth/@outputType” /> <c:get
select=”$meth/@elementName” />(<c:get
select=”$meth/@inputType” />){}

</c:iterate>
}

6. Experimental Results and Evaluations

To evaluate the proposed method, the method is applied to some multiagent simulators,
and it is compared with a conventional method from the viewpoint of usability and
workload.

6.1 Model Editor
The model editor enables us to edit models graphically and to add information in detail
using a property sheet. Code based model generation could be replaced with diagram based
model generation by the editor. The model editor is built using the framework of Eclipse, it
can be customized, and easily changed. It also increases the reusability of the models created
by the model editor.

On the flowchart expression, there is a problem that it can not deal with multiplex loops. As
a result, coding by hands still remains. Expressions used in the editor are similar to
programming languages such as class diagrams and flowcharts, so that some knowledge is
needed for understanding them. To solve these problems, it is necessary to improve the
contents of drawing and to consider more intelligible expressions.

www.intechopen.com

A Graphical Development Method for Multiagent Simulators 153

5.2 Templates
A template is created for Java language because one of the target simulator frameworks,
Repast, corresponds to Java. The flexibility of the template depends on the contents in the
template. Existing many sample programs are referred to make template’s schema as
general as possible.

A part of the created template is shown in the following:

<?xml version=”1.0” encoding=”utf-8”?>
public class <c:get select=”$element/@elementName” /> {
<c:iterate select=”$element/variables” var=”vari”>

private <c:get select=”$vari/@type” />
 <c:get select=”$vari/@elementName” />;

public void set<c:get select=”$vari/@elementName” /> (
<c:get select=”$vari/@type” /> <c:get
select=”$vari/@elementName” />) {

this.<c:get select=”$vari/@elementName” /> = <c:get
select=”$vari/@elementName” />;}

public <c:get select=”$vari/@type” /> get<c:get
select=”$vari/@elementName” />() {
return <c:get select=”$vari/@ elementName” />;}

</c:iterate>
<c:iterate select=”$element/methods” var=”meth”>

public <c:get select=”$meth/@outputType” /> <c:get
select=”$meth/@elementName” />(<c:get
select=”$meth/@inputType” />){}

</c:iterate>
}

6. Experimental Results and Evaluations

To evaluate the proposed method, the method is applied to some multiagent simulators,
and it is compared with a conventional method from the viewpoint of usability and
workload.

6.1 Model Editor
The model editor enables us to edit models graphically and to add information in detail
using a property sheet. Code based model generation could be replaced with diagram based
model generation by the editor. The model editor is built using the framework of Eclipse, it
can be customized, and easily changed. It also increases the reusability of the models created
by the model editor.

On the flowchart expression, there is a problem that it can not deal with multiplex loops. As
a result, coding by hands still remains. Expressions used in the editor are similar to
programming languages such as class diagrams and flowcharts, so that some knowledge is
needed for understanding them. To solve these problems, it is necessary to improve the
contents of drawing and to consider more intelligible expressions.

6.2 Automatic Code Generation
Some sample simulators were developed using the model editor. The developed sample
simulators are taken from sample programs of Repast (http://repast.sourceforge.net/
repast_3/examples/index.html) and reference (Yamakage & Hattori, 2002). We examined
how much codes were generated automatically by this proposed method. To be more
precise, we compared the amount of codes automatically generated by the model editor and
model-code transformation with the amount of codes that are manually added. These
situations are shown in Fig. 5. The developed sample simulators are shown in Table 1.

Fig. 5. Comparison of the proposed method and the conventional method.

Sample name Total codes
(lines) (A)

Automatically
generated codes

(lines) (B)

Automatic code
generation rate

(C)=(B)*100/(A)
1 Heat Bug 585 261 44.62%
2 Sugar Scape 490 233 47.55%
3 Regression Office 580 239 41.21%
4 Rabbit Population 364 192 52.75%
5 Open map 296 164 55.41%
6 Neural from file 186 74 39.78%
7 Neural Office 647 199 30.76%
8 Mousetrap 282 128 45.39%
9 Game of life 555 196 35.32%

10 JinGirNew 359 176 49.03%
11 Jiggle Toy 310 116 37.42%
12 Jain 332 142 42.77%
13 Hypercycles 712 201 28.23%
14 Hexa Bug 426 193 45.31%
15 Gis Bug 184 85 46.20%
16 Genetic Office 519 203 39.11%
17 Enn 566 224 39.58%
18 Asynchagents 435 178 40.92%
19 Lotka-Volterra 478 247 51.67%
20 Carry Drop 418 186 44.50%

average 436.2 181.9 42.88%
Table 1. Automatic code generation rate using the model editor.

ttrraannssffoorrmm

MMooddeellss
((XXMMLL))

MMooddeell
EEddiittoorr JET

SSoouurrccee
CCooddeess

SSoouurrccee
CCooddeess

DDeessiiggnn IImmpplleemmeenntt

oouuttppuutt aaddddeedd ccooddeess
PPrrooppoosseedd mmeetthhoodd

CCoonnvveennttiioonnaall mmeetthhoodd

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications154

Fig. 6. Automatic code generation rate.

This table shows automatic code generation rates by using the model editor. Fig. 6 depicts
the results graphically. It turns out that every sample automatically generates about 40% -
50% of the total codes. The average rate of the automatic code generation attains about 43%.
The automatic code generation rates tend to decrease with the increase of total codes. This
tendency is caused by the model editor’s ability that cannot deal with complex logics. The
larger the total codes are, the more codes you need to add by hand. It is necessary to
improve the model editor as a future subject.

6.3 Workloads
This section investigates how much the proposed method reduces workload. Unless the
workload of drawing models by the editor is less than that of developing models from
scratch, it does not make the burden of development reduce. These two workloads were
measured. We compare the automatic generated codes to the number of nodes placed on the
model editor. The amount of lines per one node is computed in Table 2. The numeric value
(E) of Table 2 expresses how many lines are generated from one node on average. The
average value of (E) is 2.46.

The workload of arranging one node (two clicks and some little things) seems to be less than
that of writing by hand the codes of 2.46 lines (about 62 characters, (G) = (E)*(F)). It is
difficult to compare these correctly, and we assume that the workload of arranging one node
and that of writing one line are equivalent for the simplicity. Under this assumption, Fig. 7
depicts how much workloads are reduced. First, in the area of automatic code generation,

Nodes : Codes = 1 : 2.46 (1)

0%

30%

50%

60%

100 200 300 400 600 700 800

40%

10%

500 0

20%

Total codes

Automatic generation rate

www.intechopen.com

A Graphical Development Method for Multiagent Simulators 155

Fig. 6. Automatic code generation rate.

This table shows automatic code generation rates by using the model editor. Fig. 6 depicts
the results graphically. It turns out that every sample automatically generates about 40% -
50% of the total codes. The average rate of the automatic code generation attains about 43%.
The automatic code generation rates tend to decrease with the increase of total codes. This
tendency is caused by the model editor’s ability that cannot deal with complex logics. The
larger the total codes are, the more codes you need to add by hand. It is necessary to
improve the model editor as a future subject.

6.3 Workloads
This section investigates how much the proposed method reduces workload. Unless the
workload of drawing models by the editor is less than that of developing models from
scratch, it does not make the burden of development reduce. These two workloads were
measured. We compare the automatic generated codes to the number of nodes placed on the
model editor. The amount of lines per one node is computed in Table 2. The numeric value
(E) of Table 2 expresses how many lines are generated from one node on average. The
average value of (E) is 2.46.

The workload of arranging one node (two clicks and some little things) seems to be less than
that of writing by hand the codes of 2.46 lines (about 62 characters, (G) = (E)*(F)). It is
difficult to compare these correctly, and we assume that the workload of arranging one node
and that of writing one line are equivalent for the simplicity. Under this assumption, Fig. 7
depicts how much workloads are reduced. First, in the area of automatic code generation,

Nodes : Codes = 1 : 2.46 (1)

0%

30%

50%

60%

100 200 300 400 600 700 800

40%

10%

500 0

20%

Total codes

Automatic generation rate

because the workload of arranging one node and that of writing one line are assumed to be
equivalent, the proposed method can be suppressed in 41% (1*100/2.46) of the amount of
workload of the conventional method. There is no difference in the area of the manual
generation, since these parts are generated by hand for both the proposed method and the
conventional one. The average automatic code generation rate (C) in the Table 1 is about
43%. The workload of the nodes part corresponds to 18% (=43%*41%) as a whole. As a result,
25% of the total workload is reduced as shown in the Fig. 7. The validity of the proposed
method is also shown from the viewpoint of workloads.

Sample name Total noses

(D)

Lines per
node (E)
=(B)/ (D)

Average
characters
per line (F)

Characters per
node (G)=(E) *

(F)
1 Heat Bug 99 2.64 24.1 63.62
2 Sugar Scape 72 3.24 23.7 76.58
3 Regression Office 88 2.72 25.9 70.42
4 Rabbit Population 67 2.87 26.8 76.81
5 Open map 61 2.69 23.2 62.46
6 Neural from file 22 3.36 31.4 105.47
7 Neural Office 110 1.81 24.5 44.32
8 Mousetrap 63 2.03 22.7 46.19
9 Game of life 92 2.13 22.6 48.12

10 JinGirNew 64 2.75 25.8 70.83
11 Jiggle Toy 68 1.71 24.6 41.93
12 Jain 57 2.49 25.2 62.76
13 Hypercycles 110 1.83 24.0 43.77
14 Hexa Bug 76 2.54 23.6 60.00
15 Gis Bug 33 2.58 25.7 66.09
16 Genetic Office 78 2.60 29.1 75.82
17 Enn 100 2.24 23.6 52.85
18 Asynchagents 71 2.51 28.3 70.83
19 Lotka-Volterra 103 2.40 22.8 54.74
20 Carry Drop 90 2.07 23.9 49.43

average 76.2 2.46 25.1 62.15
Table 2. The amount of codes per one node.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications156

Fig. 7. Difference of the two methods.

7. Conclusion

This paper proposed a model editor that can create graphically multiagent models, and a
simulator development method using the editor to build multiagent simulators.
Development and management of the models became very easy. In addition, reusability of
the models also became very high, and simulator platforms could be changed flexibly. The
proposed method was applied to some multiagent simulators and the results show that our
method is effective in developing multiagent models and simulators.

As future problems, we must improve the model diagrams to increase automatic code
generation rates, and prepare other templates for various frameworks.

8. Acknowledgment

This work was partially supported by JSPS KAKENHI 21560430.

9. References

Luke, S.; Balan, G. C.; Panait, L.; Cioffi-Revilla, C. & Paus, S. (2003). MASON: A Java Multi-
Agent Simulation Library, Proceedings of Agent 2003 Conference on Challenges in Social
Simulation, pp. 49-64, Chicago, USA, October 2003.

Marz, N. & Aniszczyk, C. (2006). Create more -- better -- code in Eclipse with JET, IBM
Developer Works Article.

100% 43% 0%

Codes

18%

25%

Codes

Developed parts
by the editor

Developed
parts by hand

Codes Nodes
Proposed method

Conventional method

www.intechopen.com

A Graphical Development Method for Multiagent Simulators 157

Fig. 7. Difference of the two methods.

7. Conclusion

This paper proposed a model editor that can create graphically multiagent models, and a
simulator development method using the editor to build multiagent simulators.
Development and management of the models became very easy. In addition, reusability of
the models also became very high, and simulator platforms could be changed flexibly. The
proposed method was applied to some multiagent simulators and the results show that our
method is effective in developing multiagent models and simulators.

As future problems, we must improve the model diagrams to increase automatic code
generation rates, and prepare other templates for various frameworks.

8. Acknowledgment

This work was partially supported by JSPS KAKENHI 21560430.

9. References

Luke, S.; Balan, G. C.; Panait, L.; Cioffi-Revilla, C. & Paus, S. (2003). MASON: A Java Multi-
Agent Simulation Library, Proceedings of Agent 2003 Conference on Challenges in Social
Simulation, pp. 49-64, Chicago, USA, October 2003.

Marz, N. & Aniszczyk, C. (2006). Create more -- better -- code in Eclipse with JET, IBM
Developer Works Article.

100% 43% 0%

Codes

18%

25%

Codes

Developed parts
by the editor

Developed
parts by hand

Codes Nodes
Proposed method

Conventional method

North, M.J.; Howe, T.R.; Collier, N.T. & Vos, J.R. (2005). The Repast Symphony Runtime
System, Proceedings of Agent 2005 Conference on Generative Social Processes, Models,
and Mechanisms, ANL/DIS-06-1, ISBN 0-9679168-6-0, pp. 159-166, Chicago, USA,
October 2005.

OMG (2008). XMI, See http://www.omg.org/technology/documents/formal/xmi.htm.
Russell, S.J. & Norving, P. (1995). Artificial intelligence: A Modern Approach, Prentice-Hall,

ISBN 0-13-103805-2, Englewood Cliffs.
Swarm Development Group (2004). Swarm 2.2, See http://wiki.swarm.org.
Weiss, G. (2000). Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence,

The MIT Press, ISBN 9780262731317, Cambridge.
Yamakage, S. & Hattori, S. (2002). Artificial society in computers – multiagent simulation model

and complex systems – (in Japanese), Kyoritsu Shuppan, ISBN4-320-09735-1, Tokyo.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications158

www.intechopen.com

Modeling Simulation and Optimization - Focus on Applications

Edited by Shkelzen Cakaj

ISBN 978-953-307-055-1

Hard cover, 312 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book presents a collection of chapters dealing with a wide selection of topics concerning different

applications of modeling. It includes modeling, simulation and optimization applications in the areas of medical

care systems, genetics, business, ethics and linguistics, applying very sophisticated methods. Algorithms, 3-D

modeling, virtual reality, multi objective optimization, finite element methods, multi agent model simulation,

system dynamics simulation, hierarchical Petri Net model and two level formalism modeling are tools and

methods employed in these papers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Keinosuke Matsumoto, Tomoaki Maruo, Masatoshi Murakami and Naoki Mori (2010). A Graphical

Development Method for Multiagent Simulators, Modeling Simulation and Optimization - Focus on

Applications, Shkelzen Cakaj (Ed.), ISBN: 978-953-307-055-1, InTech, Available from:

http://www.intechopen.com/books/modeling-simulation-and-optimization-focus-on-applications/a-graphical-

development-method-for-multiagent-simulators

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

