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1. Introduction 
 

Today, virtually all strategic planning involves the identification of indicators that will be 
used to monitor progress and often the setting of quantitative targets. As part of a results 
based management approach, some reward or penalty can be attached to achieve the 
targets. However, rarely is there an attempt to link explicitly the policy actions with the 
results, tracing through exactly how a given set of policy actions is expected to lead to the 
final outcome. The ideas regarding what needs to be done and how to proceed are usually 
implicit and buried within the minds of policy makers. 
The quality management principles have varied greatly from the researchers’ point of view. 
According to (Harris & Baggett, 1992), they classified them into three main principles. The 
first of them focused on the customer by improving the service quality through improving 
and training workers. The second principle concentrates on the workers themselves through 
improving their contribution to increase the education effectiveness. The third principle 
deals with the contracted service and aims to achieve the standards agreed upon. That could 
be done through the main factors that can be measured in the education process. 
In (Williams, 1993), on the other hand, he stressed on the necessity to have quantitative 
measures for performance.  That can help the organization to measure how far is the 
achieved progress by applying the quality management program from the point of view of 
the provided service compared to the service expected from customers. He believed that 
there are another two directions for the quality management. The first direction provides a 
tool for the management to increase the productivity and provide customer satisfaction 
while reducing the unnecessary expenses. The second direction provides a tool that can be 
used to improve the way we are doing our work. 
While in (Michael & Sower, 1997), they considered quality as the quality from the point of 
view of customers especially in higher education.  As the product of the higher education 
institutes is not visible, the end product can’t be analyzed or checked against defects. Thus, 
when customers are happy with the service provided from the education institute, the 
quality is acceptable. 
 
Based on an extensive review of literature on Total Quality Management (TQM) in higher 
education, in (Tribus, 1986), it was proposed a specific definition of “customer” and 
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developed a comprehensive TQM model that is comprised of eight steps. The definition of 
“customer” and the TQM model developed can serve as a basic foundation for colleges and 
universities to follow when implementing TQM at their respective institutions. He also 
recommended a list of things to do and problems to look for when implementing a TQM 
project. While in (Motwani & Kumar, 1997), they looked at the applicability of TQM in 
education and some of the concerns addressed in the literature. They explored the different 
approaches used by several educational institutions in implementing TQM. They also 
suggested a five-step programming model that any university can use for implementing 
TQM. 
Oregon State University implemented TQM in nine phases: exploration; establishing a pilot 
study team; defining customer needs; adopting the breakthrough planning process; 
performing breakthrough planning in divisions; forming daily management teams; 
initiating cross-functional pilot projects; implementing cross-functional total quality 
management; and setting up reporting, recognition, and awards systems as shown in 
(Coate, 1991). 
On the other hand, in (Taylor & Hill, 1992), they examined the emerging paradigm of TQM 
and summarized its implications for higher education. Rather than prescribing a set of 
generic implementation steps, they suggested that there are other, more significant, factors 
to be considered related to the timing of the initiative rather than where it should begin. 
They discussed four necessary issues: the removal of abstraction from the concept of quality 
in higher education; organization-wide understanding of the customer; the importance of 
assessing the current quality level; and the need for strategic quality planning. Also they 
cited classical organizational facets such as structure, culture, human resource management 
and leadership as being among the determinants of TQM success. Concentration on these 
key matters attenuates the importance of the method of implementation. They argued that 
to disregard these harbingers of success is to risk long term damage to the organization and 
considerably reduce the likelihood of sustained and self generating organizational 
improvement. 
In producing indicators of institutional quality in Ontario universities and colleges: options 
for producing, managing and displaying comparative data, the Educational Policy Institute 
(EPI) assessed the information needs of Ontario’s postsecondary system, what types of 
comparative quality indicator data are currently available, and how effective common 
higher education data architecture could be structured. EPI found that a wide variety of 
potentially comparable data existed in Ontario, though not in a centralized or easily 
accessible format. Examples of this data include Common University Data Ontario, the 
National Survey of Student Engagement, and commercial institutional rankings. After 
reviewing several potential models for common data architecture, EPI suggested that an 
“Open Access Model” would best serve the needs of Ontario postsecondary stakeholders. 
Such a model would be collaboratively developed and maintained, striving to meet the 
informational needs of government, institutions, and students as presented by (Educational 
Policy Institute, 2008). 
Despite many approaches became available, Education Quality Control (EQC) is considered 
a difficult task, as few policy-makers have adequate tools to aid their understanding of how 
various policy formulations affect this complex, socio-technical system. The impact of EQC 
is far-reaching, impacting the regional economy, environment, and society through many 
interactions. The effect of a policy meant to improve one aspect of education quality is not 

 

always known a priori, and the interactions of that policy with other policies are seldom 
understood well. Additionally, there are not always clearly-defined objectives that all policy 
planners use as described in (Barski, 2006).  
Thus, the goal in this chapter was to develop a proof-of-concept model of the EQC, extended 
to include the different resources and utilities of the education institute, which can be 
analyzed to provide insight to policy-makers by comparing the relative effectiveness and 
interactions across policies.  
Once the model was developed and tested, a system optimization was performed. Thus, this 
chapter aims to better understand the interactions and behaviours of the effect of the 
resources distribution on the total quality achieved, and to understand and quantify 
tradeoffs that must be made when choosing a final policy to be implemented.  

 
2. Computer simulation 
 

Simulation is a powerful tool used to study complex systems. It is the development of a 
model of a complex system and the experimental manipulation of that model to observe the 
results. Models may be purely physical, such as a wind tunnel; a combination of physical 
objects under software control, such as flight simulator; or logical, as represented in a 
computer program. 
Computer simulations have been used to help in decision making since the mid-1950s. 
Building computer models of complex systems has allowed decision makers to develop an 
understanding of the performance of the systems over time. How many tellers should a 
bank have? Would the materials flow faster through the manufacturing line if there were 
more space between stations? What is the weather going to be tomorrow? Where is the 
optimal place to put the new fire station? We can gain considerable insight into all of these 
questions through simulation. 
Although the definition of systems implies that their objects interact, the more interactions 
that exist in the system, the better it is as a candidate for simulation as explained in (Pidd, 
1994).  Thus, the best systems suited for simulation are the dynamic and complex ones. 
Their characteristics may be understood and captured in mathematical equations, such as 
the flight of a missile through nonturbulent atmosphere. Alternatively, their characteristics 
may be partially understood and the best way to simulate them is to use statistical 
representation, such as the arrival of people at a traffic light.   
The keys to construct a good model are to choose the entities to represent the system and 
correctly determine the rules that define the results of the events. Pareto’s law says that in 
every set of entities, there exist a vital few and trivial many. Approximately 80% of the 
behaviour of an average system can be explained by the action of 20% of the components. 
The second part of the definition of simulation gives us a clue where to begin:” and 
experimenting with that model to observe the results. “Which results are to be observed? 
The answers to this question give a good starting point to the determination of the entities in 
the real system that must be present in the model. The entities and the rules that define the 
interactions of the entities must be sufficient to produce the results to be observed as shown 
in (Shannon, 1998). 
Therefore, the essence of constructing a model is to identify a small subset of characteristics 
or features that are sufficient to describe the behaviour under investigation. So, a model is 
an abstraction of a real system; it is not the system itself. Therefore, there is a fine line 
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Although the definition of systems implies that their objects interact, the more interactions 
that exist in the system, the better it is as a candidate for simulation as explained in (Pidd, 
1994).  Thus, the best systems suited for simulation are the dynamic and complex ones. 
Their characteristics may be understood and captured in mathematical equations, such as 
the flight of a missile through nonturbulent atmosphere. Alternatively, their characteristics 
may be partially understood and the best way to simulate them is to use statistical 
representation, such as the arrival of people at a traffic light.   
The keys to construct a good model are to choose the entities to represent the system and 
correctly determine the rules that define the results of the events. Pareto’s law says that in 
every set of entities, there exist a vital few and trivial many. Approximately 80% of the 
behaviour of an average system can be explained by the action of 20% of the components. 
The second part of the definition of simulation gives us a clue where to begin:” and 
experimenting with that model to observe the results. “Which results are to be observed? 
The answers to this question give a good starting point to the determination of the entities in 
the real system that must be present in the model. The entities and the rules that define the 
interactions of the entities must be sufficient to produce the results to be observed as shown 
in (Shannon, 1998). 
Therefore, the essence of constructing a model is to identify a small subset of characteristics 
or features that are sufficient to describe the behaviour under investigation. So, a model is 
an abstraction of a real system; it is not the system itself. Therefore, there is a fine line 
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between having too few characteristics to accurately describe the behaviour of the system 
and having more characteristics than you need to accurately describe the system. The goal is 
to build the simplest model that describes the relevant behaviour. 
 

 
 
Fig. 1. The modelling process 
 
Because a computer program implements an abstract model, we can consider the simplified 
version of the model development process as shown in fig. 1. The problem entity is the 
system, idea, situation, policy, or phenomena to be modelled; the conceptual model is the 
mathematical/logical/verbal representation of the problem entity developed for a particular 
study; and the computerized model is the conceptual model implemented on a computer. 
The conceptual model is developed through an analysis and modelling phase, the 
computerized model is developed through a computer programming and implementation 
phase, and inferences about the problem entity are obtained by conducting computer 
experiments on the computerized model in the experimentation phase. Conceptual model 
validation is defined as determining that the theories and assumptions underlying the 
conceptual model are correct and that the model representation of the problem entity is 
“reasonable” for the intended purpose of the model. Computerized model verification is 
defined as assuring that the computer programming and implementation of the conceptual 
model is correct. Operational validation is defined as determining that the model’s output 
behaviour has sufficient accuracy for the model’s intended purpose over the domain of the 
model’s intended applicability. Data validity is defined as ensuring that the data necessary 
for model building, model evaluation and testing, and conducting the model experiments to 
solve the problem are adequate and correct as explained in (Robert, 2007). 

 

 

3. System dynamics and model implementation 
 

System dynamics, created during the mid-1950s by Professor Jay Forrester of the 
Massachusetts Institute of Technology, is considered a way of thinking about the future 
which focuses on ‘stocks’ and ‘flows’ within processes and the relationships between them, 
the system dynamics approach forces policy-makers to acknowledge upfront if there is 
uncertainty and to identify where this uncertainty lies as shown in (Zhang et al., 2008). This 
acknowledgment may make it easier to get people to buy-in to the more systematic 
approach that is considered in this chapter.  
Cutting a system up into bits often destroys the system you are trying to understand. This, 
of course, is a matter of connectedness: if you break the connectedness of a system, you 
break the system itself. Rather more subtly, many systems show characteristics that are not 
properties of any of their constituent parts. It therefore follows that no study, however 
exhaustive, of any individual constituent part will ever identify the existence of these 
system-level characteristics, let alone how they behave  as explained by (Sherwood, 2002).  
It is important to note that the system dynamics approach for monitoring and evaluation 
does not only consist of the modelling of a complex problem, rather it should be conceived 
more as a process in which various things occur. First, at the policy-making level, one must 
specify how a particular target will be reached. That is, one specifies a structural model 
underlying the achievement of the target. System dynamics tools can help develop such 
structural models. Second, one must identify exactly what information is needed to ensure 
that one is on track to achieve the desired results. Third, there should be an on-going review 
of a program’s outcomes, comparing expected outcomes to actual outcomes and, if actual 
outcomes fell short of expected outcomes, why this occurred. The expected outcomes may 
not have been achieved because the planned policy actions were not carried out. Or it may 
be the case that the actions were carried out, but certain key parameter values were mis-
estimated. If the actions were carried out and the key parameter values were, indeed, 
correct, it may be that the underlying structural model was incorrect and needs be 
reconsidered. With the system dynamics approach, the model is constantly being 
reconsidered and appropriate modifications and adjustments are expected in the course of 
one’s work as shown in (An et al., 2004).  
As one can imagine, taking a more structural approach through system dynamics is much 
more intensive in the use of information and requires more work than with a reduced-form 
approach. Although collecting information and allocating the necessary human resources all 
involve significant burdens, there are certainly ways of reducing these information costs. 
For example, by identifying the key drivers of desired outcomes within a given system, one 
can focus efforts on generating the necessary data only for those particular areas. This also 
helps to reduce the financial costs of collecting information which can be considerable. In 
doing this, one can thus develop a work program which concentrates work efforts only in 
certain areas. 
It is possible to perform good system dynamics work with many different tools, including 
spreadsheets and programming languages, though this is not usually practical. There are 
few software programs that were designed to facilitate the building and use of system 
dynamics models. DYNAMO was the first system dynamics simulation language, and was 
originally developed by Jack Pugh at MIT. The language was made commercially available 
from Pugh-Roberts in the early 1960s. DYNAMO today runs on PC compatibles under 
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Dos/Windows. It provides an equation based development environment for system 
dynamics models as shown in (Kasperska et al., 2006).   
The Stella software, originally introduced on the Macintosh in 1984, provided a graphically 
oriented front end for the development of system dynamics models. The stock and flow 
diagrams, used in the system dynamics literature are directly supported with a series of 
tools supporting model development. Equation writing is done through dialog boxes 
accessible from the stock and flow diagrams. Parallel to that, in the mid 1980s the 
Norwegian government sponsored research aimed at improving the quality of high school 
education using system dynamics models. This project resulted in the development of 
Mosaic, an object oriented system aimed primarily at the development of simulation based 
games for education. Powersim was later developed as a Windows based environment for 
the development of system dynamics models that also facilitates packaging as interactive 
games or learning environments. Another language that originally developed in the mid 
1980s for use in consulting projects Vensim was made commercially available in 1992. It is 
an integrated environment for the development and analysis of system dynamics models. 
Vensim runs on Windows and Macintosh computers as discussed by (Eberlein, 2009). On 
the other hand, MapSys from Simtegra's flagship systems thinking and system dynamics is 
another software that allows for the drawing of causal loop diagrams or stock & flow maps 
using simple drag and drop operations. It can export system diagrams to popular 
applications such as WORD or simulate it and view the results using a powerful graph 
editor.  
In addition, there are a number of other modelling and simulation environments which 
provide some support for building system dynamics models and one of these is NetLogo 
which is a programmable modelling environment for simulating natural and social 
phenomena. It was authored by Uri Wilensky in 1999 and is in continuous development at 
the Centre for Connected Learning and Computer-Based Modelling. NetLogo is particularly 
well suited for modelling complex systems developing over time. Besides being able to use 
the system dynamics tool integrated into the software, modellers can give instructions to 
hundreds or thousands of "agents" all operating independently. This makes it possible to 
explore the connection between the micro-level behaviour of individuals and the macro-
level patterns that emerge from the interaction of many individuals as explained in 
(Wilensky, 1999).  
The remainder of this chapter will discuss the proposed methodology to model and assess 
the education quality system. The model will be further optimised to find the solution that 
gives recommendations for the best resources distribution that increase the quality. 

 
3.1. Causal loop diagram 
 
 

 
Fig. 2. Cause and effect relationship 

 

Casual Loop Diagram (CLD) is considered the first step in system dynamics and it enables 
complex systems to be described in terms of cause-and-effect relationships. CLD is a visual 
method of capturing the system complexity providing a powerful means of communication, 
and its use can ensure that as wide a community as you wish has a genuinely, and deeply, 
shared view. This is enormously valuable in building high-performing teams and can also 
help you identify the wisest way of influencing the system of interest. As a result, you can 
avoid taking poor decisions, for example decisions that look like quick fixes but are likely to 
backfire. 
The way in which real systems evolve over time is often bewilderingly complex. System 
dynamics enables us to tame that complexity, offering an explanation of why a system 
behaves as it does, and providing insights into the system’s likely behaviour in the future. 
The key is to understand the chains of causality, the sequence and mutual interactions of the 
numerous individual cause-and-effect relationships that underlie the system of interest. 
These chains of causality are captured in a causal loop diagram, in which each cause and 
effect relationship is expressed by means of a link represented by a curly arrow as shown in 
fig. 2. 
Links are of only two types: positive links and negative links. If an increase in the ‘cause’ 
drives an increase in the ‘effect’, then the link is positive; if an increase in the ‘cause’ drives a 
decrease in the ‘effect’ then the link is negative. 
 

 
 

Fig. 3. CLD loop (balancing loop) 
 
CLDs of real systems are composed primarily of closed, continuous chains known as 
feedback loops. There are only two fundamental types of feedback loop: the reinforcing loop 
and the balancing loop. Reinforcing loops are characterized by having an even number of 
minuses around the loop (with zero counting as an even number); balancing loops have an 
odd number of minuses as shown in fig. 3. The action of a reinforcing loop is, as its name 
implies, to amplify the original effect on each turn. Reinforcing loops therefore behave as 
virtuous or vicious circles, depending on the circumstances. The action of a balancing loop is 
quite different: The system seeks to achieve or maintain a target or a goal. For example, the 
action of a thermostat in a heating system maintains the ambient temperature at a constant 
level; likewise, the objective of many budgeting systems is to steer the corporation toward a 
set of pre-determined goals. 
All real systems are composed of interlinked networks of reinforcing loops and balancing 
loops, often in conjunction with a (usually small) number of dangles, which represent items 
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Fig. 2. Cause and effect relationship 

 

Casual Loop Diagram (CLD) is considered the first step in system dynamics and it enables 
complex systems to be described in terms of cause-and-effect relationships. CLD is a visual 
method of capturing the system complexity providing a powerful means of communication, 
and its use can ensure that as wide a community as you wish has a genuinely, and deeply, 
shared view. This is enormously valuable in building high-performing teams and can also 
help you identify the wisest way of influencing the system of interest. As a result, you can 
avoid taking poor decisions, for example decisions that look like quick fixes but are likely to 
backfire. 
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Fig. 3. CLD loop (balancing loop) 
 
CLDs of real systems are composed primarily of closed, continuous chains known as 
feedback loops. There are only two fundamental types of feedback loop: the reinforcing loop 
and the balancing loop. Reinforcing loops are characterized by having an even number of 
minuses around the loop (with zero counting as an even number); balancing loops have an 
odd number of minuses as shown in fig. 3. The action of a reinforcing loop is, as its name 
implies, to amplify the original effect on each turn. Reinforcing loops therefore behave as 
virtuous or vicious circles, depending on the circumstances. The action of a balancing loop is 
quite different: The system seeks to achieve or maintain a target or a goal. For example, the 
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that determine the boundary of the system of interest, such as the output of the system or 
the targets or goals that drive it. 
Compiling a good CLD for a real system requires deep knowledge of the system. It also 
encourages the explicit articulation of relationships that we all know are present but are 
rarely talked about, and the recognition of fuzzy variables, which are important but difficult 
to measure, such as the effect of having good staff on attracting and retaining customers. 
The original intent for the education quality model was to model large scale regional 
behaviour and pin point the different factors that affect quality. Some of those factors are 
naturally the ones set by the standardisation committees responsible for ranking the 
educational organizations. Other factors are equally important such as students and 
employees satisfaction and even they are not very tangible, they can definitely guide the 
optimisation of the budget distribution. 
Costs in the quality requirements are attributed to salaries and expenses and include 
building and facilities, courses, marketing, counselling, libraries and information centres, 
students’ services, legalism and morals, research and environmental services, and scientific 
evaluation. The total budget is therefore the sum of these costs. 
 

Design factors Effective weight 
Building and facilities 14% 
Courses 15% 
Marketing 5% 
Counselling 5% 
Libraries and information centres 8% 
Students’ services 8% 
Research and environmental services 10% 
Legalism and morals 5% 
Scientific evaluation 5% 
Staff level 15% 
Management 10% 

Table 1. The design factors along with their weights contributing to the university 
accreditation 
 
The design vector for the model consists of the budget shares for each of the design factors 
which in turns offer regulatory actions for the education quality.  The nine design factors 
chosen along with another two factors (staff level and management that are not optimized in 
education quality model) are shown in table 1 (based on the Arabian business schools 
association), with their percentage contribution to the accreditation quality for each variable 
as shown in (ARADO, 2009). 
 
 

 

 
Fig. 4. The education quality control model CLD 
 
The model based on a view of the EQC has been represented and simplified in Fig. 4. In this 
model the main factors affecting the quality are included for optimization. The quality is 
mainly affected by both the students’ satisfaction and the employee’s satisfaction. In 
addition, the students’ number that join the institute can increase or decrease depending 
indirectly on the education quality. Both the students’ satisfaction and the employees’ 
satisfaction are affected by different factors that are improved and maintained by allocating 
suitable financial resources. The spending can be scheduled on a yearly basis to maximize 
the total quality of the institute and is based on the effective weight of each factor on the 
quality improvement. As accreditation is considered another way of evaluating the institute 
performance, the accreditation criteria plays an important role of weighing the importance 
of the different institution spending. That spending need to keep the institution facilities 
within a certain value if not increased. In other words, if some facilities such as libraries and 
information centres are not improved consistently, they will be obsolete and decrease in 
value with time. The number of students affects as well the effective value of the libraries 
and information centres as its increase will definitely decrease their effective value. On the 
other hand, buildings can increase in market value when lands and building materials goes 
up. In that sense many institutes directs their initial attention toward buying lands that are 
suitable for future expansion. The diagram was designed in a way that combines students 
and employees satisfaction with the accreditation factors in order to improve the over all 
quality of the institute. 
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3.2. Stock-flow diagram 
 

 
Fig. 5. The stock flow diagram for the education quality control model 
 
As can be seen from the view in fig. 4, the EQC model must encompass many factors in 
order to provide useful data to policy planners. In addition to the more apparent factors 
such as students’ satisfaction, employees’ satisfaction and policy planning, a good model 
must consider the regional economics, supply chain management, and environmental 
assessment.  
To address these issues, a modular model that encompasses the factors listed above has 
been implemented into the stock-flow diagram as shown in fig. 5. At the highest level, we 
have a quality module that contains the direct factors that affect its values, such as the 
students’ satisfaction, the employees’ satisfaction, and the students’ number. At a lower 
level, we have multiple modules that model a particular aspect such as the courses, 
marketing, buildings and facilities, counselling, libraries and information centres, students’ 
services, legal and morals, research and environmental services, and scientific evaluation 
with their effect on both the students’ satisfaction and the employees’ satisfaction while 
additional modules can be added if needed.  
The quality, the students’ satisfaction and the employees’ satisfaction are all treated as 
conveyers while the students’ number and the rest of the factors are treated as stocks. Stocks 
are accumulations. They collect whatever flows into them, net of whatever flows out of 
them. While in the conveyor, material gets on and rides for a period of time, and then gets 
off. The transit time can be either constant or variable. That selection was done to be close to 
the nature of the system as variables that need to keep track of previous values were 
modelled with stocks while variables that can change periodically independent on the 
previous values were modelled with conveyors. 
 

 

3.3. Model equations 
 Stock and flow diagram only offers us the connection between variables but the real 
relations are realised behind the scene with equations. Those equations can be a simple 
equality or a table that connects two variables. The following figure (fig.6) shows a sample 
of the equations linking the different variables in the stock and flow diagram. 

 
Fig. 6. Sample equations for the education quality model 

 
3.4. Simulation 
 

 Estimated quality Real quality 
Year 1 0.42 0.45 
Year 2 0.46 0.51 
Year 3 0.52 0.54 

Table 2. The estimated qualities of the model along with the real qualities  
 

starttime = 0 
stoptime = 3 
dt = 1; time step 
; For the buildings and facilities equations 
BFG = max (0, BFR*Buildings_and_Facilities); BFG: Building and facilities gain, BFR: 
buildings and facilities resource 
BFL = max (0, Buildings_and_Facilities*BF_depreciation/Students); BFL: building and 
facilities loss, BF_depreciation: buildings and facilities depreciation 
For the courses equations 
CG = max (0, Courses*CR);  CG: courses gain, CR: courses resource 
CL = max (0, C_depreciation*Courses); CL: courses loss, C_depreciation: courses 
depreciation 
; For the employees satisfaction 
emp_sat_gain = max (0, E1*Buildings_and_facilities 
+E2*Legals_and_morals+E3*Libraries_and_information_centers+E4*Research_and_envi
ronmental_services+E5*Scientific_evaluation); E1-E5: constants 
gain_due_to_quality = table (Quality) 
loss_due_to_students_number = table (Students) 
quality_gain = max (0, Employees_satisfaction*Q1+Students_satisfaction*Q2-
loss_due_to_students_number); Q1, Q2: constants 
; For the students satisfaction 
st_sat_gain = max (0, 
S1*Buildings_and_facilities+S2*Councelling+S3*Courses+S4*Libraries_and_information
_centers+S5*Marketing+S6*Students_services); S1-S6: constants 
students_gain = max (0, Students*gain_due_to_quality) 
students_loss = max (0, (graduation+transfer_rate)*Students); 
transfer_rate = table (Students_satisfaction) 
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In order to verify the accuracy of the model, real data that cover three years has been used. 
That limited duration was chosen as the adoption of new techniques may require a special 
set of data that is difficult to be obtained in a longer time frame.  The model performance is 
shown in table 2 and illustrates the simulated results for the quality along with the real 
quality values achieved by the policy makers with traditional methods. It can be derived 
from the results that the trend of improvement for both the real and the estimated qualities 
are similar for the three simulated years. That in turns reflects the potential of the model to 
capture some details that can be of great importance in the planning process. 

 
4. Evolutionary computation and model optimization 
 

Evolutionary computation is a general term for several computation techniques which are 
all based to some degree on the development of biological life in the natural world. 
Currently there exist several major evolutionary models. The genetic algorithm, by far the 
most common application of evolutionary computation, is a model of machine learning 
taking inspiration from genetics and natural selection. In natural evolution, each species 
searches for beneficial adaptations (species optimizations), which arise through mutation 
and the chromosomal exchange and recombination of breeding. The two key axioms 
underlying the genetic algorithm are that complex nonbiological structures can be described 
by simple bit strings (analogous to the "genetic code" of chromosomes), and that these 
strings could be improved, according to a particular measure of fitness, by the application of 
simple transformation functions (just as living species may be "improved" through mating). 
Evolutionary strategies simulate natural evolution similarly to the genetic algorithm. Like 
genetic algorithms, evolutionary strategies are most powerful while comparing populations 
of data, as opposed to individual samplings. Differences between the two lie in their 
application; evolutionary strategies were designed to be applied to continuous parameter 
optimization problems seen in laboratory work, while the genetic algorithm was used 
originally in integer optimization problems. Evolutionary programming is a stochastic 
optimization function, similar in many ways to the genetic algorithm. However, 
evolutionary programming places emphasis on the behavioural link between parent and 
offspring, as opposed to the genetic algorithms attempt to model the exact code transition as 
seen in nature. Evolutionary programming follows a general process with obvious 
similarities to natural evolutionary progression. An initial population of trial solutions is 
selected at random from a coding scheme. A chosen mutation factor is applied to each 
solution, generating a new population. Because evolutionary programming resembles 
biological evolution at the level of reproductive populations of species, and there is no 
genetic recombination between species, evolutionary programming transformations take 
place without crossover- combination of two parent member's genetic code. The offspring 
species' members are weighed for overall fitness; the best are kept while the rest are 
eliminated, and the algorithm repeats with the new, fitter population. The learning classifier 
system's purpose is to take in input and produce an output representing a classification of 
that input. They have undergone and continue to go through multiple minor changes of 
name and scope, but the enduring foundation originates in J.H. Holland's Adaptation in 
Natural and Artificial Systems, wherein he envisions a cognitive system capable of 
classifying and reacting appropriately to the events in its corresponding environment. This 
most obviously parallels the inherently intelligent behaviour seen in all macro- and 

 

microscopic living creatures. Though there are certainly other forms of evolutionary 
computation, the above offers a brief summary of the most established and useful 
evolutionary techniques as discussed in (Floreano, 2008). 
 
4.1. Genetic Algorithms 
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Fig. 7. Genetic algorithm cycle of reproduction. The algorithm uses (a) reproduction to select 
potential solutions (b) genetic operators to modify the solutions (c) evaluation against the 
objective function (d) new generation produced, which replaces the old solutions (e) while 
the other solutions are deleted. 
 
In this research the basic features of genetic algorithms were used to optimize the spending 
for each of the nine variables that controls the design factors mentioned in table 1 in order to 
maximize the education quality. Genetic algorithms use the evolutionary process of natural 
selection as a metaphor for what is essentially a hill-climbing search without backup. 
Genetic algorithms search for an optimal solution or a global maximum among an 
enormous set of data. That can be achieved by computationally modelling the alteration, 
recombination, and propagation of genes that forms the basis of biological evolution. To 
achieve this, certain complex biological details of evolution must be abstracted in favour of 
more relevant principles.  
Genetic splitting and pairing, as well as phenomena such as crossover and mutation, are 
modelled probabilistically. Assuming that parameter encoding, population size, 
propagation iterations, genetic operators, and a fitness function have been chosen. The 
'target-size' sets the length of the binary sequence (zeros and ones) that must be found. This 
sequence can be thought of as the optimal genetic information (genome) for a particular 
environment. The 'population-size' sets the number of individuals that can try out their own 
genomes in that environment. The genetic algorithm runs through the following sequence of 
events that are summarised in fig. 7:  
 
(a) A population of given size is initialized. 
 
(b) For a specified number of generations: 
1) Assign each individual node a fitness level according to the fitness function. 
2) Probabilistically select a specified number of pairs of individuals according to fitness 
levels. Higher fitness levels increase an individual's chance of being selected. 
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3) Apply the specified genetic operators to these chosen pairs to produce new individuals. 
4) Randomly select individuals from the population. Replace them with the newly produced 
individuals. 
 
(c) Return the individual with the highest fitness level as the output. 
 
A careful choice of genetic operators can improve the efficiency of the genetic algorithm or 
enable it to find otherwise inaccessible solutions. Crossover switches two subsequences of 
two parent strings; the goal is to place two fit sequences on the same string. Subsequences 
are selected probabilistically. 
Mutation introduces "genetic diversity" into the population by randomly altering one 
character of an individual string. Mutation provides a way to help the genetic algorithm 
avoid the situation in which the system fixates on a local maximum after repeatedly 
propagating a particular character as discussed in (Tian, 2008).  
The optimization problem in this research is a maximization problem which aims to 
maximize the total quality of the institute. 

 
4.2. Variables selection 
A single objective has been used for the optimization analysis of the model as the basis of 
optimization. The objective has been selected to reflect the task of EQC with long-term 
sustainability in mind: to maximize the quality of the institution as a function of the design 
vector calculated over a predetermined number of years.  
The System Dynamics Modeller in NetLogo allows for drawing a diagram that defines 
"stocks" and “conveys”, and how they affect each other. The Modeller read the EQC 
diagram and generated the appropriate NetLogo code: global variables, procedures and 
reporters. The next step was to optimise the model using genetic algorithm on the proposed 
model. Genetic algorithm is then implemented in the NetLogo environment to search for a 
quasi optimal solution (best budget distribution) that increases the model quality. The 
genetic algorithms implemented here works by generating a random population of 
solutions to a problem, evaluating those solutions and then using cloning, recombination 
and mutation to create new solutions to the problem.  
The design vector represents the spending on each design factor that in turns affect the 
education quality. The relationship between each design variable and the corresponding 
design factor is based on an estimated formula that was derived from either statistical or 
economical evaluation for the true values of the utilities. 
The design vector which is composed of the nine variables that contribute to improve the 
nine design factors, as explained earlier in table 1, has been constrained to have a total 
greater or equal to zero and less than or equal to the total budget. Although the limits of the 
constraints are not necessarily realistic, they give the program the ability to cover all the 
possible solutions. 
It was also chosen to run the model for three years as the basis for optimization. This time 
period was chosen to minimize the time required for the model evaluation while allowing 
for enough time for possible effects to take action, such as the impact of increased spending 
on the different design factors.  

 

 

4.3. Optimization 
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Fig. 8. Fitness (a) and diversity (b) curves for the optimization process 
 
Initially many individual solutions are randomly generated to form an initial population. 
The population size is of 300 possible solutions. During each successive generation, a 
proportion of the existing population is selected to breed a new generation. Individual 
solutions are selected through a fitness-based process, where fitter solutions are typically 
more likely to be selected. The used selection method, roulette wheel selection, rates the 
fitness of each solution, which is based on the average quality over the three years, and 
preferentially selects the best solution.  
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The next step is to generate a second generation from population of solutions selected 
through crossover, and mutation. For each new solution to be produced, a pair of "parent" 
solutions is selected for breeding from the pool selected previously. By producing a "child" 
solution using the above methods of crossover and mutation, a new solution is created 
which typically shares many of the characteristics of its "parents". New parents are selected 
for each child, and the process continues until a new population of solutions of appropriate 
size is generated. These processes ultimately result in the next generation population of 
chromosomes that is different from the initial generation. This generational process is 
repeated until a termination condition has been reached; the highest ranking solution's 
fitness has reached a plateau such that successive iterations no longer produce better results 
fig. 8.a. 
Diversity was measured using the Hamming distance between the bit strings representing 
each structure (ie the number of bits which do not match). So that a large uniqueness value 
does not preclude search in a small subspace at the end of the search, the uniqueness value 
of k bits is slowly decreased to one bit as the search proceeds. Thus at the start of the search 
the space is sampled over a relatively coarse ``grid,'' and as the search progresses, the grid 
size is gradually reduced until adjacent points are considered as shown in fig. 8.b.  
Table 3 shows how the technique could improve the quality of the institution compared to 
the estimated quality found from the model over the selected years of simulation. 
 

 Estimated quality Optimized quality 
Year 1 0.42 0.51 
Year 2 0.46 0.59 
Year 3 0.52 0.63 

Table 3. Optimized qualities against estimated qualities from the model 
 

Design factors First year 
budget 
distribution 

Second 
year 
budget 
distribution 

Third year 
budget 
distribution 

Building and 
facilities 

25% 26% 28% 

Courses 5% 4% 4% 
Marketing 8% 6% 4% 
Counselling 3% 4% 3% 
Libraries and 
information 
centres 

15% 16% 17% 

Students’ services 10% 11% 12% 
Research and 
environmental 
services 

27% 28% 26% 

Legalism and 
morals 

2% 1% 1% 

Scientific 
evaluation 

5% 4% 5% 

Table 4. Optimized resources distribution proposed for the three years duration 

 

The best solution is therefore, the best budget distribution over the three years period and 
aims to give the organization managers an indication for the priority of spending in order to 
better utilise their resources and provide the best affordable quality of education. 
Table 4 summarises the best possible budget distribution which depends on the initial 
resources of the institution and their financial budgets over the years. 

 
5. Conclusion 
 

In this research, system dynamics has been chosen to capture the complex relations that 
affect the behaviour of the education quality model. The environment selected for this 
simulation provides an easy way for integrating different tools and allows for different 
techniques to be utilized. The modular design also allows for additional modules to capture 
additional factors that can influence the system.  
The modelling of the system itself before it is to be used in optimizing the budget 
distribution needed a great involvement in the design of the model from different parties to 
achieve advanced levels of prediction. That involvement proves more useful for the policy 
makers and helps to integrate them with system formulation and interrelated causalities. 
This research provided as well a comparison between the normal quality management for 
budget distribution and the optimized budget distribution and their effect on the quality. 
For comparison reasons, it was important to use realistic values which were obtained from 
the normal management methods and compare the results with the estimated values for the 
quality. That comparison although it is an estimated one but it can give an idea to the 
quality management planers of what the outcome can be if they relied on modelling the 
EQC system and optimizing the solution to achieve maximum education quality. 
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