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1. Introduction 
 

There is strong evidence that the behaviour of living systems is subject to biological clocks 
which can be considered as mutually coupled oscillators. These applications of oscillators 
were studied since very early (Minorsky, 1962; Pavlidis, 1973). In case of biological systems 
like algae populations or micro-organism cultures their varying growth rate and other living 
system activities are liable, first of all, to the diurnal cycles of light irradiation as the decisive 
model input. The living systems adopt these cyclic conditions as their inner circadian 
rhythms and exert a specific tendency to maintain their rhythm even if the cyclic external 
influences change their period or shape. In this way the model of system entrainment to 
circadian rhythms is based on the idea of nonlinear resonance phenomenon. The circadian 
rhythms, also referred to as internal biological rhythms, play a role as temporal regulatory 
pacemakers practically in any activity of living species, but their mechanism remains still 
largely unknown (Ditty et al., 2009). Experimental studies and mathematical modelling have 
demonstrated that circadian pacemakers working on periods close to 24 hours can be 
modelled as limit cycle oscillators (Pavlidis, 1973; Winfree, 1970; Wever, 1970). Typically a 
pacemaker model implementation involves a Van der Pol oscillator as a limit cycle 
generator influencing the model of population growth (Fišer et al., 2008). Then this circadian 
pacemaker structure can be identified with the experimentally obtained data. A part of the 
recent research in cyanobacteria growth modelling has been already described in the 
previous paper (Fišer et al., 2006), where an algae population growth is investigated. 
 
In selecting a suitable oscillator for circadian pacemaker application the ability of the system 
to adapt its frequency and the shape of cycles according to the exogenous cyclic inputs, is to 
be kept in view in particular. Thus any oscillator considered as the pacemaker has to be 
endowed with the property that its limit cycle oscillations change gradually in frequency 
and shape according to the cyclic influences. These influences comprise light irradiance and 
other ambient inputs particularly temperature and nourishment supply (Johnson et al., 
2004). 
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Beside the analytical nonlinear schemes mentioned above a chemical oscillator has already 
been developed as generator of circadian rhythms (Miyoshi et al., 2007), and its operation 
was tested on rhythms in cyanobacteria. The structure of this oscillator is relatively complex 
and the aim of this chapter is to find an approximation of the Miyoshi oscillator by a Van 
der Pol type oscillator for substituting its function by a simpler scheme in modelling the 
timing influence on the diurnal cycles in the cyanobacteria growth. 

 
2. Experimental data acquisition 
 

The authors’ own data material used for working out the model presented below, originates 
from experiments with unicellular, diazotropic cyanobacterium Cyanothece, sp. ATCC 51142. 
The experiments were performed in a laboratory-scale bioreactor, developed by Photon 
Systems Instruments, Ltd. (Fig.1). Due to a programmable source of variable irradiance in 
this device and due to other adjustable experiment conditions artificially formed diurnal 
cycles can be provided and the consequent circadian rhythms in cyanobacteria culture can 
be observed and recorded. The used bioreactor provides capability to generate artificially 
defined cultivation conditions with controlled distribution of CO2 nourishment, inevitable 
for obtaining consistent culture growth data. Furthermore, a controlled heating and/or 
cooling allows to maintaining a desired temperature for cultivation. Continuously recorded 
outputs include temperature, optical density and fluorescence emission representing the 
culture production performance. Among other artificial perturbations of the culture growth 
changes of the nourishing gas composition can be provided. Particularly the carbon dioxide 
concentration changes can be applied in the experiments. As the model output the optical 
density of cyanobacteria culture in 735 nm, as a parameter proportional to concentration of 
cyanobacteria culture, is used (Nedbal et al., 2008). 
 

 
Fig. 1. Prototype of cultivation device 

 

3. Population growth model 
 

Among other approaches to modelling the population growth, the models based on Volterra 
population equation are applied. Their recent applications used to include the delay effects 
resulting from the age structure of the described population into the model (Cushing, 1993; 
Iannelli, 1994). The delayed Volterra model of population growth is usually referred to in a 
functional form which can be found in Kuang, (1993). To express the ageing influence on the 
inhibition of population growth an extension of the delayed Volterra model has been 
introduced by Fišer et al., (2007). 
 
Consider the population growth model described by the delayed Volterra-type system 
(Červený et al., 2007) 
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where x is the cyanobacteria concentration in the culture, I is the incident light intensity,   
is the temperature of nourishing medium and ),,,(  Iyx  is the specific rate of cell growth. 
This growth rate is also affected by the timing activity of the biological clock of the culture 
represented by the cyclic variable y as the output of oscillator described below. The 
functions 0)( A , 0)( B  are delay distributions, 0 , and T is the maximum delay 
length. As to the timing action its impact on the specific growth rate is considered in the 
following separated form 
 
 )(),,(),,,( yIxIyx cp    (2) 
 
where p  expresses the specific growth rate based on Monod kinetics and c  is a growth 
rate increment originating from the clock oscillator. The variable y is the output of a 
chemical cyclic action explained in Section 4 which controls the circadian rhythms. Due to 
the dimensional homogeneity its influence on the growth rate is supposed as proportional to 
one of the state variable derivatives of the oscillator in Section 4 
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where C  is a proportional gain coefficient. 
 
The value of the main component p  of the growth rate results from both the Monod 
kinetics and Lambert-Beer law as follows 
 

 )(1),,(
),(

max  peIx sat

a
I

IxI

















 (4) 

 

www.intechopen.com



Oscillators for Modelling Circadian Rhythms in Cyanobacteria Growth 107

 

Beside the analytical nonlinear schemes mentioned above a chemical oscillator has already 
been developed as generator of circadian rhythms (Miyoshi et al., 2007), and its operation 
was tested on rhythms in cyanobacteria. The structure of this oscillator is relatively complex 
and the aim of this chapter is to find an approximation of the Miyoshi oscillator by a Van 
der Pol type oscillator for substituting its function by a simpler scheme in modelling the 
timing influence on the diurnal cycles in the cyanobacteria growth. 

 
2. Experimental data acquisition 
 

The authors’ own data material used for working out the model presented below, originates 
from experiments with unicellular, diazotropic cyanobacterium Cyanothece, sp. ATCC 51142. 
The experiments were performed in a laboratory-scale bioreactor, developed by Photon 
Systems Instruments, Ltd. (Fig.1). Due to a programmable source of variable irradiance in 
this device and due to other adjustable experiment conditions artificially formed diurnal 
cycles can be provided and the consequent circadian rhythms in cyanobacteria culture can 
be observed and recorded. The used bioreactor provides capability to generate artificially 
defined cultivation conditions with controlled distribution of CO2 nourishment, inevitable 
for obtaining consistent culture growth data. Furthermore, a controlled heating and/or 
cooling allows to maintaining a desired temperature for cultivation. Continuously recorded 
outputs include temperature, optical density and fluorescence emission representing the 
culture production performance. Among other artificial perturbations of the culture growth 
changes of the nourishing gas composition can be provided. Particularly the carbon dioxide 
concentration changes can be applied in the experiments. As the model output the optical 
density of cyanobacteria culture in 735 nm, as a parameter proportional to concentration of 
cyanobacteria culture, is used (Nedbal et al., 2008). 
 

 
Fig. 1. Prototype of cultivation device 

 

3. Population growth model 
 

Among other approaches to modelling the population growth, the models based on Volterra 
population equation are applied. Their recent applications used to include the delay effects 
resulting from the age structure of the described population into the model (Cushing, 1993; 
Iannelli, 1994). The delayed Volterra model of population growth is usually referred to in a 
functional form which can be found in Kuang, (1993). To express the ageing influence on the 
inhibition of population growth an extension of the delayed Volterra model has been 
introduced by Fišer et al., (2007). 
 
Consider the population growth model described by the delayed Volterra-type system 
(Červený et al., 2007) 
 

 )( )()()()(),,,()(
00 txdB

dt
tdxdAtxIyx

dt
tdx TT







 

    (1) 

 
where x is the cyanobacteria concentration in the culture, I is the incident light intensity,   
is the temperature of nourishing medium and ),,,(  Iyx  is the specific rate of cell growth. 
This growth rate is also affected by the timing activity of the biological clock of the culture 
represented by the cyclic variable y as the output of oscillator described below. The 
functions 0)( A , 0)( B  are delay distributions, 0 , and T is the maximum delay 
length. As to the timing action its impact on the specific growth rate is considered in the 
following separated form 
 
 )(),,(),,,( yIxIyx cp    (2) 
 
where p  expresses the specific growth rate based on Monod kinetics and c  is a growth 
rate increment originating from the clock oscillator. The variable y is the output of a 
chemical cyclic action explained in Section 4 which controls the circadian rhythms. Due to 
the dimensional homogeneity its influence on the growth rate is supposed as proportional to 
one of the state variable derivatives of the oscillator in Section 4 
 

  
dt

CPKaiCdCtyCtc
6)( )(   (3) 

 
where C  is a proportional gain coefficient. 
 
The value of the main component p  of the growth rate results from both the Monod 
kinetics and Lambert-Beer law as follows 
 

 )(1),,(
),(

max  peIx sat

a
I

IxI

















 (4) 

 

www.intechopen.com



Modeling, Simulation and Optimization  – Focus on Applications108

 

where aI  is the average light intensity inside the culture given by 
 

  xk

c

w
a

ce
xk

kIIxI  1  ),(  (5) 

 
where satI  is a saturation light intensity, and p  is an auxiliary function expressing the 
dependance of the growth rate on the temperature. The parameters ck , wk  determine the 
light absorption in cyanobacteria culture and glass wall, respectively (for more details see 
Li et al., 2003).  
 
In the next the main attention is paid to circadian rhythm issue, i.e. the cyclic influence of 

)(yc  on the cyanobacteria growth rate. 

 
4. Miyoshi chemical oscillator 
 

The functional structure of circadian oscillator in cyanobacteria on molecular level was 
discovered by Ishiura et al. (1998). The experiment data were measured on Cyanothece sp. 
while one has to be concerned about already published models which are almost exclusively 
developed for another model cyanobacterium Synechococcus elongatus (e.g. Miyoshi et al., 
2007; Mori et al., 2007; Rust et al., 2007; van Zon et al., 2007). For our modelling approach let 
be assumed that the features of interest in these two organisms are comparable. More details 
on molecular base of cyanobacteria circadian clock are well described recently by Ditty et al. 
(2009). 
 
For purposes of diurnal cyanobacteria growth modelling we adopted the oscillator 
developed by Miyoshi et al. (2007) that allows entrainment by the light-dark forcing applied 
on the culture. Adopted mechanistic model of oscillator constitutes the set of 13 differential 
equations that describe changes in concentration of protein complexes involved in circadian 
clock system. The equations with state variable descriptions (Table 1) are as follows 
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Table 1. State variables description with initial conditions 
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State variables Description Init. cond.  
[molecules/ce

ll] 
 6KaiC  non-phosphorylated KaiC hexameric complex 139.220 
 6PPKaiC  partially phosphorylated KaiC hexameric complex 779.158 
 6CPKaiC  completely phosphorylated KaiC hexameric complex 1229.563 
 KaiC  non-phosphorylated KaiC monomer 932.446 
 PKaiC  phosphorylated KaiC monomer 110.829 
 4KaiB  KaiB-inactive tetramer complex 0.173 
 iKaiB4  KaiB-active tetramer complex 3251.369 
 KaiB  KaiB monomer 1130 
 2KaiA  KaiA dimer 166.559 
 KaiA  KaiA monomer 9.998 
 mRNAkaiA  kaiA mRNA 2.856 
 mRNAkaiBC  kaiBC mRNA 2.865 
 42BKaiA  complex of a KaiA dimer and KaiB-active tetramer 51.022 
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where rate variables formed from Michaelis-Menten equations are as follows  
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The parameter values and variable description, of all the rate constants starting in the 
notation with k  and all the Michaelis constants starting in the notation with K  are specified 
in the application example. Also the initial conditions of the set (6)-(18) are provided in the 
application example. Because some rate variables in (6)-(18) are activated by forcing light 
(for original reference see Miyoshi et al., 2007), while in dark these rate variables are relaxed, 
we apply to distinguish between the activation and relaxation of these rate variables a 
logical variable L already substituted into (6)-(18). This logical variable represents on/off 
irradiance state (for more details see Section 5). 
 
For the simulation purposes (6)-(18) are viewed as the state equations in state variables 
specified by Table 1 and constituting the state vector as follows 
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Correcting several misprints in Miyoshi et al. (2007) the following changes were carried out in 
(11) and (13). Namely, the signs of rate variables  4

99 KaiBkv  ,  41010 KaiBkv   are 
exchanged, and at the same time the right-hand sides of expressions for 9v , 10v  are mutually 
exchanged. Another correction was applied to parameters 4catk  and 4degpk . In addition, 
parameters 1mK , 2mK  were increased 1000 times to achieve the circadian rhythms of 24 h 
period. 

 
5. Approximation of biological clock by Van der Pol oscillator 
 

An oscillator based on Van der Pol equation is proposed to approximate the chemical 
oscillator presented in previous section because of appreciable simplification concerning the 
number of both state variables and tuning parameters. Then, let the proposed Van der Pol 
oscillator be considered in the matrix form 
 

 ),()()()()()()(
1 Dttztt

dt
td uzBzzFAzz

  (26) 

 
where  Tzzz 321 ,,z is the state vector of the oscillator. Both the state and input matrices are 
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and 
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respectively. The constants a,  ,b are the parameters of Van der Pol equation and the 
oscillator input vector is of the form  TDttIDt  )()(),( u , where I(t)  is the cyclic light 
intensity representing the diurnal cycles, and   is the frequency on which the oscillator is 
to be entrained. Gain q amplifies the light intensity and time constant T with pure delay D 
determines the dynamics of adaptation. The existence of limit cycle motion is conditioned by 
the inequality 
 
   02

1  bz  (29) 
 
where 0,0  b . The other parameters, a  and q , are the weighting coefficients which 
influence the shape of limit cycle oscillations. The oscillator output is given by the equation 
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where rate variables formed from Michaelis-Menten equations are as follows  
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The parameter values and variable description, of all the rate constants starting in the 
notation with k  and all the Michaelis constants starting in the notation with K  are specified 
in the application example. Also the initial conditions of the set (6)-(18) are provided in the 
application example. Because some rate variables in (6)-(18) are activated by forcing light 
(for original reference see Miyoshi et al., 2007), while in dark these rate variables are relaxed, 
we apply to distinguish between the activation and relaxation of these rate variables a 
logical variable L already substituted into (6)-(18). This logical variable represents on/off 
irradiance state (for more details see Section 5). 
 
For the simulation purposes (6)-(18) are viewed as the state equations in state variables 
specified by Table 1 and constituting the state vector as follows 
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Correcting several misprints in Miyoshi et al. (2007) the following changes were carried out in 
(11) and (13). Namely, the signs of rate variables  4

99 KaiBkv  ,  41010 KaiBkv   are 
exchanged, and at the same time the right-hand sides of expressions for 9v , 10v  are mutually 
exchanged. Another correction was applied to parameters 4catk  and 4degpk . In addition, 
parameters 1mK , 2mK  were increased 1000 times to achieve the circadian rhythms of 24 h 
period. 

 
5. Approximation of biological clock by Van der Pol oscillator 
 

An oscillator based on Van der Pol equation is proposed to approximate the chemical 
oscillator presented in previous section because of appreciable simplification concerning the 
number of both state variables and tuning parameters. Then, let the proposed Van der Pol 
oscillator be considered in the matrix form 
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where  Tzzz 321 ,,z is the state vector of the oscillator. Both the state and input matrices are 
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respectively. The constants a,  ,b are the parameters of Van der Pol equation and the 
oscillator input vector is of the form  TDttIDt  )()(),( u , where I(t)  is the cyclic light 
intensity representing the diurnal cycles, and   is the frequency on which the oscillator is 
to be entrained. Gain q amplifies the light intensity and time constant T with pure delay D 
determines the dynamics of adaptation. The existence of limit cycle motion is conditioned by 
the inequality 
 
   02

1  bz  (29) 
 
where 0,0  b . The other parameters, a  and q , are the weighting coefficients which 
influence the shape of limit cycle oscillations. The oscillator output is given by the equation 
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dt

tdzCtzCty dd
)()()( 1

2   (30) 

 
where dC  is a normalization coefficient. Output y is then the input variable of specific 
growth rate (3) to modify the cyanobacteria growth by circadian rhythms as 

)(  )( )( 2 tzCCtyCt dc  . 

 
6. Oscillator-based scheme for adapting to circadian rhythms 
 

Basically equation (1) provides the model with the internal relationships which govern the 
growth of population but this model part does not express the circadian character and 
particularly the impact of diurnal cycles on the growth. The biological populations are 
specifically sensitive to changes in their environment and thus they are able to adapt 
themselves to these changes. All this suggests that a more complex mechanism than a pure 
sensory adaptation may be involved in the model. It is typical that the adaptation time 
constants tend to be rather longer than the ones typical for sensoric organ responses. This 
property of biological systems is provided by means of applying an oscillator (Pavlidis, 
1973) influenced by a generator of diurnal cycles as in the block diagram in Fig. 2. Using the 
oscillator based on Van der Pol equation, the generator of diurnal cycles of light irradiation 
I(t) may be applied to adapt the limit cycle frequency of the oscillator. Another oscillator, 
called chemical, is forced by sequence of 0 and 1, where 0 and 1 correspond to the dark 
phase and light phase, respectively. This is simply done using logical variable L, see Fig. 2, 
that either 0 or 1 are in the product with corresponding rate variables in right-hand sides of 
(8)-(20). We say that these rate variables are in on/off irradiance state. 
 

 
Fig. 2. Oscillator-based scheme for adapting to circadian rhythms 
 
The modelling with the help of the scheme in Fig. 2 requires the setting of proper initial 
conditions comprised in vectors )0(w , )0(z  and initial cyanobacteria concentration 
(inoculum) )0(x  with relaxed max0 ),(  x . 

 

 

 

7. Application example 
 

In this section a growth model for cyanobacteria species Cyanothece is presented. For fitting 
the model the data from experiments reported in Section 2 were used. The samples of 
measured courses of cyanobacteria, like that in Fig. 5 were used to identify the model 
parameters. First, the parameters of specific growth rate   were determined, for more 
details we refer to Červený et al., (2007), where the cultivated cyanobacteria species 
Cyanothece is investigated. In this paper the following parameters are considered: 

1
max  028.0  h , -2Wm 126satI , auxiliary value 1)30(  Cp  , coefficient 4.3ck , 

specific parameter 6.31wk . The remaining parameters of model (1) have been resulted in 
the distributions )(A  and )(B  as follows 
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First, the parameters of chemical oscillator are determined in the table below (adopted from 
Supplementary Online Material in Červený & Nedbal (2009)). 
 

Rate constants Description 
1

1 615.1  hk  dissociation rate for KaiC6 
15516

2 10039.2  hcellmoleculesk  binding rate for KaiC 
14

3 10615.1  hk  dissociation rate for PPKaiC6 
15514

4 10019.1  hcellmoleculesk  binding rate for KaiC and PKaiC 
1

5 162.0  hk  dissociation rate for CPKaiC6 
15510

6 10019.1  hcellmoleculesk  binding constant for PKaiC 
11

7  10162.0  hk  dissociation rate for KaiA2 
111

8 268.0  hcellmoleculesk  binding rate for KaiA 
13317

9 10393.7  hcellmoleculesk  binding rate for KaiB 
14

10  10615.1  hk  dissociation rate for KaiB4 
1114

11 10756.8  hcellmoleculesk  binding rate for KaiA2 and KaiB4 

12
12 10788.8  hk  dissociation rate for KaiA2 

18
21 10079.1  hk  autophosphorylation rate of KaiA2B4 

15
22 10079.1  hk  autodephosphorylation rate of PPKaiC6 

16
23 10079.1  hk  autophosphorylation rate of PPKaiC6 

18
24 10079.1  hk  autodephosphorylation rate of CPKaiC6 

117
1 10017.1  hcellmoleculeska  transcription rate of kaiA 
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where dC  is a normalization coefficient. Output y is then the input variable of specific 
growth rate (3) to modify the cyanobacteria growth by circadian rhythms as 

)(  )( )( 2 tzCCtyCt dc  . 

 
6. Oscillator-based scheme for adapting to circadian rhythms 
 

Basically equation (1) provides the model with the internal relationships which govern the 
growth of population but this model part does not express the circadian character and 
particularly the impact of diurnal cycles on the growth. The biological populations are 
specifically sensitive to changes in their environment and thus they are able to adapt 
themselves to these changes. All this suggests that a more complex mechanism than a pure 
sensory adaptation may be involved in the model. It is typical that the adaptation time 
constants tend to be rather longer than the ones typical for sensoric organ responses. This 
property of biological systems is provided by means of applying an oscillator (Pavlidis, 
1973) influenced by a generator of diurnal cycles as in the block diagram in Fig. 2. Using the 
oscillator based on Van der Pol equation, the generator of diurnal cycles of light irradiation 
I(t) may be applied to adapt the limit cycle frequency of the oscillator. Another oscillator, 
called chemical, is forced by sequence of 0 and 1, where 0 and 1 correspond to the dark 
phase and light phase, respectively. This is simply done using logical variable L, see Fig. 2, 
that either 0 or 1 are in the product with corresponding rate variables in right-hand sides of 
(8)-(20). We say that these rate variables are in on/off irradiance state. 
 

 
Fig. 2. Oscillator-based scheme for adapting to circadian rhythms 
 
The modelling with the help of the scheme in Fig. 2 requires the setting of proper initial 
conditions comprised in vectors )0(w , )0(z  and initial cyanobacteria concentration 
(inoculum) )0(x  with relaxed max0 ),(  x . 

 

 

 

7. Application example 
 

In this section a growth model for cyanobacteria species Cyanothece is presented. For fitting 
the model the data from experiments reported in Section 2 were used. The samples of 
measured courses of cyanobacteria, like that in Fig. 5 were used to identify the model 
parameters. First, the parameters of specific growth rate   were determined, for more 
details we refer to Červený et al., (2007), where the cultivated cyanobacteria species 
Cyanothece is investigated. In this paper the following parameters are considered: 
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max  028.0  h , -2Wm 126satI , auxiliary value 1)30(  Cp  , coefficient 4.3ck , 

specific parameter 6.31wk . The remaining parameters of model (1) have been resulted in 
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First, the parameters of chemical oscillator are determined in the table below (adopted from 
Supplementary Online Material in Červený & Nedbal (2009)). 
 

Rate constants Description 
1

1 615.1  hk  dissociation rate for KaiC6 
15516

2 10039.2  hcellmoleculesk  binding rate for KaiC 
14

3 10615.1  hk  dissociation rate for PPKaiC6 
15514

4 10019.1  hcellmoleculesk  binding rate for KaiC and PKaiC 
1

5 162.0  hk  dissociation rate for CPKaiC6 
15510

6 10019.1  hcellmoleculesk  binding constant for PKaiC 
11

7  10162.0  hk  dissociation rate for KaiA2 
111

8 268.0  hcellmoleculesk  binding rate for KaiA 
13317

9 10393.7  hcellmoleculesk  binding rate for KaiB 
14

10  10615.1  hk  dissociation rate for KaiB4 
1114

11 10756.8  hcellmoleculesk  binding rate for KaiA2 and KaiB4 

12
12 10788.8  hk  dissociation rate for KaiA2 

18
21 10079.1  hk  autophosphorylation rate of KaiA2B4 

15
22 10079.1  hk  autodephosphorylation rate of PPKaiC6 

16
23 10079.1  hk  autophosphorylation rate of PPKaiC6 

18
24 10079.1  hk  autodephosphorylation rate of CPKaiC6 

117
1 10017.1  hcellmoleculeska  transcription rate of kaiA 
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117
2 10458.6  hcellmoleculeska  transcription rate of kaiBC 

1
1 539.0  hkcat  rate of KaiC6 phosphorylation 

1
2 539.0  hkcat  rate of PPKaiC6 dephosphorylation 

1
3 079.1  hkcat  rate of PPKaiC6 phosphorylation 

1
4 890.0  hkcat  rate of CPKaiC6 dephosphorylation 

1
1_ 423.2  hk bcat  rate of KaiB4 inactivation 

1
2_ 346.0  hk bcat  rate of KaiB4i activation 

1
1deg 133.0  hkm  degradation rate of kaiA mRNA 

1
2deg 178.0  hkm  degradation rate of kaiBC mRNA 

13
1deg 1000.8  hkp  degradation rate of KaiA 

1
2deg 490.0  hkp  degradation rate of KaiB 

1
3deg 300.1  hkp  degradation rate of KaiC 

1
4deg 200.0  hkp  degradation rate of PKaiC 

13
1 10239.8  hktl  translation rate of kaiA 

12
2 10701.1  hktl  translation rate of kaiBC 

 
Michaelis and miscellaneous constants   

 
Description 

cellmoleculeskbts
112

1 10657.3   binding constant for RNA polymerase in kaiA 

cellmoleculeskbts
112

1 10000.1   binding constant for RNA polymerase in 
kaiBC 

1
1 602  cellmoleculesKm  Michaelis constant for KaiC6 phosphorylation 

1
2 602  cellmoleculesKm  Michaelis constant for PPKaiC6 

dephosphorylation 
1

3 602.0  cellmoleculesKm  Michaelis constant for PPKaiC6 
phosphorylation 

1
4 602.0  cellmoleculesKm  Michaelis constant for CPKaiB4 

dephosphorylation 
1

1_ 602.0  cellmoleculesK bm  Michaelis constant for KaiB4 inactivation 
11

2_ 10675.6  cellmoleculesK bm  Michaelis constant for KaiB4i activation 

  15000  cellmoleculesRNAP  RNA polymerase concentration 

Table 2. Rate and other constants in equations (6) – (24) 
 
Then the parameters of Van der Pol oscillator are found as follows:  /242 hrad 26.0 -1  , 

1 , 181b , 03.0a , 03.0q , h 1T  and 0D . Proportional gain C  results in 
cellmolecules 105 -14    for the chemical oscillator and cellmolecules 2 -1   for the Van der 

Pol oscillator. In addition, normalization coefficient dC  in (30) is adjusted at the value 
-1cellmolecules 2  . For comparing both oscillators the initial conditions of the chemical 

 

oscillator are set in their “morning” values, introduced by Miyoshi et al. (2007), are listed in 
Table 1. Obviously, the third –order oscillator of Van der Pol type cannot satisfy these 
conditions but its limit cycle can be satisfactorily identified with that of the chemical 
oscillator. In order to set Van der Pol oscillator output close to limit cycle the following 
initial conditions are used 
   
 2

321 )0( ,0)0( ,085.0)0(  zzz  (32) 
 
where   is the frequency of desired circadian rhythm. 
 
The initial conditions of the chemical oscillator are chosen to be synchronized with 
cyanobacteria circadian oscillator. In Fig. 3 the phase portraits of the chemical and Van der 
Pol oscillator are recorded. 
 

 
Fig. 3. Phase portraits of both oscillators with initial conditions in Table 1 and (32)  
 
After comparing limit cycles of both oscillators the chemical oscillator tends to the limit 
cycle along a spiral while the Van der Pol oscillator immediately achieves the limit cycle. 
However, the subject of interest is to apply the variables on horizontal axes in Fig. 3 what 
are the derivatives changing the specific growth rate in (1). 
 
The specific growth rate given by (2), composed from two components, is drawn in Fig. 4 
under light conditions specified in Fig. 5. 
 
In Fig. 5 the cyanobacteria growth is obtained in circadian LD 12:12 regime, where LD 
regime abbreviates light/dark regime in hours. Later on, the LD regime is switched to LL 
regime where LL denotes continuous light. 
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2 10458.6  hcellmoleculeska  transcription rate of kaiBC 

1
1 539.0  hkcat  rate of KaiC6 phosphorylation 

1
2 539.0  hkcat  rate of PPKaiC6 dephosphorylation 

1
3 079.1  hkcat  rate of PPKaiC6 phosphorylation 

1
4 890.0  hkcat  rate of CPKaiC6 dephosphorylation 

1
1_ 423.2  hk bcat  rate of KaiB4 inactivation 

1
2_ 346.0  hk bcat  rate of KaiB4i activation 

1
1deg 133.0  hkm  degradation rate of kaiA mRNA 

1
2deg 178.0  hkm  degradation rate of kaiBC mRNA 

13
1deg 1000.8  hkp  degradation rate of KaiA 

1
2deg 490.0  hkp  degradation rate of KaiB 

1
3deg 300.1  hkp  degradation rate of KaiC 

1
4deg 200.0  hkp  degradation rate of PKaiC 

13
1 10239.8  hktl  translation rate of kaiA 

12
2 10701.1  hktl  translation rate of kaiBC 

 
Michaelis and miscellaneous constants   

 
Description 

cellmoleculeskbts
112

1 10657.3   binding constant for RNA polymerase in kaiA 

cellmoleculeskbts
112

1 10000.1   binding constant for RNA polymerase in 
kaiBC 

1
1 602  cellmoleculesKm  Michaelis constant for KaiC6 phosphorylation 

1
2 602  cellmoleculesKm  Michaelis constant for PPKaiC6 

dephosphorylation 
1

3 602.0  cellmoleculesKm  Michaelis constant for PPKaiC6 
phosphorylation 

1
4 602.0  cellmoleculesKm  Michaelis constant for CPKaiB4 

dephosphorylation 
1

1_ 602.0  cellmoleculesK bm  Michaelis constant for KaiB4 inactivation 
11

2_ 10675.6  cellmoleculesK bm  Michaelis constant for KaiB4i activation 

  15000  cellmoleculesRNAP  RNA polymerase concentration 

Table 2. Rate and other constants in equations (6) – (24) 
 
Then the parameters of Van der Pol oscillator are found as follows:  /242 hrad 26.0 -1  , 

1 , 181b , 03.0a , 03.0q , h 1T  and 0D . Proportional gain C  results in 
cellmolecules 105 -14    for the chemical oscillator and cellmolecules 2 -1   for the Van der 

Pol oscillator. In addition, normalization coefficient dC  in (30) is adjusted at the value 
-1cellmolecules 2  . For comparing both oscillators the initial conditions of the chemical 

 

oscillator are set in their “morning” values, introduced by Miyoshi et al. (2007), are listed in 
Table 1. Obviously, the third –order oscillator of Van der Pol type cannot satisfy these 
conditions but its limit cycle can be satisfactorily identified with that of the chemical 
oscillator. In order to set Van der Pol oscillator output close to limit cycle the following 
initial conditions are used 
   
 2

321 )0( ,0)0( ,085.0)0(  zzz  (32) 
 
where   is the frequency of desired circadian rhythm. 
 
The initial conditions of the chemical oscillator are chosen to be synchronized with 
cyanobacteria circadian oscillator. In Fig. 3 the phase portraits of the chemical and Van der 
Pol oscillator are recorded. 
 

 
Fig. 3. Phase portraits of both oscillators with initial conditions in Table 1 and (32)  
 
After comparing limit cycles of both oscillators the chemical oscillator tends to the limit 
cycle along a spiral while the Van der Pol oscillator immediately achieves the limit cycle. 
However, the subject of interest is to apply the variables on horizontal axes in Fig. 3 what 
are the derivatives changing the specific growth rate in (1). 
 
The specific growth rate given by (2), composed from two components, is drawn in Fig. 4 
under light conditions specified in Fig. 5. 
 
In Fig. 5 the cyanobacteria growth is obtained in circadian LD 12:12 regime, where LD 
regime abbreviates light/dark regime in hours. Later on, the LD regime is switched to LL 
regime where LL denotes continuous light. 
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Fig. 4. Specific growth rate (2) in percents with respect to max  
 

 
Fig. 5. Comparison of measured concentration x  with the modelled one using the scheme in 
Fig. 2 with initial conditions h 240,0)( ,045.0)0(  xx  
 
In Fig. 5 an experiment with cyanobacteria culture is recorded, where the cyclic lighting 
with 24 hours period is changed to a permanent light with constant intensity. The measured 
data of cyanobacteria growth are compared with the modelling results obtained from both 
the models with chemical and Van der Pol oscillators. Both the models fit well the 
undisturbed growth of the culture, however, the model version with the chemical oscillator 
is in a better agreement with the experiments, better than it is with the application of Van 
der Pol oscillator. 

 

8. Conclusions 
 

The issue of circadian rhythms is getting more importance with the emerging possibility of 
intensifying the biotechnological processes. The main aim of the paper is to show that the 
rather complex chemical oscillator can be substituted by a relatively simple Van der Pol 
oscillator in its timing function in modelling the circadian rhythms. While the chemical 
oscillator consists of thirteen state variables the simple Van der Pol is of the third order only. 
Apparently these oscillators cannot be fully equivalent in their state vectors, but both the 
oscillators can substitute each other in generating the clock limit cycle. The basic frequency 
is given by the 24 hour period and both these oscillators can be tuned to a different desired 
frequency. Nevertheless the adjustment of the period is not of the same dynamics in both 
the oscillators. Only in this respect the Van der Pol oscillator does not fit the growth 
oscillations in cyanobacteria as the chemical one, but this shortage is not substantial for the 
bioreactor application and is outweighed by the simplicity of the proposed approximation. 
As regards the presented results it is necessary to note that the experiment conditions were 
simplified as to the simplified nourishment technique, where only CO2 was supplied while 
no fixable nitrogen was available. That is why in the presented experiments the 
cyanobacteria concentration drops during the dark phases, which is not typical in case of 
complete nourishment. 
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