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1. Introduction 

This chapter presents an implementation of the Neocognitron Neural Network, using a high 
performance computing architecture based on GPU (Graphics Processing Unit). 
Neocognitron is an artificial neural network, proposed by Fukushima and collaborators, 
constituted of several hierarchical stages of neuron layers, organized in two-dimensional 
matrices called cellular plains. For the high performance computation of Face Recognition 
application using Neocognitron it was used CUDA (Compute Unified Device Architecture) 
as API (Application Programming Interface) between the CPU and the GPU, from GeForce 
8800 GTX of NVIDIA Company, with 128 ALU’s. As face image databases it was used a face 
database created at UFSCar (Federal University of São Carlos), and the CMU-PIE (Carnegie 
Melon University - Pose, Illumination, and Expression) database. The load balancing 
through the parallel processing architecture was obtained by means of the distributed 
processing of the cellular connections as threads organized in blocks, following the CUDA 
philosophy of development. The results showed the viability of this type of device as a 
massively parallel data processing tool, and that smaller the granularity of the parallel 
processing, and the independence of the processing, better is its performance. 

 
2. Motivation 

The face recognition using machines is an active and actual research area. This is composed 
by multiple disciplines as image processing, pattern recognition, computer vision, artificial 
neural networks, and computer architectures. There are many commercial applications that 
implement Face Recognition Techniques, as in access control, and security using video 
camera. 
Many countries use the face recognition techniques for several purposes. On China, for 
example, it was developed the immigrant recognition system to the cities of Shenzhen and 
Zhunhai (Terra, 2006). The system gives good results, especially when the fingerprint can´t 
be used to the recognition purpose, due to several problems as age, damage with chemical 
reactions, and so on. 

20
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Owing to the user-friendly (non-intrusive) property, the face recognition is attractive, 
despite of the extremely reliable methods of personal biometric identification such as 
fingerprint and iris scanning analysis. 
As it can be seen there are major challenges on the issues of facial recognition, where you 
can highlight a relationship between two basics variables of the process: the degree of 
reliability/robustness of the technique being used and computational cost of this technique. 
The goal of this chapter is the presentation of a computer architecture for face recognition, 
aiming its performance increasing through the use of a massively parallel data processing, 
achieved by the implementation of a Neocognitron neural network architecture, based on 
GPU (Graphic Processing Unit). To access the GPU as a device for scheduling purposes, it is 
used in majority the CUDA (Compute Unified Device Architecture), a library that extends 
the functions of language C, FORTRAN and Python in order to provide the GPU as a device 
for data processing. 

 
3. Neocognitron Neural Network 

Neocognitron is a massively parallel neural network, composed by serveral layers of neuron 
cells, proposed by Fukushima (Fukushima end Miyake, 1982)(Fukushima and Wake 
1992)(Saito and Fukushima, 1998). In a brainway computer it corresponds to part of the 
human visual recognition system. 
The Neocognitron neural network has the basic principle of operation extracting features in 
a hierarchical manner, i.e., performs the extraction of features in various stages. In the first 
stage, the extracted features are the simplest; and at the following stages, summing up the 
lines in different senses of rotation, the features will be presenting with more complexity. 
The characteristic of this network is that the features extracted by a stage have the 
informations only sent by the previous stage, as a feedforward neural network. 

 
3.1 The Neocognitron Structure 
The stages of a Neocognitron network are arranged in tiers, each of these layers has its own 
type/complexity of data being processed, and these consist of simple cells (Cell-S), complex 
cells (Cell-C) and activity cells (Cell-V). 
The stages are compared by the Layer-S, of Cell-Ss. The Layer-C, of Cell-Cs; and Layer-V, of 
Cell-Vs. Within each layer there is a number of cell-plans, which are organized as two-
dimensional array of cells, each cell with the ability of extracting the same features of the 
adjacent cells in the same cell-plan. 
The stages function as a tool for organizing the process of extracting the characteristics or 
factors with a degree of complexity of the extracted pattern characteristics. The first stage, 
called the zero stage (Stage 0) is not used within the hierarchical scheme of feature 
extraction and it is used as the retina of the eye, capturing the pattern to be processed by the 
network. Figure 1 shows the stages of a Neocognitron with five stages. 
The number of stages of a Neocognitron network depends on the size of the input pattern 
being processed by the network. The larger the size of the input pattern, greater is the 
number of stages required by the network. For example, an input pattern of 20 x 20 pixels, 
typically results in a network of three hierarchical stages. 
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Fig. 1. Neocognitron representation with five stages. 
 
Each stage of a Neocognitron network is divided into three layers: a simple layer (Layer-S), 
a complex layer (Layer-C) and a layer of activity (Layer-V). Assuming the Neocognitron 
with five stages, shown earlier (Figure 1), its representation in layers can be seen in Figure 2. 
 

 

Fig. 2. Neocognitron representation with five stages with its layers. 
 
In stage 0 there is only one layer, which is the input layer or input pattern. All other stages 
have three types of layers, one Layer-S, a Layer-V and a Layer-C. 
Each layer is formed by a number of cellplans. The number of plans in each Layer-S and 
Layer-C is related to the number of features extracted by the stage of the network. A Layer-
V is a single cell-plan layer. The size of the plans is equal to the same layer and it decreases 
as you climb the hierarchy of stages. Figure 3 shows the plans distributed in the cell layers 
of the network. 
 

www.intechopen.com



Face Recognition384

 

Fig. 3. Five stages Neocognitron representation with its layers and plans. 
 
Each Plan-S, Plan-V, Plan-C and Input layer is formed by a set (array) of specialized cells. 
Figure 4 shows the cells distributed along the plans of the network. A Plan-C of the layer 
UC4, the last stage of the network, contains only a single cell, whose activity indicates the 
recognition of the input pattern. 
 

 

Fig. 4. Five stages Neocognitron representation with its layers, plans, and cells. 
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3.2 Weights and Connections 
A characteristic of the Neocognitron is to have a large number of cells but a reduced number 
of connections. The cells are connected to a reduced connection area, of the previous layer. 
This characteristic of connectivity is different from the Multilayer Perceptron, in which a 
neuron of a layer is connected to all neurons of the previous layer. 
For each connection there is a weight that is used to influence the amount of information 
that is transferred. Neocognitron has four types of weights: weight-a, weight-b, weight-c, 
and weight-d, whose uses are summarized as shown in Figure 5. 
 

 

Fig. 5. Neocognitron weights (weight-a, weight-b, weight-c and weight-d) and its 
connections. 
 
Within a cell-plan level, all cells share the same weight. This causes all cells in the same plan 
to observe the same feature, thus specializing the plan for the same feature in different 
positions. 
 

 

Fig. 6. Within a cellular level, all cells share the same weights. 
 
You can even arrange the weights in two categories, which are modified by training 
(weight-a weight-b); and which are not modified, i.e., the values attributed to them, remain 
unchanged through the implementation of the network (weight-c and weight-d). 
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3.3 Processing Neocognitron Network 
Each Cell-V calculates the input values of Cell-Cs from a small region connection area of all 
cell-plans of the previous Layer-C. The size of the connection area is the same for cells-V and 
cells-S in a stage of the network and it is determined at the time of construction of the 
network. An example of the connection area can be seen in Figure 7. 
The value of a Cell-V represents the average activity of cells belonging to its area of 
connection and is used to inhibit the corresponding Cell-S. The exact specification of the 
function of Cell-V, uVl(n), is given by Equation 1: 
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where the weight should be cl ≥ 0; and ucl-1(n+i, kl-1) represents the input value, from the 
previous cell-plan kl-1 at the position n+i. Here, i represents a position in a region Sl  in a cell-
plan.  
 

 

Fig. 7. Example of the connection area of a Cell-V. 
 
The Cell-S evaluates the output values of cell-Cs in a connection area of all cell-plan of the 
Layer-C of the previous stage, or the input layer. As seen in the previous section, the size of 
the connection area is the same for cell-Ss and cell-Vs on the same stage (Figure 8). 
The role of Cell-S is to recognize a feature in the connected area. To recognize a feature, a 
Cell-S uses the information in the connection area and information about activities in this 
area, informed by Cell-V. The feature extracted by a Cell-S is determined by weights on their 
input connections. 
The feature extraction by a plan-S and the significance of the weights is easier to be observed 
in the cell layer Uo (first layer) of the network. In each cell of layer-S, US1, following the first 
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The Cell-S evaluates the output values of cell-Cs in a connection area of all cell-plan of the 
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layer, there is only one connection area and this area is the receptive field or area of 
connection of input pattern. Because all cells are equal, any cell in the same cell-plan can 
recognize the same feature. In the example, the feature is a vertical line that can be in 
different positions. So, the Cell-S, that is positioned in the connection area containing the 
feature (vertical line), responds, as outlined in the Plan-S in Figure 9. 
 

 

Fig. 8. Example of the connection area of a Cell-S. 
 
The output value of a Cell-S is determined by Equation 2: 
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Fig. 9. Example of the connection area of a Cell-S. 
 
The element θ is the threshold parameter with which you can modify the ability for Cell-S 
extract a particular feature. The weight-a, al(kl-1,i,kl), should be greater than or equal to zero, 

as well as weight-b, bl(kl), and the activation function [ ] =

½
¸
<

 . 

The Cell-Ss have the ability to extract features not only trained but also distorted, or 
generalized. This capacity is influenced by the choice of parameter θ, called threshold. It is 
easy to understand, because the threshold θ  multiplies the weighted value coming from the 
Cell-V, the denominator of the argument. Thus, the lower the value of θ, greater the ability 
of generalization of trained features. 
The cell-C evaluates the output values of plan-S of earlier layer-S (Figure 10). The value of 
Cell-C depends on the activity of Cell-Ss in its area of connection. The greater the number of 
active Cell-Ss, greater is the activity of Cell-C. The equation of the Cell-C is described by 
Equation 3. 
 

( ) =

"

2
( ) ( + )

#
 (3) 

 

As the weight-d, dl(i) ≥ 0 and [ ] =

½
+ ¸

<
  

If a cell-C is active for a single cell-S, all the adjacent cells will be active, so that plan-C 
contains a blurred representation of the Plan-S. Moreover, as the blurring results in the cell-
plan’s adjacent values are very close, a small number of Cell-Cs is necessary for the next 
stage. This results in reducing the size of the Plan-C, in relation to the Plan-S, Figure 11. 
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Fig. 10. Example of the connection area of a Cell-C. 

 
3.4 Network Training 
Although there are two main training methods for the Neocognitron network, it is described 
here the method originally designed, which is learning without supervision. 
At first, the training follows as the majority of neural networks, i.e., it is showed a sample 
pattern, and data are propagated through the network, allowing the weights of the 
connections to fit progressively according to a given algorithm. After the weights are 
updated, the network receives a second pattern in the input layer, and the process repeats 
with all the training samples until the network classifies the patterns correctly. 
Neocognitron network has the characteristic that all the cells in the same cell-plan share the 
same set of weights. Therefore, only a single cell of each plan must participate in training, 
and after that, distribute the whole weight to the other cells. 
To better understand the operation, one can imagine all plans of a Layer-S stacked on each 
other, aligned so that the cells corresponding to a given location is directly above each other. 
Thus, it is possible to imagine several columns, cutting perpendicularly the planes. These 
columns create groups of cells-S, where all group members have receptive fields in the same 
location in the input layer. 
With this model in mind, we can now apply a standard input and examine the response of 
Cell-Ss in each column. To ensure that each Cell-S provides a distinct response, one may 
start al weights with random small positive value and the weights bl inhibitors with zero. 
First, note the plane and the position of the Cell-S whose response is the strongest in each 
column. Then it examines the plans individually so that if a plan has two or more of these 
Cell-Ss, it chooses only the Cell-S with the stronger response, subject to the condition that 
each cell is in a different column-S. 
These Cell-Ss become the prototypes or representatives of all the cells in the respective plan. 
Once chosen the representatives, the updates of the weights are made in accordance with 
the Equation 4 and Equation 5, and all the cells of the same plan will be updated to be with 
the same weights: 
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( ¡ ) = ( ) ¡ ( ¡ + ) (4) 
 

( ) = ( ) (5) 
 

Once the cells are updated to respond to a particular characteristic, they begin to emit 
responses smaller in relation to other features. 

 
4. GPU as a Device to Generic Processing 

Over the past 10 years, hitherto, it has seen the evolution of the GPU's as specialized 
hardware to process graphics and video output, and massive parallel processing of data for 
general computing. The power of data processing of GPU's has grown much faster than the 
CPU, and the main reason for this rapid growth of GPU's with respect to the CPU is due to 
the fact that the GPU's were born with the focus of intensive computing, with respect to data 
processing and massive parallel computing, as just the minimum requirements necessary to 
meet the needs of the scenario of computer graphics, like rendering, shadows in 3D scenes 
and others. 
Thus the design of the GPU takes into account the existence of more transistors dedicated to 
a better process control and data flow, as illustrated schematically in Figure 12, which 
depicts the main elements: ALU, cache, and DRAM control for a CPU (Figure 12a) and a 
GPU (Figure 12b). 
 

 

Fig. 11. GPU intended to use more transistors for Data Processing. 
 
Many applications that process large data sets organized in a matrix/vector can use a model 
of parallel computing. In 3D rendering processes large arrays of pixels and vertices are 
organized so that they can be processed in parallel using threads. Similarly, applications of 
image processing, encoding and decoding, video scaling, stereo vision, artificial neural 
networks and pattern recognition can be processed in data blocks and pixels by parallel 
threads. In fact, many algorithms, even outside the area of image processing, can be 
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Many applications that process large data sets organized in a matrix/vector can use a model 
of parallel computing. In 3D rendering processes large arrays of pixels and vertices are 
organized so that they can be processed in parallel using threads. Similarly, applications of 
image processing, encoding and decoding, video scaling, stereo vision, artificial neural 
networks and pattern recognition can be processed in data blocks and pixels by parallel 
threads. In fact, many algorithms, even outside the area of image processing, can be 

accelerated through parallelization of data processing, specially signal processing, 
simulation of physical effects, computer models of financial or biological applications. 

 
4.1 CUDA - Compute Unified Device Architecture 
The development of applications that use the GPU as a device for "unconventional” parallel 
data processing, i.e., not specifically the graphics processing like rendering, is increasing. 
However the use of a GPU as a device that requires an adjustment of the traditional graphics 
card pipeline's, forcing the developer to take responsibility for certain control points in these 
processes, through graphics libraries that have an API for GPU's to become programmable, 
is annoying. 
CUDA is a new architecture of hardware and software that was developed with the main 
objective of managing the parallel processing of data within the GPU device without the 
need to make the mapping of the routines and take responsibility for the execution of the 
pipeline system, through API chart. 
In Figure 12 we have the software stack environment of CUDA, not necessarily for 4 layers 
of software and these are: (a) application, which is implemented by the browser software 
that makes use of GPU as a device data processing; (b) CUDA Library is a set of 
mathematical libraries, such as CUBLAS, an extension of a BLAS library functions algebra 
implemented in FORTRAN and CUFFT's a fast Fourier transform of 1, 2 and 3 dimensions; 
(c) where the CUDA runtime routines of other graphics libraries like OpenGL and DirectX 
are accessed to be processed on the GPU; and (d) CUDA Driver API that is the direct 
communication with the GPU. 
In order to facilitate the development of computing solutions for general purpose, not just 
graphic, CUDA provides the GPU direct memory access to both writing (Figure 13) and for 
reading (Figure 14), just as a conventional CPU works. 
 

 

Fig. 12. CUDA Software Stack (NVIDIA, 2007). 
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Fig. 13. GPU accessing memory to read (NVIDIA, 2007). 
 

 

Fig. 14. GPU accessing memory to write (NVIDIA, 2007). 
 
In these Figures 14 and 15, the data is read from or written to memory by the ALUs. In this 
architecture there is a parallel data cache and a shared memory, which has a high-speed 
access for both, writing and reading. The applications benefit from this structure by 
minimizing overfetch and round-trips of DRAM and reduce the need/dependence on the 
bandwidth of DRAM access. 

 
4.2 CUDA Programming Model  
In developing a parallel application via CUDA, GPU is viewed as a computer device capable 
of running a large number of threads in parallel. The GPU operates as a coprocessor of the 
CPU, which in the context of CUDA is called the host. 
The part of the application, most suitable to be processed in the device, is a function 
performed several times with different data. These functions should be isolated and 
implemented within the scope of CUDA and are called the kernel that are executed within 
the device. 
Both host and device (GPU) have one call to a DRAM memory device and a host memory. 
The call is made from a kernel due to the transfer of data between two memories. CUDA 
provides a set of functions for this feature (moving data between the two types of memory). 
When a host application makes a call to a kernel, it is executed by a set of threads arranged 
in blocks of execution. These blocks in turn are grouped into grid blocks. 
A block of threads is a lot of threads that work together cooperatively to get a better 
efficiency of data usage and shared memories, and their processing is synchronized. Each 
thread within a block is identified by a threadID, which is a combination of the number of 
thread with the block in which it is inserted. 
The formation of a value of one threadID is complex, and to assist in this process, it can be 
specified a block to have two or three dimensions of arbitrary size, and identify each thread 
using a composite index of two or three instances, as shown in Table 1, where Dx, Dy, Dz 
are dimensions of the blocks, x, y, z are the coordinates, and threadID is obtained by 
calculating the expressions presented. 
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Fig. 13. GPU accessing memory to read (NVIDIA, 2007). 
 

 

Fig. 14. GPU accessing memory to write (NVIDIA, 2007). 
 
In these Figures 14 and 15, the data is read from or written to memory by the ALUs. In this 
architecture there is a parallel data cache and a shared memory, which has a high-speed 
access for both, writing and reading. The applications benefit from this structure by 
minimizing overfetch and round-trips of DRAM and reduce the need/dependence on the 
bandwidth of DRAM access. 

 
4.2 CUDA Programming Model  
In developing a parallel application via CUDA, GPU is viewed as a computer device capable 
of running a large number of threads in parallel. The GPU operates as a coprocessor of the 
CPU, which in the context of CUDA is called the host. 
The part of the application, most suitable to be processed in the device, is a function 
performed several times with different data. These functions should be isolated and 
implemented within the scope of CUDA and are called the kernel that are executed within 
the device. 
Both host and device (GPU) have one call to a DRAM memory device and a host memory. 
The call is made from a kernel due to the transfer of data between two memories. CUDA 
provides a set of functions for this feature (moving data between the two types of memory). 
When a host application makes a call to a kernel, it is executed by a set of threads arranged 
in blocks of execution. These blocks in turn are grouped into grid blocks. 
A block of threads is a lot of threads that work together cooperatively to get a better 
efficiency of data usage and shared memories, and their processing is synchronized. Each 
thread within a block is identified by a threadID, which is a combination of the number of 
thread with the block in which it is inserted. 
The formation of a value of one threadID is complex, and to assist in this process, it can be 
specified a block to have two or three dimensions of arbitrary size, and identify each thread 
using a composite index of two or three instances, as shown in Table 1, where Dx, Dy, Dz 
are dimensions of the blocks, x, y, z are the coordinates, and threadID is obtained by 
calculating the expressions presented. 
 

Block Size Coordinate
d Thread 

threadID 

Dx, Dy x,y x+yDx 
Dx, Dy, Dz x,y,z x+yDx+zDxDy 

Table 1. Formation of the address of the thread within the block 
 
The number of threads that a block can contain is limited. As previously mentioned, blocks 
with the same dimensionality working in the execution of a single kernel can be grouped 
into a grid of blocks of threads. The call of this kernel is performed using a specific syntax 
which is reported beyond the normal parameters of the function to be processed on the 
device: data on grid (Dg), block (Db) and memory to be allocated (Ns). 
As the threads, blocks also have an identification number within a grid, following a rule 
similar to the formation of the address of the threads, as shown in Table 2, where Dx, Dy 
indicate the dimensions of the grid, x, y the coordinates of blockID blocks and the 
identification number of the block calculated by the showed expression. 
 

Grid Size Coordinate
d Block 

blockID 

Dx, Dy x,y x+yDx 
Table 2. Formation of the address of the block within the grid 
 
In Figure 15 presents an overview of the structure of the threads running inside the device. 
This can be seen separating the two: host hardware (CPU) and the device (GPU), where the 
kernels called for implementation on the host are sent to the device, where the processing of 
threads arranged in blocks are divided into grids of processing. 
It is worth calling attention here to the fact that kernels have distinct grid settings, and 
different blocks, as its dimensionality, as shown in Figure 15, where the size of the blocks 
and the grid used in kernel 2 is different from that used by the kernel 1. 
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Fig. 15. Address of the threads within the blocks to the grid (NVIDIA, 2007). 

 
4.3 CUDA Memory Model  
The thread runs inside the device and only has (DRAM) memory access inside this, 
according to a set of access rules shown in Figure 16 and detailed in Table 3. 
The threads can access registers (register) and memory space for reading and writing. The 
shared memory (shared) is accessed by blocks for writing and reading. The global memory 
is accessed by grid for reading and writing. Memories of constant and textures are accessed 
by the grid in read-only. 
The global spaces, constant, and texture can be read or written by the host and are persistent 
across kernel calls during the same application. 
 

Memory 
Space 

When 
accessed 

Rule 

Register by thread Read/Write 
Local by thread Read/Write 
Shared by block Read/Write 
Global by grid Read/Write 
Constant by grid Read Only 
Texture by grid Read Only 

Table 3. Memory Model Access Rules 
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Table 3. Memory Model Access Rules 
 

 

Fig. 16. CUDA Memory Model (NVIDIA, 2007). 

 
5. Processing Neocognitron Network with CUDA 

A face recognition system using Neocognitron neural network can be processed in two 
phases: the learning phase, and the recognition phase. This work have focused on 
recognition, since, the learning phase is ready. The training is being carried out by an 
application developed in Delphi (Saito and Abib, 2005) and it has as a product of its 
execution, the generation of a repository of data. This comprises a set of three types of 
binary files: one to store the number of plans for each stage, another type to store the 
weight-a e weight-b trained by the network and a third type with the results used by the 
layer of Cell-Cs of the stage. 
At the recognition phase, one face image (input pattern) is shown to the system, and it 
executes and tries to identify the face. Figure 17 shows the block diagram of the parallel 
processing management algorithm of the face recognition phase using CUDA, in two parts, 
host and device. 
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Fig. 17. Block Diagram Organization of Processing Neocognitron on CUDA device. 
 
As can be seen in the block diagram (Figure 17), there are two repositories of data, one with 
the weights produced during the training phase of the network, and the second repository 
of data with the images of the faces to be recognized. We used two banks of the faces, one 
developed at UFSCar (Figure 19), consisting of fifty frontal images of six persons, in 57x57 
pixels resolution; and the CMU PIE database (Figure 20) which consists of a large number of 
images of people in different poses, lighting and facial expressions. It used 13 cameras, 9 in 
the same horizontal line, each separated from 22.50. Other 4 cameras include 2 above and 
below the central camera, and 2 in the corners of the room. On Figure 19, the different 
positions of cameras are identified by ratings c02 ... c34. To obtain the change in lighting, it 
used a system with 21 flashes. Capturing images with and without the backlight, are 
obtained 43 different lighting conditions. For a variety of facial expressions were asked for 
people to neutral expressions, smile, blinking, and speaking. The database consists of 41368 
images of 68 people. 
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developed at UFSCar (Figure 19), consisting of fifty frontal images of six persons, in 57x57 
pixels resolution; and the CMU PIE database (Figure 20) which consists of a large number of 
images of people in different poses, lighting and facial expressions. It used 13 cameras, 9 in 
the same horizontal line, each separated from 22.50. Other 4 cameras include 2 above and 
below the central camera, and 2 in the corners of the room. On Figure 19, the different 
positions of cameras are identified by ratings c02 ... c34. To obtain the change in lighting, it 
used a system with 21 flashes. Capturing images with and without the backlight, are 
obtained 43 different lighting conditions. For a variety of facial expressions were asked for 
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Fig. 18. UFSCar Face Data Base. 
 

 

Fig. 19. CMU PIE database. 
 

Since this work corresponds to the recognition phase, they were selected randomly 10 
people of the database CMU PIE (4002, 4014, 4036, 4047, 4048, 4052, 4057, 4062, 4063, e 4067). 
They were selected the images of people speaking, because the existence of 60 images per 
pose, per person. Thus, during the experiments, they were used frontal images of people 
with size 640x486, and after the capture of the face region, the reduced image of size 57x57, 
as shown in Fig. 21. 
 

 

Fig. 20. Face picture used to recognition process. 
 
At Figure 21, it can be seen the Neocognitron network processing, to the process of 
recognition. It may be noted the three stages of the network, represented by: stage 1, formed 
by all the layers US1, UC1 and UV1; stage-2, formed by all the layers US2, UC2 and UV2 and 
stage-3, formed by all the layers US3, UC3 and UV3. Also, it is presented the input layer U0. 
 
Table 4 shows the dimensionality of the weights used in the network, according to the stage 
where it is applied. The weight-a and weight-b are obtained by the training process of the 
network, which in the scope of this project is already done. 
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Fig. 21. Neocognitron network processing using GPU. 
 
The weight-c and weight-d are fixed and defined at the time of implementing the network. 
On the Table 5, 6 and 7 are presented as matrices weight-c used in stages 1, 2 and 3 
respectively. 
 

Stage Weight-a Weight-
b 

Weight-c Weight-
d 

1 7x7 1x1 7x7 5x5 
2 7x7 1x1 7x7 5x5 
3 5x5 1x1 5x5 3x3 

Table 4. Dimensionality of the Weights used in the network. 
 

0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.021635 0.024038 0.026709 0.024038 0.021635 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 

Table 5. Matrix of weight-c of stage 1. 
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0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 

Table 5. Matrix of weight-c of stage 1. 
 
 
 
 
 

0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.021635 0.024038 0.026709 0.024038 0.021635 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 

Table 6. Matrix of weight-c of stage 1. 
 

0.035225 0.039628 0.039628 0.039628 0.035225 
0.039628 0.039628 0.044031 0.039628 0.039628 
0.039628 0.044031 0.048924 0.044031 0.039628 
0.039628 0.039628 0.044031 0.039628 0.039628 
0.035225 0.039628 0.039628 0.039628 0.035225 

Table 7. Matrix of weight-c of stage 1. 
 
Tables 8, 9 and 10 corresponds to the matrices of weight-d used in the processing of stages 1, 
2, and 3, respectively. 
 

0.72 0.72 0.72 0.72 0.72 
0.72 0.81 0.9 0.81 0.72 
0.72 0.9 1 0.9 0.72 
0.72 0.81 0.9 0.81 0.72 
0.72 0.72 0.72 0.72 0.72 

Table 8. Matrix of weight-d of stage 1. 
 

0.72 0.81 0.81 0.81 0.72 
0.81 0.81 0.9 0.81 0.81 
0.81 0.9 1 0.9 0.81 
0.81 0.81 0.9 0.81 0.81 
0.72 0.81 0.81 0.81 0.72 

Table 9. Matrix of weight-d of stage 2. 
 

0.81 0.9 0.81 
0.9 1 0.9 
0.81 0.9 0.81 

Table 10. Matrix of weight-d of stage 3. 
 
To carry out processing of any type of data within the CUDA, it must be able to be 
implemented within a hierarchical organization such as: 

Grid >> Block >> Thread 

meaning that the grid are composed by blocks, and the blocks by threads. The Neocognitron 
network also has an organization in a hierarchical structure, such as:  

Stage >> Cell Plan >> Neuron 
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meaning that the stages are composed by several call-plans, and the cell-plans of a collection 
of cells, or neurons. 
Analyzing the organization of the two architectures, it is possible to verify some points of 
correspondence, which can be seen in Figure 21 and listed in Table 11, which sees itself as a 
Grid equivalent to a Stage the block equivalent to all the neuron processing, and the thread 
equivalent to one connection processing. The correspondence between the two architectures 
facilitates the network modelling to be used at the CUDA/GPU environment. 
 

CUDA Neocognitron 
Grid Stage 
Block Cell Plan 
Thread Neuron 

Table 11. Points of correspondence: CUDA x Neocognitron. 
 
Another important factor of the validity of the correspondence between the architectures lies 
on the fact that there is an independence of the values of a huge amount of neurons at their 
processing. That is, the value of a neuron, in a cell-plan does not depend on the value of the 
neighbour neuron at the same plane, but on the data of the preceding stage. That validates 
the use of architecture as the GPU/CUDA. 
The implementation of a project using the GPU/CUDA, determines that there are two 
processing environments, the host and device. It was developed a set of functions 
(processes) that run in the host and only a function that is performed on the device, as can 
be seen in Figure 17. 
This kernel has the responsibility to process a single stage of the Neocognitron network, and 
is called by the host application in each stage within a specific order. It should be noted that 
the network model in this project has three stages. 
Despite the processing of the network be similar for all stages, the Neocognitron network 
shows a reduction of dimensionality during its processing. The plan size of each stage is 
reduced from stage to stage, until the last stage, which has a single neuron in a plan, and a 
number of plans coincident to the number of classes to be recognized. 
This is why the kernel is required at the time of processing a certain stage and can thus tell 
the GPU setting specific with respect to size of blocks of processing to be implemented. The 
models of cell-plans and connection area organizations, invoked by the kernels, by stage, are 
shown in Table 12. The goal is to process a plan with the greatest number of areas of 
possible connections. 
 

Stage Plan-S Con. Area Plan-C Block Grid 
1 21x21 7x7 21x21 5x49 1 
2 14x14 7x7 14x14 4x49 1 
3 7x7 5x5 1x1 10x25 1 

Table 12. Organization of cell-plans and connection area and its implementation in 
GPU/CUDA. 
 
As a block processed in a single cycle of GPU/CUDA, the data of 16 multiprocessors has 
been that for the Stage-1. Each plan has a size of 21x21 (441) neurons and the connection area 
of this plan has a dimension of 7x7, resulting in 49 connections. The size of the block used 
for the processing of this stage was 49 threads, the same size of the connection area, 5 blocks 
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the network model in this project has three stages. 
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shows a reduction of dimensionality during its processing. The plan size of each stage is 
reduced from stage to stage, until the last stage, which has a single neuron in a plan, and a 
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This is why the kernel is required at the time of processing a certain stage and can thus tell 
the GPU setting specific with respect to size of blocks of processing to be implemented. The 
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shown in Table 12. The goal is to process a plan with the greatest number of areas of 
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Stage Plan-S Con. Area Plan-C Block Grid 
1 21x21 7x7 21x21 5x49 1 
2 14x14 7x7 14x14 4x49 1 
3 7x7 5x5 1x1 10x25 1 

Table 12. Organization of cell-plans and connection area and its implementation in 
GPU/CUDA. 
 
As a block processed in a single cycle of GPU/CUDA, the data of 16 multiprocessors has 
been that for the Stage-1. Each plan has a size of 21x21 (441) neurons and the connection area 
of this plan has a dimension of 7x7, resulting in 49 connections. The size of the block used 
for the processing of this stage was 49 threads, the same size of the connection area, 5 blocks 

in the grid processing simultaneously, or 245 connections computed simultaneously, as can 
be seen in Figure 22. 
 

 

Fig. 22. Neuron connection processing diagram. 
 
The total number of neurons processed simultaneously from 245, 245 and 250, to the stages 
1, 2 and 3 respectively. 

 
6. Results 

Using the UFSCar and CMU-PIE human face databases, the recognition rate obtained is high 
and probably may be increased using more training images. The results of the recognition 
rate obtained by the two databases can be seen in Table 13. 
 

Database Face Rate Recognition 
CMU-PIE 98% 
UFSCar 97% 

Table 13. Degree of accuracy of recognition of faces. 
 
The total run time of the network was 0.118 seconds. The measure of time was obtained 
through the use of the control functions of processing time made available by the API 
CUDA, and used the cutCreateTimer functions, cutStartTimer, cutStopTimer, 
cutGetTimerValue and cutDeleteTimer. 
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Stage Plan-S time (sec) 
1 95 plans 0.092 
2 51 plans 0.022 
3 47 plans 0.004 

Table 14. Time, in seconds, spent during cell-plan processings. 
 
Table 15 presents a comparison between the processing time in the GPU / CUDA, with the 
same network being processed in a single (mono) environment and processed in a cluster 
with 8 processors, values obtained by Ribeiro (Ribeiro 2002). It was made an adjustment in 
time goals for the work of Ribeiro, depending on the speed of processors used in their work 
and the existing today. The table is organized into three columns, where the first column is 
the computer architecture, the second column is the number of parallel processors, and the 
third column, processing time in seconds. 
 

Architecture Number of Processors Time (sec) 
Mono 1 48 
Cluster 8 15 
GPU/CUDA 128 0.118 

Table 15. Comparing the processing time in different architectures. 
 
By this table it is possible to calculate the speed-up and efficiency of processing between the 
architectures. These values are presented in Table 16, organized into three columns: 
computer architecture, Speed-up, and efficiency. 
 

Architecture Speed-up Efficiency 
Cluster 79.787 0.311 
GPU/CUDA 255.319 0.999 

Table 16. Comparation Speed-up and Efficiency in different architectures. 
 
The total amount of memory used at the device was 439 MB, which represents an allocation 
of 57% of total memory. Since this is their distribution and consumption detailed at Table 17, 
in two columns, the first "Reserve Area" indicates where it allocated the amount of memory 
in Mega Bytes presented in the second column "Located Area". 
 

Reserved Area Located Area (Mb) 
Stage 1 336 
Stage 2 80 
Stage 3 10 
Other Variables 13 

Table 17. Number of dedicated memory, of GPU, allocated for the implementation. 
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Stage 1 336 
Stage 2 80 
Stage 3 10 
Other Variables 13 

Table 17. Number of dedicated memory, of GPU, allocated for the implementation. 

 

7. Conclusion 

With the Neocognitron network processing within the GPU/CUDA presented in this work, 
we can conclude that there was a significant increase on the processing performance of the 
Neocognitron face recognition, showing the feasibility of using this method. 
However the size of images used in the operation were small, 57 x 57, which allowed the full 
load of the structure of the network into the memory of the device where access is protected 
and high-speed, factors that may have influenced the results presented. 
In an attempt to draw a line between the comparative Neocognitron network processed in 
the GPU/CUDA and traditional architecture it was verified through the calculation of 
speed-up, a gap, since they won a super-linear speed-up Sp > p. This occurred by differences 
in architecture. Moreover a high performance was observed when compared the time of 
processing. 
Another conclusion on the implementation of this project is that this minimizes some 
existing common problems, when used other parallel computing environment, cluster that 
for example, you can quote: 
 

 Synchronization: since the granularity of development within this device is not 
competing for shared memories (each thread has its point / area of memory) there 
is a need for loss of time for achieving a synchronization of processors; 

 Network: if the whole process takes place within the same device there is the issue 
connection type and the speed of the entire GPU architecture; and 

 Contention: there is no competition for resources by processors. 
 
Another issue, where the GPU has advantages over the traditional architecture of high 
performance computing (such as cluster), is related to load balancing. Since the GPU 
architecture is focused on SIMD data processing type, the Neocognitron network 
implementation project, focused on block processing, is privileged, since an entire block is 
processed in a single cycle of processing. 
However, the development of projects in GPU/CUDA environment presents as the main 
difficulty the modelling of streaming data processing. As seen in other studies by Poli (Poli 
et al. 2007) (Poli et al. 2008), it is not every applications that benefit with this architecture. It 
can be submitted three categories of possibilities for implementation of applications in the 
GPU: full potential for development, partial potential for development and the unfeasible 
development. 
The applications that benefit with the processing in GPU/CUDA, are those that have large 
volumes of data on a matrix, and have their processing independent of the adjacent 
processing. The computer cost for decision making is significant. It is concluded that the 
shorter the granularity inside a model of data organized and structured to a vision 
processing in blocks will have a better gain in processing performance. 
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