
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 381

Parallel Face Recognition Processing using Neocognitron Neural
Network and GPU with CUDA High Performance Architecture

Gustavo Poli and José Hiroki Saito

X

Parallel Face Recognition Processing using
Neocognitron Neural Network and GPU with

CUDA High Performance Architecture

Gustavo Poli and José Hiroki Saito
Libertas Integrated Schools

Federal University of São Carlos

1. Introduction

This chapter presents an implementation of the Neocognitron Neural Network, using a high
performance computing architecture based on GPU (Graphics Processing Unit).
Neocognitron is an artificial neural network, proposed by Fukushima and collaborators,
constituted of several hierarchical stages of neuron layers, organized in two-dimensional
matrices called cellular plains. For the high performance computation of Face Recognition
application using Neocognitron it was used CUDA (Compute Unified Device Architecture)
as API (Application Programming Interface) between the CPU and the GPU, from GeForce
8800 GTX of NVIDIA Company, with 128 ALU’s. As face image databases it was used a face
database created at UFSCar (Federal University of São Carlos), and the CMU-PIE (Carnegie
Melon University - Pose, Illumination, and Expression) database. The load balancing
through the parallel processing architecture was obtained by means of the distributed
processing of the cellular connections as threads organized in blocks, following the CUDA
philosophy of development. The results showed the viability of this type of device as a
massively parallel data processing tool, and that smaller the granularity of the parallel
processing, and the independence of the processing, better is its performance.

2. Motivation

The face recognition using machines is an active and actual research area. This is composed
by multiple disciplines as image processing, pattern recognition, computer vision, artificial
neural networks, and computer architectures. There are many commercial applications that
implement Face Recognition Techniques, as in access control, and security using video
camera.
Many countries use the face recognition techniques for several purposes. On China, for
example, it was developed the immigrant recognition system to the cities of Shenzhen and
Zhunhai (Terra, 2006). The system gives good results, especially when the fingerprint can´t
be used to the recognition purpose, due to several problems as age, damage with chemical
reactions, and so on.

20

www.intechopen.com

Face Recognition382

Owing to the user-friendly (non-intrusive) property, the face recognition is attractive,
despite of the extremely reliable methods of personal biometric identification such as
fingerprint and iris scanning analysis.
As it can be seen there are major challenges on the issues of facial recognition, where you
can highlight a relationship between two basics variables of the process: the degree of
reliability/robustness of the technique being used and computational cost of this technique.
The goal of this chapter is the presentation of a computer architecture for face recognition,
aiming its performance increasing through the use of a massively parallel data processing,
achieved by the implementation of a Neocognitron neural network architecture, based on
GPU (Graphic Processing Unit). To access the GPU as a device for scheduling purposes, it is
used in majority the CUDA (Compute Unified Device Architecture), a library that extends
the functions of language C, FORTRAN and Python in order to provide the GPU as a device
for data processing.

3. Neocognitron Neural Network

Neocognitron is a massively parallel neural network, composed by serveral layers of neuron
cells, proposed by Fukushima (Fukushima end Miyake, 1982)(Fukushima and Wake
1992)(Saito and Fukushima, 1998). In a brainway computer it corresponds to part of the
human visual recognition system.
The Neocognitron neural network has the basic principle of operation extracting features in
a hierarchical manner, i.e., performs the extraction of features in various stages. In the first
stage, the extracted features are the simplest; and at the following stages, summing up the
lines in different senses of rotation, the features will be presenting with more complexity.
The characteristic of this network is that the features extracted by a stage have the
informations only sent by the previous stage, as a feedforward neural network.

3.1 The Neocognitron Structure
The stages of a Neocognitron network are arranged in tiers, each of these layers has its own
type/complexity of data being processed, and these consist of simple cells (Cell-S), complex
cells (Cell-C) and activity cells (Cell-V).
The stages are compared by the Layer-S, of Cell-Ss. The Layer-C, of Cell-Cs; and Layer-V, of
Cell-Vs. Within each layer there is a number of cell-plans, which are organized as two-
dimensional array of cells, each cell with the ability of extracting the same features of the
adjacent cells in the same cell-plan.
The stages function as a tool for organizing the process of extracting the characteristics or
factors with a degree of complexity of the extracted pattern characteristics. The first stage,
called the zero stage (Stage 0) is not used within the hierarchical scheme of feature
extraction and it is used as the retina of the eye, capturing the pattern to be processed by the
network. Figure 1 shows the stages of a Neocognitron with five stages.
The number of stages of a Neocognitron network depends on the size of the input pattern
being processed by the network. The larger the size of the input pattern, greater is the
number of stages required by the network. For example, an input pattern of 20 x 20 pixels,
typically results in a network of three hierarchical stages.

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 383

Owing to the user-friendly (non-intrusive) property, the face recognition is attractive,
despite of the extremely reliable methods of personal biometric identification such as
fingerprint and iris scanning analysis.
As it can be seen there are major challenges on the issues of facial recognition, where you
can highlight a relationship between two basics variables of the process: the degree of
reliability/robustness of the technique being used and computational cost of this technique.
The goal of this chapter is the presentation of a computer architecture for face recognition,
aiming its performance increasing through the use of a massively parallel data processing,
achieved by the implementation of a Neocognitron neural network architecture, based on
GPU (Graphic Processing Unit). To access the GPU as a device for scheduling purposes, it is
used in majority the CUDA (Compute Unified Device Architecture), a library that extends
the functions of language C, FORTRAN and Python in order to provide the GPU as a device
for data processing.

3. Neocognitron Neural Network

Neocognitron is a massively parallel neural network, composed by serveral layers of neuron
cells, proposed by Fukushima (Fukushima end Miyake, 1982)(Fukushima and Wake
1992)(Saito and Fukushima, 1998). In a brainway computer it corresponds to part of the
human visual recognition system.
The Neocognitron neural network has the basic principle of operation extracting features in
a hierarchical manner, i.e., performs the extraction of features in various stages. In the first
stage, the extracted features are the simplest; and at the following stages, summing up the
lines in different senses of rotation, the features will be presenting with more complexity.
The characteristic of this network is that the features extracted by a stage have the
informations only sent by the previous stage, as a feedforward neural network.

3.1 The Neocognitron Structure
The stages of a Neocognitron network are arranged in tiers, each of these layers has its own
type/complexity of data being processed, and these consist of simple cells (Cell-S), complex
cells (Cell-C) and activity cells (Cell-V).
The stages are compared by the Layer-S, of Cell-Ss. The Layer-C, of Cell-Cs; and Layer-V, of
Cell-Vs. Within each layer there is a number of cell-plans, which are organized as two-
dimensional array of cells, each cell with the ability of extracting the same features of the
adjacent cells in the same cell-plan.
The stages function as a tool for organizing the process of extracting the characteristics or
factors with a degree of complexity of the extracted pattern characteristics. The first stage,
called the zero stage (Stage 0) is not used within the hierarchical scheme of feature
extraction and it is used as the retina of the eye, capturing the pattern to be processed by the
network. Figure 1 shows the stages of a Neocognitron with five stages.
The number of stages of a Neocognitron network depends on the size of the input pattern
being processed by the network. The larger the size of the input pattern, greater is the
number of stages required by the network. For example, an input pattern of 20 x 20 pixels,
typically results in a network of three hierarchical stages.

Fig. 1. Neocognitron representation with five stages.

Each stage of a Neocognitron network is divided into three layers: a simple layer (Layer-S),
a complex layer (Layer-C) and a layer of activity (Layer-V). Assuming the Neocognitron
with five stages, shown earlier (Figure 1), its representation in layers can be seen in Figure 2.

Fig. 2. Neocognitron representation with five stages with its layers.

In stage 0 there is only one layer, which is the input layer or input pattern. All other stages
have three types of layers, one Layer-S, a Layer-V and a Layer-C.
Each layer is formed by a number of cellplans. The number of plans in each Layer-S and
Layer-C is related to the number of features extracted by the stage of the network. A Layer-
V is a single cell-plan layer. The size of the plans is equal to the same layer and it decreases
as you climb the hierarchy of stages. Figure 3 shows the plans distributed in the cell layers
of the network.

www.intechopen.com

Face Recognition384

Fig. 3. Five stages Neocognitron representation with its layers and plans.

Each Plan-S, Plan-V, Plan-C and Input layer is formed by a set (array) of specialized cells.
Figure 4 shows the cells distributed along the plans of the network. A Plan-C of the layer
UC4, the last stage of the network, contains only a single cell, whose activity indicates the
recognition of the input pattern.

Fig. 4. Five stages Neocognitron representation with its layers, plans, and cells.

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 385

Fig. 3. Five stages Neocognitron representation with its layers and plans.

Each Plan-S, Plan-V, Plan-C and Input layer is formed by a set (array) of specialized cells.
Figure 4 shows the cells distributed along the plans of the network. A Plan-C of the layer
UC4, the last stage of the network, contains only a single cell, whose activity indicates the
recognition of the input pattern.

Fig. 4. Five stages Neocognitron representation with its layers, plans, and cells.

3.2 Weights and Connections
A characteristic of the Neocognitron is to have a large number of cells but a reduced number
of connections. The cells are connected to a reduced connection area, of the previous layer.
This characteristic of connectivity is different from the Multilayer Perceptron, in which a
neuron of a layer is connected to all neurons of the previous layer.
For each connection there is a weight that is used to influence the amount of information
that is transferred. Neocognitron has four types of weights: weight-a, weight-b, weight-c,
and weight-d, whose uses are summarized as shown in Figure 5.

Fig. 5. Neocognitron weights (weight-a, weight-b, weight-c and weight-d) and its
connections.

Within a cell-plan level, all cells share the same weight. This causes all cells in the same plan
to observe the same feature, thus specializing the plan for the same feature in different
positions.

Fig. 6. Within a cellular level, all cells share the same weights.

You can even arrange the weights in two categories, which are modified by training
(weight-a weight-b); and which are not modified, i.e., the values attributed to them, remain
unchanged through the implementation of the network (weight-c and weight-d).

www.intechopen.com

Face Recognition386

3.3 Processing Neocognitron Network
Each Cell-V calculates the input values of Cell-Cs from a small region connection area of all
cell-plans of the previous Layer-C. The size of the connection area is the same for cells-V and
cells-S in a stage of the network and it is determined at the time of construction of the
network. An example of the connection area can be seen in Figure 7.
The value of a Cell-V represents the average activity of cells belonging to its area of
connection and is used to inhibit the corresponding Cell-S. The exact specification of the
function of Cell-V, uVl(n), is given by Equation 1:

1

1

2
1

1

() (), (,)
l

l

l l

K

vl l C l
k i S

u n C i u n i k

 (1)

where the weight should be cl ≥ 0; and ucl-1(n+i, kl-1) represents the input value, from the
previous cell-plan kl-1 at the position n+i. Here, i represents a position in a region Sl in a cell-
plan.

Fig. 7. Example of the connection area of a Cell-V.

The Cell-S evaluates the output values of cell-Cs in a connection area of all cell-plan of the
Layer-C of the previous stage, or the input layer. As seen in the previous section, the size of
the connection area is the same for cell-Ss and cell-Vs on the same stage (Figure 8).
The role of Cell-S is to recognize a feature in the connected area. To recognize a feature, a
Cell-S uses the information in the connection area and information about activities in this
area, informed by Cell-V. The feature extracted by a Cell-S is determined by weights on their
input connections.
The feature extraction by a plan-S and the significance of the weights is easier to be observed
in the cell layer Uo (first layer) of the network. In each cell of layer-S, US1, following the first

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 387

3.3 Processing Neocognitron Network
Each Cell-V calculates the input values of Cell-Cs from a small region connection area of all
cell-plans of the previous Layer-C. The size of the connection area is the same for cells-V and
cells-S in a stage of the network and it is determined at the time of construction of the
network. An example of the connection area can be seen in Figure 7.
The value of a Cell-V represents the average activity of cells belonging to its area of
connection and is used to inhibit the corresponding Cell-S. The exact specification of the
function of Cell-V, uVl(n), is given by Equation 1:

1

1

2
1

1

() (), (,)
l

l

l l

K

vl l C l
k i S

u n C i u n i k

 (1)

where the weight should be cl ≥ 0; and ucl-1(n+i, kl-1) represents the input value, from the
previous cell-plan kl-1 at the position n+i. Here, i represents a position in a region Sl in a cell-
plan.

Fig. 7. Example of the connection area of a Cell-V.

The Cell-S evaluates the output values of cell-Cs in a connection area of all cell-plan of the
Layer-C of the previous stage, or the input layer. As seen in the previous section, the size of
the connection area is the same for cell-Ss and cell-Vs on the same stage (Figure 8).
The role of Cell-S is to recognize a feature in the connected area. To recognize a feature, a
Cell-S uses the information in the connection area and information about activities in this
area, informed by Cell-V. The feature extracted by a Cell-S is determined by weights on their
input connections.
The feature extraction by a plan-S and the significance of the weights is easier to be observed
in the cell layer Uo (first layer) of the network. In each cell of layer-S, US1, following the first

layer, there is only one connection area and this area is the receptive field or area of
connection of input pattern. Because all cells are equal, any cell in the same cell-plan can
recognize the same feature. In the example, the feature is a vertical line that can be in
different positions. So, the Cell-S, that is positioned in the connection area containing the
feature (vertical line), responds, as outlined in the Plan-S in Figure 9.

Fig. 8. Example of the connection area of a Cell-S.

The output value of a Cell-S is determined by Equation 2:

1

1
1 1 11

1 (, ,), (,)
(,) 1

1 1 , (), ()

l

l l

K
l l l cl lk i S

Sl l
l l vl

a k i k u n i k
u n k

b k u n

 (2)

www.intechopen.com

Face Recognition388

Fig. 9. Example of the connection area of a Cell-S.

The element θ is the threshold parameter with which you can modify the ability for Cell-S
extract a particular feature. The weight-a, al(kl-1,i,kl), should be greater than or equal to zero,

as well as weight-b, bl(kl), and the activation function [] =

½
¸
<

 .

The Cell-Ss have the ability to extract features not only trained but also distorted, or
generalized. This capacity is influenced by the choice of parameter θ, called threshold. It is
easy to understand, because the threshold θ multiplies the weighted value coming from the
Cell-V, the denominator of the argument. Thus, the lower the value of θ, greater the ability
of generalization of trained features.
The cell-C evaluates the output values of plan-S of earlier layer-S (Figure 10). The value of
Cell-C depends on the activity of Cell-Ss in its area of connection. The greater the number of
active Cell-Ss, greater is the activity of Cell-C. The equation of the Cell-C is described by
Equation 3.

() =

"

2
() (+)

#
 (3)

As the weight-d, dl(i) ≥ 0 and [] =

½
+ ¸

<

If a cell-C is active for a single cell-S, all the adjacent cells will be active, so that plan-C
contains a blurred representation of the Plan-S. Moreover, as the blurring results in the cell-
plan’s adjacent values are very close, a small number of Cell-Cs is necessary for the next
stage. This results in reducing the size of the Plan-C, in relation to the Plan-S, Figure 11.

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 389

Fig. 9. Example of the connection area of a Cell-S.

The element θ is the threshold parameter with which you can modify the ability for Cell-S
extract a particular feature. The weight-a, al(kl-1,i,kl), should be greater than or equal to zero,

as well as weight-b, bl(kl), and the activation function [] =

½
¸
<

 .

The Cell-Ss have the ability to extract features not only trained but also distorted, or
generalized. This capacity is influenced by the choice of parameter θ, called threshold. It is
easy to understand, because the threshold θ multiplies the weighted value coming from the
Cell-V, the denominator of the argument. Thus, the lower the value of θ, greater the ability
of generalization of trained features.
The cell-C evaluates the output values of plan-S of earlier layer-S (Figure 10). The value of
Cell-C depends on the activity of Cell-Ss in its area of connection. The greater the number of
active Cell-Ss, greater is the activity of Cell-C. The equation of the Cell-C is described by
Equation 3.

() =

"

2
() (+)

#
 (3)

As the weight-d, dl(i) ≥ 0 and [] =

½
+ ¸

<

If a cell-C is active for a single cell-S, all the adjacent cells will be active, so that plan-C
contains a blurred representation of the Plan-S. Moreover, as the blurring results in the cell-
plan’s adjacent values are very close, a small number of Cell-Cs is necessary for the next
stage. This results in reducing the size of the Plan-C, in relation to the Plan-S, Figure 11.

Fig. 10. Example of the connection area of a Cell-C.

3.4 Network Training
Although there are two main training methods for the Neocognitron network, it is described
here the method originally designed, which is learning without supervision.
At first, the training follows as the majority of neural networks, i.e., it is showed a sample
pattern, and data are propagated through the network, allowing the weights of the
connections to fit progressively according to a given algorithm. After the weights are
updated, the network receives a second pattern in the input layer, and the process repeats
with all the training samples until the network classifies the patterns correctly.
Neocognitron network has the characteristic that all the cells in the same cell-plan share the
same set of weights. Therefore, only a single cell of each plan must participate in training,
and after that, distribute the whole weight to the other cells.
To better understand the operation, one can imagine all plans of a Layer-S stacked on each
other, aligned so that the cells corresponding to a given location is directly above each other.
Thus, it is possible to imagine several columns, cutting perpendicularly the planes. These
columns create groups of cells-S, where all group members have receptive fields in the same
location in the input layer.
With this model in mind, we can now apply a standard input and examine the response of
Cell-Ss in each column. To ensure that each Cell-S provides a distinct response, one may
start al weights with random small positive value and the weights bl inhibitors with zero.
First, note the plane and the position of the Cell-S whose response is the strongest in each
column. Then it examines the plans individually so that if a plan has two or more of these
Cell-Ss, it chooses only the Cell-S with the stronger response, subject to the condition that
each cell is in a different column-S.
These Cell-Ss become the prototypes or representatives of all the cells in the respective plan.
Once chosen the representatives, the updates of the weights are made in accordance with
the Equation 4 and Equation 5, and all the cells of the same plan will be updated to be with
the same weights:

www.intechopen.com

Face Recognition390

(¡) = () ¡ (¡ +) (4)

() = () (5)

Once the cells are updated to respond to a particular characteristic, they begin to emit
responses smaller in relation to other features.

4. GPU as a Device to Generic Processing

Over the past 10 years, hitherto, it has seen the evolution of the GPU's as specialized
hardware to process graphics and video output, and massive parallel processing of data for
general computing. The power of data processing of GPU's has grown much faster than the
CPU, and the main reason for this rapid growth of GPU's with respect to the CPU is due to
the fact that the GPU's were born with the focus of intensive computing, with respect to data
processing and massive parallel computing, as just the minimum requirements necessary to
meet the needs of the scenario of computer graphics, like rendering, shadows in 3D scenes
and others.
Thus the design of the GPU takes into account the existence of more transistors dedicated to
a better process control and data flow, as illustrated schematically in Figure 12, which
depicts the main elements: ALU, cache, and DRAM control for a CPU (Figure 12a) and a
GPU (Figure 12b).

Fig. 11. GPU intended to use more transistors for Data Processing.

Many applications that process large data sets organized in a matrix/vector can use a model
of parallel computing. In 3D rendering processes large arrays of pixels and vertices are
organized so that they can be processed in parallel using threads. Similarly, applications of
image processing, encoding and decoding, video scaling, stereo vision, artificial neural
networks and pattern recognition can be processed in data blocks and pixels by parallel
threads. In fact, many algorithms, even outside the area of image processing, can be

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 391

(¡) = () ¡ (¡ +) (4)

() = () (5)

Once the cells are updated to respond to a particular characteristic, they begin to emit
responses smaller in relation to other features.

4. GPU as a Device to Generic Processing

Over the past 10 years, hitherto, it has seen the evolution of the GPU's as specialized
hardware to process graphics and video output, and massive parallel processing of data for
general computing. The power of data processing of GPU's has grown much faster than the
CPU, and the main reason for this rapid growth of GPU's with respect to the CPU is due to
the fact that the GPU's were born with the focus of intensive computing, with respect to data
processing and massive parallel computing, as just the minimum requirements necessary to
meet the needs of the scenario of computer graphics, like rendering, shadows in 3D scenes
and others.
Thus the design of the GPU takes into account the existence of more transistors dedicated to
a better process control and data flow, as illustrated schematically in Figure 12, which
depicts the main elements: ALU, cache, and DRAM control for a CPU (Figure 12a) and a
GPU (Figure 12b).

Fig. 11. GPU intended to use more transistors for Data Processing.

Many applications that process large data sets organized in a matrix/vector can use a model
of parallel computing. In 3D rendering processes large arrays of pixels and vertices are
organized so that they can be processed in parallel using threads. Similarly, applications of
image processing, encoding and decoding, video scaling, stereo vision, artificial neural
networks and pattern recognition can be processed in data blocks and pixels by parallel
threads. In fact, many algorithms, even outside the area of image processing, can be

accelerated through parallelization of data processing, specially signal processing,
simulation of physical effects, computer models of financial or biological applications.

4.1 CUDA - Compute Unified Device Architecture
The development of applications that use the GPU as a device for "unconventional” parallel
data processing, i.e., not specifically the graphics processing like rendering, is increasing.
However the use of a GPU as a device that requires an adjustment of the traditional graphics
card pipeline's, forcing the developer to take responsibility for certain control points in these
processes, through graphics libraries that have an API for GPU's to become programmable,
is annoying.
CUDA is a new architecture of hardware and software that was developed with the main
objective of managing the parallel processing of data within the GPU device without the
need to make the mapping of the routines and take responsibility for the execution of the
pipeline system, through API chart.
In Figure 12 we have the software stack environment of CUDA, not necessarily for 4 layers
of software and these are: (a) application, which is implemented by the browser software
that makes use of GPU as a device data processing; (b) CUDA Library is a set of
mathematical libraries, such as CUBLAS, an extension of a BLAS library functions algebra
implemented in FORTRAN and CUFFT's a fast Fourier transform of 1, 2 and 3 dimensions;
(c) where the CUDA runtime routines of other graphics libraries like OpenGL and DirectX
are accessed to be processed on the GPU; and (d) CUDA Driver API that is the direct
communication with the GPU.
In order to facilitate the development of computing solutions for general purpose, not just
graphic, CUDA provides the GPU direct memory access to both writing (Figure 13) and for
reading (Figure 14), just as a conventional CPU works.

Fig. 12. CUDA Software Stack (NVIDIA, 2007).

www.intechopen.com

Face Recognition392

Fig. 13. GPU accessing memory to read (NVIDIA, 2007).

Fig. 14. GPU accessing memory to write (NVIDIA, 2007).

In these Figures 14 and 15, the data is read from or written to memory by the ALUs. In this
architecture there is a parallel data cache and a shared memory, which has a high-speed
access for both, writing and reading. The applications benefit from this structure by
minimizing overfetch and round-trips of DRAM and reduce the need/dependence on the
bandwidth of DRAM access.

4.2 CUDA Programming Model
In developing a parallel application via CUDA, GPU is viewed as a computer device capable
of running a large number of threads in parallel. The GPU operates as a coprocessor of the
CPU, which in the context of CUDA is called the host.
The part of the application, most suitable to be processed in the device, is a function
performed several times with different data. These functions should be isolated and
implemented within the scope of CUDA and are called the kernel that are executed within
the device.
Both host and device (GPU) have one call to a DRAM memory device and a host memory.
The call is made from a kernel due to the transfer of data between two memories. CUDA
provides a set of functions for this feature (moving data between the two types of memory).
When a host application makes a call to a kernel, it is executed by a set of threads arranged
in blocks of execution. These blocks in turn are grouped into grid blocks.
A block of threads is a lot of threads that work together cooperatively to get a better
efficiency of data usage and shared memories, and their processing is synchronized. Each
thread within a block is identified by a threadID, which is a combination of the number of
thread with the block in which it is inserted.
The formation of a value of one threadID is complex, and to assist in this process, it can be
specified a block to have two or three dimensions of arbitrary size, and identify each thread
using a composite index of two or three instances, as shown in Table 1, where Dx, Dy, Dz
are dimensions of the blocks, x, y, z are the coordinates, and threadID is obtained by
calculating the expressions presented.

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 393

Fig. 13. GPU accessing memory to read (NVIDIA, 2007).

Fig. 14. GPU accessing memory to write (NVIDIA, 2007).

In these Figures 14 and 15, the data is read from or written to memory by the ALUs. In this
architecture there is a parallel data cache and a shared memory, which has a high-speed
access for both, writing and reading. The applications benefit from this structure by
minimizing overfetch and round-trips of DRAM and reduce the need/dependence on the
bandwidth of DRAM access.

4.2 CUDA Programming Model
In developing a parallel application via CUDA, GPU is viewed as a computer device capable
of running a large number of threads in parallel. The GPU operates as a coprocessor of the
CPU, which in the context of CUDA is called the host.
The part of the application, most suitable to be processed in the device, is a function
performed several times with different data. These functions should be isolated and
implemented within the scope of CUDA and are called the kernel that are executed within
the device.
Both host and device (GPU) have one call to a DRAM memory device and a host memory.
The call is made from a kernel due to the transfer of data between two memories. CUDA
provides a set of functions for this feature (moving data between the two types of memory).
When a host application makes a call to a kernel, it is executed by a set of threads arranged
in blocks of execution. These blocks in turn are grouped into grid blocks.
A block of threads is a lot of threads that work together cooperatively to get a better
efficiency of data usage and shared memories, and their processing is synchronized. Each
thread within a block is identified by a threadID, which is a combination of the number of
thread with the block in which it is inserted.
The formation of a value of one threadID is complex, and to assist in this process, it can be
specified a block to have two or three dimensions of arbitrary size, and identify each thread
using a composite index of two or three instances, as shown in Table 1, where Dx, Dy, Dz
are dimensions of the blocks, x, y, z are the coordinates, and threadID is obtained by
calculating the expressions presented.

Block Size Coordinate
d Thread

threadID

Dx, Dy x,y x+yDx
Dx, Dy, Dz x,y,z x+yDx+zDxDy

Table 1. Formation of the address of the thread within the block

The number of threads that a block can contain is limited. As previously mentioned, blocks
with the same dimensionality working in the execution of a single kernel can be grouped
into a grid of blocks of threads. The call of this kernel is performed using a specific syntax
which is reported beyond the normal parameters of the function to be processed on the
device: data on grid (Dg), block (Db) and memory to be allocated (Ns).
As the threads, blocks also have an identification number within a grid, following a rule
similar to the formation of the address of the threads, as shown in Table 2, where Dx, Dy
indicate the dimensions of the grid, x, y the coordinates of blockID blocks and the
identification number of the block calculated by the showed expression.

Grid Size Coordinate
d Block

blockID

Dx, Dy x,y x+yDx
Table 2. Formation of the address of the block within the grid

In Figure 15 presents an overview of the structure of the threads running inside the device.
This can be seen separating the two: host hardware (CPU) and the device (GPU), where the
kernels called for implementation on the host are sent to the device, where the processing of
threads arranged in blocks are divided into grids of processing.
It is worth calling attention here to the fact that kernels have distinct grid settings, and
different blocks, as its dimensionality, as shown in Figure 15, where the size of the blocks
and the grid used in kernel 2 is different from that used by the kernel 1.

www.intechopen.com

Face Recognition394

Fig. 15. Address of the threads within the blocks to the grid (NVIDIA, 2007).

4.3 CUDA Memory Model
The thread runs inside the device and only has (DRAM) memory access inside this,
according to a set of access rules shown in Figure 16 and detailed in Table 3.
The threads can access registers (register) and memory space for reading and writing. The
shared memory (shared) is accessed by blocks for writing and reading. The global memory
is accessed by grid for reading and writing. Memories of constant and textures are accessed
by the grid in read-only.
The global spaces, constant, and texture can be read or written by the host and are persistent
across kernel calls during the same application.

Memory
Space

When
accessed

Rule

Register by thread Read/Write
Local by thread Read/Write
Shared by block Read/Write
Global by grid Read/Write
Constant by grid Read Only
Texture by grid Read Only

Table 3. Memory Model Access Rules

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 395

Fig. 15. Address of the threads within the blocks to the grid (NVIDIA, 2007).

4.3 CUDA Memory Model
The thread runs inside the device and only has (DRAM) memory access inside this,
according to a set of access rules shown in Figure 16 and detailed in Table 3.
The threads can access registers (register) and memory space for reading and writing. The
shared memory (shared) is accessed by blocks for writing and reading. The global memory
is accessed by grid for reading and writing. Memories of constant and textures are accessed
by the grid in read-only.
The global spaces, constant, and texture can be read or written by the host and are persistent
across kernel calls during the same application.

Memory
Space

When
accessed

Rule

Register by thread Read/Write
Local by thread Read/Write
Shared by block Read/Write
Global by grid Read/Write
Constant by grid Read Only
Texture by grid Read Only

Table 3. Memory Model Access Rules

Fig. 16. CUDA Memory Model (NVIDIA, 2007).

5. Processing Neocognitron Network with CUDA

A face recognition system using Neocognitron neural network can be processed in two
phases: the learning phase, and the recognition phase. This work have focused on
recognition, since, the learning phase is ready. The training is being carried out by an
application developed in Delphi (Saito and Abib, 2005) and it has as a product of its
execution, the generation of a repository of data. This comprises a set of three types of
binary files: one to store the number of plans for each stage, another type to store the
weight-a e weight-b trained by the network and a third type with the results used by the
layer of Cell-Cs of the stage.
At the recognition phase, one face image (input pattern) is shown to the system, and it
executes and tries to identify the face. Figure 17 shows the block diagram of the parallel
processing management algorithm of the face recognition phase using CUDA, in two parts,
host and device.

www.intechopen.com

Face Recognition396

Fig. 17. Block Diagram Organization of Processing Neocognitron on CUDA device.

As can be seen in the block diagram (Figure 17), there are two repositories of data, one with
the weights produced during the training phase of the network, and the second repository
of data with the images of the faces to be recognized. We used two banks of the faces, one
developed at UFSCar (Figure 19), consisting of fifty frontal images of six persons, in 57x57
pixels resolution; and the CMU PIE database (Figure 20) which consists of a large number of
images of people in different poses, lighting and facial expressions. It used 13 cameras, 9 in
the same horizontal line, each separated from 22.50. Other 4 cameras include 2 above and
below the central camera, and 2 in the corners of the room. On Figure 19, the different
positions of cameras are identified by ratings c02 ... c34. To obtain the change in lighting, it
used a system with 21 flashes. Capturing images with and without the backlight, are
obtained 43 different lighting conditions. For a variety of facial expressions were asked for
people to neutral expressions, smile, blinking, and speaking. The database consists of 41368
images of 68 people.

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 397

Fig. 17. Block Diagram Organization of Processing Neocognitron on CUDA device.

As can be seen in the block diagram (Figure 17), there are two repositories of data, one with
the weights produced during the training phase of the network, and the second repository
of data with the images of the faces to be recognized. We used two banks of the faces, one
developed at UFSCar (Figure 19), consisting of fifty frontal images of six persons, in 57x57
pixels resolution; and the CMU PIE database (Figure 20) which consists of a large number of
images of people in different poses, lighting and facial expressions. It used 13 cameras, 9 in
the same horizontal line, each separated from 22.50. Other 4 cameras include 2 above and
below the central camera, and 2 in the corners of the room. On Figure 19, the different
positions of cameras are identified by ratings c02 ... c34. To obtain the change in lighting, it
used a system with 21 flashes. Capturing images with and without the backlight, are
obtained 43 different lighting conditions. For a variety of facial expressions were asked for
people to neutral expressions, smile, blinking, and speaking. The database consists of 41368
images of 68 people.

Fig. 18. UFSCar Face Data Base.

Fig. 19. CMU PIE database.

Since this work corresponds to the recognition phase, they were selected randomly 10
people of the database CMU PIE (4002, 4014, 4036, 4047, 4048, 4052, 4057, 4062, 4063, e 4067).
They were selected the images of people speaking, because the existence of 60 images per
pose, per person. Thus, during the experiments, they were used frontal images of people
with size 640x486, and after the capture of the face region, the reduced image of size 57x57,
as shown in Fig. 21.

Fig. 20. Face picture used to recognition process.

At Figure 21, it can be seen the Neocognitron network processing, to the process of
recognition. It may be noted the three stages of the network, represented by: stage 1, formed
by all the layers US1, UC1 and UV1; stage-2, formed by all the layers US2, UC2 and UV2 and
stage-3, formed by all the layers US3, UC3 and UV3. Also, it is presented the input layer U0.

Table 4 shows the dimensionality of the weights used in the network, according to the stage
where it is applied. The weight-a and weight-b are obtained by the training process of the
network, which in the scope of this project is already done.

www.intechopen.com

Face Recognition398

Fig. 21. Neocognitron network processing using GPU.

The weight-c and weight-d are fixed and defined at the time of implementing the network.
On the Table 5, 6 and 7 are presented as matrices weight-c used in stages 1, 2 and 3
respectively.

Stage Weight-a Weight-
b

Weight-c Weight-
d

1 7x7 1x1 7x7 5x5
2 7x7 1x1 7x7 5x5
3 5x5 1x1 5x5 3x3

Table 4. Dimensionality of the Weights used in the network.

0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231
0.019231 0.021635 0.024038 0.026709 0.024038 0.021635 0.019231
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361

Table 5. Matrix of weight-c of stage 1.

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 399

Fig. 21. Neocognitron network processing using GPU.

The weight-c and weight-d are fixed and defined at the time of implementing the network.
On the Table 5, 6 and 7 are presented as matrices weight-c used in stages 1, 2 and 3
respectively.

Stage Weight-a Weight-
b

Weight-c Weight-
d

1 7x7 1x1 7x7 5x5
2 7x7 1x1 7x7 5x5
3 5x5 1x1 5x5 3x3

Table 4. Dimensionality of the Weights used in the network.

0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231
0.019231 0.021635 0.024038 0.026709 0.024038 0.021635 0.019231
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361

Table 5. Matrix of weight-c of stage 1.

0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231
0.019231 0.021635 0.024038 0.026709 0.024038 0.021635 0.019231
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361

Table 6. Matrix of weight-c of stage 1.

0.035225 0.039628 0.039628 0.039628 0.035225
0.039628 0.039628 0.044031 0.039628 0.039628
0.039628 0.044031 0.048924 0.044031 0.039628
0.039628 0.039628 0.044031 0.039628 0.039628
0.035225 0.039628 0.039628 0.039628 0.035225

Table 7. Matrix of weight-c of stage 1.

Tables 8, 9 and 10 corresponds to the matrices of weight-d used in the processing of stages 1,
2, and 3, respectively.

0.72 0.72 0.72 0.72 0.72
0.72 0.81 0.9 0.81 0.72
0.72 0.9 1 0.9 0.72
0.72 0.81 0.9 0.81 0.72
0.72 0.72 0.72 0.72 0.72

Table 8. Matrix of weight-d of stage 1.

0.72 0.81 0.81 0.81 0.72
0.81 0.81 0.9 0.81 0.81
0.81 0.9 1 0.9 0.81
0.81 0.81 0.9 0.81 0.81
0.72 0.81 0.81 0.81 0.72

Table 9. Matrix of weight-d of stage 2.

0.81 0.9 0.81
0.9 1 0.9
0.81 0.9 0.81

Table 10. Matrix of weight-d of stage 3.

To carry out processing of any type of data within the CUDA, it must be able to be
implemented within a hierarchical organization such as:

Grid >> Block >> Thread

meaning that the grid are composed by blocks, and the blocks by threads. The Neocognitron
network also has an organization in a hierarchical structure, such as:

Stage >> Cell Plan >> Neuron

www.intechopen.com

Face Recognition400

meaning that the stages are composed by several call-plans, and the cell-plans of a collection
of cells, or neurons.
Analyzing the organization of the two architectures, it is possible to verify some points of
correspondence, which can be seen in Figure 21 and listed in Table 11, which sees itself as a
Grid equivalent to a Stage the block equivalent to all the neuron processing, and the thread
equivalent to one connection processing. The correspondence between the two architectures
facilitates the network modelling to be used at the CUDA/GPU environment.

CUDA Neocognitron
Grid Stage
Block Cell Plan
Thread Neuron

Table 11. Points of correspondence: CUDA x Neocognitron.

Another important factor of the validity of the correspondence between the architectures lies
on the fact that there is an independence of the values of a huge amount of neurons at their
processing. That is, the value of a neuron, in a cell-plan does not depend on the value of the
neighbour neuron at the same plane, but on the data of the preceding stage. That validates
the use of architecture as the GPU/CUDA.
The implementation of a project using the GPU/CUDA, determines that there are two
processing environments, the host and device. It was developed a set of functions
(processes) that run in the host and only a function that is performed on the device, as can
be seen in Figure 17.
This kernel has the responsibility to process a single stage of the Neocognitron network, and
is called by the host application in each stage within a specific order. It should be noted that
the network model in this project has three stages.
Despite the processing of the network be similar for all stages, the Neocognitron network
shows a reduction of dimensionality during its processing. The plan size of each stage is
reduced from stage to stage, until the last stage, which has a single neuron in a plan, and a
number of plans coincident to the number of classes to be recognized.
This is why the kernel is required at the time of processing a certain stage and can thus tell
the GPU setting specific with respect to size of blocks of processing to be implemented. The
models of cell-plans and connection area organizations, invoked by the kernels, by stage, are
shown in Table 12. The goal is to process a plan with the greatest number of areas of
possible connections.

Stage Plan-S Con. Area Plan-C Block Grid
1 21x21 7x7 21x21 5x49 1
2 14x14 7x7 14x14 4x49 1
3 7x7 5x5 1x1 10x25 1

Table 12. Organization of cell-plans and connection area and its implementation in
GPU/CUDA.

As a block processed in a single cycle of GPU/CUDA, the data of 16 multiprocessors has
been that for the Stage-1. Each plan has a size of 21x21 (441) neurons and the connection area
of this plan has a dimension of 7x7, resulting in 49 connections. The size of the block used
for the processing of this stage was 49 threads, the same size of the connection area, 5 blocks

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 401

meaning that the stages are composed by several call-plans, and the cell-plans of a collection
of cells, or neurons.
Analyzing the organization of the two architectures, it is possible to verify some points of
correspondence, which can be seen in Figure 21 and listed in Table 11, which sees itself as a
Grid equivalent to a Stage the block equivalent to all the neuron processing, and the thread
equivalent to one connection processing. The correspondence between the two architectures
facilitates the network modelling to be used at the CUDA/GPU environment.

CUDA Neocognitron
Grid Stage
Block Cell Plan
Thread Neuron

Table 11. Points of correspondence: CUDA x Neocognitron.

Another important factor of the validity of the correspondence between the architectures lies
on the fact that there is an independence of the values of a huge amount of neurons at their
processing. That is, the value of a neuron, in a cell-plan does not depend on the value of the
neighbour neuron at the same plane, but on the data of the preceding stage. That validates
the use of architecture as the GPU/CUDA.
The implementation of a project using the GPU/CUDA, determines that there are two
processing environments, the host and device. It was developed a set of functions
(processes) that run in the host and only a function that is performed on the device, as can
be seen in Figure 17.
This kernel has the responsibility to process a single stage of the Neocognitron network, and
is called by the host application in each stage within a specific order. It should be noted that
the network model in this project has three stages.
Despite the processing of the network be similar for all stages, the Neocognitron network
shows a reduction of dimensionality during its processing. The plan size of each stage is
reduced from stage to stage, until the last stage, which has a single neuron in a plan, and a
number of plans coincident to the number of classes to be recognized.
This is why the kernel is required at the time of processing a certain stage and can thus tell
the GPU setting specific with respect to size of blocks of processing to be implemented. The
models of cell-plans and connection area organizations, invoked by the kernels, by stage, are
shown in Table 12. The goal is to process a plan with the greatest number of areas of
possible connections.

Stage Plan-S Con. Area Plan-C Block Grid
1 21x21 7x7 21x21 5x49 1
2 14x14 7x7 14x14 4x49 1
3 7x7 5x5 1x1 10x25 1

Table 12. Organization of cell-plans and connection area and its implementation in
GPU/CUDA.

As a block processed in a single cycle of GPU/CUDA, the data of 16 multiprocessors has
been that for the Stage-1. Each plan has a size of 21x21 (441) neurons and the connection area
of this plan has a dimension of 7x7, resulting in 49 connections. The size of the block used
for the processing of this stage was 49 threads, the same size of the connection area, 5 blocks

in the grid processing simultaneously, or 245 connections computed simultaneously, as can
be seen in Figure 22.

Fig. 22. Neuron connection processing diagram.

The total number of neurons processed simultaneously from 245, 245 and 250, to the stages
1, 2 and 3 respectively.

6. Results

Using the UFSCar and CMU-PIE human face databases, the recognition rate obtained is high
and probably may be increased using more training images. The results of the recognition
rate obtained by the two databases can be seen in Table 13.

Database Face Rate Recognition
CMU-PIE 98%
UFSCar 97%

Table 13. Degree of accuracy of recognition of faces.

The total run time of the network was 0.118 seconds. The measure of time was obtained
through the use of the control functions of processing time made available by the API
CUDA, and used the cutCreateTimer functions, cutStartTimer, cutStopTimer,
cutGetTimerValue and cutDeleteTimer.

www.intechopen.com

Face Recognition402

Stage Plan-S time (sec)
1 95 plans 0.092
2 51 plans 0.022
3 47 plans 0.004

Table 14. Time, in seconds, spent during cell-plan processings.

Table 15 presents a comparison between the processing time in the GPU / CUDA, with the
same network being processed in a single (mono) environment and processed in a cluster
with 8 processors, values obtained by Ribeiro (Ribeiro 2002). It was made an adjustment in
time goals for the work of Ribeiro, depending on the speed of processors used in their work
and the existing today. The table is organized into three columns, where the first column is
the computer architecture, the second column is the number of parallel processors, and the
third column, processing time in seconds.

Architecture Number of Processors Time (sec)
Mono 1 48
Cluster 8 15
GPU/CUDA 128 0.118

Table 15. Comparing the processing time in different architectures.

By this table it is possible to calculate the speed-up and efficiency of processing between the
architectures. These values are presented in Table 16, organized into three columns:
computer architecture, Speed-up, and efficiency.

Architecture Speed-up Efficiency
Cluster 79.787 0.311
GPU/CUDA 255.319 0.999

Table 16. Comparation Speed-up and Efficiency in different architectures.

The total amount of memory used at the device was 439 MB, which represents an allocation
of 57% of total memory. Since this is their distribution and consumption detailed at Table 17,
in two columns, the first "Reserve Area" indicates where it allocated the amount of memory
in Mega Bytes presented in the second column "Located Area".

Reserved Area Located Area (Mb)
Stage 1 336
Stage 2 80
Stage 3 10
Other Variables 13

Table 17. Number of dedicated memory, of GPU, allocated for the implementation.

www.intechopen.com

Parallel Face Recognition Processing
using Neocognitron Neural Network and GPU with CUDA High Performance Architecture 403

Stage Plan-S time (sec)
1 95 plans 0.092
2 51 plans 0.022
3 47 plans 0.004

Table 14. Time, in seconds, spent during cell-plan processings.

Table 15 presents a comparison between the processing time in the GPU / CUDA, with the
same network being processed in a single (mono) environment and processed in a cluster
with 8 processors, values obtained by Ribeiro (Ribeiro 2002). It was made an adjustment in
time goals for the work of Ribeiro, depending on the speed of processors used in their work
and the existing today. The table is organized into three columns, where the first column is
the computer architecture, the second column is the number of parallel processors, and the
third column, processing time in seconds.

Architecture Number of Processors Time (sec)
Mono 1 48
Cluster 8 15
GPU/CUDA 128 0.118

Table 15. Comparing the processing time in different architectures.

By this table it is possible to calculate the speed-up and efficiency of processing between the
architectures. These values are presented in Table 16, organized into three columns:
computer architecture, Speed-up, and efficiency.

Architecture Speed-up Efficiency
Cluster 79.787 0.311
GPU/CUDA 255.319 0.999

Table 16. Comparation Speed-up and Efficiency in different architectures.

The total amount of memory used at the device was 439 MB, which represents an allocation
of 57% of total memory. Since this is their distribution and consumption detailed at Table 17,
in two columns, the first "Reserve Area" indicates where it allocated the amount of memory
in Mega Bytes presented in the second column "Located Area".

Reserved Area Located Area (Mb)
Stage 1 336
Stage 2 80
Stage 3 10
Other Variables 13

Table 17. Number of dedicated memory, of GPU, allocated for the implementation.

7. Conclusion

With the Neocognitron network processing within the GPU/CUDA presented in this work,
we can conclude that there was a significant increase on the processing performance of the
Neocognitron face recognition, showing the feasibility of using this method.
However the size of images used in the operation were small, 57 x 57, which allowed the full
load of the structure of the network into the memory of the device where access is protected
and high-speed, factors that may have influenced the results presented.
In an attempt to draw a line between the comparative Neocognitron network processed in
the GPU/CUDA and traditional architecture it was verified through the calculation of
speed-up, a gap, since they won a super-linear speed-up Sp > p. This occurred by differences
in architecture. Moreover a high performance was observed when compared the time of
processing.
Another conclusion on the implementation of this project is that this minimizes some
existing common problems, when used other parallel computing environment, cluster that
for example, you can quote:

 Synchronization: since the granularity of development within this device is not
competing for shared memories (each thread has its point / area of memory) there
is a need for loss of time for achieving a synchronization of processors;

 Network: if the whole process takes place within the same device there is the issue
connection type and the speed of the entire GPU architecture; and

 Contention: there is no competition for resources by processors.

Another issue, where the GPU has advantages over the traditional architecture of high
performance computing (such as cluster), is related to load balancing. Since the GPU
architecture is focused on SIMD data processing type, the Neocognitron network
implementation project, focused on block processing, is privileged, since an entire block is
processed in a single cycle of processing.
However, the development of projects in GPU/CUDA environment presents as the main
difficulty the modelling of streaming data processing. As seen in other studies by Poli (Poli
et al. 2007) (Poli et al. 2008), it is not every applications that benefit with this architecture. It
can be submitted three categories of possibilities for implementation of applications in the
GPU: full potential for development, partial potential for development and the unfeasible
development.
The applications that benefit with the processing in GPU/CUDA, are those that have large
volumes of data on a matrix, and have their processing independent of the adjacent
processing. The computer cost for decision making is significant. It is concluded that the
shorter the granularity inside a model of data organized and structured to a vision
processing in blocks will have a better gain in processing performance.

8. Acknowledgents

The authors would like to thank Prof. Simon Backer from Carnegie Mellon University for
the kindness of sending the PIE database, used in this work.

www.intechopen.com

Face Recognition404

9. References

Fukushima K. and Miyake S. (1982). Neocognitron: A New Algorithm for Pattern Recognition
Tolerant of Deformations and Shift in Position, Pattern Recognition, Vol. 15, pages 455-
469

Fukushima K. and Wake N. (1992). Improved Neocognitron with Bend-Detection Cells, IEEE -
International Joint Conference on Neural Networks, Baltimore, Maryland, 1992

NVIDIA (2007). NVIDIA CUDA Compute Unified Device Architecture - Programming Guide,
Publisher NVIDIA

Poli G., Levada A. M. L., Mari J. F., Saito J. H. (2007). Voice Command Recognition with
Dynamic Time Warping (DTW) using Graphics Processing Units (GPU) with Compute
Unified Device Architecture (CUDA), SBAC-PAD International Symposium on
Computer Architecture and High Performance Computing, 2007, pages 19-27

Poli G., Levada A. M.L., Saito J. H. , Mari J. F. , Zorzan M. R. (2008). Processing Neocognitron
of Face Recognition on High Performance Environment Based on GPU with CUDA
Architecture (CUDA), SBAC-PAD International Symposium on Computer
Architecture and High Performance Computing, 2008, pages 81-88

Saito J. H. and Fukushima K. (1998). Modular Structure of Neocognitron to Pattern Recognition,
ICONIP'98, Fifth Int. Conf. on Neural Information Processing, Kitakyshu – Japan
1998

Hirakuri M. H. (2003). Aplicação de Rede Neural Neocognitron para reconhecimenro de atributos
faciais, Dissertação de Mestrado - Universidade Federal de São Carlos, 2003

Ribeiro, L. J. (2002). Paralelização da Rede Neural Neocognitron em Cluster SMPs., Dissertação
de Mestrado da Universidade Federal de São Carlos (UFSCar), 2002

Sim T. , Bsat M. (2003). The CMU Pose, Illumination, and Expression database, IEEE Transaction
on Pattern Analysis and and Machine Intelligence, 2003, pages 1615-1618

Saito J. H. and Abib S. (2005). Using CMU PIE Human face database to a Convolutional Neural
Network - Neocognitron, ESANN2005 - European Symposium on Artificial Neural
Network, 2005, pages 491-496

Terra Notícias (2006) China implanta sistemas de reconhecimento facial biométrico,
http://noticias.terra.com.br/ciencia/interna/0,,OI956783-EI238,00.html

www.intechopen.com

Face Recognition

Edited by Milos Oravec

ISBN 978-953-307-060-5

Hard cover, 404 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book aims to bring together selected recent advances, applications and original results in the area of

biometric face recognition. They can be useful for researchers, engineers, graduate and postgraduate

students, experts in this area and hopefully also for people interested generally in computer science, security,

machine learning and artificial intelligence. Various methods, approaches and algorithms for recognition of

human faces are used by authors of the chapters of this book, e.g. PCA, LDA, artificial neural networks,

wavelets, curvelets, kernel methods, Gabor filters, active appearance models, 2D and 3D representations,

optical correlation, hidden Markov models and others. Also a broad range of problems is covered: feature

extraction and dimensionality reduction (chapters 1-4), 2D face recognition from the point of view of full system

proposal (chapters 5-10), illumination and pose problems (chapters 11-13), eye movement (chapter 14), 3D

face recognition (chapters 15-19) and hardware issues (chapters 19-20).

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gustavo Poli and Jose Hiroki Saito (2010). Parallel Face Recognition Processing using Neocognitron Neural

Network and GPU with CUDA High Performance Architecture, Face Recognition, Milos Oravec (Ed.), ISBN:

978-953-307-060-5, InTech, Available from: http://www.intechopen.com/books/face-recognition/parallel-face-

recognition-processing-using-neocognitron-neural-network-and-gpu-with-cuda-high-perfor

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

