
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 281

Palletizing Simulator Using Optimized Pattern and Trajectory Generation
Algorithm

SungJin Lim, SeungNam Yu, ChangSoo Han and MaingKyu Kang

x

Palletizing Simulator Using Optimized Pattern
and Trajectory Generation Algorithm

SungJin Lim, SeungNam Yu, ChangSoo Han and MaingKyu Kang

Hanyang University
South Korea

1. Introduction

Collision avoidance and robot path planning problems have emerged as a potential domain
of robotics research of late because of their indispensable requirements in the field of
manufacturing vis-à-vis material handling, such as picking and placing an object and
loading/unloading a component to/from a machine or storage bins. This chapter focuses on
palletization, a form of unitization in which a uniform load is stacked on a wooden pallet
using a predetermined case pattern sequence and a given number of layers. In many kinds
of proposed C-space construction approaches, several algorithms deal with the boundary of
the C-obstacle analytically. Lozano Perez proposed the fundamentals of the C-space
approach. When both the robot and obstacles have the shape of convex polygons, the C-
obstacle boundary for an n-DOF manipulator is approximated by sets of n-1 dimensional
slice planes, which are made from a one-dimensional slice plane. C. Zhao and his colleague
proposed an algorithm to describe the C-obstacle as a set of parametric equations
formulated from the mapping of the boundaries of the obstacles in a workspace. They use
inverse pseudo kinematics to convert the obstacles in a workspace into a C-space. Debanik
Roy studied path planning algorithms and their heuristics using the concept of visibility
graph, and he presented an overview of the case study of robot path planning in an
industrial environment in real time. Xiaojun and his colleague proposed a two-phase
approach for C-obstacle construction and the collision detection of manipulators. This
method is applicable to manipulators with various types of kinematic structures and
geometric shapes. M. Pettersson and his coworkers proposed trajectory optimization
method considering fatigue and thermal load of real robot. They also referred that the
proposed method could be directly adapted to palletizing system. The issues of these
papers, however, are for the operation of real industrial robot, and it is a part of entire
palletizing system. Many other latest researches solely oriented towards path planning or
modified apparatuses to improve the specified handling task have also been conducted.
Studies on the total robot palletizing system, however, which integrates loading pattern
optimization, robot OLP simulation, and path optimization, have yet to be systematically
conducted.
This study was dedicated to the development of OLP Simulation S/W for a robot palletizing
system (Non-vision system), which means that this study prioritized the reflection of the

17

www.intechopen.com

Mechatronic Systems, Applications282

cha
the
enc
cha
gen
Fo
de
de
pa
Th
coo
the
new
alg
spe
Sec
Ba
gen
sec

Fig

2.

2.1
As
alg

aracteristics of th
e shape of stack
counters shape-c
aracteristic of th
nerate a proper p
r the practical us
sign is possible i
als with rectangu
lletizing applicat

his chapter is org
ordinates, which
e proposed Fast
wly designed 3D

gorithm. Section
ecified path gen
ction 5 deals wit

ased on the appr
neration method
ction 7 concludes

g. 1. Definition of

 Fast Algorithm

1 Definition of th
s stated above, th
gorithm, an indu

he palletizing task
ed boxes is chan
changed obstacl
e palletizing task

path generation al
se of the propose
in this simulator
ular boxes only a
tions.
ganized as follow
 are used consist
algorithm and i

D robot simulato
 4 presents the

neration using p
h the simulation
oaches of Section

d (overlap metho
s the chapter.

f task space

m

he System Layou
his application is
strial robot simu

k to realize the pa
nged after the u
les in every ste
k and proposes
lgorithm for palle
ed palletizing OL
r, and the user ca
as they make up

ws. In section 2
tently throughou
ts application ar
r and its combin
simulation of g

proposed simulat
 of modified C-s
n 5, Sections 6 is

od) as well as to

ut
a combination of

ulator, and a mod

ath generation al
unit-stacking step

p. This study p
a simple and eff
etizing robots.

LP Simulation S/
an store his own
the vast majority

2, the layout of t
ut this study, are
re introduced. Se
nation, with the
general C-space
tor described in
pace to fit it into
s devoted to the
 the simulation

f an optimized pa
dified trajectory o

gorithm. Undoub
p and palletizing
pays attention t
ficient methodolo

W, a user-define
n data. This appli
y of objects invol

the task space a
defined. Subsequ

ection 3 deals wi
application of th
and A* algorith
 the previous s

o the real robot sy
e newly proposed
and its results. F

allet pattern gene
optimization algo

btedly,
g robot
to this
ogy to

ed task
ication
lved in

and its
uently,
ith the
he Fast
hm for
ection.
ystem.
d path
Finally

eration
orithm.

To integrate these modules and to define the positions of the boxes, the robot, and its
peripherals, the system layout and its coordinates have to be defined.
Fig. 1. describes the system layout and coordinates of the proposed palletizing OLP S/W.
The robot is located in an origin of the total system, and other components (pallet, sheet,
input facility, etc.) are expressed using this coordinate. Stacked boxes belong to the
coordinate of the corresponding pallet. Consequently, the position and rotated angle of the
boxes are expressed by the robot origin and its coordinate using relative coordination. By
using this coordinate system and layout, the following chapter presents a pair of pattern

2.2 Steudel’s Heuristic Algorithm
The objective of the pallet loading problem is to maximize the number of products that are
loaded onto a pallet used for the transportation and storage of products. The distribution
and storage costs of the product can be reduced by increasing its pallet utilization. The Fast
algorithm presented in this study is an improved version of the 4-block pattern heuristic
algorithm proposed by Steudel. The typical pattern of Steudel’s heuristic algorithm is
presented in Fig. 2. This heuristic finds the four-block pattern, in which each block is in a
homogeneous pattern with the same box orientation. This heuristic consists of two phases.
First, an initial solution is made with the combination of iL and iW , which maximizes the
utilization of all four pallet edges.

Fig. 2. Steudel’s heuristic algorithm

Dynamic programming is applied to find the combination, and the initial solution has one of
the four patterns shown in Fig. 3. The initial solution has a central hole that is sufficiently
large to load more than one box in the case of P1 and P3, or an infeasible pattern, such as P2
and P4, due to the overlapped area.

Fig. 3. Four patterns of the initial solution

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 283

cha
the
enc
cha
gen
Fo
de
de
pa
Th
coo
the
new
alg
spe
Sec
Ba
gen
sec

Fig

2.

2.1
As
alg

aracteristics of th
e shape of stack
counters shape-c
aracteristic of th
nerate a proper p
r the practical us
sign is possible i
als with rectangu
lletizing applicat

his chapter is org
ordinates, which
e proposed Fast
wly designed 3D

gorithm. Section
ecified path gen
ction 5 deals wit

ased on the appr
neration method
ction 7 concludes

g. 1. Definition of

 Fast Algorithm

1 Definition of th
s stated above, th
gorithm, an indu

he palletizing task
ed boxes is chan
changed obstacl
e palletizing task

path generation al
se of the propose
in this simulator
ular boxes only a
tions.
ganized as follow
 are used consist
algorithm and i

D robot simulato
 4 presents the

neration using p
h the simulation
oaches of Section

d (overlap metho
s the chapter.

f task space

m

he System Layou
his application is
strial robot simu

k to realize the pa
nged after the u
les in every ste
k and proposes
lgorithm for palle
ed palletizing OL
r, and the user ca
as they make up

ws. In section 2
tently throughou
ts application ar
r and its combin
simulation of g

proposed simulat
 of modified C-s
n 5, Sections 6 is

od) as well as to

ut
a combination of

ulator, and a mod

ath generation al
unit-stacking step

p. This study p
a simple and eff
etizing robots.

LP Simulation S/
an store his own
the vast majority

2, the layout of t
ut this study, are
re introduced. Se
nation, with the
general C-space
tor described in
pace to fit it into
s devoted to the
 the simulation

f an optimized pa
dified trajectory o

gorithm. Undoub
p and palletizing
pays attention t
ficient methodolo

W, a user-define
n data. This appli
y of objects invol

the task space a
defined. Subsequ

ection 3 deals wi
application of th
and A* algorith
 the previous s

o the real robot sy
e newly proposed
and its results. F

allet pattern gene
optimization algo

btedly,
g robot
to this
ogy to

ed task
ication
lved in

and its
uently,
ith the
he Fast
hm for
ection.
ystem.
d path
Finally

eration
orithm.

To integrate these modules and to define the positions of the boxes, the robot, and its
peripherals, the system layout and its coordinates have to be defined.
Fig. 1. describes the system layout and coordinates of the proposed palletizing OLP S/W.
The robot is located in an origin of the total system, and other components (pallet, sheet,
input facility, etc.) are expressed using this coordinate. Stacked boxes belong to the
coordinate of the corresponding pallet. Consequently, the position and rotated angle of the
boxes are expressed by the robot origin and its coordinate using relative coordination. By
using this coordinate system and layout, the following chapter presents a pair of pattern

2.2 Steudel’s Heuristic Algorithm
The objective of the pallet loading problem is to maximize the number of products that are
loaded onto a pallet used for the transportation and storage of products. The distribution
and storage costs of the product can be reduced by increasing its pallet utilization. The Fast
algorithm presented in this study is an improved version of the 4-block pattern heuristic
algorithm proposed by Steudel. The typical pattern of Steudel’s heuristic algorithm is
presented in Fig. 2. This heuristic finds the four-block pattern, in which each block is in a
homogeneous pattern with the same box orientation. This heuristic consists of two phases.
First, an initial solution is made with the combination of iL and iW , which maximizes the
utilization of all four pallet edges.

Fig. 2. Steudel’s heuristic algorithm

Dynamic programming is applied to find the combination, and the initial solution has one of
the four patterns shown in Fig. 3. The initial solution has a central hole that is sufficiently
large to load more than one box in the case of P1 and P3, or an infeasible pattern, such as P2
and P4, due to the overlapped area.

Fig. 3. Four patterns of the initial solution

www.intechopen.com

Mechatronic Systems, Applications284

Th

(L
W
cho

Fig

2.3

2.3
Th
pa
ho

Fig

(1)
(2)
(3)
ed

2.3
As
ini
fou

his case involves

4L , 4W) and resiz

2W and 3W . Then,
osen (Fig. 4.).

g. 4. Treatment of

3 The Fast Algor

3.1 Definition
he Fast algorithm
tterns. In additio

ole in the followin

g. 5. Treatment of

) In the first meth
) In the second me
) In the third met
ge.

3.2 Schematic D
s this algorithm d
itial solutions of t
ur parameters (Fi

the second phas

zes 1L and 2L , a

, the first and se

f Steudel’s algorit

rithm

m has similar pro
on, Treatment 3 is
ng three methods

f the Fast algorith

hod, the boxes are
ethod, the boxes
thod, the boxes a

iagram of the Fa
does not consider
the first phase fin
ig. 6.).

e. In the second

and Treatment 2 f

econd methods ar

thm

ocesses with whi
s adapted to appl
 so as to remove t

hm

e cut by the two h
are cut by the tw

are cut by the left

ast Algorithm
r all block sizes, it
nd the combinatio

phase, Treatmen

fixes (1L , 1W) an

re compared and

ich to generate th
ly the heuristic re
the overlapped ar

horizontal edges o
o vertical edges.
t vertical edge an

t has a more rapi
on rather than us

nt 1 fixes (3L , 3W
d (4L , 4W) and r

d the better solu

he initial four so
ecursively to the c
rea (Fig. 5.).

of the overlapped

nd the lower hori

id calculation tim
sing DP, and defi

3W) and

resizes

ution is

olution
central

d area.

izontal

me. The
ine the

Fig. 6. Parameters of the Fast algorithm

▪ a : When maximizing the length of the block and disposing the boxes lengthwise, the

maximal possible number of boxes = 5l .

▪ a : When maximizing the length of the block and disposing the boxes lengthwise, the

minimal possible number of boxes = 2l .

▪b : When maximizing the width of the block and disposing the boxes lengthwise, the

maximal possible number of boxes =8w .

▪b : When maximizing the width of the block and disposing the boxes lengthwise, the

minimal possible number of boxes = 2w .

In the first phase, (1L , 1W), such as (,)a b , (,)a b , (,)a b , and (,)a b , are combined, and

(1L , 1W), the width and length of the other blocks, can be determined.

1 1
2 2 4 4(,) (,) ,L L W WL W L W w l

w l

 (1)

3 3 1 1(,) (,)L W L W (2)

 After obtaining the four initial solutions in the first phase, these solutions are redefined by
applying the three treatments in the second phase.

Procedure FindBlockLayout(L,W,depth)
bestSolution 0

Find ,,, baa and b
Make four initial Solutions.

is (i=1,2,3, and 4), using them

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 285

Th

(L
W
cho

Fig

2.3

2.3
Th
pa
ho

Fig

(1)
(2)
(3)
ed

2.3
As
ini
fou

his case involves

4L , 4W) and resiz

2W and 3W . Then,
osen (Fig. 4.).

g. 4. Treatment of

3 The Fast Algor

3.1 Definition
he Fast algorithm
tterns. In additio

ole in the followin

g. 5. Treatment of

) In the first meth
) In the second me
) In the third met
ge.

3.2 Schematic D
s this algorithm d
itial solutions of t
ur parameters (Fi

the second phas

zes 1L and 2L , a

, the first and se

f Steudel’s algorit

rithm

m has similar pro
on, Treatment 3 is
ng three methods

f the Fast algorith

hod, the boxes are
ethod, the boxes
thod, the boxes a

iagram of the Fa
does not consider
the first phase fin
ig. 6.).

e. In the second

and Treatment 2 f

econd methods ar

thm

ocesses with whi
s adapted to appl
 so as to remove t

hm

e cut by the two h
are cut by the tw

are cut by the left

ast Algorithm
r all block sizes, it
nd the combinatio

phase, Treatmen

fixes (1L , 1W) an

re compared and

ich to generate th
ly the heuristic re
the overlapped ar

horizontal edges o
o vertical edges.
t vertical edge an

t has a more rapi
on rather than us

nt 1 fixes (3L , 3W
d (4L , 4W) and r

d the better solu

he initial four so
ecursively to the c
rea (Fig. 5.).

of the overlapped

nd the lower hori

id calculation tim
sing DP, and defi

3W) and

resizes

ution is

olution
central

d area.

izontal

me. The
ine the

Fig. 6. Parameters of the Fast algorithm

▪ a : When maximizing the length of the block and disposing the boxes lengthwise, the

maximal possible number of boxes = 5l .

▪ a : When maximizing the length of the block and disposing the boxes lengthwise, the

minimal possible number of boxes = 2l .

▪b : When maximizing the width of the block and disposing the boxes lengthwise, the

maximal possible number of boxes =8w .

▪b : When maximizing the width of the block and disposing the boxes lengthwise, the

minimal possible number of boxes = 2w .

In the first phase, (1L , 1W), such as (,)a b , (,)a b , (,)a b , and (,)a b , are combined, and

(1L , 1W), the width and length of the other blocks, can be determined.

1 1
2 2 4 4(,) (,) ,L L W WL W L W w l

w l

 (1)

3 3 1 1(,) (,)L W L W (2)

 After obtaining the four initial solutions in the first phase, these solutions are redefined by
applying the three treatments in the second phase.

Procedure FindBlockLayout(L,W,depth)
bestSolution 0

Find ,,, baa and b
Make four initial Solutions.

is (i=1,2,3, and 4), using them

www.intechopen.com

Mechatronic Systems, Applications286

 For all is (i=1,2,3, and 4)

is Number of boxes after the first treatment

is Number of boxes after the second treatment

If max{ is , is }>bestSolution, then

 bestSolutionmax{ is , is }
End If
If depth>>MaxDepth then

 Return bestSolution
End If
For all central holes

is Number of boxes in the area
excluding central hole
Let(hL , hW)=size of central hole

is is +FindBlockLayout(hL , hW ,depth+1)

If is >bestSolution, then

 bestSolution is
End If

End For
End For
Return bestSolution

End Procedure

Algorithm SolvePLP(wlWL ,,,)

bestSolution0
For all(wlWL ,,, 11) that satisfy the inequality (2) or (3) and wI CWCL ,11

Calculate all size of the five blocks
Call FindBlockLayout(0,, 11 WL) for all

i=1,2,3,4 and 5

If

5

1
)(

i IBn >bestSolution then

 bestSolution

5

1
)(

i IBn
End If

End For
End Algorithm

Fig. 7. The Fast algorithm

2.3.3 Computing Experience
The proposed algorithm was implemented in Visual C++ 6.0 and was compiled with the
maximized-speed option. This algorithm test generated a 2D pattern of boxes and its
calculation speed. As a hypothesis, the load balancing of a box and its stability were not
considered.

(L,W,l,w) Amount of boxes loaded

(1000,1000,205,159) 30
(1000,1000,200,150) 33

(22,16,5,3) 23
(30,22,7,4) 23
(14,10,3,2) 23
(53,51,9,7) 42
(34,23,5,4) 38
(87,47,7,6) 97

(1200,800,176,135) 38
(L: Length of Pallet, W: Width of Pallet, l: Length of Box, w: Width of Box)

Table 1. Test results of The Fast Algorithm (2D)

The above results were acquired by a computer with a K6-350-MHz CPU and 64MB RAM.
All problems were calculated within 1 s and resulted in optimal solution. To use this
algorithm practically, one dimension of height is applied additionally, and the 3D pallet
loading simulator is realized, as shown in Fig. 8.

Fig. 8. pattern generation S/W

3. Development of the 3D Robot Simulator

Several methods have been introduced to make industrial robots perform the palletizing
task. The first involved an online tutorial for the robot, which used a teach pendant to
enable the robot to mimic and memorize the worker’s motion. The second method is an
offline method that generates task data using a computer, and that downloads it onto the
robot controller. This chapter focused on offline task generation and simulation using a

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 287

 For all is (i=1,2,3, and 4)

is Number of boxes after the first treatment

is Number of boxes after the second treatment

If max{ is , is }>bestSolution, then

 bestSolutionmax{ is , is }
End If
If depth>>MaxDepth then

 Return bestSolution
End If
For all central holes

is Number of boxes in the area
excluding central hole
Let(hL , hW)=size of central hole

is is +FindBlockLayout(hL , hW ,depth+1)

If is >bestSolution, then

 bestSolution is
End If

End For
End For
Return bestSolution

End Procedure

Algorithm SolvePLP(wlWL ,,,)

bestSolution0
For all(wlWL ,,, 11) that satisfy the inequality (2) or (3) and wI CWCL ,11

Calculate all size of the five blocks
Call FindBlockLayout(0,, 11 WL) for all

i=1,2,3,4 and 5

If

5

1
)(

i IBn >bestSolution then

 bestSolution

5

1
)(

i IBn
End If

End For
End Algorithm

Fig. 7. The Fast algorithm

2.3.3 Computing Experience
The proposed algorithm was implemented in Visual C++ 6.0 and was compiled with the
maximized-speed option. This algorithm test generated a 2D pattern of boxes and its
calculation speed. As a hypothesis, the load balancing of a box and its stability were not
considered.

(L,W,l,w) Amount of boxes loaded

(1000,1000,205,159) 30
(1000,1000,200,150) 33

(22,16,5,3) 23
(30,22,7,4) 23
(14,10,3,2) 23
(53,51,9,7) 42
(34,23,5,4) 38
(87,47,7,6) 97

(1200,800,176,135) 38
(L: Length of Pallet, W: Width of Pallet, l: Length of Box, w: Width of Box)

Table 1. Test results of The Fast Algorithm (2D)

The above results were acquired by a computer with a K6-350-MHz CPU and 64MB RAM.
All problems were calculated within 1 s and resulted in optimal solution. To use this
algorithm practically, one dimension of height is applied additionally, and the 3D pallet
loading simulator is realized, as shown in Fig. 8.

Fig. 8. pattern generation S/W

3. Development of the 3D Robot Simulator

Several methods have been introduced to make industrial robots perform the palletizing
task. The first involved an online tutorial for the robot, which used a teach pendant to
enable the robot to mimic and memorize the worker’s motion. The second method is an
offline method that generates task data using a computer, and that downloads it onto the
robot controller. This chapter focused on offline task generation and simulation using a

www.intechopen.com

Mechatronic Systems, Applications288

robot simulator. In this phase, the 3D robot simulator is presented based on the dimensional
data of a real target machine, the HX300, which is a six-axis industrial robot of Hyundai
Heavy Industrial Co. This robot model was realized by a commercial CAD modeler, and the
GUI was developed using OpenGL® and MFC of Microsoft Visual C++®. To solve and
analyze the forward and inverse kinematics equations, a general D-H parameter and the
Lagrangian dynamic equation were used. With this simulator, it was possible to compute
and display the joint torque, angle, and angular acceleration simultaneously. Fig. 9. shows
the realized 3D robot simulator that was developed using Microsoft Visual Studio® and
OpenGL®. It was possible to functionally calculate the velocity and acceleration of the
gripper and to simulate the user-defined motion. The coordinates, which are generated by
the pattern of loaded boxes on the pallet and the initial position of the box coming through
an in-feeder, are passed to the simulator, and using these coordinates, it was possible to
simulate the specified motion.

Fig. 9. Robot simulator for a palletizing task

4. C-Space and A* Algorithm for Trajectory Generation

4.1 C-Space Mapping of Obstacles

The palletizing task is generally composed of several palletizing components. These are
auxiliary but are nevertheless obstacles for the palletizing robot. The important part of this
study was to find the optimal path, considering the obstacles; hence, the concept of C-space
(Configuration Space) to solve this problem was applied. The configuration defined the
variables that exactly express the position and direction of an object, and the C-space
represented all of the spaces where configurations may be acquired. Using this concept, a
coordinate for each configuration was defined. In this coordinate, each point that was
approached by the robot gripper was expressed by joint angles (configuration, posture) of
the palletizing robot.
Fig.10. shows an example of the generation of the configuration space. First, on the basis of
the joint of the base frame, the imaginary plane was rotated 360 degrees like Fig.10.(a).

(a) Slice plane

(b) Apply the slice plane to the workspace to generate the C-space.

Fig. 10. Obstacles expressed in C-space

Step Task Layout C-space Enlarged Image
Elapsed

Time
(sec)

1

3.132

2

0.384

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 289

robot simulator. In this phase, the 3D robot simulator is presented based on the dimensional
data of a real target machine, the HX300, which is a six-axis industrial robot of Hyundai
Heavy Industrial Co. This robot model was realized by a commercial CAD modeler, and the
GUI was developed using OpenGL® and MFC of Microsoft Visual C++®. To solve and
analyze the forward and inverse kinematics equations, a general D-H parameter and the
Lagrangian dynamic equation were used. With this simulator, it was possible to compute
and display the joint torque, angle, and angular acceleration simultaneously. Fig. 9. shows
the realized 3D robot simulator that was developed using Microsoft Visual Studio® and
OpenGL®. It was possible to functionally calculate the velocity and acceleration of the
gripper and to simulate the user-defined motion. The coordinates, which are generated by
the pattern of loaded boxes on the pallet and the initial position of the box coming through
an in-feeder, are passed to the simulator, and using these coordinates, it was possible to
simulate the specified motion.

Fig. 9. Robot simulator for a palletizing task

4. C-Space and A* Algorithm for Trajectory Generation

4.1 C-Space Mapping of Obstacles

The palletizing task is generally composed of several palletizing components. These are
auxiliary but are nevertheless obstacles for the palletizing robot. The important part of this
study was to find the optimal path, considering the obstacles; hence, the concept of C-space
(Configuration Space) to solve this problem was applied. The configuration defined the
variables that exactly express the position and direction of an object, and the C-space
represented all of the spaces where configurations may be acquired. Using this concept, a
coordinate for each configuration was defined. In this coordinate, each point that was
approached by the robot gripper was expressed by joint angles (configuration, posture) of
the palletizing robot.
Fig.10. shows an example of the generation of the configuration space. First, on the basis of
the joint of the base frame, the imaginary plane was rotated 360 degrees like Fig.10.(a).

(a) Slice plane

(b) Apply the slice plane to the workspace to generate the C-space.

Fig. 10. Obstacles expressed in C-space

Step Task Layout C-space Enlarged Image
Elapsed

Time
(sec)

1

3.132

2

0.384

www.intechopen.com

Mechatronic Systems, Applications290

Table 2. Palletizing Task Simulation and Generation of Optimal Trajectory using A*
Algorithm

In this progress plane, the objects surrounding the robot were scanned and the outline of a
section was generated. The left side of the Fig.10.(b) describes the specified palletizing task
layout. The outline, including its interior, could be considered an obstacle. In this study, the
outline was acquired by using an end effecter of the robot, and the free-movement and
obstacle zones in the C-space were generated as shown at the right side of Fig.10. To help
distinguish the 3D shape of C-space, various brightness and color are used. This figure is
necessary to generate the optimal path using the A* algorithm described in the next chapter.

4.2 Application of the A* Algorithm for Trajectory Generation

The A* method is a thorough, robust planning technique that determines either the
minimum cost path or whether no safe path exists. By exploring a map, the A* algorithm
generates nodes that are used to recode the current status. This technique is used to find the
optimal path between the gripping point (starting point) and the place’s down point (end
point). The original A* technique is outlined below. To begin, a 2D rectangular grid was
produced in which the cells were either safe or forbidden. The planning began at the starting
point, and the cells adjacent to this cell were probed. On the basis of a cost function, the cell
with the minimum cost was explored next. The cost function refers to the summation of
costs, which required one to move from the starting node to the current node, and the
“estimated” cost, which required one to move from the current node to the goal (a lineal
distance). Based on this algorithm, palletizing simulation is performed in the 3D space and
Table.2 is the results of the simulation.

5. Consideration of the Real Size of the Robot for Trajectory Generation

5.1 Modified Slice Plane (with horizontal thickness)

One of the disadvantages of the A* algorithm is the required computing time. The
aforementioned approach considers the robot arm as a bar. Hence, the computing time load
is relatively low. A real industrial robot, however, has an original volume, and these factors

3

12.267

4

9.734

have to be applied to the A* algorithm. The next step was to consider the real volume of the
robot when it scans obstacles and generates C-obstacles.
To do this, the slice planes were redefined because it was assumed that the original slice
plane had no thickness but that the modified slice plane had a thickness and that the factor
that changed the scanning point of an obstacle of each angle was a group of both sides of the
boundary of the modified slice plane (Fig. 11.). The thickness of the plane was determined
individually by the thickness of the robot arm, including its gripper and load.

Fig. 11. Modified slice plane

5.2 Convex List and Graham’s Algorithm
Fig. 12. shows the scanning points that used the modified slice plane.
The proposed system used factors of convex list points of objects and the sum of half of the
thickness and a safe distance. As shown in Fig.12, the convex list was generated using the
inside apexes of objects and intersection points. If the number of intersection points was less
than two, the slice plane is regarded as meeting with one apex or edge.

Fig. 12. Convex list generation

Finally, Graham’s algorithm was used to generate the convex hull. This hull was used as the
new boundary of the object when the modified slice plane was applied.

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 291

Table 2. Palletizing Task Simulation and Generation of Optimal Trajectory using A*
Algorithm

In this progress plane, the objects surrounding the robot were scanned and the outline of a
section was generated. The left side of the Fig.10.(b) describes the specified palletizing task
layout. The outline, including its interior, could be considered an obstacle. In this study, the
outline was acquired by using an end effecter of the robot, and the free-movement and
obstacle zones in the C-space were generated as shown at the right side of Fig.10. To help
distinguish the 3D shape of C-space, various brightness and color are used. This figure is
necessary to generate the optimal path using the A* algorithm described in the next chapter.

4.2 Application of the A* Algorithm for Trajectory Generation

The A* method is a thorough, robust planning technique that determines either the
minimum cost path or whether no safe path exists. By exploring a map, the A* algorithm
generates nodes that are used to recode the current status. This technique is used to find the
optimal path between the gripping point (starting point) and the place’s down point (end
point). The original A* technique is outlined below. To begin, a 2D rectangular grid was
produced in which the cells were either safe or forbidden. The planning began at the starting
point, and the cells adjacent to this cell were probed. On the basis of a cost function, the cell
with the minimum cost was explored next. The cost function refers to the summation of
costs, which required one to move from the starting node to the current node, and the
“estimated” cost, which required one to move from the current node to the goal (a lineal
distance). Based on this algorithm, palletizing simulation is performed in the 3D space and
Table.2 is the results of the simulation.

5. Consideration of the Real Size of the Robot for Trajectory Generation

5.1 Modified Slice Plane (with horizontal thickness)

One of the disadvantages of the A* algorithm is the required computing time. The
aforementioned approach considers the robot arm as a bar. Hence, the computing time load
is relatively low. A real industrial robot, however, has an original volume, and these factors

3

12.267

4

9.734

have to be applied to the A* algorithm. The next step was to consider the real volume of the
robot when it scans obstacles and generates C-obstacles.
To do this, the slice planes were redefined because it was assumed that the original slice
plane had no thickness but that the modified slice plane had a thickness and that the factor
that changed the scanning point of an obstacle of each angle was a group of both sides of the
boundary of the modified slice plane (Fig. 11.). The thickness of the plane was determined
individually by the thickness of the robot arm, including its gripper and load.

Fig. 11. Modified slice plane

5.2 Convex List and Graham’s Algorithm
Fig. 12. shows the scanning points that used the modified slice plane.
The proposed system used factors of convex list points of objects and the sum of half of the
thickness and a safe distance. As shown in Fig.12, the convex list was generated using the
inside apexes of objects and intersection points. If the number of intersection points was less
than two, the slice plane is regarded as meeting with one apex or edge.

Fig. 12. Convex list generation

Finally, Graham’s algorithm was used to generate the convex hull. This hull was used as the
new boundary of the object when the modified slice plane was applied.

www.intechopen.com

Mechatronic Systems, Applications292

Fig. 13. Modified slice plane

Fig. 13 describes the effect of the modified slice plane. As shown in the figure, the slice plane
became larger.

5.3 Consideration of Vertical Thickness
The previous chapter showed the horizontal thickness of a real robot and proposed the
modified slice plane that was used to generate the obstacle area of an object. As a next step,
the vertical thickness of the robot was considered. Fig. 14. illustrates outlined margin of
robot manipulator and its realization on the proposed simulator.

(a) Outlined Margin of Robot Manipulator

(b) Robot Model Realization

Fig. 14. Boundary line of the target robot system

These assumptions of the boundary of the gripper and its load (box) consider the total
volume of the robot, including the robot arm, the gripper, and its load. Hence, when the
modified slice plane (vertical thickness of the robot, gripper, and its load) is applied, the
designed simulator is considered the vertical thickness of the robot arm, including the
gripper and its load, simultaneously.

5.4 Consideration of the Performance of the A* Algorithm Using the Modified Slice
Plane
If the robot body is a line, the computing time is very short and is therefore not an issue.
When the modified slice plane was applied, however, the computing time was substantially
increased. The possible explanation for this could be that the results were duplicated at the
intersection points in each step and were added to the computation load of Graham’s
algorithm for the generation of the convex list. Fig. 15. shows an illustration of this
simulation.

Fig. 15. Simulation of the A* algorithm using the modified slice plane

6. The Overlap Method to Generate the Palletizing Trajectory

The computing load is a critical problem in the area of software development. The purpose
of this study, as described in the introduction, was to develop an OLP (offline
programming) simulator specific to palletizing automation. As shown in Table 2, if the real
size of a palletizing robot is considered to generate the optimized trajectory, an A* algorithm
is a relatively expensive method. To use this algorithm, the C-space has to be generated, but
this requires a large amount of computing load.
To focus on the characteristics of the palletizing task, a new strategy devoted to the
generation of the set of boundaries (convex) of the obstacles was proposed. As shown in Fig.
16., the proposed method overlaps the scanned images of each box at one plane and obtains
the outer line of the overlapped image. This method used the total traveling distance from
the pickup point of the boxes to the place-down point via the outer line of the overlapped
area.

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 293

Fig. 13. Modified slice plane

Fig. 13 describes the effect of the modified slice plane. As shown in the figure, the slice plane
became larger.

5.3 Consideration of Vertical Thickness
The previous chapter showed the horizontal thickness of a real robot and proposed the
modified slice plane that was used to generate the obstacle area of an object. As a next step,
the vertical thickness of the robot was considered. Fig. 14. illustrates outlined margin of
robot manipulator and its realization on the proposed simulator.

(a) Outlined Margin of Robot Manipulator

(b) Robot Model Realization

Fig. 14. Boundary line of the target robot system

These assumptions of the boundary of the gripper and its load (box) consider the total
volume of the robot, including the robot arm, the gripper, and its load. Hence, when the
modified slice plane (vertical thickness of the robot, gripper, and its load) is applied, the
designed simulator is considered the vertical thickness of the robot arm, including the
gripper and its load, simultaneously.

5.4 Consideration of the Performance of the A* Algorithm Using the Modified Slice
Plane
If the robot body is a line, the computing time is very short and is therefore not an issue.
When the modified slice plane was applied, however, the computing time was substantially
increased. The possible explanation for this could be that the results were duplicated at the
intersection points in each step and were added to the computation load of Graham’s
algorithm for the generation of the convex list. Fig. 15. shows an illustration of this
simulation.

Fig. 15. Simulation of the A* algorithm using the modified slice plane

6. The Overlap Method to Generate the Palletizing Trajectory

The computing load is a critical problem in the area of software development. The purpose
of this study, as described in the introduction, was to develop an OLP (offline
programming) simulator specific to palletizing automation. As shown in Table 2, if the real
size of a palletizing robot is considered to generate the optimized trajectory, an A* algorithm
is a relatively expensive method. To use this algorithm, the C-space has to be generated, but
this requires a large amount of computing load.
To focus on the characteristics of the palletizing task, a new strategy devoted to the
generation of the set of boundaries (convex) of the obstacles was proposed. As shown in Fig.
16., the proposed method overlaps the scanned images of each box at one plane and obtains
the outer line of the overlapped image. This method used the total traveling distance from
the pickup point of the boxes to the place-down point via the outer line of the overlapped
area.

www.intechopen.com

Mechatronic Systems, Applications294

Fig. 16. Procedure of Overlap method

The following equation was used in this study to optimize this distance:

2 2

3 3

[{() } {() }]

[{() } {() }]
opt via pick up place down via

via pick up place down via

T A abs P P abs P P
B abs P P abs P P

 (3)

where T is the distance that the robot must negotiate to palletize one box, which is the
absolute summation of the distance from the pickup point to the outer line of the
overlapped area and the distance from the outer line to the place-down point (Fig. 17.).

Fig. 17. Determination of 2 and 3 to generate trajectory

The robot path, however, is not composed of 3 points only (a place-down point, an optimal
via point, and a place-down point). Therefore, this algorithm is expended to find an extra
via point that would travel the whole path, from the start to the end point. (Fig.18.)

Fig. 18. Determination of 1 to generate the optimal via point

To do this, the aforementioned optimal 1 via point is used as a 1st optimal via point. If the
gripper of the robot reaches this point, a collision between the gripper and the obstacle can
be avoided by changing 1 . The definition of the collision or gap between the robot and the
obstacle is decided beforehand (user-defined setting of the designed OLP S/W – “safe
distance”). Through this treatment, the intermediate via points are decided. Finally, the total
travel points are composed of [picking-up point] 1st optimal via point, [via(11 , 12 ,

13)] [▪▪▪] nth via point, [via(1n , 2n , 3n)] final optimal via point, [via(1f , 2f ,

3f)] [place-down point]. Here, i and j of ij means ith generated via point of jth joint of

robot manipulator.

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 295

Fig. 16. Procedure of Overlap method

The following equation was used in this study to optimize this distance:

2 2

3 3

[{() } {() }]

[{() } {() }]
opt via pick up place down via

via pick up place down via

T A abs P P abs P P
B abs P P abs P P

 (3)

where T is the distance that the robot must negotiate to palletize one box, which is the
absolute summation of the distance from the pickup point to the outer line of the
overlapped area and the distance from the outer line to the place-down point (Fig. 17.).

Fig. 17. Determination of 2 and 3 to generate trajectory

The robot path, however, is not composed of 3 points only (a place-down point, an optimal
via point, and a place-down point). Therefore, this algorithm is expended to find an extra
via point that would travel the whole path, from the start to the end point. (Fig.18.)

Fig. 18. Determination of 1 to generate the optimal via point

To do this, the aforementioned optimal 1 via point is used as a 1st optimal via point. If the
gripper of the robot reaches this point, a collision between the gripper and the obstacle can
be avoided by changing 1 . The definition of the collision or gap between the robot and the
obstacle is decided beforehand (user-defined setting of the designed OLP S/W – “safe
distance”). Through this treatment, the intermediate via points are decided. Finally, the total
travel points are composed of [picking-up point] 1st optimal via point, [via(11 , 12 ,

13)] [▪▪▪] nth via point, [via(1n , 2n , 3n)] final optimal via point, [via(1f , 2f ,

3f)] [place-down point]. Here, i and j of ij means ith generated via point of jth joint of

robot manipulator.

www.intechopen.com

Mechatronic Systems, Applications296

Fig. 19. Basic algorithm of the overlap method

▪ st1, st2, st3: , , of the starting point
▪ gt1, gt2, gt3: , , of a goal point
▪ t2, t3: , of an optimal path point
▪ t1_(i): of an optimal path point (ith iteration)

This method deals with every surrounding obstacle of the robot in every unit step of the
process (“unit step” means one cycle of pick-and-place task). As the shapes of the obstacles
that surround the robot are changed at every step, this approach has the advantage of being
able to calculate the pick-and-place path. Fig. 19. shows the detailed algorithm of the
overlap method.

7. Conclusions and Considerations

To prove the efficiency of the proposed methodology, all type of trajectory generation
method described in this chapter is simulated and its results are compared.

Step
Time (Sec.)

Line(A*) Volume(A*) Overlap
Method

1 0.014051 2.380194 0.412106
2 0.01543 2.066007 0.427587
3 0.01558 1.857863 0.415959

4 0.017952 2.318304 0.43101
5 0.014286 2.265576 0.411975
6 0.016003 2.213547 0.422834
7 0.013669 1.360996 0.443131
8 0.014206 2.20403 0.440602
9 0.016555 1.328561 0.454023
10 0.015094 1.298407 0.438623
11 0.017387 1.660548 0.466195
12 0.01523 1.298854 0.4273
13 0.01889 0.886562 0.46002
14 0.01344 1.159015 0.428835
15 0.016348 1.091212 0.43728
16 0.01413 1.301314 0.424192
17 0.017107 0.386479 0.464915
18 0.016205 0.429178 0.47078
19 0.017836 0.361664 0.484123
20 0.014301 0.389356 0.439179
21 0.020215 0.278059 0.491373
22 0.014119 0.408476 0.441098
23 0.018028 0.288906 0.466881
24 0.014902 0.295928 0.439116

Table 3. Elapsed Time of Each Method (Box, 24ea)

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 297

Fig. 19. Basic algorithm of the overlap method

▪ st1, st2, st3: , , of the starting point
▪ gt1, gt2, gt3: , , of a goal point
▪ t2, t3: , of an optimal path point
▪ t1_(i): of an optimal path point (ith iteration)

This method deals with every surrounding obstacle of the robot in every unit step of the
process (“unit step” means one cycle of pick-and-place task). As the shapes of the obstacles
that surround the robot are changed at every step, this approach has the advantage of being
able to calculate the pick-and-place path. Fig. 19. shows the detailed algorithm of the
overlap method.

7. Conclusions and Considerations

To prove the efficiency of the proposed methodology, all type of trajectory generation
method described in this chapter is simulated and its results are compared.

Step
Time (Sec.)

Line(A*) Volume(A*) Overlap
Method

1 0.014051 2.380194 0.412106
2 0.01543 2.066007 0.427587
3 0.01558 1.857863 0.415959

4 0.017952 2.318304 0.43101
5 0.014286 2.265576 0.411975
6 0.016003 2.213547 0.422834
7 0.013669 1.360996 0.443131
8 0.014206 2.20403 0.440602
9 0.016555 1.328561 0.454023
10 0.015094 1.298407 0.438623
11 0.017387 1.660548 0.466195
12 0.01523 1.298854 0.4273
13 0.01889 0.886562 0.46002
14 0.01344 1.159015 0.428835
15 0.016348 1.091212 0.43728
16 0.01413 1.301314 0.424192
17 0.017107 0.386479 0.464915
18 0.016205 0.429178 0.47078
19 0.017836 0.361664 0.484123
20 0.014301 0.389356 0.439179
21 0.020215 0.278059 0.491373
22 0.014119 0.408476 0.441098
23 0.018028 0.288906 0.466881
24 0.014902 0.295928 0.439116

Table 3. Elapsed Time of Each Method (Box, 24ea)

www.intechopen.com

Mechatronic Systems, Applications298

Fig. 20. Elapsed time of the 1-step palletizing task

As shown in the third column of Table 3 and Fig. 20., with the A* algorithm that considered
the volume of the robot, the computing time of each step was remarkably different
depending on the situation which is encountered at every step. The overlap method,
however, produces fast and stable computation results, regardless of the place-down
position and configurations of surrounding obstacles.

Fig. 21. Schematic diagram of the proposed palletizing OLP Simulation S/W

This chapter focuses on the realization of palletizing OLP Simulation S/W, which is a newly
adapted method of treating and generating the path of the robot palletizing task efficiently.
Fig. 21. shows the organization of this study. First, the box-loading patterns are generated
on the pallet. This pattern was generated through the Fast algorithm that is handled in this
chapter. The generated boxes were given a unique position value indicating the location and
posture on the pallet where each box would be placed (i.e., the place-down point). Finally,

the robot moves the loads from pick-up points to place-down points through the trajectory
generated by the overlap method.
Finally, Fig. 22. shows the total simulator that uses the proposed algorithms. The user
defines the size of the box, the pallet, and the position of the working component on the
workspace, and the simulator generates the optimized box-loading pattern, motion
simulation of palletizing robot through the optimized trajectory and its task result as shown
in enlarged image of Fig. 22.

Fig. 22. Task results of the proposed OLP Simulation S/W

For application in the real robot system, however, the accuracy problem involving the
synchronization of the robot simulator with the real robot, or the “calibration” problem, is
an absolutely important issue. The calibration of a proposed palletizing S/W is suggested
for future research. Provisionally, “three-point calibration” was considered to check and
compensate for the errors between the workspace and the installed robot system.

8. References

Debanik Roy (2005). Study on the Configuration Space Based Algorithmic Path Planning of
Industrial Robots in an Unstructured Congested Three-Dimensional Space: An
Approach Using Visibility Map, Journal of Intelligent and Robotics Systems, Vol. 43,
No. 2-4, Aug 2005, pp. 111-145, 0921-0296

Harold J. Steudel (1979). Generating pallet loading patterns: A special case of the two-
dimensional cutting stock problem, Management Science, Vol. 25, No. 10, Oct 1979,
pp. 997-1004

J. H. Kim; J. S. Choi; H. Y. Kang; D. W. Kim & S. M. Yang (1994). Collision-Free Path
Planning of Articulated Robot using Configuration Space, Transactions of the KSAE,
Vol. 2, No. 6, Nov 1994, pp. 57-65, 1225-6382

John J. Craig (2004). Introduction to Robotics – Mechanics and Control, 3rd Edition, Pearson
Education Int., 978-0201543612

Michael A. Hernan I (2000). An Introduction to Automated Palletizing, Anderson Technical
Services, Inc.

www.intechopen.com

Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm 299

Fig. 20. Elapsed time of the 1-step palletizing task

As shown in the third column of Table 3 and Fig. 20., with the A* algorithm that considered
the volume of the robot, the computing time of each step was remarkably different
depending on the situation which is encountered at every step. The overlap method,
however, produces fast and stable computation results, regardless of the place-down
position and configurations of surrounding obstacles.

Fig. 21. Schematic diagram of the proposed palletizing OLP Simulation S/W

This chapter focuses on the realization of palletizing OLP Simulation S/W, which is a newly
adapted method of treating and generating the path of the robot palletizing task efficiently.
Fig. 21. shows the organization of this study. First, the box-loading patterns are generated
on the pallet. This pattern was generated through the Fast algorithm that is handled in this
chapter. The generated boxes were given a unique position value indicating the location and
posture on the pallet where each box would be placed (i.e., the place-down point). Finally,

the robot moves the loads from pick-up points to place-down points through the trajectory
generated by the overlap method.
Finally, Fig. 22. shows the total simulator that uses the proposed algorithms. The user
defines the size of the box, the pallet, and the position of the working component on the
workspace, and the simulator generates the optimized box-loading pattern, motion
simulation of palletizing robot through the optimized trajectory and its task result as shown
in enlarged image of Fig. 22.

Fig. 22. Task results of the proposed OLP Simulation S/W

For application in the real robot system, however, the accuracy problem involving the
synchronization of the robot simulator with the real robot, or the “calibration” problem, is
an absolutely important issue. The calibration of a proposed palletizing S/W is suggested
for future research. Provisionally, “three-point calibration” was considered to check and
compensate for the errors between the workspace and the installed robot system.

8. References

Debanik Roy (2005). Study on the Configuration Space Based Algorithmic Path Planning of
Industrial Robots in an Unstructured Congested Three-Dimensional Space: An
Approach Using Visibility Map, Journal of Intelligent and Robotics Systems, Vol. 43,
No. 2-4, Aug 2005, pp. 111-145, 0921-0296

Harold J. Steudel (1979). Generating pallet loading patterns: A special case of the two-
dimensional cutting stock problem, Management Science, Vol. 25, No. 10, Oct 1979,
pp. 997-1004

J. H. Kim; J. S. Choi; H. Y. Kang; D. W. Kim & S. M. Yang (1994). Collision-Free Path
Planning of Articulated Robot using Configuration Space, Transactions of the KSAE,
Vol. 2, No. 6, Nov 1994, pp. 57-65, 1225-6382

John J. Craig (2004). Introduction to Robotics – Mechanics and Control, 3rd Edition, Pearson
Education Int., 978-0201543612

Michael A. Hernan I (2000). An Introduction to Automated Palletizing, Anderson Technical
Services, Inc.

www.intechopen.com

Mechatronic Systems, Applications300

Pettersson, M.; Olvander, J. & Andersson, H. (2007). Application Adapted Performance
Optimization for Industrial Robots. IEEE International Symposium on Industrial
Electronics, pp. 2047-2052, 978-1-4244-0755-2, Jun 2007

Ronald Graham (1972). An Efficient Algorithm for Determining the Convex Hull of a Finite
Point Set, Info. Proc. Letters 1, pp. 132-133, Jan 1972

Seung-Nam Yu; Heu-Kwon Yoon; Sung-Jin Lim; Young-Hoon Song & Chang-Soo Han
(2005). The development of Robot Palletizing S/W using Fast Algorithm and 3-D
Robot Simulator, Proceedings of Korean Society of Mechanical Engineers, pp. 1663-1668

T. Lozano-Perez (1987). A Simple Motion Planning Algorithm for General Robot
Manipulators, IEEE Journal of Robotics and Automation, Vol. RA-3, No. 3, Jun 1987,
pp. 224-238, 0882-4967

Warren, C.W. (1993). Fast Path Planning Using Modified A* Method, Proceedings of the 1993
IEEE International Conference on Robotics and Automation, pp. 662-667, 0-8186-3450-2,
Atlanta, GA, USA, May 1993,IEEE Comput. Soc. Press

Xiaojun Wu; Qing Li & Heng, K.H. (2005). A New Algorithm for Construction of Discretized
Configuration Space Obstacle and Collision Detection of Manipulators, Proceedings
of 12th Int. Conf. on Advanced Robotics, pp. 90-95, 0-7803-9178-0, Jul 2005

Young-Gun G & Maing-Kyu Kang (2001). A fast algorithm for two-dimensional pallet
loading problems of large size, European Journal of Operational Research, Vol. 134, No.
1, pp. 193-202,

Zhao, C.S.; Farooq, M. & Bayoumi, M.M. (1995). Analytical solution for configuration space
obstacle computation and representation, Proceedings of the 1995 IEEE IECON 21st
International Conference, pp. 1278-1283, 0-7803-3026-9, Orlando, FL, USA, Nov 1995,
IEEE

www.intechopen.com

Mechatronic Systems Applications

Edited by Annalisa Milella Donato Di Paola and Grazia Cicirelli

ISBN 978-953-307-040-7

Hard cover, 352 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the

past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices

with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at

the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold

and range from machine components, motion generators, and power producing machines to more complex

devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect

contributions from many researchers worldwide, this book provides an excellent survey of recent work in the

field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-

machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors

who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to

the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems.

Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to

13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with

mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the

installation of mechatronics education in schools.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

SungJin Lim, SeungNam Yu, ChangSoo Han and MaingKyu Kang (2010). Palletizing Simulator Using

Optimized Pattern and Trajectory Generation Algorithm, Mechatronic Systems Applications, Annalisa Milella

Donato Di Paola and Grazia Cicirelli (Ed.), ISBN: 978-953-307-040-7, InTech, Available from:

http://www.intechopen.com/books/mechatronic-systems-applications/palletizing-simulator-using-optimized-

pattern-and-trajectory-generation-algorithm

www.intechopen.com

Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

