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In this chapter, we introduce theories on data representation for flash memories. Flash mem-
ories are a milestone in the development of the data storage technology. The applications of
flash memories have expanded widely in recent years, and flash memories have become the
dominating member in the family of non-volatile memories. Compared to magnetic record-
ing and optical recording, flash memories are more suitable for many mobile-, embedded-
and mass-storage applications. The reasons include their high speed, physical robustness,
and easy integration with circuits.
The representation of data plays a key role in storage systems. Like magnetic recording and
optical recording, flash memories have their own distinct properties, including block erasure,
iterative cell programming, etc. These distinct properties introduce very interesting coding
problems that address many aspects of a successful storage system, which include efficient
data modification, error correction, and more. In this chapter, we first introduce the flash
memory model, then study some newly developed codes, including codes for rewriting data
and the rank modulation scheme. A main theme is understanding how to store information
in a medium that has asymmetric properties when it transits between different states.

1. Modelling Flash Memories

The basic storage unit in a flash memory is a floating-gate transistor [3]. We also call it a cell.
Charge (e.g., electrons) can be injected into the cell using the hot-electron injection mechanism
or the Fowler-Nordheim tunnelling mechanism, and the injected charge is trapped in the cell.
(Specifically, the charge is stored in the floating-gate layer of the transistor.) The charge can
also be removed from the cell using the Fowler-Nordheim tunnelling mechanism. The amount
of charge in a cell determines its threshold voltage, which can be measured. The operation of
injecting charge into a cell is called writing (or programming), removing charge is called erasing,
and measuring the charge level is called reading. If we use two discrete charge levels to store
data, the cell is called single-level cell (SLC) and can store one bit. If we use q > 2 discrete
charge levels to store data, the cell is called multi-level cell (MLC) and can store log2 q bits.
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A prominent property of flash memories is block erasure. In a flash memory, cells are organized
into blocks. A typical block contains about 105 cells. While it is relatively easy to inject charge
into a cell, to remove charge from any cell, the whole block containing it must be erased to the
ground level (and then reprogrammed). This is called block erasure. The block erasure opera-
tion not only significantly reduces speed, but also reduces the lifetime of the flash memory [3].
This is because a block can only endure about 104 ∼ 106 erasures, after which the block may
break down. Since the breaking down of a single block can make the whole memory stop
working, it is important to balance the erasures performed to different blocks. This is called
wear leveling. A commonly used wear-leveling technique is to balance erasures by moving
data among the blocks, especially when the data are revised [10].
There are two main types of flash memories: NOR flash and NAND flash. A NOR flash
memory allows random access to its cells. A NAND flash partitions every block into multiple
sections called pages, and a page is the unit of a read or write operation. Compared to NOR
flash, NAND flash may be much more restrictive on how its pages can be programmed, such
as allowing a page to be programmed only a few times before erasure [10]. However, NAND
flash enjoys the advantage of higher cell density.
The programming of cells is a noisy process. When charge is injected into a cell, the actual
amount of injection is randomly distributed around the aimed value. An important thing to
avoid during programming is overshooting, because to lower a cell’s level, erasure is needed.
A commonly used approach to avoid overshooting is to program a cell using multiple rounds
of charge injection. In each round, a conservative amount of charge is injected into the cell.
Then the cell level is measured before the next round begins. With this approach, the charge
level can gradually approach the target value and the programming precision is improved.
The corresponding cost is the slowing down in the writing speed.
After cells are programmed, the data are not necessarily error-proof, because the cell levels
can be changed by various errors over time. Some important error sources include write dis-
turb and read disturb (disturbs caused by writing or reading), as well as leakage of charge from
the cells (called the retention problem) [3]. The changes in the cell levels often have an asym-
metric distribution in the up and the down directions, and the errors in different cells can be
correlated.
In summary, flash memory is a storage medium with asymmetric properties. It is easy to
increase a cell’s charge level (which we shall call cell level), but very costly to decrease it due to
block erasure. The NAND flash may have more restrictions on reading and writing compared
to NOR flash. The cell programming uses multiple rounds of charge injection to shift the
cell level monotonically up toward the target value, to avoid overshooting and improve the
precision. The cell levels can change over time due to various disturb mechanisms and the
retention problem, and the errors can be asymmetric or correlated.

2. Codes for Rewriting Data

In this section, we discuss coding schemes for rewriting data in flash memories. The interest
in this problem comes from the fact that if data are stored in the conventional way, even to
change one bit in the data, we may need to lower some cell’s level, which would lead to the
costly block erasure operation. It is interesting to see if there exist codes that allow data to be
rewritten many times without block erasure.
The flash memory model we use in this section is the Write Asymmetric Memory (WAM)
model [16].
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Definition 1. WRITE ASYMMETRIC MEMORY (WAM) In a write asymmetric memory, there are
n cells. Every cell has q ≥ 2 levels: levels 0, 1, · · · , q − 1. The level of a cell can only increase, not
decrease.

The Write Asymmetric Memory models the monotonic change of flash memory cells before
the erasure operation. It is a special case of the generalized write-once memory (WOM) model,
which allows the state transitions of cells to be any acyclic directed graph [6, 8, 29].
Let us first look at an inspiring example. The code can write two bits twice in only three
single-level cells. It was proposed by Rivest and Shamir in their celebrated paper that started
the study of WOM codes [29].
We always assume that before data are written into the cells, the cells are at level 0.

Example 2. We store two bits in three single-level cells (i.e., n = 3 and q = 2). The code is shown in
Fig. 1. In the figure, the three numbers in a circle represent the three cell levels, and the two numbers
beside the circle represent the two bits. The arrows represent the transition of the cells. As we can see,
every cell level can only increase.
The code allows us to write the two bits at least twice. For example, if want to write “10”, and later
rewrite them as “01”, we first elevate the cell levels to “0,1,0”, then elevate them to “0,1,1”.

Fig. 1. Code for writing two bits twice in three single-level cells.

In the above example, a rewrite can completely change the data. In practice, often multiple
data variables are stored by an application, and every rewrite changes only one of them. The
joint coding of these data variables are useful for increasing the number of rewrites supported
by coding. The rewriting codes in this setting have been named Floating Codes [16].

Definition 3. FLOATING CODE

We store k variables of alphabet size ℓ in a write asymmetric memory (WAM) with n cells of q levels.
Every rewrite changes one of the k variables.
Let (c1, · · · , cn) ∈ {0, 1, · · · , q − 1}n denote the state of the memory (i.e., the levels of the n cells).
Let (v1, · · · , vk) ∈ {0, 1, · · · , ℓ − 1}k denote the data (i.e., the values of the k variables). For any
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two memory states (c1, · · · , cn) and (c′1, · · · , c′n), we say (c1, · · · , cn) ≥ (c′1, · · · , c′n) if ci ≥ c′i for
i = 1, · · · , n.
A floating code has a decoding function Fd and an update function Fu. The decoding function

Fd : {0, 1, · · · , q − 1}n → {0, 1, · · · , ℓ− 1}k

maps a memory state s ∈ {0, 1, · · · , q− 1}n to the stored data Fd(s) ∈ {0, 1, · · · , ℓ− 1}k. The update
function (which represents a rewrite operation),

Fu : {0, 1, · · · , q − 1}n × {1, 2, · · · , k} × {0, 1, · · · , ℓ− 1} → {0, 1, · · · , q − 1}n,

is defined as follows: if the current memory state is s and the rewrite changes the i-th variable to value
j ∈ {0, 1, · · · , ℓ− 1}, then the rewrite operation will change the memory state to Fu(s, i, j) such that
Fd(Fu(s, i, j)) is the data with the i-th variable changed to the value j. Naturally, since the memory is
a write asymmetric memory, we require that Fu(s, i, j) ≥ s.
Let t denote the number of rewrites (including the first write) guaranteed by the code. A floating code
that maximizes t is called optimal.

The code in Fig. 1 is in fact a special case of the floating code, where the number of variables
is only one. More specifically, the parameters for it is k = 1, ℓ = 4, n = 3, q = 2 and t = 2.
Let us look at an example of floating codes for two binary variables.

Example 4. We store two binary variables in a Write Asymmetric Memory with n cells of q levels.
Every rewrite changes the value of one variable. The Floating codes for n = 1, 2 and 3 are shown
in Fig. 2. As before, the numbers in a circle represent the memory state, the numbers beside a circle
represent the data, and the arrows represent the transition of the memory state triggered by rewriting.
With every rewrite, the memory state moves up by one layer in the figure. For example, if n = 3, q ≥ 3
and a sequence of rewrites change the data as

(0, 0) → (1, 0) → (1, 1) → (0, 1) → (1, 1) → · · ·

the memory state changes as

(0, 0, 0) → (1, 0, 0) → (1, 0, 1) → (1, 0, 2) → (1, 1, 2) → · · ·

The three codes in the figure all have a periodic structure, where every period contains 2n − 1 layers
(as shown in the figure) and has the same topological structure. From one period to the next, the only
difference is that the data (0, 0) is switched with (1, 0), and the data (1, 1) is switched with (0, 1).
Given the finite value of q, we just need to truncate the graph up to the cell level q − 1.

The floating codes in the above example are generalized in [16] for any value of n and q (but
still with k = ℓ = 2), and are shown to guarantee

t = (n − 1)(q − 1) + ⌊
q − 1

2
⌋

rewrites. We now prove that this is optimal. First, we show an upper bound to t, the number
of guaranteed rewrites, for floating codes [16].
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Fig. 2. Three examples of an optimal floating code for k = 2, l = 2 and arbitrary n, q. (a) n = 1.
(b) n = 2. (c) n = 3.

Theorem 5. For any floating code, if n ≥ k(l − 1)− 1, then

t ≤ [n − k(l − 1) + 1] · (q − 1) + ⌊
[k(l − 1)− 1] · (q − 1)

2
⌋;

if n < k(l − 1)− 1, then

t ≤ ⌊
n(q − 1)

2
⌋.

Proof. First, consider the case where n ≥ k(ℓ− 1)− 1. Let (c1, c2, · · · , cn) denote the memory

state. Let WA = ∑
k(ℓ−1)−1
i=1 ci, and let WB = ∑

n
i=k(ℓ−1) ci. Let’s call a rewrite operation “adver-

sarial” if it either increases WA by at least two or increases WB by at least one. Since there are k
variables and each variable has the alphabet size ℓ, a rewrite can change the variable vector in
k(ℓ− 1) different ways. However, since WA is the summation of only k(ℓ− 1)− 1 cell levels,
there are at most k(ℓ− 1)− 1 ways in which a rewrite can increase WA by one. So there must
be an “adversarial” choice for every rewrite.
Consider a sequence of adversarial rewrites operations supported by a generic floating code.
Suppose that x of those rewrite operations increase WA by at least two, and suppose that
y of them increase WB by at least one. Since the maximum cell level is q − 1, we get x ≤
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⌊
[k(l−1)−1]·(q−1)

2 ⌋ and y ≤ [n − k(l − 1) + 1] · (q − 1). So the number of rewrites supported by

a floating code is at most x + y ≤ [n − k(l − 1) + 1] · (q − 1) + ⌊
[k(l−1)−1]·(q−1)

2 ⌋.
The case where n < k(ℓ− 1)− 1 can be analyzed similarly. Call a rewrite operation “adver-
sarial” if it increases ∑

n
i=1 ci by at least two. It can be shown that there is always a adversarial

choice for every rewrite, and any floating code can support at most t ≤ ⌊
n(q−1)

2 ⌋ adversarial
rewrites.

When k = ℓ = 2, the above theorem gives the bound t ≤ (n− 1)(q− 1)+ ⌊
q−1

2 ⌋. It matches the
number of rewrites guaranteed by the floating codes of Example 4 (and their generalization
in [16]). So these codes are optimal.
Let us pause a little to consider the two given examples. In Example 2, two bits can be written
twice into the three single-level cells. The total number of bits written into the memory is
four (considering the whole history of rewriting), which is more than the number of bits the
memory can store at any given time (which is three). In Example 4, every rewrite changes one
of two binary variables and therefore reflects one bit of information. Since the code guarantees

(n − 1)(q − 1) + ⌊
q−1

2 ⌋ rewrites, the total amount of information “recorded” by the memory

(again, over the history of rewriting) is (n − 1)(q − 1) + ⌊
q−1

2 ⌋ ≈ nq bits. In comparison, the
number of bits the memory can store at any give time is only n log2 q.
Why can the total amount of information written into the memory (over the multiple rewrites)
exceed n log2 q, the maximum number of bits the memory can store at any give time? It is be-
cause only the current value of the data needs to be remembered. Another way to understand
it is that we are not using the cells sequentially. As an example, if there are n′ single level cells
and we increase one of their levels by one, there are n′ choices, which in fact reflects log2 n′

bits of information (instead of one bit).
We now extend floating codes to a more general definition of rewriting codes. First, we use
a directed graph to represent how rewrites may change the stored data. This definition was
proposed in [19].

Definition 6. GENERALIZED REWRITING

The stored data is represented by a directed graph D = (VD , ED). The vertices VD represent all the
values that the data can take. There is a directed edge (u, v) from u ∈ VD to v ∈ VD , v �= u, iff a
rewriting operation may change the stored data from value u to value v. The graph D is called the data
graph and the number of its vertices, corresponding to the input-alphabet size, is denoted by L = |VD |.
Without loss of generality (w.l.o.g.), we assume the data graph to be strongly connected.

It is simple to see that when the above notion is applied to floating codes, the alphabet size
L = ℓk, and the data graph D has constant in-degree and out-degree k(ℓ− 1). The out-degree
of D reveals how much change in the data a rewrite operation can cause. It is an important
parameter. In the following, we show a rewriting code for this generalized rewriting model.
The code, called Trajectory Code, was presented in [19].
Let (c1, · · · , cn) ∈ {0, 1, q − 1}n denote the memory state. Let VD = {0, 1, · · · , L − 1} denote
the alphabet of the stored data. Let’s present the trajectory code step by step, starting with its
basic building blocks.

Linear Code and Extended Linear Code

We first look at a Linear Code for the case n = L − 1 and q = 2. It was proposed by Rivest and
Shamir in [29].
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Definition 7. LINEAR CODE FOR n = L − 1 AND q = 2
The memory state (c1, · · · , cn) represents the data

n

∑
i=1

ici mod (n + 1).

For every rewrite, change as few cells from level 0 to level 1 as possible to get the new data.

We give an example of the Linear Code.

Example 8. Let n = 7, q = 2 and L = 8. The data represented by the memory state (c1, · · · , c7) is

7

∑
i=1

ici mod 8.

If the rewrites change the data as 0 → 3 → 5 → 2 → 4, the memory state can change as
(0, 0, 0, 0, 0, 0, 0) → (0, 0, 1, 0, 0, 0, 0) → (0, 1, 1, 0, 0, 0, 0) → (0, 1, 1, 0, 1, 0, 0) → (0, 1, 1, 1, 1, 1, 0).

The following theorem shows that the number of rewrites enabled by the Linear Code is
asymptotically optimal in n, the number of cells. It was proved in [29].

Theorem 9. The Linear Code guarantees at least n+1
4 + 1 rewrites.

Proof. We show that as long as at least n+1
2 cells are still of level 0, a rewrite will turn at most

two cells from level 0 to level 1. Let x ∈ {0, 1, · · · , n} denote the current data value, and let
y ∈ {0, 1, · · · , n} denote the new data value to be written, where y �= x. Let z denote

y − x mod (n + 1).

If the cell cz is of level 0, we can simply change it to level 1. Otherwise, let

S = {i ∈ {1, · · · , n}|ci = 0},

and let
T = {z − s mod (n + 1) | s ∈ S}.

Since |S| = |T| ≥ n+1
2 and |S ∪ T| < n (zero and z are in neither set), the set S ∩ T must be

nonempty. Their overlap indicates a solution to the equation

z = s1 + s2 mod (n + 1)

where s1 and s2 are elements of S.

When n ≥ L and q ≥ 2, we can generalize the Linear Code in the following way [19]. First,
suppose n = L and q ≥ 2. We first use level 0 and level 1 to encode (as the Linear Code
does), and let the memory state represent the data ∑

n
i=1 ici mod n. (Note that rewrites here

will not change cn.) When the code can no longer support rewriting, we increase all cell
levels (including cn) from 0 to 1, and start using cell levels 1 and 2 to store data in the same
way as above, except that now, the data represented by the memory state (c1, · · · , cn) uses
the formula ∑

n
i=1 i(ci − 1) mod n. This process is repeated q − 1 times in total. The general

decoding function is therefore
n

∑
i=1

i(ci − cn) mod n.
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Now we extend the above code to n ≥ L cells. We divide the n cells into b = ⌊n/L⌋ groups
of size L (some cells may remain unused), and sequentially apply the above code to the first
group of L cells, then to the second group, and so on. We call this code the Extended Linear
Code.

Theorem 10. Let 2 ≤ L ≤ n. The Extended Linear Code guarantees n(q − 1)/8 = Θ(nq) rewrites.

Proof. The Extended Linear Code essentially consists of (q − 1)⌊ n
L ⌋ ≥ (q−1)n

2L Linear Codes.

Code for Large Alphabet Size L

We now consider the case where L is larger than n. The rewriting code we present here will

reduce it to the case n = L studied above [19]. We start by assuming that n < L ≤ 2
√

n.

Construction 11. REWRITING CODE FOR n < L ≤ 2
√

n

Let b be the smallest positive integer value that satisfies ⌊n/b⌋b ≥ L.
For i = 1, 2, . . . , b, let vi be a symbol from an alphabet of size ⌊n/b⌋ ≥ L1/b. We may represent any
symbol v ∈ {0, 1, · · · , L − 1} as a vector of symbols (v1, v2, . . . , vb). Partition the n flash cells into b
groups, each with ⌊n/b⌋ cells (some cells may remain unused). Encoding the symbol v into n cells is
equivalent to the encoding of each vi into the corresponding group of ⌊n/b⌋ cells. As the alphabet size
of each vi equals the number of cells it is to be encoded into, we can use the Extended Linear Code to
store vi.

Theorem 12. Let 16 ≤ n ≤ L ≤ 2
√

n. The code in Construction 11 guarantees

n(q − 1) log n

16 log L
= Θ(

nq log n

log L
)

rewrites.

Proof. We first show that for b – the smallest positive integer value that satisfies ⌊n/b⌋b ≥ L –
it holds that

b ≤ 2 log L

log n
.

Note that for all 1 ≤ x ≤
√

n
2 , we have ⌊n/x⌋x ≥ nx/2. Since 16 ≤ n ≤ L ≤ 2⌊

√
n⌋, it is easy to

verify that
2 log L

log n
≤

√
n

2
.

Therefore,

⌊n log n

2 log L
⌋

2 log L
log n ≥ n

log L
log n = L,

which implies the upper bound for b.
Using Construction 11, the number of rewrites possible is bounded by the number of rewrites
possible for each of the b cell groups. By Theorem 10 and the above upper bound for b, this is
at least

⌊n

b
⌋ · q − 1

8
≥ (

n log n

2 log L
− 1)

q − 1

8
= Θ

(

nq log n

log L

)

.
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For the codes we have shown so far, we have not mentioned any constraint on the data graph
D. Therefore, the above results hold for the case where the data graph is a complete graph.
That is, a rewrite can change the data from any value to any other value. We now show that the
above codes are asymptotically optimal. For the Linear Code and the Extended Linear Code,
this is easy to see, because every rewrite needs to increase some cell level, so the number of
rewrites cannot exceed n(q − 1) = O(nq). The following theorem shows that the rewriting
code in Construction 11 is asymptotically optimal, too [19].

Theorem 13. When n < L − 1 and the data graph D is a complete graph, a rewriting code can

guarantee at most O(
nq log n

log L ) rewrites.

Proof. Let us consider some memory state s of the n flash cells, currently storing some value
v ∈ {0, 1, · · · , L − 1}. The next rewrite can change the data into any of the other L − 1 values.
If we allow ourselves r operations of increasing a single cell level of the n flash cells (perhaps,

operating on the same cell more than once), we may reach (n+r−1
r ) distinct new states. Let r

be the maximum integer sastisfying (n+r−1
r ) < L − 1. So for the next rewrite, we need at least

r + 1 such operations in the worst case. Since we have a total of n cells with q levels each, the
number of rewrite operations is upper bounded by

n(q − 1)

r + 1
≤

n(q − 1)

⌊
log(L−1)
1+log n ⌋+ 1

= O(
nq log n

log L
).

Trajectory Code Construction

Let’s now consider more restricted rewrite operations. In many applications, a rewrite often
changes only a (small) part of the data. So let’s consider the case where a rewrite can change
the data to at most ∆ new values. This is the same as saying that in the data graph D, the
maximum out-degree is ∆. We call such graph D a Bounded Out-degree Data Graph.
The code to be shown is given the name Trajectory Code in [19]. Its idea is to record the path
in D along which the data changes, up to a certain length. When ∆ is small, this approach is
particularly helpful, because recording which outgoing edge a rewrite takes (one of ∆ choices)
is more efficient than recording the new data value (one of L > ∆ choices).
We first outline the construction of the Trajectory Code. Its parameters will be specified soon.

Let n0, n1, n2, . . . , nd be d + 1 positive integers such that ∑
d
i=0 ni = n is the number of cells. We

partition the n cells into d + 1 groups, each with n0, n1, . . . , nd cells, respectively. We call them
registers S0, S1, . . . , Sd.
The encoding uses the following basic scheme: we start by using register S0, called the anchor,
to record the value of the initial data v0 ∈ {0, 1, · · · , L − 1}. For the next d rewrite operations
we use a differential scheme: denote by v1, . . . , vd ∈ {0, 1, · · · , L − 1} the next d values of the
rewritten data. In the i-th rewrite, 1 ≤ i ≤ d, we store in register Si the identity of the edge
(vi−1, vi) ∈ ED . (ED and VD are the edge set and vertex set of the data graph D, respectively.)
We do not require a unique label for all edges globally, but rather require that locally, for each
vertex in VD , its out-going edges have unique labels from {1, · · · , ∆}, where ∆ denotes the
maximal out-degree in the data graph D.
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Intuitively, the first d rewrite operations are achieved by encoding the trajectory taken by the
input data sequence starting with the anchor data. After d such rewrites, we repeat the process
by rewriting the next input from {0, 1, · · · , L − 1} in the anchor S0, and then continuing with
d edge labels in S1, · · · , Sd.
Let us assume a sequence of s rewrites have been stored thus far. To decode the last stored
value all we need to know is s mod (d + 1). This is easily achieved by using ⌈t/q⌉ more cells
(not specified in the previous d+ 1 registers), where t is the total number of rewrite operations
we would like to guarantee. For these ⌈t/q⌉ cells we employ a simple encoding scheme: in
every rewrite operation we arbitrarily choose one of those cells and raise its level by one.
Thus, the total level in these cells equals s.
The decoding process takes the value of the anchor S0 and then follows (s − 1) mod (d + 1)
edges which are read consecutively from S1, S2, · · · . Notice that this scheme is appealing in
cases where the maximum out-degree of D is significantly lower than the alphabet size L.
Note that each register Si, for i = 0, . . . , d, can be seen as a smaller rewriting code whose data
graph is a complete graph of either L vertices (for S0) or ∆ vertices (for S1, . . . , Sd). We use either
the Extended Linear Code or the code of Construction 11 for rewriting in the d + 1 registers.
The parameters of the Trajectory Code are shown by the following construction. We assume

that n ≤ L ≤ 2
√

n.

Construction 14. TRAJECTORY CODE FOR n ≤ L ≤ 2
√

n

If ∆ ≤ ⌊ n log n
2 log L ⌋, let

d = ⌊log L/ log n⌋ = Θ(log L/ log n).

If ⌊ n log n
2 log L ⌋ ≤ ∆ ≤ L, let

d = ⌊log L/ log ∆⌋ = Θ(log L/ log ∆).

In both cases, set the size of the d + 1 registers to n0 = ⌊n/2⌋ and ni = ⌊n/(2d)⌋ for i = 1, . . . d.

If ∆ ≤ ⌊ n log n
2 log L ⌋, apply the code of Construction 11 to register S0, and apply the Extended Linear Code

to registers S1, · · · , Sd. If ⌊ n log n
2 log L ⌋ ≤ ∆ ≤ L, apply the code of Construction 11 to the d + 1 registers

S0, · · · , Sd.

The next three results show the asympotically optimality of the Trajectory Code (when ∆ is
small and large, respectively) [19].

Theorem 15. Let ∆ ≤ ⌊ n log n
2 log L ⌋. The Trajectory Code of Construction 14 guarantees Θ(nq) rewrites.

Proof. By Theorems 10 and 12, the number of rewrites possible in S0 is equal (up to constant
factors) to that of Si (i ≥ 1):

Θ

(

n0q log n0

log L

)

= Θ

(

nq log n

log L

)

= Θ

(nq

d

)

= Θ (niq)

Thus the total number of rewrites guaranted by the Trajectory Code is d + 1 times the bound
for each register Si, which is Θ(nq).

Theorem 16. Let ⌊ n log n
2 log L ⌋ ≤ ∆ ≤ L. The Trajectory Code of Construction 14 guarantees Θ

(

nq log n
log ∆

)

rewrites.
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Proof. By Theorem 12, the number of rewrites possible in S0 is:

Θ

(

n0q log n0

log L

)

= Θ

(

nq log n

log L

)

Similarly the number of rewrites possible in Si (i ≥ 1) is:

Θ

(

niq log ni

log ∆

)

= Θ

(

nq log n

d log ∆

)

= Θ

(

nq log n

log L

)

.

Here we use the fact that as d ≤ log L it holds that d = o(n) and log ni = Θ(log n − log d) =
Θ(log n). Notice that the two expressions above are equal. Thus, as in Theorem 15, we con-
clude that the total number of rewrites guaranteed by the Trajectory Code is d + 1 times the

bound for each register Si, which is Θ

(

nq log n
log ∆

)

.

The rewriting performance shown in the above theorem matches the bound shown in the
following theorem. We omit its proof, which interested readers can find in [19].

Theorem 17. Let ∆ > ⌊
n log n
2 log L ⌋. There exist data graphs D of maximum out-degree ∆ such that any

rewriting code for D can guarantee at most O
(

nq log n
log ∆

)

rewrites.

We have so far focused on rewriting codes with asymptotically optimal performance. It is
interesting to study rewriting codes that are strictly optimal, like the floating code in Exam-
ple 4. Some codes of this kind have been studied in [16, 17]. In some practical applications,
more specific forms of rewriting can be defined, and better rewriting codes can be found. An
example is the Buffer Code defined for streaming data [2]. Besides studying the worst-case per-
formance of rewriting codes, the expected rewriting performance is equally interesting. Some
rewriting codes for expected performance are reported in [7, 19].

3. Rank Modulation

We focus our attention now on a new data representation scheme called Rank Modulation [21,
23]. It uses the relative order of the cell levels, instead the absolute values of cell levels, to
represent data. Let us first understand the motivations for the scheme.
Fast and accurate programming schemes for multi-level flash memories are a topic of signifi-
cant research and design efforts. As mentioned before, the flash memory technology does not
support charge removal from individual cells due to block erasure. As a result, an interative
cell programming method is used. To program a cell, a sequence of charge injection opera-
tions are used to shift the cell level cautiously and monotinically toward the target charge level
from below, in order to avoid undesired global erasures in case of overshoots. Consequently,
the attempt to program a cell requires quite a few programming cycles, and it works only up
to a moderate number of levels per cell.
In addition to the need for accurate programming, the move to more levels in cells also ag-
gravates the reliability problem. Compared to single-level cells, the higher storage capacity of
multi-level cells are obtained at the cost of a smaller gap between adjacent cell levels. Many of
the errors in flash memories are asymmetric, meaning that they shift the cell levels more likely
in one direction (up or down) than the other. Examples include the write disturbs, the read
disturbs, and the charge leakage. It will be interesting to design coding schemes that tolerate
asymmetric errors better.
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The Rank Modulation scheme is therefore proposed in [21, 23], whose aim is to eliminate both
the problem of overshooting while programming cells, and to tolerate asymmetric errors bet-
ter. In this scheme, an ordered set of n cells stores the information in the permutation induced
by the charge levels of the cells. In this way, no discrete levels are needed (i.e., no need for
threshold levels) and only a basic charge-comparing operation (which is easy to implement) is
required to read the permutation. If we further assume that the only programming operation
allowed is raising the charge level of one of the cells above the current highest one (namely,
push-to-top), then the overshoot problem is no longer relevant. Additionally, the technology
may allow in the future the decrease of all the charge levels in a block of cells by a constant
amount smaller than the lowest charge level (block deflation), which would maintain their rela-
tive values, and thus leave the information unchanged. This can eliminate a designated erase
step, by deflating the entire block whenever the memory is not in use.
Let’s look at a simple example of rank modulation. Let [n] denote the set of integers
{1, 2, · · · , n}.

Example 18. We partition the cells into groups of three cells each. Denote the three cells in a group by
cell 1, cell 2, and cell 3. We use a permutation of [3] – [a1, a2, a3] – to represent the relative order of the
three cell levels as follows: cell a1 has the highest level, and cell a3 has the lowest level. (The cell levels
considered in this section are real numbers. So no two cells can practically have the same level.)
The three cells in a group can introduce six possible permutations:
[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]. So they can store up to log2 6 bits of infor-
mation. To write a permutation, we program the cells from the lowest level to the highest level. For
example, if the permutation to write is [2, 3, 1], we first program cell 3 to make its level higher than
that of cell 1, then program cell 2 to make its level higher than that of cell 3. This way, there is no risk
of overshooting.

In this section, we use n to denote the number of cells in a group. As in the example, we use
a permutation of [n] – [a1, a2, · · · , an] – to denote the relative order of the cell levels such that
cell a1 has the highest level and cell an has the lowest level.
Once a new data representation method is defined, tools of coding are required to make it
useful. In this section, we focus on two tools: codes for rewriting, and codes for correcting
errors.

3.1 Rewriting Codes for Rank Modulation

Assume that the only operation we allow for rewriting data is the “push-to-top” operation:
injecting charge into a cell to make its level higher than all the other cell levels in the same cell
group. Note that the push-to-top operation has no risk of overshooting. Then, how to design
good rewriting codes for rank modulation?
Let ℓ denote the alphabet size of the data symbol stored in a group of n cells. Let the alphabet
of the data symbol be [ℓ] = {1, 2, · · · , ℓ}. Assume that a rewrite can change the data to any
value in [ℓ]. In general, ℓ might be smaller than n!, so we might end up having permutations
that are not used. On the other hand, we can map several distinct permutations to the same
symbol i ∈ [ℓ] in order to reduce the rewrite cost. We use Sn to denote the set of n! permuta-
tions, and let Wn ⊆ Sn denote the set of states (i.e., the set of permutations) that are used to
represent information symbols. As before, for a rewriting code we can define two functions, a
decoding function, Fd, and an update function, Fu.
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Definition 19. The decoding function Fd : Wn → [ℓ] maps every state s ∈ Wn to a value Fd(s)
in [ℓ]. Given an “old state” s ∈ Wn and a “new information symbol” i ∈ [ℓ], the update function
Fu : Wn × [ℓ] → Wn produces a state Fu(s, i) such that Fd(Fu(s, i)) = i.

The more push-to-top operations are used for rewriting, the closer the highest cell level is to
the maximum level possible. Once it reaches the maximum level possible, block erasure will
be needed for the next rewrite. So we define the rewriting cost by measuring the number of
push-to-top operations.

Definition 20. Given two states s1, s2 ∈ Wn, the cost of changing s1 into s2, denoted α(s1 → s2), is
defined as the minimum number of “push-to-the-top” operations needed to change s1 into s2.

For example, α([1, 2, 3] → [2, 1, 3]) = 1, α([1, 2, 3] → [3, 2, 1]) = 2.

Definition 21. The worst-case rewriting cost of a code is defined as maxs∈Wn ,i∈[ℓ] α(s → Fu(s, i)).
A code that minimized this cost is called optimal.

Before we present an optimal rewriting code, let’s first present a lower bound on the worst-
case rewriting cost. Define the transition graph G = (V, E) as a directed graph with V = Sn,
that is, with n! vertices representing the permutations in Sn. For any u, v ∈ V, there is a
directed edge from u to v iff α(u → v) = 1. G is a regular digraph, because every vertex has
n − 1 incoming edges and n − 1 outgoing edges. The diameter of G is maxu,v∈V α(u → v) =
n − 1.
Given a vertex u ∈ V and an integer r ∈ {0, 1, . . . , n − 1}, define the ball centered at u with
radius r as Bn

r (u) = {v ∈ V | α(u → v) ≤ r}, and define the sphere centered at u with radius r
as Sn

r (u) = {v ∈ V | α(u → v) = r}. Clearly,

Bn
r (u) =

⋃

0≤i≤r

Sn
r (u).

By a simple relabeling argument, both |Bn
r (u)| and |Sn

r (u)| are independent of u, and so will
be denoted by |Bn

r | and |Sn
r | respectively.

Lemma 22. For any 0 ≤ r ≤ n − 1,

|Bn
r | =

n!

(n − r)!

|Sn
r | =

{

1 r = 0
n!

(n−r)!
− n!

(n−r+1)!
1 ≤ r ≤ n − 1.

Proof. Fix a permutation u ∈ V. Let Pu be the set of permutations having the following prop-
erty: for each permutation v ∈ Pu, the elements appearing in its last n − r positions appear in
the same relative order in u. For example, if n = 5, r = 2, u = [1, 2, 3, 4, 5] and v = [5, 2, 1, 3, 4],
the last 3 elements of v – namely, 1, 3, 4 – have the same relative order in u. It is easy to see
that given u, when the elements occupying the first r positions in v ∈ Pu are chosen, the last
n − r positions become fixed. There are n(n − 1) · · · (n − r + 1) choices for occupying the first
r positions of v ∈ Pu, hence |Pu| =

n!
(n−r)!

. We will show that a vertex v is in Bn
r (u) if and only

if v ∈ Pu.
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Suppose v ∈ Bn
r (u). It follows that v can be obtained from u with at most r “push-to-the-top”

operations. Those elements pushed to the top appear in the first r positions of v, so the last
n − r positions of v contain elements which have the same relative order in u, thus, v ∈ Pu.
Now suppose v ∈ Pu. For i ∈ [n], let vi denote the element in the i-th position of v. One can
transform u into v by sequentially pushing vr, vr−1, . . . , v1 to the top. Hence, v ∈ Bn

r (u).
We conclude that |Bn

r (u)| = |P| = n!
(n−r)!

. Since Bn
r (u) =

⋃
0≤i≤r S

n
i (u), the second claim

follows.

The following lemma shows a lower bound to the worst-case rewriting cost.

Lemma 23. Fix integers n and ℓ, and define ρ(n, ℓ) to be the smallest integer such that |Bn
ρ(n,ℓ)

| ≥ ℓ.

For any code Wn and any state s ∈ Wn, there exists i ∈ [ℓ] such that α(s → Fu(s, i)) ≥ ρ(n, ℓ), i.e.,
the worst-case rewriting cost of any code is at least ρ(n, ℓ).

Proof. By the definition of ρ(n, ℓ), |Bn
ρ(n,ℓ)−1

| < ℓ. Hence, we can choose i ∈ [ℓ] \ {Fd(s
′) | s′ ∈

Bn
ρ(n,ℓ)−1

(s)}. Clearly, by our choice α(s → Fu(s, i)) ≥ ρ(n, ℓ).

We now present a rewriting code construction. It will be shown that the code achieves the
minimum worst-case rewriting cost. First, let us define the following notation.

Definition 24. A prefix sequence θ = [a(1), a(2), . . . , a(m)] is a sequence of m ≤ n distinct symbols
from [n]. The prefix set Pn(θ) ⊆ Sn is defined as all the permutations in Sn which start with the
sequence θ.

We are now in a position to construct the code.

Construction 25. REWRITING CODE FOR RANK MODULATION

Arbitrarily choose ℓ distinct prefix sequences, θ1, . . . , θℓ, each of length ρ(n, ℓ). Let us define Wn =
⋃

i∈[ℓ] Pn(θi) and map the states of Pn(θi) to i, i.e., for each i ∈ [ℓ] and s ∈ Pn(θi), set Fd(s) = i.

Finally, to construct the update function Fu, given s ∈ Wn and some i ∈ [ℓ], we do the following: let

[a
(1)
i , a

(2)
i , . . . , a

(ρ(n,ℓ))
i ] be the first ρ(n, ℓ) elements which appear in all the permutations in Pn(θi).

Apply push-to-top operations on the elements a
(ρ(n,ℓ))
i , . . . , a

(2)
i , a

(1)
i in s to get a permutation s′ ∈

Pn(θi) for which, clearly, Fd(s
′) = i. Set Fu(s, i) = s′.

Theorem 26. The code in Construction 25 is optimal in terms of minimizing the worst-case rewriting
cost.

Proof. It is obvious from the description of Fu that the worst-case rewriting cost of the con-
struction is at most ρ(n, ℓ). By Lemma 23 this is also the best we can hope for.

Example 27. Let n = 3, ℓ = 3. Since |B3
1 | = 3, it follows that ρ(n, ℓ) = 1. We partition the n! = 6

states into n!
(n−ρ(n,ℓ))!

= 3 sets, which induce the mapping:

P3([1]) = {[1, 2, 3], [1, 3, 2]} �→ 1,

P3([2]) = {[2, 1, 3], [2, 3, 1]} �→ 2,

P3([3]) = {[3, 1, 2], [3, 2, 1]} �→ 3.

The cost of any rewrite operation is 1.

www.intechopen.com



Data Representation for Flash Memories 67

If a probability distribution is known for the rewritten data, we can also define the perfor-
mance of codes based on the average rewriting cost. This is studied in [21], where an variable-
length prefix-free code is optimized. It is shown that the average rewriting cost of this prefix-
free code is within a small constant approximation ratio of the minimum possible cost of all
codes (prefix-free codes or not) under very mild conditions.

3.2 Error-correcting Codes for Rank Modulation

Error-correcting codes are often essential for the reliability of data. An error-correcting rank
modulation code is a subset of permutations that are far from each other based on some dis-
tance measure. The distance between permutations needs to be defined appropriately accord-
ing to the error model. In this section, we define distance as the number of adjacent transpo-
sitions. We emphasize, however, that this is not the only way to define distance. The results
we present here were shown in [23].
Given a permutation, an adjacent transposition is the local exchange of two adja-
cent elements in the permutation: [a1, . . . , ai−1, ai, ai+1, ai+2, . . . , an] is changed to
[a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an].
In the rank modulation model, the minimal change to a permutation caused by charge-level
drift is a single adjacent transposition. Let us measure the number of errors by the minimum
number of adjacent transpositions needed to change the permutation from its original value
to its erroneous value. For example, if the errors change the permutation from [2, 1, 3, 4] to
[2, 3, 4, 1], the number of errors is two, because at least two adjacent transpositions are needed
to change one into the other: [2, 1, 3, 4] → [2, 3, 1, 4] → [2, 3, 4, 1].
For two permutations A and B, define their distance, d(A, B), as the minimal number of adja-
cent transpositions needed to change A into B. This distance measure is called the Kendall Tau
Distance in the statistics and machine-learning community [24], and it induces a metric over
Sn. If d(A, B) = 1, A and B are called adjacent. Any two permutations of Sn are at distance at

most
n(n−1)

2 from each other. Two permutations of maximum distance are a reverse of each
other.

Basic Properties

Theorem 28. Let A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn] be two permutations of length
n. Suppose that bp = an for some 1 ≤ p ≤ n. Let A′ = [a1, a2, . . . , an−1] and B′ =
[b1, . . . , bp−1, bp+1, . . . , bn]. Then,

d(A, B) = d(A′, B′) + n − p.

The above theorem can be proved by induction. It shows a recursive algorithm for computing
the distance between two permutations. Let A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn] be two
permutations. For 1 ≤ i ≤ n, let Ai denote [a1, a2, . . . , ai], let Bi denote the subsequence of B
that contains only those numbers in Ai, and let pi denote the position of ai in Bi. Then, since
d(A1, B1) = 0 and d(Ai, Bi) = d(Ai−1, Bi−1) + i − pi, for i = 2, 3, . . . , n, we get

d(A, B) = d(An, Bn) =
(n − 1)(n + 2)

2
−

n

∑
i=2

pi.
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Example 29. Let A = [1, 2, 3, 4] and B = [4, 2, 3, 1]. Then A1 = [1], A2 = [1, 2], A3 = [1, 2, 3],
A4 = [1, 2, 3, 4], B1 = [1], B2 = [2, 1], B3 = [2, 3, 1], B4 = [4, 2, 3, 1]. We get

d(A1, B1) = 0,

d(A2, B2) = d(A1, B1) + 2 − p2 = 0 + 2 − 1 = 1,

d(A3, B3) = d(A2, B2) + 3 − p3 = 1 + 3 − 2 = 2,

d(A4, B4) = d(A3, B3) + 4 − p4 = 2 + 4 − 1 = 5.

Indeed, d(A, B) = (n−1)(n+2)
2 − ∑

n
i=2 pi =

(4−1)(4+2)
2 − (1 + 2 + 1) = 5.

We now define a coordinate system for permutations. We fix A = [1, 2, . . . , n]. For every
permutation B = [b1, b2, . . . , bn], we define its coordinates as XB = (2 − p2, 3 − p3, . . . , n − pn).
Here pi is defined as above for 2 ≤ i ≤ n. Clearly, if XB = (x1, x2, . . . , xn−1), then 0 ≤ xi ≤ i
for 1 ≤ i ≤ n − 1.

Example 30. Let A = [1, 2, 3, 4, 5]. Then XA = (0, 0, 0, 0). If B = [3, 4, 2, 1, 5], then XB =
(1, 2, 2, 0). If B = [5, 4, 3, 2, 1], then XB = (1, 2, 3, 4). The full set of coordinates for n = 3 and n = 4
are shown in Fig. 3 (a) and (c), respectively. ✷

The coordinate system is equivalent to a form of Lehmer code (or Lucas-Lehmer code, inver-
sion table) [26]. It is easy to see that two permutations are identical if and only if they have the
same coordinates, and any vector (y1, y2, . . . , yn−1), 0 ≤ yi ≤ i for 1 ≤ i ≤ n − 1, is the coor-
dinates of some permutation in Sn. So there is a one-to-one mapping between the coordinates
and the permutations.

Let A ∈ Sn be a permutation. For any 0 ≤ r ≤ n(n−1)
2 , the set Br(A) = {B ∈ Sn | d(A, B) ≤ r}

is a ball of radius r centered at A. A simple relabeling argument suffices to show that the
size of a ball does not depend on the choice of center. We use |Br| to denote |Br(A)| for any
A ∈ Sn. We are interested in finding the value of |Br|. The following theorem presents a way
to compute the size of a ball using polynomial multiplication.

Theorem 31. For 0 ≤ r ≤ n(n−1)
2 , let er denote the coefficient of xr in the polynomial ∏

n−1
i=1

xi+1−1
x−1 .

Then |Br| = ∑
r
i=0 er.

Proof. Let A = [1, 2, . . . , n]. Let B = [b1, b2, . . . , bn] be a generic permutation. Let XB =
(y1, y2, . . . , yn−1) be the coordinates of B. By the definition of coordinates, we get d(A, B) =

∑
n−1
i=1 yi. The number of permutations at distance r from A equals the number of integer

solutions to ∑
n−1
i=1 yi = r such that 0 ≤ yi ≤ i. That is equal to the coefficient of xr in the

polynomial ∏
n−1
i=1 (xi + xi−1 + · · ·+ 1) = ∏

n−1
i=1

xi+1−1
x−1 . Thus, there are exactly er permutations

at distance r from A, and |Br| = ∑
r
i=0 ei.

Theorem 31 induces an upper bound for the sizes of error-correcting rank-modulation codes.
By the sphere-packing principle, for such a code that can correct r errors, its size cannot exceed
n!/|Br|.

Embedding of Permutation Adjacency Graph

Define the adjacency graph of permutations, G = (V, E), as follows. The graph G has |V| = n!
vertices, which represent the n! permutations. Two vertices u, v ∈ V are adjacent if and only if

d(u, v) = 1. G is a regular undirected graph with degree n − 1 and diameter
n(n−1)

2 . To study
the topology of G, we begin with the follow theorem.
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Lemma 32. For two permutations A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn], let their coordinates

be XA = (x1, x2, . . . , xn−1) and XB = (y1, y2, . . . , yn−1). If A and B are adjacent, then ∑
n−1
i=1 |xi −

yi| = 1.

The above lemma can be proved by induction. Interested readers can see [23] for details.
Let Ln = (VL, EL) denote a 2 × 3 × · · · × n linear array graph. Ln has n! vertices VL. Each
vertex is assigned integer coordinates (x1, x2, . . . , xn−1), where 0 ≤ xi ≤ i for 1 ≤ i ≤ n − 1.
The distance between vertices of Ln is the L1 distance, and two vertices are adjacent (i.e., have
an edge between them) if and only if their distance is one.
We now build a bijective map P : V → VL. Here V is the vertex set of the adjacency graph
of permutations G = (V, E). For any u ∈ V and v ∈ VL, P(u) = v if and only if u, v have
the same coordinates. By Lemma 32, if two permutations are adjacent, their coordinates are
adjacent in Ln. So we get:

Theorem 33. The adjacency graph of permutations is a subgraph of the 2 × 3 × · · · × n linear array.

We show some examples of the embedding in Fig. 3. It can be seen that while each permu-
tation has n − 1 adjacent permutations, a vertex in the array can have a varied degree from
n − 1 to 2n − 3. Some edges of the array do not exist in the adjacency graph of permutations.

Fig. 3. Coordinates of permutations, and embedding the adjacency graph of permutations, G,
in the 2 × 3 × · · · × n array, Ln. In the two arrays, the solid lines are the edges in both G and
Ln, and the dotted lines are the edges only in Ln. (a) Coordinates of permutations for n = 3.
(b) Embedding G in Ln for n = 3. (c) Coordinates of permutations for n = 4. (d) Embedding
G in Ln for n = 4.

The observation that the permutations’ adjacency graph is a subgraph of a linear array shows
an approach to design error-correcting rank-modulation codes based on Lee-metric codes. We
skip the proof of the following theorem due to its simplicity.

Theorem 34. Let C be a Lee-metric error-correcting code of length n − 1, alphabet size no less than n,
and minimum distance d. Let C′ be the subset of codewords of C that are contained in the array Ln.
Then C′ is an error-correcting rank-modulation code with minimum distance at least d.
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Single-error-correcting Rank-Modulation Code

We now present a family of rank-modulation codes that can correct one error. The code is
based on the perfect sphere packing in the Lee-metric space [11]. The code construction is as
follows.

Construction 35. (SINGLE-ERROR-CORRECTING RANK-MODULATION CODE)
Let C1, C2 denote two rank-modulation codes constructed as follows. Let A be a general permutation
whose coordinates are (x1, x2, . . . , xn−1). Then A is a codeword in C1 if and only if the following
equation is satisfied:

n−1

∑
i=1

ixi ≡ 0 (mod 2n − 1).

A is a codeword in C2 if and only if the following equation is satisfied:

n−2

∑
i=1

ixi + (n − 1) · (−xn−1) ≡ 0 (mod 2n − 1).

Between C1 and C2, choose the code with more codewords as the final output. ✷

We analyze the code size of Construction 35.

Lemma 36. The rank-modulation code built in Construction 35 has a minimum cardinality of
(n−1)!

2 .

Proof. Let H = (VH , EH) be a 2 × 3 × · · · × (n − 1) × (2n − 1) linear array. Every vertex
in H has integer coordinates (x1, x2, . . . , xn−1), where 0 ≤ xi ≤ i for 1 ≤ i ≤ n − 2, and
−n + 1 ≤ xn−1 ≤ n − 1.
Given any choice of (x1, x2, . . . , xn−2) of the coordinates, we would like to see if there is a
solution to xn−1 (note that −n + 1 ≤ xn−1 ≤ n − 1) that satisfies the following equation:

n−1

∑
i=1

ixi ≡ 0 (mod 2n − 1).

Since ∑
n−1
i=1 ixi = (n − 1)xn−1 + ∑

n−2
i=1 ixi, and n − 1 and 2n − 1 are co-prime integers, there

is exactly one solution to xn−1 that satisfies the above equation. If xn−1 ≥ 0, clearly
(x1, x2, . . . , xn−1) are the coordinates of a codeword in the code C1. If xn−1 ≤ 0, then

∑
n−2
i=1 ixi + (n − 1) · [−(−xn−1)] ≡ 0 (mod 2n − 1), so (x1, x2, . . . , xn−2,−xn−1) are the coor-

dinates of a codeword in the code C2.
Since 0 ≤ xi ≤ i for 1 ≤ i ≤ n − 2, there are (n − 1)! ways to choose x1, x2, . . . , xn−2. Each
choice generates a codeword that belongs either to C1 or C2. Therefore, at least one of C1 and

C2 has cardinality no less than
(n−1)!

2 .

Lemma 37. The rank-modulation code built in Construction 35 can correct one error.

Proof. It has been shown in [11] that for an infinite k-dimensional array, vertices whose co-

ordinates (x1, x2, . . . , xk) satisfy the condition ∑
k
i=1 ixi ≡ 0 (mod 2k + 1) have a minimum L1

distance of 3. Let k = n − 1. Note that in Construction 35, the codewords of C1 are a subset
of the above vertices, while the codewords in C2 are a subset of the mirrored image of the
above vertices, where the last coordinate xn−1 is mapped to −xn−1. Since the permutations’
adjacency graph is a subgraph of the array, the minimum distance of C1 and C2 is at least 3.
Hence, the code built in Construction 35 can correct one error.
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Theorem 38. The code built in Construction 35 is a single-error-correcting rank-modulation code
whose cardinality is at least half of optimal.

Proof. Every permutation has n − 1 adjacent permutations, so the size of a radius-1 ball, |B1|,
is n. By the sphere packing bound, a single-error-correcting rank-modulation code can have at
most n!

n = (n− 1)! codewords. The code in Construction 35 has at least (n− 1)!/2 codewords.

4. Extended Information Theoretic Results

Flash memory is a type of constrained memory. There has been a history of distinguished
theoretical study on constrained memories. It includes the original work by Kuznetsov and
Tsybakov on coding for defective memories [25]. Further developments on defective mem-
ories include [12, 14]. The write once memory (WOM) [29], write unidirectional memory
(WUM) [28, 30, 32], and write efficient memory [1, 9] are also special instances of constrained
memories. Among them, WOM is the most related to the Write-Asymmetric Memory model
studied in this chapter.
Write once memory (WOM) was defined by Rivest and Shamir in their original work [29]. In
a WOM, a cell’s state can change from 0 to 1 but not from 1 to 0. This model was later general-
ized with more cell states in [6, 8]. The objective of WOM codes is to maximize the number of
times that the stored data can be rewritten. A number of very interesting WOM code construc-
tions have been presented over the years, including the tabular codes, linear codes, etc. in [29],
the linear codes in [6], the codes constructed using projective geometries [27], and the coset
coding in [5]. Fine results on the capacity of WOM have been presented in [8, 13, 29, 33]. Fur-
thermore, error-correcting WOM codes have been studied in [35]. In all the above works, the
rewriting model assumes no constraints on the data, namely, the data graph D is a complete
graph.
With the increasing importance of flash memories, new topics on coding for flash memories
have been studied in recent years. For the efficient rewriting of data, floating codes and buffer
codes were defined and studied in [16] and [2], respectively. A floating code jointly encodes
multiple variables, and every rewrite changes one variable. A buffer code, on the other hand,
records the most recent data of a data stream. More results on floating codes that optimize the
worst-case rewriting performance were presented in [17, 34]. Floating codes that also correct
errors were studied in [15]. In [19], the rewriting problem was generalized based on the data
graph model, and trajectory codes for complete data graphs and bounded-degree data graphs
were presented. The paper [19] also contains a summary and comparison of previous results
on rewriting codes.
Optimizing rewriting codes for expected performance is also an interesting topic. In [7], float-
ing codes of this type were designed based on Gray code constructions. In [19], randomized
WOM codes of robust performance were proposed.
The rank modulation scheme was proposed and studied in [21, 23]. In addition to rewrit-
ing [21] and error correction [23], a family of Gray codes for rank modulation were also pre-
sented [21]. One application of the Gray codes is to map rank modulation to the conventional
multi-level cells. A type of convolutional rank modulation codes, called Bounded Rank Modu-
lation, was studied in [31].
To study the storage capacity of flash memories, it is necessary to understand how accruately
flash cells can be programmed using the iterative and monotonic programming method. This
was studied in [18] based on an abstract programming-error model.

www.intechopen.com



Data Storage72

The errors in flash cell levels often have an asymmetric property. In [4], error-correcting codes
that correct asymmetric errors of limited magnitude were designed for flash memories.
In a storage system, to avoid the accumulation of errors, a common practice is to write the cor-
rect data back into the storage system once the errors accumulated in the data reach a certain
threshold. This is called memory scrubbing. In flash memories, however, memory scrubbing is
more difficult because to write one correct codeword back into the system, the whole block
needs to be erased. A new type of error-correcting codes, called Error-Scurbbing Codes, were
defined in [20] for multi-level cells. It is shown that even if the only allowed operation is to
increase cell levels, a higher rate of ECC can be still achieved by actively scrubbing errors.
The block erasure property of flash memories affects not only rewriting and cell programming,
but also data movement. In [22], it is shown that by appropriately using coding, the number
of erasures needed for moving data among n NAND flash blocks can be reduced by a factor
of O(log n).
The rewriting codes and the rank modulation scheme are useful not only for flash memories,
but also for other constrained memories. A promonent example is the phase-change memory
(PCM). In a phase-change memory, a memory cell can be switched between a crystalline state
and an amorphous state. Intermediate states are also possible. Since changing the cell to the
crystalline state takes a substantially longer time than changing it to the amorphous state,
the memory is closely related to the Write-Asymmetric Memory model. How to program
PCM cells with more intermediate states fast and reliably is an active ongoing topic. The rank
modulation scheme may provide an effective tool in this area.
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