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1. Introduction

In the age of an aging society, the prospective role of robots is turning gradually from just
working machines to do monotonous work in a factories to partners who support human life.
In recent years, a lot of autonomous humanoid robots have been actually realized (Hirai et al.
(1998); Kaneko et al. (2008)). These robots can walk on two legs stably by means of the control
based on ZMP (Zero Moment Point). ZMP (Vukobratovic & Borovac (2004)), the indicator
of the stability of biped walking, is a point on the floor where the torque generated by both
inertial and gravitational forces becomes zero. That is, using ZMP-based control to realize
stable walking makes sense, thus a number of researches of ZMP-based control have been
presented (Nishiwaki et al. (2002); Takanishi et al. (1985)). However, in terms of the practical
use of humanoid robots, these controllers based on ZMP have a problem in terms of the run-
time of the battery since ZMP-based method does not take advantage of the robot inherent
dynamics.
In order to achieve natural and energy efficient biped walking, many control methods based
on robot dynamics had been proposed up to this day. As one of such methods, some re-
searchers presented the control methods to take advantage of robot dynamics directly by use
of point-contact state between a robot and the ground (Furusho & Sano (1990); Goswami et
al. (1997); Grishin et al. (1994); Kuo (1999); Nakanishi et al. (2004); Ono et al. (2004)). Miura et
al. produced the point-contact biped robot like stilt and realize dynamic walking by means of
stabilizing control to change the configuration at foot-contact (Miura & Shimoyama (1984)).
Kajita et al. proposed the control and stabilizing method based on the conserved quan-
tity derived by designing the COG trajectory parallel to the ground (Kajita et al. (1992)).
Chevallereau presented the control to converge robot dynamics on optical trajectory by intro-
ducing the virtual time (Chevallereau (2003)). Grizzle and Westervelt et al. built the controller
by use of the virtual holonomi constraint of joints named virtual constraint realize stable dy-
namic walking by means of the biped robot with a torso (Grizzle et al. (2001); Westervelt et al.
(2004)).
As one of point-contact methods, Doi et al. proposed Passive Dynamic Autonomous Con-
trol (PDAC) previously (Doi et al. (2004b)). PDAC expresses the robot dynamics as an one-
dimensional autonomous system based on the two concepts: 1) point-contact 2) virtual con-
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Fig. 1. Mechanical model of the serial n-link rigid robot. θi and τi are the angle and the
torque of ith joint respectively. mi and Ji are the mass and the moment of inertia of ith link
respectively.

straint (proposed by Grizzle and Westervelt et al. (Grizzle et al. (2001); Westervelt et al.
(2004))). In this chapter, we design the sagittal motion controller by applying PDAC to sagittal
motion. In addition, we find the convergence domain of the proposed controller and prove
the stability by the Liapunov Theory. Finally, 3-D dynamic walking based on the robot inher-
ent dynamics is realized by coupling the sagittal motion proposed in this chapter and lateral
motion proposed previously (Doi et al. (2004a)).

2. Passive Dynamic Autonomous Control

2.1 Converged dynamics

As mentioned previously, PDAC is base on the two concepts, i.e. point-contact and virtual
constraint. Point-contact denotes that a robot contacts the ground at a point, that is, the first
joint is passive. virtual constraint was defined by Grizzle and Westervelt et al. (Grizzle et al.
(2001); Westervelt et al. (2004)) as a set of holonomic constraints on the robot’s actuated DoF
parameterized by the robot’s unactuated DoF. Assuming that PDAC is applied to the serial
n-link rigid robot shown in Fig. 1, these two premises are expressed as follows:

τ1 = 0, (1)

Θ = [θ1, θ2, · · · , θn]
T = [ f1(θ), f2(θ), · · · , fn(θ)]

T

:= f (θ), (2)

where θ is the angle around the contact point in the absolute coordinate system, that is, θ1 =
f1(θ) = θ.
The dynamic equations of this model are given by

d

dt

(

M (Θ)Θ̇
)

−

1

2

∂

∂Θ

(

Θ̇
T
M (Θ)Θ̇

)

− G(Θ) = τ , (3)

where M (Θ) := [m1(Θ)T ,m2(Θ)T , · · · ,mn(Θ)T ]T , Θ := [θ1, θ2, · · · , θn]T ,
G(Θ) := [G1(Θ), G2(Θ), · · · , Gn(Θ)]T , τ := [τ1, τ2, · · · , τn]T , ∂

∂Θ
= [ ∂

∂θ1
, ∂

∂θ2
, · · · , ∂

∂θn
]T .

www.intechopen.com



Bipedal Walking Control based on the  
Assumption of the Point-contact: Sagittal Motion Control and Stabilization 187

Since in this model the dynamic equation around the contact point has no term of the Coriolis
force, it is given as

d

dt

(

m1(Θ)T
Θ̇

)

− G1(Θ) = τ1. (4)

By differentiating Eq. (2) with respect to time, the following equation is acquired,

Θ̇ =
∂f (θ)

∂θ
θ̇ =

[

∂ f1(θ)

∂θ
,

∂ f2(θ)

∂θ
, · · · ,

∂ fn(θ)

∂θ

]T

θ̇. (5)

Substituting Eqs. (1), (2), and (5) into Eq. (3) yields the following dynamic equation,

d

dt

(

M(θ)θ̇
)

= G(θ), (6)

where

M(θ) := m1

(

f (θ)
)T df (θ)

dθ
(7)

G(θ) := G1

(

f (θ)
)

. (8)

By multiplying both sides of Eq. (6) by M(θ)θ̇ and integrating with respect to time, the dy-
namics around the contact point is obtained as follows:

∫

(

M(θ)θ̇
) d

dt

(

M(θ)θ̇
)

dt =
∫

M(θ)G(θ)θ̇ dt (9)

⇐⇒
1

2

(

M(θ)θ̇
)2

=
∫

M(θ)G(θ) dθ. (10)

Therefore, the whole robot dynamics is expressed as the following one-dimensional au-
tonomous system (that is, the phase around contact point),

θ̇ =
1

M(θ)

√

2
∫

M(θ)G(θ) dθ (11)

:=
1

M(θ)

√

2
(

D(θ) + C
)

(12)

:= F(θ). (13)

In this chapter, we term Eqs. (12) and (13) Converged dynamics.

2.2 PDAC Constant

Since Converged dynamics is autonomous, in addition, independent of time, it is considered
as a conservative system. The integral constant in right side of Eq. (10), C, is a conserved
quantity, which is termed PDAC Constant. Its value is decided according to the initial condi-
tion (as for biped walking, the state just after foot-contact), and kept constant during a cycle
of motion. Thus, it is possible to stabilize the motion by keeping PDAC Constant at certain
value.
The dimension of PDAC Constant is equal to the square of angular momentum and has rel-
evance to it. As is well know, assuming that the robot shown in Fig. 1 is placed on its
side, the angular momentum around contact point is conserved since there is no effect of
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gravitational force on the robot dynamics. In this condition, it is clear that M(θ)θ̇(angular

momentum)=
√

2C from Eq. (12), since G(Θ) = 0 in Eq. (3) hence D(θ) = 0. Note that,
although angular momentum is not conserved in the condition which robot dynamics is af-
fected by the gravitational force, PDAC Constant is conserved since it includes the effects of
the gravitation. This chapter demonstrates the convergence of PDAC Constant by the Lya-
punov theory and proves the stability of walking.

3. 3D biped walking

In this section, control architecture of 3-D biped walking is summarize.

3.1 Sagittal motion

3.1.1 3-link model

For the sake of simplicity, in this chapter upper body of a robot is not moved, hence the 3-link
model as shown in Fig. 2 is employed. The dynamic equation of this model is described as
Eq. (3) and that of the ankle joint of the stance leg is Eq. (4) where n = 3. The left-hand side of
Eq. (4) is described as follows:

M11(Θ) = J1 + J2 + J3 + m1a2
1 + m2l2

1 + m2a2
2 − 2m2a2l1 cos θ2

+m3l2
1 + m3a2

3 + 2m3a3l1 cos(γ − θ3),

M12(Θ) = −J2 − m2a2
2 + m2a2l1 cos θ2,

M13(Θ) = −J3 − m3a2
3 − m3a3l1 cos(γ − θ3),

G1(Θ) = (m1a1 + m2l1 + m3l1)g sin θ1 + m2ga2 sin(θ2 − θ1)

+m3ga3 sin(θ1 + γ − θ3),

where m1(Θ) = [M11(Θ), M12(Θ), M13(Θ)].

m1

J1

m2

J2

J3

m3

a1

l1

a3

a2

γ γ

θ3

θ2

θ1

Fig. 2. 3-link model in the sagittal plane. mi, Ji, li and ai are the mass, the moment of inertia,
the length of link and the distance from the joint to the link COG of link i respectively. γ is
the angle of the forward tilting. In the right figure, θ1, θ2 and θ3 are the ankle angle of the
stance leg, the angle from the stance leg to the the swing leg, the angle to swing the trunk up
respectively.
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3.1.2 Constraints of sagittal joints

Constraints are simply designed as follows:

• The angle of the torso is constant.

• The swing leg is symmetrical to the stance leg.

That is,

θ1 = f1(θ) = θ, (14)

θ2 = f2(θ) = 2θ, and (15)

θ3 = f3(θ) = θ. (16)

From Eqs. (14)-(16) and (1), Eq. (6) is

Ms(θ) = J1 − J2 + m1a2
1 + m2l2

1 − m2a2
2 + m3l2

1 + m3a3l1 cos(γ − θ)

:= E1 + E2 cos(γ − θ), (17)

Gs(θ) = (m1a1 + m2l1 + m2a2 + m3l1)g sin θ + m3ga3 sin γ

:= E3 + E4 sin θ. (18)

Thus,
∫

Ms(θ)Gs(θ)dθ

=
∫

(

E1 + E2 cos(γ − θ)
)(

E3 + E4 sin θ
)

dθ

= E2E4

(

sin γ

2
θ −

cos(2θ − γ)

4

)

+ E1E3θ

+E2E3 sin(θ − γ)− E1E4 cos θ + Cs

:= Ds(θ) + Cs, (19)

where Cs is the integral constant, which is PDAC Constant of the sagittal motion. From Eq.
(12), Converged dynamics in the sagittal plane is

θ̇ =
1

Ms(θ)

√

2
(

Ds(θ) + Cs
)

(20)

:= Fs(θ). (21)

Note that it is necessary that γ is decided so that Ms(θ) > 0 in order to avoid singular point.
Generally speaking, as for humanoid robots and biped robots, E1 > E2 since l1 > a3. Thus,
we assume Ms(θ) > 0 below.

3.1.3 Foot-contact model

Regarding foot-contact, it is assumed that the ground is perfectly inelastic collision and oc-
curred for a moment similarly to previous works (Goswami et al. (1997); Grizzle et al. (2001);
Kuo (1999); Westervelt et al. (2004)). That is, the angular momentum around the contact point
is conserved before and after foot-contact.
Fig. 3 shows the angle and length of the inverted pendulum at foot-contact. Here, consider the
foot-contact at the end of kth step, i.e. at the beginning of k + 1th step. Denoting the angular
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ξiξe [k]θi- [k+1]θi-[k]θele [k]

li [k+1]

[k] [k+1]

Fig. 3. Parameters at foot-contact. le[k] and ξe[k] are the length and inclination of the inverted
pendulum which connects the ankle of support leg and robot COG before impact at the end of
kth step. li[k + 1] and ξi[k + 1] are those after impact. θe[k] and θi[k + 1] are the angles around
the contact point before and after impact.

velocity of ankle joint of the rear leg at foot-contact as θ̇e[k], the following equation is derived
from Eq. (12):

θ̇e[k] =
1

Ms(θe[k])

√

2
(

Ds(θe[k]) + Cs[k]
)

, (22)

where Cs[k] denotes PDAC Constant of kth step.
Since the torso angle is constant and COG is not rotated, the angular velocity of ankle joint of
the fore leg at foot-contact, Pi[k + 1], is described as follows:

Pi[k + 1] = mtle[k]li[k + 1]θ̇e[k] cos(ξe[k] + ξi[k + 1])

=
mtle[k]li[k + 1] cos(ξe[k] + ξi[k + 1])

Ms(θe[k])

√

2
(

Ds(θe[k]) + Cs[k]
)

:= h[k]
√

2
(

Ds(θe[k]) + Cs[k]
)

, (23)

where mt = m1 + m2 + m3.
Since the angular velocity around the passive joint is

P = Ms(θ)θ̇,

PDAC Constant after foot-contact, Cs[k + 1], is represented as

Cs[k + 1] =
1

2
Pi[k + 1]2 − Ds(θi[k])

= h[k]2Cs[k] + h[k]2Ds(θe[k])− Ds(θi[k])

:= s1[k]Cs[k] + s2[k]. (24)
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3.1.4 Sagittal motion period

In order to satisfy the condition of constant step-length, it is necessary to control the lateral
motion so that lateral foot-contact period matches sagittal one. Since sagittal dynamics is
expressed as an one-dimensional autonomous dynamics, it is possible to calculate the sagittal
foot-contact period by integrating sagittal Converged dynamics with time as follows:

Ts =
∫

i+1θ−

iθ+

1

Fs(θ)
dθ. (25)

In next section, we design the lateral motion and build the controller satisfying the synchro-
nization between lateral and sagittal motion.

3.2 Lateral motion control

3.2.1 Lateral motion

In this section, the lateral motion is composed by means of PDAC. In phase(A), a robot starts to
turn over toward its swing-leg-side and is accelerated by gravitation from the tilting position
at a standstill on the stance-leg-side to foot-contact. In phase(B), after foot-contact, a robot is
got up toward the tilting position at a standstill by the energy obtained in phase(A).

(A) (B)

Front View

(A)(B)

: Passive joint

Left Foot Contact

Swing Up

Swing Up

Fall
 D

own

Fall
 D

own

Right Foot Contact

Transition

Transition

Left-Leg-SupportRight-Leg-Support

(A)

Fig. 4. The lateral motion of lateral-based walk (front view). The inverted pendulum falls off
in phase(A) and swing up in phase(B)
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3.2.2 Constraint of lateral joints

The dynamic equation of an inverted pendulum is described as follows:

d

dt

(

(ml2 + J)φ̇
)

= mgl sin φ. (26)

Multiplying both side of this equation by (ml2 + J)φ̇ and integrating with respect to time
yields the following equations,

(

(ml2 + J)φ̇
) d

dt

(

(ml2 + J)φ̇
)

= mgl(ml2 + J)φ̇ sin φ

⇐⇒
1

2

(

(ml2 + J)φ̇
)2
=
∫

mgl(ml2 + J)φ̇ sin φ dt

⇐⇒ φ̇=
1

ml2 + J

√

2
∫

mgl(ml2 + J)φ̇ sin φ dt. (27)

Here, we decide the virtual constraint, that is, pendulum length l is described as the function
of φ. It is clear that the right side of Eq. (27) can be integrated if f (φ) is a polynomial equation.
Thus in this chapter, f (φ) is decided as follows:

l = f (φ) (28)

= aφ2 + bφ + c, (29)

where a, b, and c are determined so as to satisfy the conditions described below. At first,
the conditions of pendulum length at the beginning and ending of phase(A) and phase(B)
introduce the following four equations:

f A(φ0) = l0, (30)

f A(φ1) = l0 + ∆l, (31)

f B(−φ2) = l0 − ∆l, (32)

f B(−φ3) = l0, (33)

where upper-suffixes denote the differentiation of phases.
In addition, the pendulum motion is designed so that the angular velocity of robot joints is
not discontinuous, that is, the velocity along pendulum is zero,

∂ f A

∂φ
(φ1) = 0, and (34)

∂ f B

∂φ
(−φ2) = 0. (35)

From Eq. (30)-(35), a and b, c in each phase are decided.
Finally, the phase around contact point (phase of passive joint) is obtained from Eqs. (27) and
(28) as follows:

φ̇ =
1

m f (φ)2 + J

√

2
∫

mg f (φ)
(

m f (φ)2 + J
)

sin dφ

:=
1

Ml(φ)

√

2
(

Dl(φ)+ Cl

)

:= F(φ). (36)
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Lastly, the value to lift up pelvis, ∆l, is determined. ∆l is necessary to be decided so that Eq.
(36) satisfies the initial condition of phase(A) and the end condition of phase(B), that is,

FA
l (φ0) = FB

l (−φ3) = 0

⇐⇒

√

2
(

DA
l (φ1)− DA

l (φ0)
)

MA
l (φ1)

cos(φ1 + φ2) =

√

2
(

DB
l (−φ2)− DB

l (−φ3)
)

MB
l (−φ2)

,

(37)

where upper suffixes denote the differentiation of phases. ∆l is so small that it is possible to
find the appropriate value satisfying Eq. (37) by use of the quadratic approximation.

3.2.3 Control of lateral period

Next we design the period controller of the lateral motion described in the previous subsec-
tion. The period of lateral motion is decided by the amplitude of pendulum motion, that is,
the period is long if the amplitude is large and it is short if the amplitude is small. In this
chapter, the desired period is realized by controlling the lateral amplitude.
Assuming that the pendulum angle at the transition from phase(B) to phase(A) is φ3, the
motion period T can be found properly by the following calculation

∫ −φ2

−φ3

1

FB(φ)
dφ +

∫ φ1

φ3

1

FA(φ)
dφ = T. (38)

However, it is not easy to solve this equation for φ3. The pendulum extension is so small that
the desired amplitude is decided approximately by use of the model of inverted pendulum,
length of which is not variable, as follows:

φ3 =
φc

cosh
(√

g
l0

T
2

) , (39)

where, φc is the pendulum angle in the standing posture, i.e. the pendulum angle at the foot-
contact under the condition of ∆l = 0.

4. Stability proof of the sagittal motion

4.1 Constraint of constant step-length

In this work, the step-length is fixed at constant value in order to stabilize walking. Under
such condition, it is clear that the following is held:

θe[j] = −θi[j] = arcsin

(

λd

2l1

)

:= θc = const., (40)

where j ∈ N and 0 ≤ θc <
π
2 . Since the torso angle, γ, is kept constant, ξe[j] and ξi[j], le[j], li[j]

are also all constant similarly. Hence, in Eq. (23),

h[j] := H = const.

is held. Besides, in Eq. (24),

s1[j] = h[j]2 = H2 := S1 = const.

s2[j] = h[j]2Ds(θe[j])− Ds(θi[j])

= H2Ds(θc)− Ds(−θc) := S2 = const.
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are also held.

4.2 Requisite to perform walking continuously

We consider the requisite to generate walking. In terms of practicality, let γ be 0 < γ <
π
2 . In

order to perform walking continuously, θ̇ > 0 is required at all times. Considering Ms(θ) > 0,
this condition is equivalent to P = Ms(θ)θ̇ > 0. Since

dDs(θ)

dθ
= Ms(θ)Gs(θ)

=
(

E1 + E2 cos(γ − θ)
)(

E3 + E4 sin θ
)

,

and also since E3 > 0 and E4 > 0, in can be seen that Ds(θ) i.e. the angular velocity of passive
joint, P, is minimum when

θ = arcsin

(

−
E3

E4

)

:= θ̂,

and that it decreases monotonically on −
π
2 < θ < θ̂ and increases monotonically on θ̂ < θ <

π
2 . Since 1

2 P2 = Ds(θ) + Cs, the condition discussed above, P > 0, is described as below,

P > 0 ⇐⇒ Cs > −Ds(θ̂) := Ĉs. (41)

Therefore, from Eq. (24), the requisite to perform walking continuously is found as follows:

S1Ĉs + S2 > Ĉs. (42)

Next, we argue the state that dynamics of walking is converged on a unique trajectory, i.e. the
equilibrium state. On such condition, PDAC Constant of every step is converged on constant
value. That is,

Cs[k] = Cs[k + 1] := C
∗

s .

 0

 0.4

 0.8

 1.2

 1.6

 0  0.1  0.2  0.3  0.4  0.5

Step length [m]

γ
 [
ra
d
]

Fig. 5. Condition of θ and γ in order to generate continual walking
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Hence, from Eq. (24),

C
∗
s = S1C

∗
s + S2

⇐⇒ S2 = C
∗
s (1 − S1) (43)

is held. Substituting Eq. (43) into Eq. (42),

(1 − S1)(C
∗
s − Ĉs) > 0 (44)

is obtained. From Eq. (41), it is clear that

C
∗
s > Ĉs. (45)

From Eqs. (44) and (45), the requisite to perform walking continuously, Eq. (42), is described
as follows:

1 − S1 > 0. (46)

As for our robot (Gorilla Robot III (Kajima et al. (2004)): Fig. 9, Table 1), Eq. (46) is the range
shown in Fig. 5. Although we assume γ <

π
2 in Fig. 5, actual upper bound is decided

according to the limitation of robot’s specification such as the torque to swing a leg forward
or to keep a torso angle at constant value.

4.3 Proof of stability

Lastly, we prove the stability by Liapunov Theory using the conditions found above. The
error between actual Cs and convergent value is defined as

δCs := C
∗
s − Cs. (47)

The following positive definite function, V, is defined,

V = (δCs)
2.

Since V(0) = 0 and V > 0 (δCs �= 0), it is apparent that V is positive definite. From Eqs. (24),
(43), and (47), finite difference of V is

∆V = V[k + 1]− V[k]

= δCs[k + 1]2 − δCs[k]
2

= (δCs[k + 1] + δCs[k])(δCs[k + 1]− δCs[k])

= −(2C
∗
s − Cs[k + 1]− Cs[k])(Cs[k + 1]− Cs[k])

= −(2C
∗
s − S1Cs[k]− S2 − Cs[k])(S1Cs[k] + S2 − Cs[k])

= −
(

2C
∗
s − S1Cs[k]− (1 − S1)C

∗
s − Cs[k]

)(

S1Cs[k] + (1 − S1)C
∗
s − Cs[k]

)

= −(1 + S1)(1 − S1)(C
∗
s − Cs[k])

2

= −(1 + S1)(1 − S1)∆Cs[k]
2. (48)

Since it is clear that 1 + S1 = 1 + H2
> 0 from Eq. (41) and that 1 − S1 > 0 from Eqs. (46) and

(48) is

∆V = 0 (δCs = 0). (49)

In addition,

∆V < 0 (δCs �= 0) (50)

is held. From Eq. (49) and (50), ∆V is negative definite. Therefore, the equilibrium point, C∗
s ,

is asymptotically stable in the range shown in Fig. 5.
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4.4 Simulation

Next, stability proof described in the previous subsection is confirmed by the numerical sim-
ulation. Fig. 6 is the phase portrait of θ and alteration in terms of time. From these figures,
the convergence of the sagittal motion can be ascertained. On this simulation, step-length is
0.18[m], the torso angle is γ =0.035[rad].
Fig. 7 depicts the return maps of PDAC Constant and the angular velocity of passive joint at
foot-contact. These figures show that the sagittal dynamics has a sole stable fixed point.
Finally, in order to confirm that the stability of the sagittal motion is independent of step-
length, we perform the simulation of the various step-length. Fig. 8 is the graph of the return
map of the angular volocity of passive joint at foot-contact v.s. step-length. From this figure,
it can be confirmed that the sagittal dynamics is stable regardless of step-length.
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Fig. 6. Simulation results of sagittal stabilization. (Left) Phase portrait of the sagittal dynamics.
(Right) θ trajectory vs. time.
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Table 1. Link parameters of Gorilla Robot III

Mass[kg] link1 m1 2.618

link2 m2 3.451

link3 m3 15.143

COG position link1 a1 0.23

link2 a2 0.28

link3 a3 0.22

Moment of inertia link1 J1 0.042

link2 J2 0.070

link3 J3 0.047
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Fig. 9. Gorilla Robot III (about 1.0[m] height, 22.0[kg] weight, 24 DOF)
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5. Experiment

In order to ascertain the validity of proposed method, we conducted the experiment. Both
sagittal controller and lateral one are employed simultaneously and 3-D dynamic walking is
realized. Note that, in the following experiment, estimated viscous torque is applied to the
ankle joints of stance-leg in order to realize the passive joint virtually.

5.1 Experimental Setup

Fig. 9 depicts our experimental setup and our robot “Gorilla Robot III (Kajima et al. (2004))".
This robot is driven by 24 AC motors of 20-30W with 100-200 times of speed reduction by
harmonic gears. It has the photo sensors on its soles to perceive foot-contact.

5.2 Experimental results

In this experiment, the robot bends its knee joint of the swing leg so as to prevent the foot being
in friction with the ground immediately after foot-contact on the assumption that the effect of
knee bending on the robot dynamics can be neglected. The foot of the swing leg is actuated
so as to be kept parallel to the ground. The experiment was performed on the basically level
and flat ground which has maximum 1.0[cm] irregularity without discontinuities.
In this chapter, the desired step-length is given to be gradually increased within initial 5 steps
up to 0.15[m] and after 5 steps it is fixed at 0.15[m]. As a result of experiment, the dynamic and
natural walking is realized over 25 steps. The step-length is about 0.15[m] and the walking
velocity is about 0.23[m/s]. Fig. 10 shows the snapshots of the PDAC walking at 1st, 5th, 9th,
12th, 14th, 16th step respectively. The angle and angular velocity of the lower body joints are
depicted in Fig. 11 and Fig. 12. As shown in these figures, the smooth dynamics motion is
realized periodically.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Snapshots of the walking experiment. Each figure shows the snapshots at (a)1st (b)5th
(c)9th (d)12th (e)14th (f)16th step.
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6. Conclusion

This chapter designed the sagittal motion controller of biped walking and proved the stability
of sagittal motion designed by means of PDAC. The proof was conducted by the Liapunov
Theory, and the convergence domain was also investigated. We confirmed the correctness of
proof by numerical simulation. Finally, a three-dimensional dynamic walking whose step-
length is about 0.15[m] and velocity is about 0.23[m/s] was realized by coupling the sagittal
motion and lateral motion. The proof in this chapter handled the stability of 2-D dynam-
ics, thus the future work is to propose the walking controller achieving the stability of 3-D
dynamics, and prove the 3-D stability of dynamic walking.
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