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1. Introduction

Inspired by locomotion in nature, researchers have developed the passive dynamic walking
machine principle and applied it to the legged robotics (Coleman & Ruina, 1998; Collins et al.,
2001; Garcia, 1999; McGeer, 1990; Wisse, 2004; Wisse & Frankenhuyzen, 2006). The passive
dynamic walking machines provide human-like locomotion in legged robots that is more ef-
ficient than the precisely joint-angle-controlled robots. On the other hand, tuning the param-
eters of the passive dynamic walking robots are tricky, time consuming and requires much
experimentation. In addition, passive dynamic walking robots still have considerable energy
loss through rapid changes in the velocity direction of the center of mass of the robot during
collision of the foot with the ground. Precisely joint-angle-controlled bipedal walking robots
also undergo significant energy loss caused by rigid collision of the foot with the ground in
addition to their common energy dissipation in robot’s power systems.
Collision of the foot with the ground during bipedal walking is inevitable which is one of the
major sources of the energy loss. Establishing a new technique to reduce this energy loss is a
challenging problem which we desire to address in this work by developing the idea of using
the adjustable stiffness elastic elements in robot’s structure. We believe that the adjustment
of the elasticity as a control strategy can significantly improve the energetics of locomotion in
bipedal walking robots by reducing the energy loss during the collision phase, which starts
with an impact of the heel-strike followed by continuous motion and ends by a second impact
at the foot-touch-down. This work , as a first step in this research area, constructively demon-
strates the idea through two main efforts. The first effort is to develop the conceptual designs
of the adjustable stiffness artificial tendons (ASAT) to show that the idea can be implemented
in practice. The second effort is to study the effects of adjustable stiffness elasticity on reduc-
ing the energy loss by adding the model of each ASAT into the robot dynamics.
This introductory section reviews the research on legged locomotion which indicates the im-
portance of elasticity in mechanics of locomotion in nature. In human walking, part of the
kinetic and potential energy from the body is transiently stored as elastic strain energy during
the collision phase and is released later during the rebound phase by elastic recoil (Kuo et al.,
2005). This phenomenon greatly reduces the work required from the muscles and lowers the
metabolic cost of locomotion (Alexander & Bennett, 1989; Cavagna et al., 1977). The mechan-
ics of elastic recoil were also studied for running and it was found that, the forward kinetic
energy of the body’s center of mass is in phase with fluctuations in gravitational potential
energy (Cavagna et al., 1964). It was also found that, humans and animals most likely store
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the elastic strain energy in muscles, tendons, ligaments and perhaps even bones, thereby, re-
ducing the fluctuations in total mechanical energy (Cavagna et al., 1964). It has been reported
that the leg stiffness influences many kinematic variables such as the stride frequency and the
ground contact time (Farley & Gonzalez, 1996; McMahon & Cheng, 1990). Thus, the stiffness
of the leg is a key parameter in determining the dynamics of locomotion (Ferris et al., 1998).
He and Farley (Farley et al., 1993; He et al., 1991) suggested that the inherent properties of
the musculoskeletal system determine an animal’s choice of leg stiffness. Their idea was sup-
ported by (Roberts et al., 1997) who exposed that the muscles of running turkeys undergo very
little change in length during the ground contact. Thus, the tendon may contribute most of the
compliance of the muscle-tendon unit and greatly influence the leg stiffness (Alexander, 1988).
In addition, adjusting the elasticity of the muscle-tendon unit during human locomotion con-
tributes significantly to its efficiency. Thus, adjusting the stiffness of the robot’s structure can
be crucial for its energy economy which is studies in this work .
In the context of developing the legged robots, implementation of the adjustable leg stiffness
in a running robot has been recommended by researchers to improve the performance on var-
ied terrain (Ferris et al., 1998). Besides allowing the robot to accommodate different surface
conditions, the adjustable leg stiffness would permit a robot to quickly adjust its stride length
to avoid obstacles on rocky and uneven surfaces. Research is also plentiful in the area of se-
ries elasticity. Many of the ideas, problems and solutions of series elasticity related to this
work , are initiated and discussed in publications of the MIT leg lab (Howard, 1990; Pratt &
Williamson, 1995; Robinson et al., 1999; Williamson, 1995). Beyond the basics, much of the
current research in series elasticity addresses topics such as human centered robotics (Zinn
et al., 2004) and running robots (Hurst et al., 2004; Hurst & Rizzi, 2004).
Seyfarth developed a simple model of legged locomotion based on compliant limb behavior
which is more similar to the human walking behavior (natural walking) than a traditional
model of two coupled pendula (Seyfarth, 2000). Geyer also studied the basics of the compli-
ant walking locomotion (Geyer et al., 2002; 2005). Jena walker II was successfully developed
at the University of Jena by continuing the research on efficient locomotion using elasticity.
However, the stiffness of elastic element in Jena walker II is constant. The electro–mechanical
Variable Stiffness Actuation (VSA) motor developed of the University of Pisa is designed for
safe and fast physical human/robot interaction in manipulators (Bicchi & Tonietti, 2004). A
series elastic actuation system based on the Bowden–cable was developed at the University
of Twente, (Veneman et al., 2006) for manipulator robots applications. The idea of controlling
the compliance of a pneumatic artificial muscle to reduce the energy consumption of the robot
is practically demonstrated, (Vanderborght et al., 2006). Most of the recent research on com-
pliant locomotion is reported by researchers (Geyer, 2005; Ghorbani, 2008; Ghorbani & Wu,
2009a;b).
However, none of the previous research adequately addresses the specific issues of effects
of the adjustable stiffness elasticity on reducing the energy loss in bipedal walking robots
through a mechanical design approach. This work seeks to fill that gap through the following
stages of designing the adjustable stiffness artificial tendons, studying their effects on energet-
ics of bipedal walking robots and investigating the control issues.
The organization of this work is as follows. Section 2 describe three different conceptual de-
signs of ASAT. The OLASAT is selected to continue of studying the energetics. However more
information related to the advantages and limitations of each ASAT, the potential applica-
tions of ASAT as well as the effects of ASAT on series elastic actuation systems are explained
in articles by authors (Ghorbani, 2008; Ghorbani & Wu, 2009a). In order to capture the ba-
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sic behavior of OLASAT, a simple 2–DOF model of bipedal walking is illustrated in section
3. It also summarized the normalized formulation of the equations of motion of the biped.
Section 4 contains the calculation of the energy loss at the foot-touch-down. A controller to
automatically adjust the stiffness of OLASAT is proposed in section 5. Then in section 6, com-
puter simulations are carried out to demonstrate the effects of stiffness adjustment of OLASAT
on energy efficiency during the single support stance phase. The mathematical model of the
bipedal walking is developed in sections 3.1 and 3.2.

2. Conceptual Design and Modeling of ASATs

In this section, three different conceptual designs of ASAT are developed. The conceptual de-
signs have not been fabricated in this project. The first design (section 2.1) is a rotary adjustable
stiffness artificial tendon that is a bi-directional tendon able to apply torque in a clockwise as
well as a counter clockwise direction. The second design (section 2.2) is a unidirectional linear
adjustable stiffness artificial tendon that uses the concept of changing the number of active
coils of two series springs. Finally, the third design (section 2.3) is a combination of two offset
parallel springs that is an unidirectional tendon. The mathematical model of each tendon is
developed. The advantages, limitations of each concept and the potential applications to the
development of a compliant actuation system are discussed in (Ghorbani & Wu, 2009a).

2.1 Rotary Adjustable Stiffness Artificial Tendon (RASAT)

The Rotary Adjustable Stiffness Artificial Tendon (RASAT) is specially designed to provide a
wide range of the angular stiffness. The schematic of RASAT is illustrated in Fig. 1. In RASAT,
a pair of compression springs is intentionally inserted between the two concentric input and
output links. Each spring pair consists of a low stiffness spring with a stiffness of K1 and
a high stiffness spring with a stiffness of K2. The offset between the low and high stiffness
springs has a constant value of l. Distance d, of the spring pairs with respect to the center of
rotation of the links, is adjustable. In this case, the internal torque T, between the concentric
input and output links is calculated from:

T =

{

K1d x = K1d2 tan θ l

d
≥ tan θ

K1dl + d(K1 + K2)(d tan θ − l) l

d
< tan θ

(1)

where θ is the angular displacement between the input and output links, x is the spring de-

flection. In Equation 1, l

d
> tan θ represents the situation that only spring 1 is engaged and

l

d
< tan θ is when both springs are engaged. The stiffness of spring 2 is µ times higher than

the stiffness of spring 1. Thus:
K2 = µK1 (2)

Combining Equations 1 and 2 and converting to the following non-dimensional form:

T

K1d2
max

=

{

tanθ( d

dmax
)2 l

d
> tan θ

(µ + 1) tan θ( d

dmax
)2 − µ l

dmax
( d

dmax
) l

d
< tan θ

(3)

where dmax is the maximum value of distance d. The effects of the distance ratio, d

dmax
, on

the output torque index, T

K1dmax
, in RASAT are graphically illustrated in Figs. 2 and 3 where

µ = 5 and l

dmax
= 0.1. As shown in Fig. 2, by increasing the distance, d, from zero to dmax,

for a given θ, the torque index, T

K1dmax
, increases. This relationship is shown for different θ
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while increases from θ = 5o to θ = 15o with equal steps of 1o. The torque–angular deflection
relation in RASAT is graphically illustrated in Fig. 3 for different values of distance indexes

d

dmax
. The slope of each curve in Fig. 3 is equivalent to the stiffness of the tendon. As shown

in Fig. 3, by decreasing the ratio d

dmax
, from 1 to 0.1 with steps of 0.1, the slopes of curves are

reduced significantly. It has been shown in Fig. 3 that the slopes of the curves can be adjusted
in a wide range which illustrates the capability of RASAT in adjusting the stiffness in a wide
range. Sudden changes in the slopes of the curves in Fig. 3 are caused by engaging the high

stiffness spring. Also, the higher the ratio d

dmax
, the sooner the sudden change occurs. The

effect of the stiffness ratio of the springs, µ, on the stiffness of RASAT is illustrated in Fig. 4 by

assuming d

dmax
= 0.8 and l

dmax
= 0.1. Increasing the µ represents the increasing of the stiffness

ratio of spring 2 to spring 1. In Fig. 4, the slope of the curves increases at the turning point
that is caused by engaging spring 2 while µ increases from zero to 5 with equal increment of
1.

From the mechanical design point of view, RASAT (Fig. 5a & 5b) is comprised of an input

Fig. 1. General schematic of RASAT. A pair of two compression springs (spring 1 and spring
2) with a constant offset, l, are located in each side of the output link. Input and output links
are concentric and d, the distance of springs to the center of rotation, is adjustable.

link (Fig. 5d), an output link (Fig. 5c), four springs (not shown in Fig. 5 but is shown in Fig. 1),
and the spring positioning mechanism that is installed on the input link as shown in Fig. 5d.
Input and output links are concentric and a relative angular displacement between the input
and output links, θ, can be measured using a potentiometer installed on the input link (Fig.
5b). Two pairs of parallel helical compression springs configured in an offset are located inside
the spring housing. The spring housing is linearly positioned by a non–back drive-able ball
screw and a nut, which in turn, is connected to the input link. The ball screw, attached to the
input link (Fig. 5d), rotates using a brush-less DC motor. Angular motion of the DC motor is
converted to linear motion using a guiding shaft installed at the input link parallel to the ball
screw. The distance d (Fig. 1), between the spring housing and the center of rotation can be
adjusted using the feedback signal from an encoder installed at the DC motor. A bearing (Fig.
5c) sliding on the output shaft, which is attached to the output link, is pin jointed at the spring
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Fig. 2. Effects of increasing d

dmax
in non–dimensional torque–deformation in RASAT for a con-

stant θ. θ increases in equal steps of 1o from 5o to 15o.
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Fig. 3. Each curve shows non–dimensional torque–θ in RASAT for a constant d. d

dmax
decreases

in equal steps of 0.1 from 1 to 0.1.

housing and has sliding motion inside the slot deployed on spring housing. Consequently,
with a relative torque between the input and the output links, the bearing slides inside the
spring housing and converts the angular motion between the links to the linear motion of the
springs. The resultant force caused by the deflection of the springs creates torque through the
output shaft via the bearing (Fig. 5c).

2.2 Linear Adjustable Stiffness Artificial Tendon (LASAT)

Linear Adjustable Stiffness Artificial Tendon (LASAT) is an uni–directional compression ten-
don. LASAT is a series combination of two helical compression springs. A rigid coupler that
connects two series springs together is illustrated in Fig. 6. Counterclockwise rotation of the
coupler increases the number of active coils in spring 2 with the low stiffness and decreases
the number of active coils in spring 1 with the high stiffness; and vice versa for clockwise
rotation. Springs 1 and 2 have the stiffnesses of Ks1 and Ks2 respectively, which are defined
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Fig. 4. Effects of increasing µ in non–dimensional torque–θ in RASAT.

by:

Ksi =
Pi

Ns
i = 1, 2 (4)

where parameter ’i’ represents the ith spring and number of spring coils, Ns, is assumed to
be equal for both springs. P1 and P2 are the coil’s stiffness of the spring 1 and 2, respectively
(Norton, 1999):

Pi =
dia4

i Gi

8D3
i

i = 1, 2 (5)

where Di, diai and Gi are the mean coil diameters, wire diameters, the shear modulus of the
springs. By changing the position of the coupler, the number of the active coils of spring 1 and
spring 2 will be defined by N1 = (1 − λ)Ns and N2 = λNs respectively, where 0 < λ < 1. The
coil’s stiffness of spring 1 is assumed ρ times as high as spring 2, thus P1 = ρP2. By the above
considerations, the effective stiffness of spring 1, Ka1, and the effective stiffness of spring 2,
Ka2, are given by the following Equations:

Ka1 = Ks1
1−λ (6)

Ka2 = Ks2
λ (7)

The resulted stiffness of the series springs, Keq, represents the LASAT stiffness as long as the
compression of softer spring is lower than its shut length, Ls, (where the coils are in contact)
that is given below:

Keq =
Ka1Ka2

Ka1 + Ka2
=

P1

(1−λ)Ns

P2
λNs

P1

(1−λ)Ns
+ P2

λNs

=
ρKs2

1 + (ρ − 1)λ
(8)

Thus, the force of the tendon is calculated by the following Equations:

FLASAT =







KeqdLASAT dLASAT ≤ Ls
1+(ρ−1)λ

ρ

Ks2Ls + Ka1(dLASAT − Ls
1+(ρ−1)λ

ρ ) dLASAT > Ls
1+(ρ−1)λ

ρ

(9)
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Fig. 5. 3D model of RASAT.

and respectively in its dimension-less form:

FLASAT

Ks2Ls
=







dLASAT ρ
Ls(1+(ρ−1)λ)

dLASAT
Ls ≤

1+(ρ−1)λ
ρ

1 +
ρ

1−λ (
dLASAT

Ls −
1+(ρ−1)λ

ρ ) dLASAT
Ls >

1+(ρ−1)λ
ρ

(10)

where dLASAT is the deflection of the LASAT and the length Ls
1+(ρ−1)λ

ρ is the total deflection

of the tendon at the instance that spring 2 reaches to the shut length. Fig. 7 illustrates the

relationship of the dimension-less resultant stiffness of the LASAT,
Keq

Ks2
, to the λ (the ratio of

the number of active coils of spring 2 to Ns) for different values of ρ (the ratio of the coil
stiffness of the spring 1 to the spring 2). In Fig. 7, each curve corresponds to a constant ρ and
the value of ρ increases from 1 to 5 with increments of one. As shown, by increasing λ from
zero to one for a constant ρ, the resulted stiffness of LASAT, Keq, decreases.

Fig. 8 shows the relation of dimension-less force index FLASAT
Ks2 Ls , to the dimension-less deflection

index dLASAT
Ls , when ρ = 5 as well as λ varies from 0.1 to 0.9 with equal steps of 0.1. As shown

in Fig. 8, there is a discontinuity in the slope of each curve as FLASAT
Ks2 Ls = 1 that is caused by the

shut length of spring 2. The slope of the curves before the shut length shown in Equation 8
equals to

ρ
1+(ρ−1)λ

. The slope after the shut length equals to
ρ

1−λ . By increasing λ, the slope

of each curve before the shut length decreases that is resulted to the softer equivalent spring.
On the other hand, the slope of the curve after the shut length increases. In general, helical
springs are not acting linearly close to their the shut lengths. Thus, to reduce nonlinear effects
on the tendon caused by coil contact and friction at the shut length, the LASAT should be
designed in a way to prevent reaching the shut length.
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Fig. 6. Schematic of LASAT.
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Fig. 7. Non–dimensional relation of stiffness–λ in LASAT before shut length. Each curve
corresponds to a constant ρ while ρ increases from 1 to 5 with steps of 1.

From the mechanical design point of view, LASAT is comprised of an input rod, an output
rod, two springs and a spring positioning mechanism as shown in Fig. 9. The springs can
slide inside the output rod and have the same coil pitch and the mean diameter, but have
different wire diameters. The inner diameter of the output rod is assumed to be smaller in the
area that contacts with the softer spring than in the area that contacts with the stiffer spring.
The output force is directly applied to the low stiffness spring and a notch inside the output
rod makes a stopper that prevents the softer spring from reaching to the shut length. The
positioning mechanism of the coupler consists of a brush-less DC motor, a spline shaft and a
coupling element. The outer surface of the coupler is screw threaded with the lead equal to
the spring’s coil pitch. The inner surface of the coupler holds a ball spline bush which slides
over the spline shaft freely (as shown in Fig. 9). The rotation of the spline shaft by brush-less
DC motor transfers to the coupling element by the ball spline. Therefore, the angular motion
of the coupling element converts to linear motion and simultaneously changes the number of
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Fig. 8. Non–dimensional graph of force–deformation in LASAT. Sudden changes in slopes of
the curves are caused by shut length of spring 2.

the spring coils in each spring. Also, an encoder is installed on the brush-less DC motor to
measure the location of the coupling element.

2.3 Offset Location Adjustable Stiffness Artificial Tendon (OLASAT)

The Offset Location Adjustable Stiffness Artificial Tendon (OLASAT) is specially designed to
switch the stiffness between two specific values. Here, the artificial tendon is a combination
of two parallel springs (spring 1 and spring 2) placed with an offset. As shown in Fig. 10, the
offset, a, is the distance between the end points of two springs when the springs are in their
neutral lengths. By adjusting the offset using a linear actuator, the deformation requirement
which engages spring 2 is changed. The applied force, FOLASAT , of the tendon is a function
of the stiffness of spring 1 with a low stiffness (Ksp1), spring 2 with a high stiffness (Ksp2), the
offset (a) and the spring’s deflection (dOLASAT) as follows:

FOLASAT =

{

Ksp1dOLASAT dOLASAT < a

Ksp1a + (Ksp1 + Ksp2)(dOLASAT − a) dOLASAT ≥ a
(11)

The above equation in the dimensionless form appears in Equation(12) where Ksp2 is replaced
by ηKsp1.

FOLASAT

Ksp1a
=

{

dOLASAT
a

dOLASAT
a < 1

1 + (1 + η)( dOLASAT
a − 1) dOLASAT

a ≥ 1
(12)

The force-deflection graph of the OLASAT is illustrated in Fig. 11. η is the ratio of the stiffness
of spring 2 to that of spring 1 (η = 5 in Fig. 11). The slopes of the straight lines in Fig. 11 rep-
resent the stiffness of OLASAT. The stiffness is suddenly switched from the stiffness of spring
1, Ksp1, to the stiffness of two parallel springs, (η + 1)Ksp1, at point dOLASAT = a.
From the mechanical design point of view, OLASAT is a uni-directional tendon and consists
of an input rod, an output rod, a low stiffness spring and a high stiffness spring, with a po-
sitioning mechanism using a ball screw and a nut (as shown in Fig. 12). The low stiffness
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Fig. 9. 3D model of LASAT.

spring is coupled between the input and output rods. The high stiffness spring is connected
to the input rod on one side and is free on the other side. A miniature brushless DC motor
connected to the ball screw provides the sliding motion of the high stiffness spring over the
slot deployed on the input rod, which can adjust the offset between the two springs.

Fig. 10. Schematic of the OLASAT.

3. Bipedal walking gait in the simplified model

A simplified model and the gait cycle of a bipedal walking robot are introduced here. The
model offers different advantages. It is simple, and hence decreases the complexity of anal-
ysis in energy economy. In addition, it considers the effects of OLASAT and the foot. It also
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Fig. 11. Non–dimensional force–deformation graph of OLASAT.

includes the double support phase and has the ability to inject energy to the biped. The dy-
namics of the swing leg is not considered in the model to avoid complexity of the analysis.
In the model, as shown in Fig. 13, a rigid foot with a point mass is pivoted at the ankle joint
to a rigid stance leg with a lumped mass at the hip (upper tip of the stance leg). One end of
OLASAT is attached to the stance leg and the other end is attached to the foot. A cable and
pulley mechanism converts the angular movement of the ankle joint to the linear deformation
of the springs in OLASAT. The model also includes a massless linear spring to simulate the
force of the trailing leg during the double support stance phase. The linear spring injects the
energy to the biped. The input energy through the spring of the trailing leg can be adjusted
by either controlling the initial deformation of the spring or adjusting its stiffness. However
in this work , only the effects of the stiffness adjustment of OLASAT are studied in the simu-
lation results and the stiffness of the trailing leg spring is taken zero. To simplify the analysis,
planar motion and friction-free joints are assumed in the bipedal walking model.
In general, as shown in Fig. 14, the stance phase includes (in both single and double support

periods) the collision, the rebound and the preload phases. The collision phase starts with the
impact of the heel-strike followed by continuous motion. At the end of the collision, a second
impact of the foot-touch-down occurs. Both impacts are assumed to be rigid to rigid, instanta-
neous and perfectly plastic, which dissipates part of the energy of the biped. In this model, the
offset between the two springs of OLASAT, as shown in Fig. 10, can be adjusted to store part
of the energy of the biped during the continuous motion of the collision phase and to reduce
the impact at the foot-touch-down. The offset is adjusted only once during the swing phase
while there is no external load on the foot. Then it remains constant for the following sup-
porting period. The second phase, rebound, is a continuous motion while the foot is assumed
stationary on the ground. The stored energy in OLASAT during the collision phase returns
to the biped during the rebound phase. The rebound phase ends at midstance (biped upright
position). OLASAT is passively loaded during the collision phase and is passively unloaded
during the rebound phase. The motion of the biped after midstance is named the preload
phase which continues until the heel-strike of the following walking step (Kuo et al., 2005).
The kinematics of the heel-strike of the following walking step is specified by step length and
the geometry of the robot.
The bipedal walking model in this work consists of a pre-deformed compression linear spring
to simulate the force of the trailing leg. The linear spring of the trailing leg is massless with
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Fig. 12. 3D model of OLASAT.

one end connected to the toe of the foot on the ground and the other to the upper tip of the
stance leg as shown in Fig. 13. It is also shown in Fig. 14 by B. The force vector from the com-
pliant trailing leg (F in Fig. 14) is applied on the upper tip of the stance leg until the spring
reaches its relaxed length (determining the end of the double support phase). By assuming
the trailing leg as an elastic element, the model provides several advantages. The simplicity
of dynamic modeling and analysis during impact events and the capability of injecting the
external energy are two major advantages.

3.1 Dynamic model of the bipedal walking

The details of the dynamic modeling of the proposed bipedal walking model are given in
(Ghorbani, 2008). In this section, the parameters of the simplified model of the bipedal walk-
ing on level ground are presented. In Fig. 13, links 1 and 2 are the foot and the stance leg.
The values of d1 and d2 represent the distance between the center of mass of the foot to the
heel and that of the body to the ankle joint respectively. l1 is the distance between the heel
and the ankle joint. l2 is the distance between the ankle joint and the center of mass of the
body which is at the upper end of the stance leg. Thus in the model, l2 = d2. θ1 and θ2 are
denoted as the angles of the foot and the stance leg with respect to the horizontal axis as il-
lustrated in Fig. 13. xh and yh represent the horizontal and vertical distance between the heel
and a reference point O on the ground. In this work, the origin O is defined at the heel of
the stance leg. The dimensionless parameters of the model are specified and listed in Table 1.
Generalized coordinates of the biped are the horizontal and vertical positions of the heel as

Parameters β ψ ζ υ ς η ν

Equivalence m1
m2

l1
l2

d1
l2

lt
l2

K1R2

m2 l2g
K2
K1

Kt l2
m2g

Table 1. Dimensionless Parameters.

www.intechopen.com



On Adjustable Stiffness Artiicial Tendons in Bipedal Walking Energetics 153

Fig. 13. Bipedal walking model schematic.

well as foot and stance leg angles with respect to the horizontal line which correspond to xh,
yh, θ1 and θ2, respectively. The perpendicular position of the foot to the stance leg is assumed
as a neutral position (no force) of OLASAT in this work. The heel is assumed to be pivoted
to the ground during the collision phase by assuming enough friction force between the foot
and the ground. Dynamic modeling of the bipedal walking, which is detailed in (Ghorbani,
2008), includes the heel-strike, the continuous motion during the collision phase as well as the
rebound and the preload phases. The equations of motion in the normalized form with di-
mensionless parameters can help one to study more efficiently the bipedal walking motion in
a generalized form. It also assists in the parametric follow-up study. The section 3.2 presents
the normalized form of the equations of motion.

3.2 Equations of motion in normalized form

The dimensionless parameters of the model are specified and listed in Table 1. The equations
of motion are normalized by m2l2

2 , the inertia of the stance leg about the ankle joint. Finally, by
replacing the dimensionless parameters into the normalized form of the equations of motion,
the normalized form of the equations of motion are arrived at. The normalized form of the
dynamics equation at the heel-strike appears below.















β+1

l2
2

0
βζ+ψ sin(θ1)

l2
1
l2

0
β+1

l2
2

βζ+ψ cos(θ1)
l2

1
l2

βζ+ψ sin(θ1)
l2

βζ+ψ cos(θ1)
l2

βζ2 + ψ2 ψ cos(∆θ)
1
l2

1
l2

ψ cos(∆θ) 1
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−HS ẏ−

HS(θ̇+1 − θ̇−1 )
HS(θ̇+2 − θ̇−2 )









=













HS λ̂1

m2d2
2

HS λ̂2

m2d2
2

0
0













(13)

www.intechopen.com



Climbing and Walking Robots154

Fig. 14. General Schematic of the bipedal gate.

where ∆θ = θ1 − θ2. The normalized form of the equations of motion at the foot-touch-down
is

[

βζ2 + ψ2 ψ cos(∆θ)
ψ cos(∆θ) 1

] [

− FTD θ̇−1
FTD(θ̇+2 − θ̇−2 )

]

=

[

FTD λ̂
m2d2

2

0

]

(14)

Equation (15) is the normalized counterpart of Equation.

M̂(θ)θ̈ + Ĥ(θ, θ̇)θ̇ + Ĝ(θ) + Ŝ(θ) = Î(θ) (15)

where

M̂ =

[

βζ2 + ψ2 ψ cos(∆θ)
ψ cos(∆θ) 1

]

(16)

Ĥ =

[

0 ψ sin(θ2 − θ1)θ̇2

ψ sin(θ2 − θ1)θ̇1 0

]

(17)

Ĝ =

[

βζ+ψ
l2

g cos(θ1)
g
l2

cos(θ2)

]

(18)

Ŝ =
ς

l2

[

−g(∆θ − π
2 )− γηg(∆θ − π

2 − a/R)
g(∆θ − π

2 ) + γηg(∆θ − π
2 − a/R)

]

(19)

Î =





−
ινg(L0−Lt)β

l2
2

sin(θ1) cos(δ) +
ινg(L0−Lt)β

l2
2

cos(θ1) sin(δ)

−
ινg(L0−Lt)β

l2
2

sin(θ2) cos(δ) +
ινg(L0−Lt)β

l2
2

cos(θ2) sin(δ)



 (20)
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The equations of motion during rebound is

θ̈2 +
g

2
cos(θ2) + ς

g

l2
(θ2 −

π

2
) + γης

g

l2
(θ2 −

π

2
−

a

R
) (21)

= −
ινg(L0 − Lt)β

l2
2

sin(θ2) cos(δ) +
ινg(L0 − Lt)β

l2
2

cos(θ2) sin(δ)

The next section presents the calculations related to energy loss during the foot-touch-down,
which is the major source of energy loss in the proposed bipedal walking model.

4. Discussion of the energy loss

The energy loss during the foot-touch-down is one of the major causes of energy reduction
in bipedal walking which is reduced by properly adjusting the stiffness of OLASAT. This
section studies the key parameters involved in the change in the kinetic energy of the biped,
FTD

∆E = FTDE− − FTDE+, before and after the foot-touch-down, shedding light on how the
stiffness adjustment of OLASAT can reduce the energy loss. FTD

∆E for the model explained
in Fig. 13 is given below.

FTD
∆E = 0.5m2l2

2((
FTD θ̇−2 )2

− ( FTD θ̇+2 )2) + 0.5(m1d2
1 + m2l2

1)(
FTD θ̇−1 )2 (22)

+m2l1l2 cos( FTDθ2)(
FTD θ̇−1 )( FTD θ̇−2 )

On the other hand FTD θ̇+2 is calculated from the equation of motion detailed in (Ghorbani,
2008)

FTD θ̇+2 = FTD θ̇−2 +
l1 cos(θ2 − θ1)

FTD θ̇−1
d2

(23)

By substituting of FTD θ̇+2 from Equation (23) into Equation (22) and after simplification, the
following relation is obtained.

FTD
∆E = 0.5(m1d2

1 + m2l2
1 sin2( FTDθ−2 ))( FTD θ̇−1 )2 (24)

Masses, lengths of the links and sin2( FTDθ2) are all positive. Equation (24) illustrates the
direct relation of FTD

∆E with ( FTD θ̇−1 )2. It indicates that reducing the magnitude of the
angular velocity of the foot immediately before the foot-touch-down can significantly re-
duce the energy loss of the biped. In addition, Equation (23) illustrates the direct relation
of FTD θ̇+2 − FTD θ̇−2 with FTD θ̇−1 which indicates that by reducing the magnitude of FTD θ̇−1 the
change of angular velocity of the stance leg at the foot-touch-down is reduced.
By taking the time derivative of the position of the center of mass (COM) of the body,
FTDY−

COM, its velocity is arrived at as given below:

FTDẎ−
COM = l1

FTD θ̇−1 + l2
FTD θ̇−2 cos( FTDθ2) (25)

FTD θ̇−2 and cos( FTDθ2) are negative before midstance. The optimum situation FTD
∆E = 0 can

be achieved by reducing ( FTD θ̇−1 )2 to zero. In such a scenario, the velocity of the COM of the
body at the foot-touch-down will be upward. This indicates that the direction of the velocity
vector of the COM of the body at the heel-strike HSẎ−

COM, which is downward, should be re-
versed to the upward direction at the foot-touch-down during the collision phase to reduce
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the energy loss. This is made possible by storing part of the kinetic energy of the biped in elas-
tic form during the collision phase. This notion can be reinforced in human walking. Donelan
expressed that humans redirect the center of mass velocity during step-to-step transitions not
with instantaneous collisions, but with negative work performed by the leading leg over a
finite period of time (Donelan & Kuo, 2002; Donelan et al., 2002). These findings serve as the
foundation to determine the offset of OLASAT. As a result, the development of an automatic
controller to adjust the stiffness of OLASAT is necessary to improve the performance of the
bipedal walking which is described in the following section.

5. Design of the stiffness adjustment controller

In general, OLASAT has two major roles during the collision phase. The first role is to com-
pensate the moment about the ankle joint exerted by the gravitational force of the body. The
second is to store part of the kinetic energy of the biped. Both of these two roles can reduce
(FTD θ̇−1 )2. This section provides a guideline for determining the offset of OLASAT, a, in order

to store part of the energy of the biped, thus reducing (FTD θ̇−1 )2, and consequently reduc-
ing the energy loss. The development of a controller to satisfy such an optimal condition of
(FTD θ̇−1 )2 = 0 can be possible by predicting the dynamics of the bipedal walking in advance.
On the other hand, perfectly predicting the dynamics of the biped is not realistic because of
the complexity of physical robots. Thus, a controller is developed in this section to estimate
the offset of OLASAT without requiring the full knowledge of the system dynamics. To design
such a controller, the following assumptions are made in this work.
First, OLASAT is loaded and unloaded passively during the stance phase. Thus for the fol-
lowing walking step, the offset is adjusted during the swing phase of the current walking step
while the foot is not in contact with the ground. Second, the feedback signals of the biped
are taken to be the angular position, θ2, and the angular velocity, θ̇2, of the stance leg. The
reason for specifying these two signals as feedback is that the biped is an inverted pendulum
during the rebound and the preload phases. Thus, the velocity of the biped at the heel-strike
of the following walking step can be determined from the angular velocity of the stance leg
at midstance, MD θ̇2. This choice allows enough time to adjust the offset during the swing
phase which is important from the practical point of view. Third, the foot is perpendicular
to the stance leg immediately before the heel-strike and in such a situation, OLASAT is in the
neutral position (with no force). Fourth, the step length is fixed by assuming that the swing
leg is perfectly controlled. Fifth, the angular displacement of the stance leg relative to the
ground is negligible during the collision phase. This assumption results in the approximation
of FTDθ−2 = HSθ−2 . It ensures that the total deformation of spring 1 in OLASAT is equal to

R
HSθ−1 . HSθ−1 and HSθ−2 are the θ1 and θ2 immediately before the heel-strike which are known

from the walking step length.
The stiffness adjustment controller developed here determines the offset of OLASAT, a, which
corresponds to the angular offset of a

R
at the pulley of the ankle joint. Here, the maximum

angular displacement of the pulley (∆ϑ), in which spring 2 is engaged during the collision
phase, is determined first to calculate the offset. Before determining the offset, we first discuss
the selection of the stiffness of spring 1 of OLASAT. The stiffness of spring 1 must be selected
low enough to prevent the leg from bouncing during the collision phase even for minimum
bipedal walking speed while spring 2 is not engaged (minimum stiffness of OLASAT). It must
also be selected high enough to compensate a portion of the gravitational moment about the
ankle joint at the foot-touch-down and also to store part of the kinetic energy of the biped.
Next, we explain the procedure of determining ∆ϑ.
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∆ϑ(n + 1) is calculated from the feedback loop of the stiffness adjustment controller for the
walking step n+1. Walking step n is started from the heel-strike which includes the double
support phase and will end immediately before the heel-strike of the step n+1. The inputs
of the stiffness adjustment controller are the angular velocity of the stance leg at midstance,
MD θ̇2(n), of the current walking step n, and the stiffness of the trailing leg spring of the fol-
lowing walking step, Kt(n + 1). The output of the stiffness adjustment controller is the offset
of OLASAT for the walking step n+1. Kt(n + 1) can be determined using a speed tracking
controller to inject energy to the biped which is not discussed in this work and further infor-
mation is referred to (Ghorbani, 2008).
Part of the kinetic energy of the biped at the end of the walking step n is stored in the trailing
leg spring during the collision phase of the walking step n+1. Based on the results obtained in
Section 4, the OLASAT should also store part of the kinetic energy during the collision phase of
the walking step n+1. Here, the elastic potential energy, 0.5Ksp2R2(∆ϑ(n + 1))2, of the walk-
ing step n+1 stored in spring 2 is assumed to be proportional to the difference between the
kinetic energy of the biped at the end of the walking step n, 0.5m2(l2

EN θ̇−2 (n) sin(ϕ0(n)))
2,

associated with the vertical component of the velocity of the COM of the body, and the elastic
potential energy of trailing leg spring, 1

2 Kt(∆L2
col − ∆L2

dss), during the collision phase of the

walking step n+1 where ϕ0(n) =
π
2 − ENθ−2 (n). ENθ−2 (n) and EN θ̇−2 (n) are the angle and the

angular velocity of the stance leg at the end of the preload phase of the walking step n. ∆Ldss

and ∆Lcol are the deformation of the tailing leg spring at the heel-strike and the deformation of
the tailing leg spring at the foot-touch-down of the walking step n+1. The following equation
describes the above energy relation.

1

2
Ksp2R2(∆ϑ(n + 1))2 =

1

2
Kadjust(m2(l2

EN θ̇−2 (n) sin(ϕ0(n)))
2
− Kt(n + 1)(∆L2

col − ∆L2
dss))

(26)
Kadjust is a proportional gain and ∆Lcol = L0 −

FTD Lt, where FTD Lt is the length of the trailing
leg spring at the foot-touch-down of the walking step n+1 which can be calculated from the
kinematics of the biped using the following assumptions. Here, the stiffness of the trailing
leg should be limited preventing the right hand side of Equation (26) from having a negative
value. The step length and the initial angles of the foot and the stance leg for the walking
step n+1 are known values in this work. Preload is also assumed as a free rotating inverted
pendulum under gravity. EN θ̇−2 (n) can be calculated from the angular velocity of the leg at

midstance, MD θ̇2(n), using the following energy relation:

0.5m2l2
2(

EN θ̇−2 (n))2 = 0.5m2l2
2(

MD θ̇2
2(n))+ m2gl2(1 − cos(ϕ0(n))) (27)

The first term in the right-hand side of the above relation is the kinetic energy of the biped
at midstance of the walking step n which is measurable from the feedback signals. It is as-
sumed that the double support phase is ended before the midstance. Thus the injected energy,
through the trailing leg spring during the double support phase of the walking step n, is con-
verted to the kinetic energy of the biped which is measured at the midstance. The second term
of the right-hand side of Equation (27) is the change in the gravitational potential energy of
the biped between the midstance of the walking step n and the heel-strike of the walking step
n+1 which can be calculated by assuming a fixed amount for the step length. By calculating

EN θ̇−2 (n) from Equation (27), which results in EN θ̇−2 (n) =
√

MD θ̇2
2(n)+

2g
l2
(1 − cos(ϕ0(n))),
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and by substituting it into Equation (26), ∆ϑ(n + 1) is determined to be as follows.

∆ϑ(n + 1) =

√

Kadjust

R2Ksp2

√

m2(l2 EN θ̇−2 (n) sin(ϕ0(n)))2 − Kt(n + 1)(∆L2
col − ∆L2

dss) (28)

Finally, as mentioned above by assuming that the angular movement of the stance leg relative
to the ground is negligible during the collision phase, the offset a

R (n + 1) is calculated from
the relation below.

a

R
(n + 1) = HSθ−1 (n + 1)− ∆ϑ(n + 1) (29)

The next section presents the simulation results of the bipedal walking motion in different
case studies.

6. The study of energetics through simulations

The effects of the adjustable stiffness artificial tendon on the energetics of bipedal walking is
studied in this section through computer simulations. In section 6.1, the simulation results
of bipedal walking are illustrated during the single support phase for a single walking step.
The simulation results show significant improvement in reducing the energy loss by proper
adjustment of the stiffness of OLASAT. Then, the simulation results of the robot during single
support phase are presented for 5 consecutive walking steps in section 6.2 to compare the
results of the two cases of the single spring with best selected stiffness and OLASAT with
the well-adjusted stiffness. Finally the controller developed in section 5 is implemented to
automatically adjust the offset of OLASAT for reducing energy loss during the collision phase.

6.1 Stance phase of bipedal walking during a single walking step

In this section, a realization of the single support phase of bipedal walking is demonstrated for
two different cases of a single spring and OLASAT during a single walking step. The stiffness
of the single spring equals the stiffness of the spring 1 in OLASAT. Here, the stiffness of spring
1 in OLASAT is defined through trial and error. The objective was to find a stiffness which
prevents the leg bouncing at the FTD for wide range of initial velocities, and which is high
enough to store the elastic energy during the collision phase. In order to study the effects of
stiffness adjustment on the energy economy of the biped, simulations are performed for the
same initial conditions for both cases.
The parameters of the biped in computer simulations are listed in Table 2 in addition to m2 =
1kg and l2 = 1.0m. The initial conditions of the biped immediately before the heel-strike in

Parameters β ψ ζ υ ς η

Value 0.02 0.05 0.07 0.1 0.5 4

Table 2. Dimensionless Parameters of the simulations.

the simulation are specified as follows: HSθ−1 = 15o, HSθ−2 = 105o, xh = yh = 0, HS θ̇−1 =HS

θ̇−2 = 0 and ϕ0 = 11.7o. The initial translational velocity V0 of the biped before the heel-strike
has the magnitude of 1.5m/s with the horizontal angle of −ϕ0.
Using those initial conditions, the total kinetic energy of the biped before the heel-strike is
equal to 1.125 [J]. The stiffness of the trailing leg spring is assumed zero in this section, (ν = 0),
to simulate the biped’s motion with no external elastic energy input. Note that the dynamics
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of the swing leg is not assumed in the model.
Fig. 15 shows the simulation results of the biped in case 1 (single spring with best selected
stiffness) and case 2 (OLASAT with well-adjusted stiffness). OLASAT’s offset value in case 2
is provided using a trial and error procedure, a

R = 6.0o, which reduces the angular velocity
of the foot before the foot-touch-down to decrease the energy loss. Fig. 15a shows the joint
angles of the biped θ1, θ2 which indicate that the motion of the biped is sustained in both cases.
Fig. 15b shows the magnitudes of the velocity vector of the COM of the body. As shown in
Fig. 15b, the velocity jump of the COM of the body during the FTD in case 2, which equals 0.01
m
sec , is significantly lower than case 1, which equals 0.15 m

sec . Consequently, the final velocity
of the COM of the body is higher in case 2 compared to case 1. These results indicate that
the biped can sustain the motion during the stance phase in both cases. Dimensionless kinetic
energy κ, is defined as the ratio of the kinetic energy of the biped to its gravitational potential
energy at midstance, m2l2g. Fig. 15c depicts the κ versus time, and the comparison of the
results indicates that the kinetic energy loss at the FTD is significantly reduced in case 2, that
is by 1%, resulting from the proper adjustment of the OLASAT, compared to the κ in case 1
which is as high as 20%. These results illustrate the effects of proper stiffness adjustment of
OLASAT on the energetics of the bipedal walking. The significant reduction in energy loss
during the FTD in case 2 results in higher final velocity of the body compared to the case 1.
The displacement of the COM of the body during the collision phase together with its velocity
vector is shown in Fig. 15d. Fig. 15d shows that the vertical component of the velocity of the
body’s COM is gradually decreased during the collision phase which can reduce the energy
loss at the FTD as discussed in Section 4.
The dimensionless parameter of τankle is the ratio of the torque of the ankle joint exerted by
OLASAT to m2gl2 during the single support stance phase. The graph of τankle versus time is
given in Fig. 16 for the above two cases. The exerted torque by OLASAT in case 1 is much
lower than case 2. As shown in Fig. 16, the graphs include different sudden changes of slopes
of the τankle in the time period of the stance phase. In case 1, this behavior is caused by the
end of the collision phase defined by point B and by the end of the rebound phase defined
by F. OLASAT performs differently in case 2 while both of the springs are engaged in part of
the time period of the motion. At the beginning of case 2, spring 2 is not engaged. After A
in Fig. 16, both springs are engaged and they will remain engaged up to D. The change of
slope in case 2 at C occures at the end of the collision phase. Point E is also defined by the
end of the rebound phase in case 2. Figure 16 indicates that in OLASAT more energy is stored
and released during the stance phase. To continue this study, the next section illustrates the
effectiveness of adjusting the stiffness of the OLASAT in consecutive walking steps.

6.2 Bipedal walking simulations in consecutive steps

In the last section, a single step of bipedal walking was realized by implementing the OLASAT
at the ankle joint. In this section, the simulation results of the bipedal walking in consecutive
steps are presented. The goal is to demonstrate and quantify the effects of adjusting the stiff-
ness of the ankle joint on multiple steps of the bipedal walking. During consecutive walking, a
gravitational energy of the mass of the foot is injected to the biped caused by leg’s initial angle
in each walking step. For the first walking step, the same biped configuration and the same
initial conditions as in Section 6.1 are used. The biped is moving on level ground. To demon-
strate the kinetic energy loss of the biped in this section, ∆κn is defined as the dimensionless
ratio of the total kinetic energy loss of the biped after n walking steps to the gravitational po-
tential energy of the biped, m2gl2, at midstance.
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Fig. 15. Simulation results during the single support stance period for both cases of single
spring, case1, and OLASAT with well-adjusted stiffness, case 2. (a)- Joint angles vs. time. (b)-
Velocity of COM of the body vs time. (c)- Dimensionless kinetic energy of the biped vs time.
(d)- Position and velocity vector of COM of the body during the collision phase.

Fig. 17 illustrates the velocity of the COM of the body in 5 consecutive walking steps. It also
demonstrates that the motion of the biped is sustained in all steps for all cases. For the case
of a single spring, it shows how stepping forward increases the period of each walking step.
Reducing the average velocity of the biped is caused by the energy loss of the impact events.
On average, for the single spring with the bests stiffness, 8% of the kinetic energy of the biped
is dissipated in each step and ∆κ5 = 0.0892. For the case of OLASAT the changes in the step
period and velocity of the COM of the body are insignificant as compared with those for the
case of the single spring. On average in this case, 0.5% of the kinetic energy of the biped is
dissipated in each walking step when ∆κ5 = 0.0527. These results show how the OLASAT,
with ability of proper adjustment of the stiffness, significantly improves the energetics of the
biped and makes it more efficient. This justifies the developement of an automated stiffness
adjustment controller.
Fig. 17 also illustrates the velocity of the COM of the body in 5 consecutive walking steps
while the stiffness of OLASAT is adjusted automatically, explained in Section 5. In order to
simulate the well-adjusted stiffness, a

R is assumed to be 6.0o in the first walking step. The
proportional gain of the automated stiffness adjustment controller, Kadjust, can play an im-
portant role in optimally adjusting the offset. Optimal iteration procedure to obtain the best
gain remains as future research. Through trial and error simulations, it has been observed
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Fig. 16. Dimensionless torque of OLASAT vs. time during single support stance phase for
both cases of single spring and OLASAT with well-adjusted stiffness.

that adaptive adjusting of Kadjust, as a function of the angular velocity of the stance leg at
midstance, provides a better performance of the controller. Thus, in the simulation results of
this section, the relation Kadjust = 3lMD

2 θ̇2 is assumed. The controller is activated after the
first walking step by sensing the angular velocity of the stance leg at midstance. As shown
in Fig. 17, the sudden change in the velocity of the COM of the body is significantly reduced
with compare to both the single spring and fixed stiffness. The energy loss is also significantly
reduced, ∆κ = 0.052, compared to case 1 and 2.

7. Conclusions

This work introduced different designs of adjustable stiffness artificial tendons. The modeling
and detail conceptual design of each tendon were given. Then the results of the effects of
stiffness adjustment of the ankle joint on energetics of the bipedal walking robots were
presented. A methodology to reduce the energy loss was presented through three main
efforts. In the first effort, one of the adjustable-stiffness artificial tendon, named OLASAT,
was selected which is capable of storing and releasing the elastic energy during walking.
In the second effort, a simplified model of the bipedal walking robot in the stance phase
was developed which consists of a foot, a leg and an OLASAT which is installed parallel
to the ankle joint. Such a model was used to compare the effects of a single spring and a
well-adjusted stiffness OLASAT on reducing the energy loss during foot-touch-down. As
the third effort, a simple controller based on energy feedback was designed to adjust the
stiffness of OLASAT. Computer simulations were carried out to compare the energy loss
of the biped in the two cases of the single spring and the well-adjusted stiffness OLASAT.
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Fig. 17. Velocity of COM of the body vs time during 5 multiple walking steps for three cases
of single spring, OLASAT with well-adjusted stiffness and stiffness adjustment controller.

Proper adjustment of the stiffness significantly reduces the kinetic energy loss during the
foot-touch-down from 20% (of the single spring) to 1%. Simulation results of the biped during
multiple walking steps illustrate that proper stiffness adjustment of OLASAT significantly
improves the energetics of the bipedal walking. On average, the kinetic energy loss during
multiple walking steps is reduced from 8% to 0.5% in each walking step. Simulation results
illustrated that the automated stiffness adjustment controller can successfully reduce the
energy loss during the stance phase. In general, the simulation results of this work suggest
that various designs of the adjustable stiffness artificial tendons can be included in robot
structures to achieve better energetics.
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