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1. Introduction 

This chapter discusses potential features of neural systems that may provide insights into 
biomimetic system design. Recent modeling studies on the cerebrocerebellar and spinal 
level systems have been of huge interests because they motivate advanced biologically 
inspired approaches to solve various complex engineering problems in the area of control, 
automation, and learning. In the view of control scheme, we argue that the cerebrum loosely 
specifies the control space, while the cerebellum implements modular controllers that are 
designated to task and performance specifications. The translation of the control commands 
from the central nervous system to muscles is in the single-to-multiple manner. The neural 
circuits operate in a simple control space and distribute the commands through synergies 
rather than directly treat the whole redundant set of actuators. Furthermore, considering a  
motion task as a sequence of sub-motions controlled by multiple modules of 
cerebrocerebellar systems , the movement control, which can be seen as a hybrid 
combination of sequential command generation mechanism coupled with state dependent 
gainscheduled controllers, proposes interesting biomimetic design schemes. We summarize 
two possible such schemes: Sequential module-based or parallel module-based gain 
scheduling approaches. Control variables used in neural motor control may be interpreted 
as a hybrid of kinematic and kinetic quantities and be chosen to simplify the control 
dimensionality. Furthermore, mirror neuron studies show majority of those neurons are 
multi-modal, i.e., they appear to respond to shapes and kinematics of objects, such as limbs, 
of other subjects and also respond similarly to  internally generated motor command for 
execution. Thus more biological extensions to the proposed schemes become enable to learn 
from imitations more efficiently. By introducing conceptual computational neural models, 
we suggest several functionally important in vivo neural circuitry and its connection which 
are very useful for designing biomimetic systems. 
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2. Cerebrocerebellar control system 

Animals including humans can make a wide repertoire of limb movements effortlessly 
without consciously thinking about joint trajectories or muscle contractions to bring about 
specific motions. These movements are the outcome of a series of processes and 
computations carried out by the central nervous system (CNS). Even to make a simple 
reaching movement, for example, a number of distinct neuroanatomical areas participates to 
complete the task, and each area consists of numerous neurons that are densely interacting 
to each other. Among the supraspinal structures, the cerebrocerebellar system is central to 
motor control (Allen & Tsukahara 1974; Brooks 1986; Kelly & Strick 2003) and has been 
characterized in terms of its anatomical connections among the areas in the system. In this 
section, the two structures, the cerebral cortex and the cerebellar cortex are introduced, with 
their relevant anatomical and physiological features,  as components of the cerebrocerebellar 
system and their functional interrelationship.  

 
2.1 Cerebral cortex 
The cerebrum is the evolutionarily newest and largest part of the brain. It participates in 
many different functions such as perception, decision making, memory, motor control, 
motion planning/execution, etc. It has been traditionally thought that each subregion of the 
cerebral cortex has a functionally distinct and significant role in the highly complex 
hierarchical cerebral structure. An interesting feature of the cerebral cortical region, 
particularly in sensory regions, is that the spatial extent of pyramidal cell association 
collaterals approximately construct a columnar assembly. The columnar assembly is a 
collection of cortical columns. The cortical column is a bundle of minicolumns sharing the 
same input connection from another cortical region or from sensory thalamic nuclei. Each 
cortical column may contain a specific feature presentation of sensory information such as 
orientation of visual stimuli. In the primary motor cortex, there has been an extensive study 
on modulation of spiking activities on upcoming movement  direction (Georgopouls et al. 
1982). Cells with similar preferred directions tended to segregate into vertically oriented 
minicolumns 50-100 microm wide and at least 500 microm high. Such minicolumns are 
aggregated across the horizontal dimension in a secondary structure of higher order. In this 
structure, minicolumns with similar preferred directions were approximately 200 microm 
apart and were interleaved with minicolumns representing nearly orthogonal preferred 
directions. In addition, nonoverlapping columns, representing nearly opposite preferred 
directions, were approximately 350 microm apart. (Amirikian & Georgopouls 2003). For a 
specific piece of movement, a group of neurons in a specific column have the most vigorous 
firing compared to the other columns. The specific population directional vector of the 
column may be regarded as a functional quantitative measure (Amirikian & Georgopouls 
2003). The activity dominated from the winning columnar assembly may be transmitted to 
other sensorimotor cortical columns and thence to cerebellum by larger tufted layer 5 
pyramidal cells. 
Experimental observations have shown task-related neural activity in both the premotor and 
motor cortex (Johnson & Ebner 2000). Neural activities of M1 cells in apes are directionally 
tuned during an epoch of reaching task movement and the preferred directions of M1 cells 
are very different (Cisek 2003). It is known that a population distribution in an ensemble of 
M1 neurons adequately points a specific direction, which is mathematically expressed by a 

 

 

unit vector while the discharge of single neurons rarely identifies any direction with 
accuracy (Georgopouls 1988). These observations may be related to the functional 
organization of the columnar assemblies in cortex. 
It is shown that complex movements with multiple velocity peaks can be decomposed into a 
superposition of elementary, and potentially stereotypical,  sub-movements that form the 
basis of an intermittent sub-movement-based planning mechanism (Krebs et al. 1999, Rohrer 
et al. 2004, Fishback et al. 2005). Such sub-movements have been identified in many types of 
movements: pursuit tracking(Miall et al 1988), interception of moving targets (Lee et al. 
1997), and cursor movement during isometric force task (Massey et al. 1992). Segmentations 
were found even in the EMG patterns during slow finger movements (Vallbo & Wessberg 
1993) and during point-to-point reaching movement with a wide range of speeds (Dipirtro 
et al. 2005), thus demonstrating that the descending command can also be inherently 
intermittent. Those studies suggest that the sub-movement play a fundamental role in the 
control or planning of primate limb movements and they may be the behavioral 
manifestation of neural mechanisms. Potentially a piece of sub-movement has a 
corresponding neural substrate so that a sequential activation of those substrates produce an 
overall movement. A complete motion can be repetitive such as walking such that it can be 
constructed by a repeated sequence of sub-movements. Each sub-movement is probably 
encoded within a specific spatial region. To generate a whole movement, switchings from 
one spatial region to another will be necessary because each sub-movement is best encoded 
separately in an individual region. Thus, a hypothesis is that cerebral cortex separately 
includes an appropriate principal spatial coordinate for each sub-movement, and the signal 
to the lower central nervous system from cerebral cortex informs a sequence of spatial 
coordinates for the whole movement. Tanji and Wise (Tanji & Wise 1981) argued that the 
motor cortex plays an important role in the sequencing of multiple movements. Specific 
spatial information at the level of intracortical processing within M1 may represent a 
transformation between extrinsic and intrinsic presentations. Sensed external information is 
in a high dimensional coordination, and internal motor system is in a low dimensional 
coordination (Kalaska et al. 1983). Therefore, spatial dimensional complexity of a behavior 
may be reduced in the world of the internal neural system. Cortical assembly may 
distributedly encode spatial information in a low and local dimensional space. The brain 
presumably can also store and combine the principal modes as needed to generate different 
behaviors. Thus, many situations which we encounter would be derived from combinations 
of previously experienced contexts (Haruno et al. 2001). 
Learning a set of specific regions and corresponding neural activation patterns are probably 
describable by utilizing an engineering algorithm such as reinforce algorithm that provides 
a synaptic implementation between pre- and post-synapses (Williams 1992). The update rule 
consists of two components, Hebbian and anti-Hebbian. The former increases the synaptic 
connection strength and the latter decreases it. The update rule principally seeks to find a 
primary principal vector (i.e., principal mode) of correlation of a certain error trajectory. A 
simple generalization can find the first n principal directions with n linear neurons (Sanger 
1994).  
By combining those two ideas, i.e., cortical columnar organization and its functional 
organization in terms of spatial, and contextual, varialbes, it is hypothesized, to explain 
individual cerebellar Purkinje cell (PC) spiking activities, (Takahashi 2006) that a group of 
neurons in a particular cortical column in Area 3a are broadly tuned to a particular direction 
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of internal error signals.Each cerebral cortical column in sensorimotor cortical (SMC) area 3a 
(as explained in section 2.1.) is expressed by a neural population-based representation of the 
error-like signal (Georogpoulos 1988; Georogpouls et al. 1983). 
 

 
Fig. 1. A proposed cerebral cortical model from the perspective of a single Purkinje cell. 
 
The error-like signal cbe  is distributed to different PCs via SMC columns in area 3a each of 

which has a prefered direction dir
cb . Then, the output of each column to PCs contains the 

magnitude of the projection of  
cbe vector to unit vector along dir

cb direction. Thus the firing 
intensity of neurons in a given SMC column in area 3a at a given time depends on the 
ongoing error-like signal and its nominal tuning direction. Fig. 1 illustrates the proposed 
cerebral cortical model. 

 
2.2 Cerebellar cortex 
The cerebellum is the most numerous in terms of the number of the neurons and is known 
to coordinate and control posture and movement, and implement motor learning. Its neural 
circuitry is globally uniform in its cytoarchitectonics as shown in Figure 2. The cerebellar 
cortex can be divided into a number of sagital zones, or microzones (Oscarsson 1979) each of 
which form, with its group of neurons, the operational unit of the cerebellum. This 
organization may be analogous to the modular columnar organization in the cerebral cortex. 
In microarchitecture, three layers, e.g., molecular, Purkinje cell, and granular layers, 
organize the cerebellar cortex and contain five types of neurons (Kandel et al. 2000). These 
granule cells make excitatory connections with all the other cells, and basket, stellate, and 
golgi cells are inhibitory neurons. A Purkinje cell receives excitatory signals, but its output 
to depp cerebellar nuclei is inhibitory. Two types of inputs are conveyed to the cerebellar 
microzone: Mossy fibers (MFs) and Climbing fibers (CFs) (Kandel et al. 2000). MF input 
produces a stream of simple spikes in PCs throughout relayed circuits. The firing rate of 
simple spikes can extend to above a few hundres spikes per second. The frequencies encode 
either peripheral sensory information or central commands. CF input is composed of error-
type signals originating from the inferior olivary nucleus. CFs have powerful synaptic 
connection with Purkinje neurons and provoke a complex spike on the dendrites of a PC, 
but its firing rate is very low (around 1 per second). Climbing fiber pathway is regarded as a 
“teaching" line for the adaptation at the parallel fiber-Purkinje cell synapse (Ito 1984). 

 

 

Granule cells, the most numerous, receive neural signals through mossy fibers and transmit 
output signals to the Golgi cells and parallel fibers. Mossy fibers convey various forms of 
information (assumptions on a set of specific signals are presented in the model below). 
Golgi cells in the granule layer receive excitatory inputs from both mossy fibers directly and 
granule cells. Inhibitory inputs from stellate, basket, and Purkinje cells are also conveyed to 
Golgi cells which then inhibit granule cells. The signal conveyed to parallel fibers is relayed 
to Purkinje cells. The signal is a brief excitatory potential that evokes high frequency firing 
on the dendrites of the PC which has fan-like dendrites and projects into the white matter 
under the granular layer. A PC also receives the other input through a CF. Stellate and 
basket cells modulate inhibitory connections with parallel fiber to a PC. 
 

 
Fig. 2. The cerebellar neural circuit. 
 
The outputs of the cerebellar cortex are sent to other areas through deep cerebellar nuclei. 
The neural output signals reach either motor cortex via thalamus (ventrolateral nuclei) or 
spinal cord via brainstem. Impairments related to the deep cerebellar nuclei indicate 
different behavioral functions (Thach 1998). The neural output signals from fastigials 
contain mainly the information on upright stance and gait. Interposed nuclei (Interpositus) 
in the medial region are related to reaching movements or alternating agonist-antagonist 
muscle. Impairment of Dentate in the lateral region causes curved motion trajectory, 
overshoot on reaching movement, and uncoordinated finger movements. 
Many neuroanatomically feasible models to explain the cerebellar mechanism with respect 
to either movement control or motor learning have been proposed. The models can be 
roughly categorized into two types, feedback and feedforward control systems. Models 
(Barto et al. 1999; Kazutaka 2006) describing the cerebellar function as the feedback control 
system put emphasis on more robustness against the parameter variation or disturbances. 
The feedforward type cerebellar model implements the plant inverse dynamics (Kawato & 
Gomi 1992; Schweighofer et al. 1998; Miall et al. 1993) while the crude feedback controller, 
the cerebral system, performs. An example of each case is introduced here. 
The Recurrent Integrator Proportional Integral Derivative (RIPID) cerebrocerebellar model 
regards the cerebellar function with the feedback controller (Jo ; Kazutaka 2006). In the 
RIPID model (Fig. 3), the ascending signals that percolate through the control systems are 
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posited to be functions of a principal tracking error formed in parietal area 5, 
)()( 3arg affett ttFt    where afft  is a sum of the spinal and peripheral delay, and 

more direct afferent information received via Area 3a (via 2F ). The signal from area 3a is 
proposed to travel to intermediate cerebellum and that from area 4 to intermediate and 
lateral cerebellum. Those principal signals in the cerebellum and precerebellar nuclei 
undergo scaling, delay, recombination and reverberation to affect proportional-derivative-
integral processing ( sGb , kG , and sI /1 , sI /2 , and sI /3 , respectively, where 
s denotes a Laplace variable). The cerebellar computational processing is derived from 
neuroanatomy (Takahashi 2006; Jo & Massaquoi 2004). These actions contribute to phase 
lead (by sI /2  recurrent loop) for long-loop stabilization and sculpting forward control 

signals ( sGb , kG , sI /1 ) that return to motor cortex where they are collected and 
redistributed before descending through the spinal cord as motor command u. There is 
additional internal feedback to the parietal lobe and/or motor cortex via sI /3  that 
contributes to loop stability in the principal transcerebellar pathway. An important set of 
inputs is posited to consist of modulating signals (indicated by  ) from spinocerebellar 

tracts. These signals effectively switch the values of bG , kG , 1I according to limb 
configuration and velocity as in Fig.(3). The RIPID model also includes the direct command 
path from motor cortex (via MC) to spinal cord, and a hypothetical cerebral cortical 
integrator ( sI a / ). 
 

 
Fig. 3. The RIPID model. Numbered circles designate functional subcategories of 
sensorimotorcortical columns explained in section 2.1. 
 
On the other hand, the adaptive feedback error learning (FEL) model has been rigorously 
investigated to describe the cerebellar function in the manner of the feedforward inverse 
dynamics control (Gomi & Kawato 1993; Kawato & Gomi 1992; Katayama & Kawato 1993). 
The cerebellum is regarded as a locus of the approximation of the plant inverse dynamics. 
The FEL model describes the motor learning scheme explicitly. Initially, a crude feedback 
controller operates influentially. However, as the system learns the estimation of the plant 

 

 

inverse, the feedforward controller commands the body more dominantly. Fig. (4) illustrates 
the FEL scheme proposed by Gomi and Kawato (Kawato & Gomi 1992).The feedback 
controller can be linear, for example,  as 
 

                                )()()( 321   bbbfb KKK                               (1) 

 
To acquire the inverse model, different learning schemes could be used. In general, a 

learning scheme ),,,,,,( Wdddff    can be expressed, where W represents 

the adaptive parameter vector, d  the desired position vector, and   the actual position 
vector. The adaptive update rule for the FEL is as follows. 
 

                                                  extfb

T

Wdt
dW  










                                                (2) 

 
where ext  is the external torque and   the learning ratio which is small.  
 

 
Fig. 4. The FEL model. Adapted from Kawato and Gomi (1992). 
 
The convergence property of the FEL scheme was shown ( Gomi &Kawato 1993; Nakanishi 
& Schaal 2004). The FEL model has been developed in detail as a specific neural circuit 
model for three different regions of the cerebellum and the learning of the corresponding 
representative movements: 1) the flocculus and adaptive modification of the vestibulo-
ocular reflex and optokinetic eye movement responses, 2) the vermis and adaptive posture 
control, and 3) the intermediate zones of the hemisphere and adaptive control of 
locomotion. The existence of inverse internal model in the cerebellum is argued based on 
studies (Wolpert & Kawato 1998; Wolpert et al. 1998; Schweighofer et al. 1998) that the 
Purkinje cell activities can be approximated by kinematic signals. 
There have been many other models of the cerebellum (Barto et al. 1998; Miall et al. 1993; 
Schweighofer et al. 1998). In those models, the cerebellum is also either feedforward or 
feedback control system. Yet, uniform descriptions for various models would be necessary 
to support one model over the other as there are multiple ways to describe one model. 
Interestingly, a probabilistic modelling approach has been applied to explain the inverse 
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configuration and velocity as in Fig.(3). The RIPID model also includes the direct command 
path from motor cortex (via MC) to spinal cord, and a hypothetical cerebral cortical 
integrator ( sI a / ). 
 

 
Fig. 3. The RIPID model. Numbered circles designate functional subcategories of 
sensorimotorcortical columns explained in section 2.1. 
 
On the other hand, the adaptive feedback error learning (FEL) model has been rigorously 
investigated to describe the cerebellar function in the manner of the feedforward inverse 
dynamics control (Gomi & Kawato 1993; Kawato & Gomi 1992; Katayama & Kawato 1993). 
The cerebellum is regarded as a locus of the approximation of the plant inverse dynamics. 
The FEL model describes the motor learning scheme explicitly. Initially, a crude feedback 
controller operates influentially. However, as the system learns the estimation of the plant 

 

 

inverse, the feedforward controller commands the body more dominantly. Fig. (4) illustrates 
the FEL scheme proposed by Gomi and Kawato (Kawato & Gomi 1992).The feedback 
controller can be linear, for example,  as 
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To acquire the inverse model, different learning schemes could be used. In general, a 

learning scheme ),,,,,,( Wdddff    can be expressed, where W represents 

the adaptive parameter vector, d  the desired position vector, and   the actual position 
vector. The adaptive update rule for the FEL is as follows. 
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where ext  is the external torque and   the learning ratio which is small.  
 

 
Fig. 4. The FEL model. Adapted from Kawato and Gomi (1992). 
 
The convergence property of the FEL scheme was shown ( Gomi &Kawato 1993; Nakanishi 
& Schaal 2004). The FEL model has been developed in detail as a specific neural circuit 
model for three different regions of the cerebellum and the learning of the corresponding 
representative movements: 1) the flocculus and adaptive modification of the vestibulo-
ocular reflex and optokinetic eye movement responses, 2) the vermis and adaptive posture 
control, and 3) the intermediate zones of the hemisphere and adaptive control of 
locomotion. The existence of inverse internal model in the cerebellum is argued based on 
studies (Wolpert & Kawato 1998; Wolpert et al. 1998; Schweighofer et al. 1998) that the 
Purkinje cell activities can be approximated by kinematic signals. 
There have been many other models of the cerebellum (Barto et al. 1998; Miall et al. 1993; 
Schweighofer et al. 1998). In those models, the cerebellum is also either feedforward or 
feedback control system. Yet, uniform descriptions for various models would be necessary 
to support one model over the other as there are multiple ways to describe one model. 
Interestingly, a probabilistic modelling approach has been applied to explain the inverse 
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internal model in the cerebellum (Käoding & Wolpert 2004). The model takes into account 
uncertainty which is naturally embedded in human movements and applies the Bayes rule 
to interpret human decision making process.Further investigation is necessary to verify the 
cerebellar mechanism and to better understand the principle of movement control. It is 
highly expected that biological principles will teach us an outstanding scheme of robotic 
control to perform close to that of  human. Model designs to evaluate both dynamic 
behaviors and internal signal processing are worthwhile for neuroprosthetic device or 
humanoid robotics development. 

 
2.3 Cerebellar system as a modular controller 
Neural computation of microzone in cerebellar cortex under a specific principal mode may 
control a sub-movement over a certain spatial region. Experimental observations have 
shown that the directional tunings of cells in cerebellar cortex, motor cortex, and parietal 
cortex are strikingly similar during arm reaching tasks (Frysinger et al. 1984; Kalaska et al. 
1983; Georgopoulos et al. 1983). It is also reported that directional tunings of Purkinje cells, 
interpositus neurons, dentate units, and unidentified cerebellar cortical cells are nearly 
identical (Fortier et al. 1989) so that cerebellar computational system may be considered to 
be in a specific coordinate. Those experimental observations suggest that the 
cerebrocerebellar mechanism is implemented in a similar spatial information space. A 
possible neural scheme can be proposed as follows. Suppose that there are some groups of 
mossy fiber bundles, and each individual group conveys the neural information described 
in a different spatial coordinate from cerebral cortex. As spatial information becomes 
available, some groups of mossy fiber bundles receiving the cerebral signal becomes more 
active. Similarly in cerebellar cortex, inhibition between different modules by stellate and 
basket cells accelerates competition to select a winner module. The winner module is framed 
in a spatial coordinate encoded in cerebral cortex. As a result, cerebellar neural computation 
is implemented in the restricted spatial coordinate. Thus it appears that the cerebrum 
determines a spatial coordinate for a specific task, and then the cerebellum and other motor 
system control the motion with respect to the coordinate. Therefore, a pair of modular 
cortical assembly and cerebellar microzone can be probably seen as a neural substrate for 
movement control and learning. 
From the point of view of control theory, gain scheduling is an appropriate approach to 
describe a control system with distributed gains: each set of control gains is assigned to a 
specific coordinate. Furthermore, switching or scheduling of gains may depend on a 
command for a sub-movement. In general, gain scheduling scheme involves multiple 
controllers to attempt to stabilize and potentially increase the performance of nonlinear 
systems. A critical issue is designing controller scheduling/switching rules. It is quite 
possible that an internal state, probably a combination of sensed information, may define 
switching condition. For instance, a gain switching scheme is demonstrated by a 
computational model of human balance control. Two human postural strategies for balance, 
ankle and hip strategies (Horak & Nashner 1986), are respectively implemented by two 
different control gains that are represented by the cerebellar system. (Jo & Massaquoi 2004). 
Depending on external disturbance intensities, an appropriate postural strategy is selected 
by comparing sensed position and switching condition defined by an internalstate (Fig.(5) ). 
The internal state is adapted to include information on approximated body position and 
external disturbance (i.e., a linear combination of sensed ankle and hip angles and angular 

 

 

speed at ankle). A neural implementation of the switching mechanism is shown in Fig. (5) 
where a beam of active parallel fibers (PF) inhibits PCs some distance away (“off beam") via 
basket cells (Eccles et al. 1967; Ito 1984). This diminishes the net inhibition in those modules, 
allowing them to process the ascending segment input through mossy fibers (AS). 
Conversely, the beam activates local PCs, thereby suppressing the activity of “on beam" 
modules. The principal assumption of PFs in this scheme is that, unlike ascending segment 
fibers, they should contact PCs relatively more strongly than the corresponding cerebellar 
deep nuclear cells - if they contact the same DCN cells at all. This appears to be generally 
consistent with the studies of Eccles et al (Eccles et al. 1974; Ito 1984). A prime candidate 
source for PFs  is the dorsal spinocerebellar tract (DSCT). The elements of the DSCT are 
known to convey mixtures of proprioceptive and other information from multiple muscles 
within a limb (Oscarsson 1965; Bloedel & Courville 1981; Osborn & Poppele 1992) while 
typically maintaining a steady level of background firing in the absence of afferent input 
(Mann 1973). 
 

 
Fig. 5. Proposed switching mechanism: (left) neural circuit, and (right) postural balance 
switching redrawn from Jo & Massaquoi (2004). PF: parallel fibers, MF: Mossy fibers, DCN: 
deep cerebellar nuclei, AS: ascending segment; 

1
ˆ : sensed ankle angle, 

3
ˆ : sensed hip 

angle, 
1
ˆ : sensed angular speed at ankle.  

 
The gain scheduling mentioned so far uses an approach that spatially distributed control 
modules are recruited sequentially to achieve a motion task. Another possible approach is to 
weight multiple modules rather than pick up a module at a specific time. A slightly more 
biologically inspired linear parameter varying gainscheduling scheme including multple 
modules each of which was responsible over a certain region in the joint angle space was 
developed for a horizontal arm movement (Takahashi 2007). Another example of multiple 
module approach is Multiple forward inverse model proposed by Wolpert and Kawato 
(1998). Each module consists of a paired forward inverse model and responsibility predictor. 
Forward models learn to divide a whole movement into sub-movements. The degree of each 
module activity is distributively selected by the responsibility predictor. The inverse model 
in each module is acquired through motor learning similar to FEL. While the degree of each 
contribution is adaptively decided, several modules can still contribute in synchrony unlike 
the previous sequential approach. The modules perform in parallel with different 
contributions to a movement. Learning or adaptation algorithms could be used to describe 
the parallel modular approach (Doya 1999;Kawato a& Gomi 1992). However, more explicit 
neural models based on observations have been proposed to explain adaptive behaviors 
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internal model in the cerebellum (Käoding & Wolpert 2004). The model takes into account 
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to interpret human decision making process.Further investigation is necessary to verify the 
cerebellar mechanism and to better understand the principle of movement control. It is 
highly expected that biological principles will teach us an outstanding scheme of robotic 
control to perform close to that of  human. Model designs to evaluate both dynamic 
behaviors and internal signal processing are worthwhile for neuroprosthetic device or 
humanoid robotics development. 

 
2.3 Cerebellar system as a modular controller 
Neural computation of microzone in cerebellar cortex under a specific principal mode may 
control a sub-movement over a certain spatial region. Experimental observations have 
shown that the directional tunings of cells in cerebellar cortex, motor cortex, and parietal 
cortex are strikingly similar during arm reaching tasks (Frysinger et al. 1984; Kalaska et al. 
1983; Georgopoulos et al. 1983). It is also reported that directional tunings of Purkinje cells, 
interpositus neurons, dentate units, and unidentified cerebellar cortical cells are nearly 
identical (Fortier et al. 1989) so that cerebellar computational system may be considered to 
be in a specific coordinate. Those experimental observations suggest that the 
cerebrocerebellar mechanism is implemented in a similar spatial information space. A 
possible neural scheme can be proposed as follows. Suppose that there are some groups of 
mossy fiber bundles, and each individual group conveys the neural information described 
in a different spatial coordinate from cerebral cortex. As spatial information becomes 
available, some groups of mossy fiber bundles receiving the cerebral signal becomes more 
active. Similarly in cerebellar cortex, inhibition between different modules by stellate and 
basket cells accelerates competition to select a winner module. The winner module is framed 
in a spatial coordinate encoded in cerebral cortex. As a result, cerebellar neural computation 
is implemented in the restricted spatial coordinate. Thus it appears that the cerebrum 
determines a spatial coordinate for a specific task, and then the cerebellum and other motor 
system control the motion with respect to the coordinate. Therefore, a pair of modular 
cortical assembly and cerebellar microzone can be probably seen as a neural substrate for 
movement control and learning. 
From the point of view of control theory, gain scheduling is an appropriate approach to 
describe a control system with distributed gains: each set of control gains is assigned to a 
specific coordinate. Furthermore, switching or scheduling of gains may depend on a 
command for a sub-movement. In general, gain scheduling scheme involves multiple 
controllers to attempt to stabilize and potentially increase the performance of nonlinear 
systems. A critical issue is designing controller scheduling/switching rules. It is quite 
possible that an internal state, probably a combination of sensed information, may define 
switching condition. For instance, a gain switching scheme is demonstrated by a 
computational model of human balance control. Two human postural strategies for balance, 
ankle and hip strategies (Horak & Nashner 1986), are respectively implemented by two 
different control gains that are represented by the cerebellar system. (Jo & Massaquoi 2004). 
Depending on external disturbance intensities, an appropriate postural strategy is selected 
by comparing sensed position and switching condition defined by an internalstate (Fig.(5) ). 
The internal state is adapted to include information on approximated body position and 
external disturbance (i.e., a linear combination of sensed ankle and hip angles and angular 

 

 

speed at ankle). A neural implementation of the switching mechanism is shown in Fig. (5) 
where a beam of active parallel fibers (PF) inhibits PCs some distance away (“off beam") via 
basket cells (Eccles et al. 1967; Ito 1984). This diminishes the net inhibition in those modules, 
allowing them to process the ascending segment input through mossy fibers (AS). 
Conversely, the beam activates local PCs, thereby suppressing the activity of “on beam" 
modules. The principal assumption of PFs in this scheme is that, unlike ascending segment 
fibers, they should contact PCs relatively more strongly than the corresponding cerebellar 
deep nuclear cells - if they contact the same DCN cells at all. This appears to be generally 
consistent with the studies of Eccles et al (Eccles et al. 1974; Ito 1984). A prime candidate 
source for PFs  is the dorsal spinocerebellar tract (DSCT). The elements of the DSCT are 
known to convey mixtures of proprioceptive and other information from multiple muscles 
within a limb (Oscarsson 1965; Bloedel & Courville 1981; Osborn & Poppele 1992) while 
typically maintaining a steady level of background firing in the absence of afferent input 
(Mann 1973). 
 

 
Fig. 5. Proposed switching mechanism: (left) neural circuit, and (right) postural balance 
switching redrawn from Jo & Massaquoi (2004). PF: parallel fibers, MF: Mossy fibers, DCN: 
deep cerebellar nuclei, AS: ascending segment; 
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The gain scheduling mentioned so far uses an approach that spatially distributed control 
modules are recruited sequentially to achieve a motion task. Another possible approach is to 
weight multiple modules rather than pick up a module at a specific time. A slightly more 
biologically inspired linear parameter varying gainscheduling scheme including multple 
modules each of which was responsible over a certain region in the joint angle space was 
developed for a horizontal arm movement (Takahashi 2007). Another example of multiple 
module approach is Multiple forward inverse model proposed by Wolpert and Kawato 
(1998). Each module consists of a paired forward inverse model and responsibility predictor. 
Forward models learn to divide a whole movement into sub-movements. The degree of each 
module activity is distributively selected by the responsibility predictor. The inverse model 
in each module is acquired through motor learning similar to FEL. While the degree of each 
contribution is adaptively decided, several modules can still contribute in synchrony unlike 
the previous sequential approach. The modules perform in parallel with different 
contributions to a movement. Learning or adaptation algorithms could be used to describe 
the parallel modular approach (Doya 1999;Kawato a& Gomi 1992). However, more explicit 
neural models based on observations have been proposed to explain adaptive behaviors 
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(Yamamoto et al. 2002; Tabata et al. 2001). The computational analyses generalize the 
relationship between complex and simple spikes in the cerebellar cortex.Error information 
conveyed by complex spikes synaptic weights on PCs and such changes functionally 
correspond to updating module gains. Further investigation is still required to understand 
the generality of such results and their computational counterparts as previous studies have 
looked mostly on simple behaviors such as eye movements or point-to-point horizontal arm 
movements. 

 
2.4 Control variables and spatial coordination 
Primates have many different sensors. The sensors collect a wide range of information 
during a specific motor task. The high-level center receives the sensed information. Neuro-
physiological studies propose that motor cortex and cerebellum contain much information 
in joint coordinates (Ajemian et al. 2001; Scott & Kalaska 1997), Cartesian coordinates 
(Georgopoulos et al. 1982,Ajemian et al. 2001; Scott & Kalaska 1997; Poppele et al. 2002, 
Roitman 2007). However other studies are consistent with the possibility that parietal and 
some motor cortical signals are in Cartesian (Kalaska et al. 1997) or body-centered (Graziano 
2001), shoulder-centered (Soechting & Flanders 1989) workspace coordinates, or a 
combination (Reina et al. 2001). However, it would be highly likely that a coordinate at an 
area is selected to conveniently process  control variables from high level command to low  
Level execution. 
  

 
Fig. 7. Neural computational network between controller and plant. 
 
For example, Freitas et al (2006) proposed that voluntary standing movements are 
maintained by stabilization of two control variables, trunk orientation and center of mass 
location. The control variables could be directly sensed or estimated via neural processing. It 
is really difficult to see what control variables are selected internally in the brain. However, 
redefining appropriate control variables in the high-level center can lower control 
dimensionality to enable efficient neural computation. Moreover, computational studies 
have demonstrated that workspace to sensory coordinate conversion can occur readily 
within a servo control loop (Ayaso et al. 2002; Barreca & Guenther 2001). As in Fig. 7, the 

 

 

dimensional reduction and synergies (and/or primitives) can be viewed functionally as the 
inverse network of each other. The control variables in the high-level nervous center may 
need to be purely neither kinematic nor kinetic. A composite variable of both kinematic and 
kinetic information can be used, where both force and position control variables are 
simultaneously processed. Moreover, the position variable could be in joint or Cartesian-
coordinate. Spinocerebellar pathways apparently carry a mixture of such signals from the 
periphery (Osborn & Poppele 1992), but the details of force signal processing in the high-
level nervous center are not well understood. 
Based on various investigations, it is considerable that the neural system controls behaviors 
using  hybrid control variables. The advantage of using such types is verified in engieering 
applications. For teleoperation control applications, such a linear variable combination of 
velocity and force is called wave-variable (Sarma et al 2000). It is demonstrated that the 
wave-variable effectively maintains stability in a time-delayed feedback system. Application 
of the force controller with the position controller to a biped walker has been tested 
(Fujimoto et al 1998; Song et al 1999). The force feedback control mode during the support 
phase is effective in directly controlling interaction with the environment. The force/torque 
feedback controller in a computational model of human balancing facilitated attaining 
smooth recovery motions (Jo and Massaquoi 2004). The force feedback provided the effect of 
shifting an equilibrium point trajectory to avoid rapid motion. 

 
3. Mirror neuron and learning from imitation 

One form of learning a new behaviour is to imitate what others do. In order to imitate, an 
integration of sensory and motor signals is necessary such that perception of an action can 
be translated into a corresponding action. Even an infant can imitate a smile of an adult, 
actual processes of that consist of multiple stages. It seems that many areas in the primate 
brain participate in imitation. In superior temporal sulcus (STS), Perrett et al. (1985) found 
neurons responding to both form and motion of specific body parts. Responses of those 
neural systems are consistent regardless of the observer’s own motion. Then, Rizzolatti’s 
group found neurons in ventral premotor cortex, area F5, that discharged both when 
individuals performed a given motor task and when they observed others performing the 
same task. Those neurons are referred to mirror neurons which are found in premotor (F5) 
and inferior parietal cortices. The relation between those two areas remains unclear, but it 
can be hypothesized, given a known connection between F5 and area 7b in parietal cortex, 
that perception of a performer’s objects and motions in STS is sent to F5 via 7b. Furthermore, 
there exist anatomical connections between dentate in cerebellum and multiple cerebral 
cortical areas that are related to perception, imitation, and execution of movements, i.e., area 
7b, PMv, and M1 respectively (Dum & Strick 2003). Anterior intraparietal area (AIP) is a 
particular subregion in area 7b and sends projections to PMv (Clower et al. 2005). In 
addition, AIP has a unique connection to dentate nuclei in that it receives significant inputs 
from areas of dentate that are connected to PMv and M1. Thus, it can be further 
hypothesized that AIP/7b is a site where object information is extracted and can be 
compared to an internal estimate of actual movement, particularly of hand, and F5 
recognize external and internal actions before an execution.  
  In relation to the RIPID model which does not have specific representation of premotor 
cortex and AIP, it seems that visuospatial function of cerebrocerebellar loops, particularly 
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wave-variable effectively maintains stability in a time-delayed feedback system. Application 
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phase is effective in directly controlling interaction with the environment. The force/torque 
feedback controller in a computational model of human balancing facilitated attaining 
smooth recovery motions (Jo and Massaquoi 2004). The force feedback provided the effect of 
shifting an equilibrium point trajectory to avoid rapid motion. 
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One form of learning a new behaviour is to imitate what others do. In order to imitate, an 
integration of sensory and motor signals is necessary such that perception of an action can 
be translated into a corresponding action. Even an infant can imitate a smile of an adult, 
actual processes of that consist of multiple stages. It seems that many areas in the primate 
brain participate in imitation. In superior temporal sulcus (STS), Perrett et al. (1985) found 
neurons responding to both form and motion of specific body parts. Responses of those 
neural systems are consistent regardless of the observer’s own motion. Then, Rizzolatti’s 
group found neurons in ventral premotor cortex, area F5, that discharged both when 
individuals performed a given motor task and when they observed others performing the 
same task. Those neurons are referred to mirror neurons which are found in premotor (F5) 
and inferior parietal cortices. The relation between those two areas remains unclear, but it 
can be hypothesized, given a known connection between F5 and area 7b in parietal cortex, 
that perception of a performer’s objects and motions in STS is sent to F5 via 7b. Furthermore, 
there exist anatomical connections between dentate in cerebellum and multiple cerebral 
cortical areas that are related to perception, imitation, and execution of movements, i.e., area 
7b, PMv, and M1 respectively (Dum & Strick 2003). Anterior intraparietal area (AIP) is a 
particular subregion in area 7b and sends projections to PMv (Clower et al. 2005). In 
addition, AIP has a unique connection to dentate nuclei in that it receives significant inputs 
from areas of dentate that are connected to PMv and M1. Thus, it can be further 
hypothesized that AIP/7b is a site where object information is extracted and can be 
compared to an internal estimate of actual movement, particularly of hand, and F5 
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  In relation to the RIPID model which does not have specific representation of premotor 
cortex and AIP, it seems that visuospatial function of cerebrocerebellar loops, particularly 
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through area 7b, AIP, and PMv, may contribute to a feedforward visual stimuli dependent 
scheduling of cerebellar controllers that compute signals for internal or external uses. Thus, 
there are multiple almost simultaneous recruitment of cortical columnar assemblies and 
cerebellar modules based on the task specification and real time sensed state information to 
narrow down “effective” controller modules in the cerebellum. To train such complex 
dynamical control system, first a set of local controllers in the cerebellum needs to be trained 
(such as Schaal & Atkinson 1998 or based on limitation of the effective workspace 
(Takahashi 2007)). Then, a set of sub-tasks such as reaching and grasping object needs to be 
characterized so that the observed actions can be mapped a set of meaningfully internalized 
actions through a parietofrontal network of AIP/7b to PMv. Then, to perform a whole task, 
a higher center needs to produce a sequence of internalized actions. A model to realize this 
particular part of the system including mirror neurons is developed by Fagg and Arbib 
(1998) and a further refined version to reproduce specific classes mirror neuron responses by 
Bonaiuto et al. (2007) whose learning scheme was the back-propagation learning algorithm 
for use with anatomically feasible recurrent networks. However, no model for imitation 
learning has exclusively incorporated cerebellar system. Thus, it is interesting to investigate 
how contributions of the cerebellum and its loop structure with AIP, 7b, and PMv to 
learning can be realized.  

 
4. Conclusion 

In neuroscience society, the concept of modules and primitives has popularly been 
proposed. It facilitates controllability of redundant actuators over a large state space along 
the descending pathways. Meaningful control variables are extracted from the whole sensed 
information over the ascending pathways. The process may be interpreted that specific 
spatial coordinates are selected for the high nervous control system. Therefore, this provides 
a way to construct the control problem in the simpler dimensional description compared 
with body movement interacting with the environment as long as fewer control variables 
can be sufficient for performance. The control variables seem to be chosen in such a way as 
to decouple functional roles. In this way, the adjustment of a local neural control with 
respect to a control variable can be fulfilled substantially without affecting the neural 
controls related to other control variables. Furthermore, a hybrid control variable of 
kinematic and kinetic states may be advantageous. Under the assumption that cerebral 
cortex specifies an appropriate coordinate for a motion task and cerebellar cortex controls 
the motion in the coordinate, neural activities around the cerebrocerebellar system may be 
viewed as a gain scheduling or multiple modular control system with multi-modal 
scheduling variables. The integrated system seems to enable to estimate approrpriate efforts 
to achieve desired tasks. Mirror neurons inspire learning algorithms, based on imitations, 
that specify local controllers. To shed light on the biomimetic designs, we summarize the 
featues from human neural systems as follows. 
 

- Functional decoupling of each controller 
- Dimensional reduction in the control space 
- Piecewise control by multiple modules and gain scheduling 
- Hybrid control variables 
- Learning from imitations 
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through area 7b, AIP, and PMv, may contribute to a feedforward visual stimuli dependent 
scheduling of cerebellar controllers that compute signals for internal or external uses. Thus, 
there are multiple almost simultaneous recruitment of cortical columnar assemblies and 
cerebellar modules based on the task specification and real time sensed state information to 
narrow down “effective” controller modules in the cerebellum. To train such complex 
dynamical control system, first a set of local controllers in the cerebellum needs to be trained 
(such as Schaal & Atkinson 1998 or based on limitation of the effective workspace 
(Takahashi 2007)). Then, a set of sub-tasks such as reaching and grasping object needs to be 
characterized so that the observed actions can be mapped a set of meaningfully internalized 
actions through a parietofrontal network of AIP/7b to PMv. Then, to perform a whole task, 
a higher center needs to produce a sequence of internalized actions. A model to realize this 
particular part of the system including mirror neurons is developed by Fagg and Arbib 
(1998) and a further refined version to reproduce specific classes mirror neuron responses by 
Bonaiuto et al. (2007) whose learning scheme was the back-propagation learning algorithm 
for use with anatomically feasible recurrent networks. However, no model for imitation 
learning has exclusively incorporated cerebellar system. Thus, it is interesting to investigate 
how contributions of the cerebellum and its loop structure with AIP, 7b, and PMv to 
learning can be realized.  

 
4. Conclusion 

In neuroscience society, the concept of modules and primitives has popularly been 
proposed. It facilitates controllability of redundant actuators over a large state space along 
the descending pathways. Meaningful control variables are extracted from the whole sensed 
information over the ascending pathways. The process may be interpreted that specific 
spatial coordinates are selected for the high nervous control system. Therefore, this provides 
a way to construct the control problem in the simpler dimensional description compared 
with body movement interacting with the environment as long as fewer control variables 
can be sufficient for performance. The control variables seem to be chosen in such a way as 
to decouple functional roles. In this way, the adjustment of a local neural control with 
respect to a control variable can be fulfilled substantially without affecting the neural 
controls related to other control variables. Furthermore, a hybrid control variable of 
kinematic and kinetic states may be advantageous. Under the assumption that cerebral 
cortex specifies an appropriate coordinate for a motion task and cerebellar cortex controls 
the motion in the coordinate, neural activities around the cerebrocerebellar system may be 
viewed as a gain scheduling or multiple modular control system with multi-modal 
scheduling variables. The integrated system seems to enable to estimate approrpriate efforts 
to achieve desired tasks. Mirror neurons inspire learning algorithms, based on imitations, 
that specify local controllers. To shed light on the biomimetic designs, we summarize the 
featues from human neural systems as follows. 
 

- Functional decoupling of each controller 
- Dimensional reduction in the control space 
- Piecewise control by multiple modules and gain scheduling 
- Hybrid control variables 
- Learning from imitations 
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