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1. Introduction    
 

This chapter sets out the basics and applications of impedance tuner for microwave and 
millimeterwave applications. Engineering examples, based on innovative and up-to-date 
Radio-Frequency MicroElectroMechanical Systems (RF-MEMS) technologies, are used to 
illustrate theoretical and practical principles. An explicit, comprehensive and efficient 
design methodology of impedance tuners is furthermore detailed. This generic design 
procedure is illustrated by the design of a tuner building block and followed by the 
description of appropriate measurements. Finally the capabilities of RF-MEMS based 
Impedance tuner issued from the state of the art are briefly reviewed and are followed by 
global conclusions. 
The purposes of this chapter are then to give to the readers comprehensive informations on:  

• The basics and applications of microwave and millimeterwave impedance tuners, 
• The architectures of tuners, 
• The implementation of tuner thanks to RF-MEMS technology, 
• The design and characterization methodologies. 

 
2. Basic definitions of Impedance Tuner 
 

2.1 Applications and Basic definitions 
Impedance matching is one of the key activities of microwave designers. Targeting 
maximum power transmission and/or low noise operation, impedance matching networks 
widely take place in all RF, microwave and millimeterwave systems. The corresponding 
design techniques are now well established and described in plenty of microwave books 
(Pozar, 2005; Collin, 2001). 
For a decade, with the increase of microwave applications, requirements in term of system-
reconfigurability have raised the level of complexity of circuits and especially of matching 
circuits. In addition to existing design constraints (detailed below), the ability of tunability 
without any loose of performances, and even with improved performances, has become 
mandatory. This is accomplished in conjunction with the use of new technologies to fulfill 
integration and increased frequency operation trends (Dubuc et al., 2004). 

15
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This actual trend gives rise to the development of new kinds of integrated microwave 
passive networks, which match/generate impedances with reconfigurable ability. Two 
major applications, presented in the Figure 1 and detailed below, take full benefit from these 
high performances and integrated circuits: (1) tunable matching networks in reconfigurable 
and smart RF-microsystem, and (2) impedances generators, which exhibit wide range of 
impedance values for devices characterization. 
The Figure 1 (a) presents a reconfigurable front-end system, where impedance tuning 
circuits (referred in this chapter as impedance tuner or simply tuner) correspond to the key 
blocks in order to assure tunability under high efficiency operation (mainly high received-
transmit power and low noise operation) (Rebeiz, 2003). For this application, the main 
features of such circuits may be listed as:  

 the set of source and load impedances, which can be matched. This can be 
presented as the number of covered quadrants of the Smith Chart or simply by the 
impedance tuning range (both for the real and imaginary parts), 

 the frequency bandwidth, as reconfigurability of operating frequency is concerned 
here, 

 the insertion losses or the power efficiency of the tuner, 
 the power handling capabilities, 
 the DC –power consumption, as tunable-switchable elements are mandatory for 

tunability, 
 the integration level.  

 
As far as this last characteristic is concerned, an entire integrated system vision is considered 
in this chapter. This means that impedance tuners may be co-integrated with Integrated 
Circuits (IC). Tremendous consequences on potential applications may occur, such as the 
use of integrated impedance tuner for smart telecommunication systems or for 
millimeterwave instrumentation. 
The massive integration of tuners within microsystems results in adaptative RF front-end, 
where functionalities can be reconfigured as well as operating frequencies (Qiao et al., 2005). 
The tuning capabilities of matching network gives rise to higher system efficiency and wider 
bandwidth. Moreover, on-wafer tuning can be also employed to compensate variations due 
to aging, temperature drift and unit-to-unit dispersion. 
 

 
 

(a)     (b) 
Fig. 1. Typical applications of Impedance Tuners : (a) reconfigurable front end system (b) 
integrated instrumentation systems 

 

For instrumentation application, the integration of tuner circuits as close as possible to the 
device under test (DUT) also enlarges the measurements capabilities. The parasitic reduction 
in the test chain results in a rise of the maximum frequency operation: RF-MEMS tuners up 
to W-band have been successfully demonstrated (Vähä-Heikkilä et al., 2005). Moreover, the 
reduction of losses between the tuner and the DUT translates into an improvement of 
achievable VSWR often mandatory to provide an accurate modeling (Tagro et al., 2008). The 
Figure 1. (b) presents such systems : the tuners generate impedance loci featuring high 
impedance coverage under high frequency operation. Applications for noise or load-pull 
measurements can be envisioned. 

 
2.2 Architecture of Impedance tuner 
Impedance tuner architectures derive from fixed matching circuits. In this chapter, we focus 
on circuits able to operate in the microwave and millimeterwave domain, typically at 
frequencies above the X-band. Transmission lines-based circuits, which are more suitable at 
frequency higher than 6 GHz, are consequently discussed. Nevertheless, the next paragraph 
will be dedicated to semi-lumped tuner as tunability concept and expected performances 
can simply be introduced.  
As far as lumped-elements solutions are concerned, such tuners are generally limited to 
6GHz, but their associated concepts are very illustrative as they can be simply extended to 
all kinds of tuner. The figure 2 presents a generic reconfigurable impedance matching circuit 
(Pozar, 2005), which can be used as a tuner thanks to reconfigurable capacitors or inductors. 
Various solutions for elements’ tuning are also illustrated both for inductors and capacitors. 
Banks of digitally commuted elements correspond to an efficient way of tuning 
(Papapolymerou et al., 2003). 

 
Fig. 2. Typical Lumped-Impedance Tuners 
 
Tuning of only one element of the circuit described in figure 2 can result into a wide 
impedance/operating frequency tuning. The reconfigurable ability of a 4:1 impedance 
matching circuit has been investigated (Rebeiz, 2003). Variation of only 30 to 50% of C2 (L 
and C1 are fixed) translates into 60 to 100% of the impedance variation (for a fixed 
frequency) or more than 100% of fractional bandwidth (compared with 10% bandwidth for 
fixed elements), for a fixed set of source and load impedances.  
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Tuning of only one element of the circuit described in figure 2 can result into a wide 
impedance/operating frequency tuning. The reconfigurable ability of a 4:1 impedance 
matching circuit has been investigated (Rebeiz, 2003). Variation of only 30 to 50% of C2 (L 
and C1 are fixed) translates into 60 to 100% of the impedance variation (for a fixed 
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For X-band and above (up to W-band), tuner architectures mainly involve Transmission-
Lines (TL) and varactors. This type of impedance tuner is based on well-known single-
double-triple-stubs impedance matching’s architectures (Collin, 2001). The tuning were 
firstly realized using mechanical devices with either coaxial or waveguides structures, 
which results in cumbersome solutions requiring motors for automatic control. To integrate 
reconfigurable tuner, the tuning was then achieved thanks to switching elements and/or 
variable capacitors (diode and/or transistors), which commute or reconfigure the electrical 
length and/or the characteristic impedance of TL/stubs.  
The figure 3. (a) presents a basic example of 3 switchable stubs featuring different electrical 
characteristics. To minimize the occupied space, electrical length of stubs can also be tuned 
with serial switches (figure 3. (b)) or shunt ones (figure 3. (c)). 
Reconfigurable stub can also be realized by using switchable loading capacitor at the end of 
the stub or distributed along (figure 3.(d)). In specific conditions, described in the paragraph 
4 of this chapter, the periodic capacitive loading translates into a equivalent TL with tunable 
electrical length (and characteristic impedance). The figure 4 presents such a tunable 
distributed transmission line, which represents the key element for multiple stubs matching 
network.  

          
            (a)        (b)            (c)     (d) 
Fig. 3. Tunable stubs, which serve as building blocs of impedance tuners. 
 

 
Fig. 4. Tunable Distributed Transmission Line  
 
PIN diodes, Field Effect Transistors or switchable capacitors (also named varactor : variable 
capacitor) can also be exploited to tune the impedance and/or electrical length of TL. The 
figure 5 (a) presents a periodically loaded TL, where reactive loading elements modify the 
TL-phase velocity and its characteristic impedance. This topology can serve as a matching 
network and consequently as a tuner with limited impedance coverage. It is however 
suitable for power applications. The RF-current carried through switched distributed 

 

capacitors is indeed weaker than with any other architecture (such as described in figure 3), 
which results in improved power handling capabilities. 
More advanced impedance coverage can be achieved thanks to the use of stubs: the more 
the numbers of stubs take place, the wider the impedance coverage and bandwidth become 
(Collin, 2001). The counterpart is nevertheless an increased occupied surface and then a rise 
of insertion losses. This is illustrated by the schematic of figure 5. (b), which presents a 
reconfigurable single stub using the same principle of operation of the TL described in 
figure 5. (a). 

   
   (a)      (b) 
Fig. 5. PIN diode, Field Effect Transistors and varactor–based impedance tuners. 
 
The bandwidth of a tuner is also an important feature, which impacts on its architecture. 
The bandwidth of a lumped matching network depends on the ratio of the impedances to 
match. Large difference in the values of source and load impedances translates indeed into a 
high resonant behavior and then low circuit’s bandwidth. This result can simply be pointed 
out with lumped circuits but is also true for distributed network. 
One solution to enhance the bandwidth corresponds to use multistage transformers, for 
which the impedance ratio of each stage is divided by the number of stages. For TL-based-
architecture, this multistage technique is built on “N-section Chebyshev impedance 
transformers” method for example (Collin, 2001; Pozar, 2005). As an illustration, thanks to 
lumped matching network as described in figure 2, the matching of impedances with a ratio 
of 4:1 results in a 10% fractional bandwidth for 1-stage and 30% thanks to 3-stages topology 
(Rebeiz, 2003). Of course, the tuning of elements can be applied in this case, not to tune the 
impedances to match but to improve the bandwidth (100% or more of the fractional 
bandwidth can be reached thanks to the tuning of the matching network). The price to pay is 
nevertheless an increase of the occupied surface and consequently the losses. This point 
limits the number of matching section to 2 or 3 stages depending on the requirements and 
chosen technology. 
Another gain, that can be expected from multistage-tuner, corresponds to power 
capabilities. Increasing the bandwidth by a reduction of the resonant behavior of circuits 
indeed translates into a reduction of both current and voltage in the network. For fixed I-V 
constraints on devices and especially on RF-MEMS varactors, for which reliability highly 
depends on currents passing through and voltages across, the power can be raised. This 
explains why distributed TL, loaded with RF-MEMS varactors, corresponds to a good 
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candidate for high bandwidth tuner (Shen & Barker, 2005) and/or medium power 
applications (Lu et al., 2005). 
The next paragraph presents the RF-MEMS technology, which is particularly attracting for 
tuner integration because of the available reconfigurable devices and the high performances 
they exhibit (Rebeiz, 2003). 

 
3. RF-MEMS Technology 
 

The selection of a technology for tuner applications is motivated by the envisioned 
performances expected for the circuits inside the whole system. As integration is required to 
address attractive applications of reconfigurable frond-end and advanced instrumentation 
systems, cumbersome rectangular waveguide solution with mechanical screw or ferrite for 
tunability is excluded. As far as high RF-performances is expected (the benefit from the 
integration of tuner should not be suppressed by a loose of performances), the tunability 
must reside in high quality components in term of:  

 low losses, to reach high VSWR, high impedance coverage, low added noise and 
high power efficiency, 

 high integration level, to assure a co-integration with active circuits and permit the 
integration of periodic loaded structures, 

 low power consumption, as integration of tens of switches/varactors is required 
per matching network and tens of them per microsystems,  

 high linearity to address load-pull applications as well as power amplifier 
matching ones. 

The figure 6 presents these 4 performances for 3 different technologies which are suitable for 
tunability implementation: using PIN diodes or Field Effect Transistors (MMIC), using 
rectangular waveguide solutions which are generally based on the use of ferrite and finally 
the RF-MEMS technology, which corresponds to an excellent challenger for tuner 
application. 

 
Fig. 6. Achievable tuners’ performances vs technologies 
 
One of the key features of RF-MEMS resides in their high quality factors of the resulting 
varactors. As already discussed, the tuner’s topologies generally involve varactors and 
transmission lines and their losses greatly impact the overall insertion losses, more 

 

especially as the resonant behavior of circuits is intentionally high. The figure 7 illustrates 
the impact of capacitor quality factor and line lineic losses on the insertion losses at 20GHz 
for a capacitively loaded stub (see the insert of the figure 7). It is then shown that quality 
factor of 30 or higher is mandatory for typical transmission line losses. This, once again, 
highlights the RF-MEMS devices, which generally exhibit quality factors greatly higher than 
30, whereas it corresponds to the maximum value obtained thanks to MMIC varactors built 
with FET transistors. 
 

 
Fig. 7. Impact of capacitor’s quality factor on the capacitively loaded stub insertion losses. 
 
Numerous RF-MEMS-technologies have been developed all around the world to fulfill 
specific requirements (frequency operation, power handling, RF-performances, ...) (Rebeiz, 
2003). The next two paragraphs present one of them, which has been developed at the 
LAAS-CNRS toward the integration of reconfigurable microwave passive networks over 
silicon active ICs (Grenier et al., 2005). 

 
3.1 RF MEMS devices technology 

 
Fig. 8. Process flow of RF MEMS devices 
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The RF-MEMS technology described in this chapter was specifically developed in order to 
fulfill the previously mentioned requirements in terms of IC compatibility, low losses, high 
isolation as well as medium power ability. The corresponding process flow is divided in six 
major steps, as illustrated in Fig. 8. It includes isolation from the lossy substrate, 
metallization for the RF lines and the mobile membrane, as well as a thin dielectric layer and 
integrated resistors.  
First, a polymer layer of 15 μm thick is spin-coated on top of a silicon wafer. It provides an 
excellent isolation between the future MEMS devices and the substrate (Grenier et al., 2004), 
which may include ICs for complete reconfigurable systems integration (Busquere et al., 
2006). This elevation from the substrate partly confines indeed the electrical fields into a 
lower loss tangent material instead of the lossy silicon. The polymer "Benzocyclobuten" 
from Dow Chemicals, which exhibits a loss tangent close to 2.10-4 in the GHz range, is used. 
After its spin-coating, a polymerization procedure is realized at 250°C under nitrogen flow, 
during one hour.  
An evaporated germanium layer is then patterned to realize integrated resistors. Other 
kinds of integrated resistors can be used such as silicon-chrome (Vähä-Heikkilä & Rebeiz, 
2004-a). Nevertheless, Germanium material exhibits high value of resistivity (Grenier et al., 
2007), which is in favor for low losses operation. Next step consists in the deposition of the 
RF lines metallization. In order to lower the metallic losses and also allow power handling 
through the MEMS devices, a high thickness of gold, 2 μm at least, is elaborated. Instead of 
an electroplating technique, which is particularly suitable for high metal thickness formation 
but suffers from roughness, a lift-off procedure is employed. The consequent minimization 
of the roughness enhances the contact quality between the metallic membrane and the 
MEMS dielectric and thus improves the accessible capacitive ratio.  
In a fourth step, the MEMS dielectric of 0.25 μm thick is performed at 300°C by Plasma 
Enhanced Chemical Vapor Deposition (PECVD). After its delimitation by dry etching, a 
sacrificial layer is deposited and patterned. A specific care is given to this layer in order: 

 to sustain the next technological steps, 
 to obtain a flat MEMS bridge; several depositions and photolithographic steps are 

consequently required to take the RF lines relief into account, 
 and to assure a good strength of the membrane anchorages. 

As an air gap of 3 μm between the MEMS bridge and the central conductor of the RF line is 
targeted, the sacrificial layer is defined with such a thickness.  
The metallic membrane is then obtained with two successive depositions: an evaporated 
gold layer of 0.2 μm, followed by an electroplated one of 1.8 μm. The evaporated metal, 
which exhibits important internal stress, is minimized to drastically decrease any risk of 
membrane's buckling. The gold bridge is then obtained with a classical wet etching.  
The next and most critical step of the process consists in the release of the MEMS structure. 
It corresponds to the suppression of the sacrificial layer through chemical etching, followed 
by its drying.  
Fig. 9 indicates the photography of a realized RF MEMS switch (which corresponds in fact 
to a varactor with a high capacitor ratio). This example includes a metallic membrane placed 
on top of a coplanar waveguide, with four membrane's anchorages and four integrated 
resistors. The bridge is composed of a central part, which assures the capacitor values, and 
two actuation electrodes located apart the line, which large surface decreases the required 
actuation voltage (close to 20-25 V generally) (Ducarouge et al., 2004).  

 

Such a MEMS switch may be modeled with an RLC electrical schematic, which is embedded 
between two transmission lines, as illustrated in the drawing of  
 

 

Components Values 
Lines:            Z0 

r,eff 
Length 

48 
3.085 

100µm 
LMEMS 28 pH 

CMEMS                  up 
down 

ratio 

70 fF 
2330 fF 

33 
Q @ 20GHz                up 

down 
>100 

28 
RMEMS 0.12 

Table 1. Electrical model of the RF MEMS switch 
 

 
Fig. 9. Photography of a classical RF MEMS switch 
 
The RMEMS resistor corresponds to losses in the metallic membrane. The LMEMS inductor is 
due (1) to the connecting arms between the central part of the bridge and the actuation 
electrodes and (2) to the suspension arms of the membrane itself. The capacitor's value 
CMEMS depends of the state of the bridge and of the regarding surface. Its ratio in the "up" 
and "down" states is a good indicator about the contact quality of the MEMS switch and the 
corresponding technology.  
As far as the access lines are concerned, they present a characteristic impedance close to 50 
Ohm with an effective relative permittivity of 3 and a length of 100 μm.  
The achievable RF performances of such an RF MEMS switch are presented in Fig. 10 in 
both up and down states of the membrane. At 20 GHz, the insertion losses are close to 
0.25dB (which include the contribution of the 200 μm long lines placed apart the 
membrane), whereas the isolation reaches 50 dB. The RF MEMS switch exhibits 
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2004-a). Nevertheless, Germanium material exhibits high value of resistivity (Grenier et al., 
2007), which is in favor for low losses operation. Next step consists in the deposition of the 
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between two transmission lines, as illustrated in the drawing of  
 

 

Components Values 
Lines:            Z0 

r,eff 
Length 
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down 
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2330 fF 

33 
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down 
>100 

28 
RMEMS 0.12 

Table 1. Electrical model of the RF MEMS switch 
 

 
Fig. 9. Photography of a classical RF MEMS switch 
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due (1) to the connecting arms between the central part of the bridge and the actuation 
electrodes and (2) to the suspension arms of the membrane itself. The capacitor's value 
CMEMS depends of the state of the bridge and of the regarding surface. Its ratio in the "up" 
and "down" states is a good indicator about the contact quality of the MEMS switch and the 
corresponding technology.  
As far as the access lines are concerned, they present a characteristic impedance close to 50 
Ohm with an effective relative permittivity of 3 and a length of 100 μm.  
The achievable RF performances of such an RF MEMS switch are presented in Fig. 10 in 
both up and down states of the membrane. At 20 GHz, the insertion losses are close to 
0.25dB (which include the contribution of the 200 μm long lines placed apart the 
membrane), whereas the isolation reaches 50 dB. The RF MEMS switch exhibits 
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consequently very low losses and high isolation, with a capacitor ratio of 33. Power tests 
have demonstrated that such an RF MEMS may handle up to 1W during 30 millions of 
cycles in hot switching. 

   
(a)     (b) 

Fig. 10. Simulations and measurements of an elementary RF MEMS switch in (a) up and (b) 
down positions 
 
A good agreement between modeling and measurements is achieved for both insertion 
losses (Fig. 10.a) and isolation (Fig. 10.b). These results validate the simple model used for 
the RF MEMS switch. A better fit at high frequency could however be reached if additional 
parasitic elements were considered, but it would highly complex the electrical model.  
Depending on the technology, device architecture and targeted application, various 
reliability performances under low (in the milliWatt range) and medium (in the Watt range) 
power in hot or cold switching (the RF-power is on or off – respectively- during the MEMS 
switching) can be found in the literature. The reliability of RF-MEMS is actually one major 
concern (together with packaging issues) of the RF-MEMS researches. Considered solutions 
aims to optimize as much as possible the different parameters, which limits the lifetime of 
RF-MEMS devices/circuits such as:  

(1) the actuation scheme of the devices. The frequency and the duty cycle of the 
biasing voltage have a high impact on the MEMS reliability (Van Spengen et al., 
2002; Melle et al., 2005), 

(2) the dielectric configuration, which is subject to charging. Some solutions to 
decrease the charging and/or enhance the discharging have already been 
proposed, such as adding holes (Goldsmith et al., 2007) or carbon-nanotubes 
(Bordas et al., 2007-b) in the dielectric for examples. In any case, dielectric charging 
is one major concern for high reliable RF-MEMS circuits, 

(3) the thermal effects in metal lines under medium RF-power. The consequent heat 
induces deformation of the mobile membrane (and even buckling), which results in 
mechanical failure (Bordas et al., 2007-a), 

(4) the electro-migration, as high current density, which is induced in metal line under 
medium RF-power, results in alteration of metallization and then alters the 
operation of the device. 

As far as the elaboration of tuner is concerned, many identical MEMS structures are 
required to form the complete circuit. However, some technological dispersions during the 
fabrication of MEMS structures may not be totally avoided, especially the contact quality 

 

between the metallic membrane and the MEM dielectric. Moreover as defined previously in 
(Shen & Barker, 2005), capacitive ratio of 2-5:1 are required. Consequently, new MEMS 
varactors, which integrate Metal-Insulator-Metal (MIM) capacitors, have been developed.  

 
3.2 RF MEMS varactor and associated technology 
Based on the previous RF-MEMS devices, MIM capacitors have been added. They are placed 
between the ground planes and the membrane anchorages, as indicated in Fig. 11. They 
present the high advantage of being very compact, contrary to Metal-Air-Metal (MAM) 
capacitors (Vähä-Heikkilä & Rebeiz, 2004-a), but at the detriment of quality factor due to 
additional dielectric losses. 

 
Fig. 11. Cross section view and photography of a RF MEMS switch with integrated MIM 
capacitors 
 
The precedent technological process flow has consequently been modified to integrate these 
MIM capacitors. Two additional steps are required. After the elaboration of the RF lines, the 
MIM dielectric (Silicon Nitride) is deposited by PECVD and patterned. A top metallization 
is realized by evaporation and delimited. The MEMS process restarts then with the 
deposition of the MEM dielectric and continue until the final release of the structure. 
Because of technological limitations, MIM capacitors have to present a value equal or higher 
than 126fF.  
The corresponding electrical model is slightly modified with the addition of a MIM 
capacitor, as shown in  
 

 

Components  
 

Values 
 

Line (µm) 105 
LMEMS (pH) 23,5 

CVAR(fF)      up 
down 

110 
500 

RMEMS (Ω)   up 
down 

2 
0,15 

Q@ 20GHz      up 
down 

36 
106 

CMIM(fF) 450 
Table 2. Electrical model of varactor with MIM capacitors 
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MIM dielectric (Silicon Nitride) is deposited by PECVD and patterned. A top metallization 
is realized by evaporation and delimited. The MEMS process restarts then with the 
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Components  
 

Values 
 

Line (µm) 105 
LMEMS (pH) 23,5 

CVAR(fF)      up 
down 

110 
500 

RMEMS (Ω)   up 
down 

2 
0,15 

Q@ 20GHz      up 
down 

36 
106 

CMIM(fF) 450 
Table 2. Electrical model of varactor with MIM capacitors 
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The MIM capacitor's value corresponds to 450fF, which leads to varactor's values (MEM and 
MIM capacitors in serial configuration) of 110 and 500fF in the up and down states 
respectively. It results in a capacitive ratio of 4.5 (Bordas, 2008).  
Vähä-Heikkilä et al. have proposed another solution for the reduction and control of the 
capacitor ratio. They used Metal-Air-Metal (MAM) capacitors with RF-MEMS attractors (see 
figure 12), which results in higher quality factor, as no dielectric losses appear in the MAM 
device. This results in a 150% improvement in the off-state quality factor, a value of 154 was 
indeed obtained at 20GHz (Vähä-Heikkilä & Rebeiz 2004-a) with MAM capacitors 100 times 
larger than MIM ones. 

 
Fig. 12. Metal-Air-Metal (MAM) capacitor associated with RF-MEMS varactors used for 
tuning elements in tuner (Vähä-Heikkilä & Rebeiz 2004-a) 
 
Despites these possible quality factors’ improvements, quality factors higher or around 30-
40 are sufficient to achieve low losses’ tuners, as suggested by the figure 7. RF-MEMS 
devices are consequently well adapted to tuner applications (and more generally all 
reconfigurable applications) as they also exhibit:  

(1) Controllable and predictable capacitor ratios in the range of 2-5:1, 
(2) Medium power capabilities, 
(3) Compatibility with a system-on-chip approach, 
(4) Low intermodulation. 

The next paragraph then presents an explicit method to design an RF-MEMS-based tuner. 

 
4. RF-MEMS Tuner Design methodology: example of the design of a building 
block 
 

4.1 Efficient Design Methodology 
Thanks to the RF-MEMS-varactors and associated technology presented in the last 
paragraph, we propose to detail and illustrate an explicit design methodology of TL-based 
impedance tuner. The design and characterization of a basic building block of tuner: a single 
stub architecture, presented in the figure 13, is detailed and discussed. The investigated 
structure is composed of 3 TL sections: 2 input/output accesses and 1 stub. Each line is 
loaded by 2 switchable varactors. When the loading capacitance is increased, the line 
electrical length is increased and the matching is tuned. Reconfigurable varactors can be 
realizable thanks to a switch, which address 2 different capacitors, or by the association of 
fixed and tunable capacitors as illustrated in the figure 13. 

 

 
Fig. 13. Tuner’s Topology 
 

The parameters, which have to be optimized, are:  
 
 the MIM capacitor value : CMIM (we consider that the MEMS capacitor – without the 

MIM- is fixed by the technological constraints), 
 the characteristic impedance of the unloaded line (without the varactors) : Z0, 
 the spacing s between the MEMS capacitor both for the input and the output lines 

and for the stub. 
 
It follows such targets :  
 an impedance coverage: 

1. as uniform as possible : target 1, 
2. providing high values of : target 2, 
3. providing also low values of : target 3, 

 Technological feasibility (this limits some dimensions). 
 

The target 3 is fulfilled when the characteristic impedance of the loaded line, with all 
MEMS in the up position (named Zc,up) is close to 50 :  
 

Zc,up =50  (1) 
 
The first target is difficult to be analytically expressed. To circumvent this difficulty, we 
propose to consider that this target is reached if, for each tuner’s transmission line (TL), 
presented in the figure 14, the phase difference of the reflection scattering parameter (S11) 
between the two MEMS states is 90°. Indeed, when a phase difference of 90° is reached for a 
TL, an half wise rotation is observed in the Smith Chart then leading to “a best impedance 
coverage”. 
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1. as uniform as possible : target 1, 
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 Technological feasibility (this limits some dimensions). 
 

The target 3 is fulfilled when the characteristic impedance of the loaded line, with all 
MEMS in the up position (named Zc,up) is close to 50 :  
 

Zc,up =50  (1) 
 
The first target is difficult to be analytically expressed. To circumvent this difficulty, we 
propose to consider that this target is reached if, for each tuner’s transmission line (TL), 
presented in the figure 14, the phase difference of the reflection scattering parameter (S11) 
between the two MEMS states is 90°. Indeed, when a phase difference of 90° is reached for a 
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Fig. 14. TL with tunable electrical length. This element corresponds to a generic building 
block of complex tuner architectures. 

 
To express this constraint, a parameter is introduced, which represents the two-states-
difference of the normalized length of TL, regarding the wavelength: 
 

 
(2) 

 
The impedance coverage will then be optimally uniform if:  

 
=1/4  (3) 

 
After some mathematical manipulations, the proposed figure of merit can be expressed as 

a function of the designed parameters:  
 

 
(4) 

 
where Kup=(Z0/Zc,up)2; R, s and r0 correspond to the capacitor ratio Cdown/Cup, the 

spacing between varactors and the relative permittivity of the unloaded line respectively. 
 
The design equation (4) then translates into an explicit expression of the capacitor ratio 

(then named Ropt), which permits to design the value of the MIM capacitors of the varactors:  

 
(5) 

 
(6) 

 
The optimal value of the MIM capacitor is finally deduced from this optimal capacitor ratio 
of the varactor and the up-state value of the MEMS devices (without MIM capacitor):  

 
(7) 

 
This last expression assumes that the MEMS capacitor ratio is large enough compared with 
the one of the resulting varactor. 

 

Finally, the target 2 is fulfilled when the down-state capacitor value of the varactor is 
sufficiently large to ‘short circuit the signal’, leading to the edge of the Smith Chart. As this 
value is already defined by the designed equation (4), the target 2 is optimized by tuning the 
s value, which is -on the other side- constrained by the Bragg condition (Barker & Rebeiz, 
1998) and the technological feasibility. The s value will then be a parameter to optimize 
iteratively in order to reach the best compromise between “wide impedance coverage (i.e. 
equation (1) and (4)) and “technological feasibility”. 
This procedure was applied to a single-stub tuner. Considering the RF-MEMS technology 
presented in the previous paragraph, the values summarized in the table 3 are reached after 
some iterations and totally defines the tuner of the figure 13. 

 
Transmission line Characteristic Impedance 63Ω 

MEMS capacitor (theoretical)                     up   
down 

70 fF 
4000 fF 

MIM capacitor  500 fF 
Total Capacitor                                             up 

down 
60 fF 
450 fF 

Total Capacitor Ratio 7-8 
Table 3. Values of the tuner’s parameters using the proposed methodology 

 
4.2 Measured RF-Performances 
The microphotography in figure 15 presents the fabricated single-stub tuner, whose 
electrical parameters are given in the table 3. The integration technology used has been 
developed at the LAAS-CNRS (Grenier et al. 2004; Grenier at al. 2005; Bordas, 2008) and, in 
order to integrate tuners with active circuits, the RF-MEMS devices were realized on silicon 
(2k.cm) with a BCB interlayer of 15 μm. 

 
Fig. 15. Micro-photography of the fabricated RF-MEMS single stub tuner (Bordas, 2008) 
 
The on-wafer 2-ports S parameters have been measured from 400 MHz to 30 GHz for the 
26=64 possible states. The DC feed lines for the varactors actuation have been regrouped and 
connected to an automated DC –voltages supplier through a probe card (see figure 16).  
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Fig. 16. Micro-photography of the fabricated tuner under testing 
 
The measured and simulated (with Agilent ADS) S11 parameters vs frequency, when all the 
MEMS devices are in the down position, are shown in fig. 17. This demonstrates the 
accuracy of the RF-MEMS technologies’ models over a wide frequency range.  
The fig. 18 presents the measured and simulated impedance coverage at 10, 12.4 and 14GHz 
(64 simulated impedance values and 47 measured ones) with 50  input and output 
terminations. There is a good agreement between the simulated and measured impedance 
coverage with high values of MAX and VSWR parameters as 0.82 and 10 are respectively 
obtained at 14 GHz.  

 
Fig. 17. Measured and simulated S11 parameter, when all MEMS devices are in the down 
position 
 

 

 
          measured at 10 GHz  measured at 12.4 GHz          measured at 14 GHz 
 

 
          simulated at 10 GHz   simulated at 12.4 GHz          simulated at 14 GHz 
Fig. 18. Measured and simulated impedances coverage of the tuner at 10, 12.4 and 14 GHz 
 
This result then validates the proposed design methodology as a wide impedance coverage 
is reached after the first set of fabrication. 
In term of tunable matching capability of the resulting circuit, the figure 19 presents the 
input impedances of the fabricated tuner, when the output is loaded by 20 Ω. The results 
demonstrate that the tuner is able to match 20 Ω on a 100 Ω input impedance (the 100 Ω 
circle is drawn in the Smith Chart of the figure 19). The corresponding impedance matching 
ratio of 5:1 is in the range of interest of a wide range of applications, where low noise or 
power amplifiers and antennas have to be matched under different frequency ranges.  
 

 
Fig. 19. Predicted input impedance coverage at 20 GHz. The output of the tuner is loaded by 
20 Ω. 
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coverage with high values of MAX and VSWR parameters as 0.82 and 10 are respectively 
obtained at 14 GHz.  

 
Fig. 17. Measured and simulated S11 parameter, when all MEMS devices are in the down 
position 
 

 

 
          measured at 10 GHz  measured at 12.4 GHz          measured at 14 GHz 
 

 
          simulated at 10 GHz   simulated at 12.4 GHz          simulated at 14 GHz 
Fig. 18. Measured and simulated impedances coverage of the tuner at 10, 12.4 and 14 GHz 
 
This result then validates the proposed design methodology as a wide impedance coverage 
is reached after the first set of fabrication. 
In term of tunable matching capability of the resulting circuit, the figure 19 presents the 
input impedances of the fabricated tuner, when the output is loaded by 20 Ω. The results 
demonstrate that the tuner is able to match 20 Ω on a 100 Ω input impedance (the 100 Ω 
circle is drawn in the Smith Chart of the figure 19). The corresponding impedance matching 
ratio of 5:1 is in the range of interest of a wide range of applications, where low noise or 
power amplifiers and antennas have to be matched under different frequency ranges.  
 

 
Fig. 19. Predicted input impedance coverage at 20 GHz. The output of the tuner is loaded by 
20 Ω. 
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5. Capabilities of RF-MEMS based tuner 
 

The previous paragraph has presented an illustration of the design of an RF-MEMS-based 
tuner in Ku and K-bands. Although the considered structure was quite simple (1-stub 
topology), the measured performances in term of VSWR and impedance coverage was very 
satisfactory. Of course, the presented design methodology is very generic and can also be 
applied for the design of more complicated tuner architecture. The figure 20 presents a 
double and triple stub tunable matching network. 
 

     
Fig. 20. RF-MEMS based tuner : double and triple stub architecture 
 
Despites the drawbacks of such structures in terms of occupied surface and insertion losses, 
their impedance coverage and maximum VSWR feature improved values compare to single 
stub structures. The figure 21 illustrates typical results expected from double and triple 
stubs tuners and demonstrates the power of the design methodology presented in the 
paragraph 4 as well as the capabilities of RF-MEMS technologies for the implementation of 
integrated tuners with high performances. Excellent impedance coverage was indeed 
predicted as well as high value of reflection coefficient in all the four quadrant of the Smith-
Chart. 

 
Fig. 21. Predicted impedance coverage of a 9 bits (2 stubs) and 12 bits (3 stubs) RF-MEMS 
tuner 
 
The simulations predict for both architectures a MAXvalue of 0.95 at 20GHz, which 
corresponds to a VSWR around 40. Compared with MMIC-tuner, RF-MEMS architectures 
clearly exhibit improvement in term of achievable VSWR. In Ka-band, the losses of FET or 
Diode limit the VSWR of tuner to 20 (McIntosh et al., 1999; Bischof, 1994), whereas as for RF-

 

MEMS-technology-based tuners exhibit values ranging from 32 (Kim et al., 2001) to even 199 
(Vähä-Heikkilä et al., 2007). It clearly points out the breakthrough obtained by using RF-
MEMS technologies for microwave and millimeterwave tuner applications. 
Moreover, the demonstration of high RF-performances of RF-MEMS-based tuner have been 
successfully carried out: 
1. on various architectures for 

o 1-stub (Vähä-Heikkilä et al., 2004-c; Dubuc et al., 2008; Bordas, 2008; Vähä-
Heikkilä et al. 2007), 

o 2-stubs (Papapolymerou et al., 2003; Kim et al., 2001; Vähä-Heikkilä et al., 2005; 
Vähä-Heikkilä et al., 2007) 

o 3-stubs (Vähä-Heikkilä et al., 2004-b; Vähä-Heikkilä et al., 2005; Vähä-Heikkilä 
et al., 2007) 

o Distributed TL (Lu et al., 2005; Qiao et al., 2005; Shen & Barker, 2005; 
Lakshminarayanan & Weller, 2005; Vähä-Heikkilä  & Rebeiz, 2004-a) 

As anticipated (Collin, 2001), the VSWR rises when the number of stubs increases. 
The table 4 presents the  MAXand VSWR values for 1, 2 and 3-stubs RF-MEMS 
tuners. Value around 40 is achieved at 16 GHz for a 3-stub structure, which 
corresponds to a 100% improvement compare with a 1-stub network, but at the 
expense of 70% rise of the occupied surface.  
 

Architecture 1- stub tuner 2- stub tuner 3-stub tuner 

MAX@ 16 GHz 0,91 0,93 0,95 
VSWR @ 16 GHz 21 28 39 

Table 4. ΓMAX and VSWR vs tuner architecture (Vähä-Heikkilä et al., 2007) 
 
2. Over a wide frequency range from 4 to 115 GHz :  

o C-band (Vähä-Heikkilä & Rebeiz, 2004-a), 
o X-band (Vähä-Heikkilä & Rebeiz, 2004-a; Vähä-Heikkilä et al., 2004-b; Qiao et 

al., 2005), 
o Ku-band(Papapolymerou et al., 2003; Vähä-Heikkilä et al., 2006), 
o K-band (Dubuc et al., 2008; Bordas, 2008; Shen & Barker, 2005), 
o Ka-band (Kim et al., 2001; Lu et al., 2005, Vähä-Heikkilä & Rebeiz, 2004-d), 
o U and V-band (Vähä-Heikkilä et al., 2004-c) 
o W-band (Vähä-Heikkilä et al., 2005) 
 
One can notice that high values of MAXand VSWR are generally achieved for 
high frequency operation. This is suggested by the datas reported in the table 5, 
which reports a tuner with an optimized impedance coverage at 16 GHz. At this 
frequency, a VSWR of 28 is measured, whereas at 30 GHz an impressive value of 
199 is reported.  
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Frequency 6 GHz 8 GHz 12 GHz 16 GHz* 20 GHz 30 GHz 

MAX 0,95 0,94 0,91 0,93 0,96 0,99 
VSWR 39 32 21 28 49 199 

* Optimal impedance coverage of the Smith-Chart 
Table 5.  MAXand VSWR vs frequency for a 2-stubs tuner (Vähä-Heikkilä et al., 2007) 

 
A tradeoff between impedance coverage and high value of MAXand VSWR then 
exists and both features need to be considered for fair comparison. 

 
6. Conclusions 
 

This chapter has presented the design, technology and performances of RF-MEMS-based 
tuners. Various architectures have been presented in order to give a large overview of tuner-
topologies. An efficient and explicit design methodology has been explained and illustrated 
through a practical example. The authors have moreover outlined the potential of RF-MEMS 
technologies for different applications (tunable impedance matching between integrated 
functions within smart microsystems, wide impedance values generations for devices 
characterization) because of their ability for IC-co-integration, low losses performances and 
low distortion characteristics.  
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