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1. Introduction     
 

Shared building blocks and power are required for the coexistence of a dual-band 
multimode wireless local area network and a mobile communication system. Therefore 
dual-passband bandpass filters have become key components at the front end of a 
concurrent dual-band receiver. There are several studies on dual-passband filters [1-9]. With 
sharper passband skirt, lower insertion loss and better selectivity may be resulted in the 
Zolotarev bandpass filters [1]. In [2], the dual-band filter is constructed with two parallel 
sets of filters. The frequency-selective resonators [3-6], stepped-impedance resonators [7, 8] 
and coupled resonator pairs [9] are also employed to design dual-passband filters. 
In this article, we use low-temperature co-fired ceramic [10-15] technology to implement the 
three-dimensional (3D) multi-passband bandpass filters. Figure 1 shows the architecture of 
the proposed multi-passband bandpass filter, which is composed of multi-sectional short-
circuit transmission lines and connected transmission lines. These transmission lines can be 
transferred individually to multilayered structure. Moreover, the short-circuit transmission 
lines may make more obvious isolation between passbands [16-18]. As a result, the 
proposed filter with controllable multiple passbands can be easily achieved by properly 
choosing the impedance and electrical length of each short-circuit transmission line and the 
connected transmission line. 

 
2. Equivalent for filter synthesis 
 

The immittance inverter [19] is adopted in this article to analyze the proposed filter. The 
transformed circuit of a transmission line shown in Fig. 2 can be utilized in the n-ordered 
multi-passband bandpass filter. Moreover, the transformed admittance inverter of the 
transmission line can be expressed as 

csci i iJ Y   (1) 
where Yi and i are the corresponding admittance and electrical length of the  transmission 
line, respectively. 
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Fig. 1. Architecture of the proposed bandpass filter with multiple controllable passbands
 

 
Fig. 2. Transformed circuit of the transmission line 
 
By substituting the transformed transmission lines into the architecture in Fig. 1, the 
equivalent circuit of the proposed n-ordered multi-passband bandpass filter can be obtained 
as Fig. 3. The susceptance and its slope parameter are, respectively, given by 
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Moreover, in order to match system’s impedance, 50 , the input/output J-inerter J01 and 
Jn,n+1 need to be set as 0.02. 

 
Fig. 3. Equivalent circuit of the proposed n-ordered multi-passband filter 
 
As extremely complex procedures are required for generalized formulas to synthesize the 
proposed multi-passband bandpass filter, only formulas for dual-passband filter synthesis 
are provided in detail. On the other hand, design examples of the triple- and quadruple-
passband filters are offered without detailed equations. 

 
3. Design of the dual-passband filter 
 

To design the dual-passband filters, m = 2 should be selected. 1 and 2 are the 
corresponding fractional bandwidths of the first and second passband’s central frequency, f1 
and f2, respectively. The susceptances and their slope parameters are, respectively, given by 
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Fig. 1. Architecture of the proposed bandpass filter with multiple controllable passbands
 

 
Fig. 2. Transformed circuit of the transmission line 
 
By substituting the transformed transmission lines into the architecture in Fig. 1, the 
equivalent circuit of the proposed n-ordered multi-passband bandpass filter can be obtained 
as Fig. 3. The susceptance and its slope parameter are, respectively, given by 
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where Y0 = Yn = 0. 
Consequently, we can obtain the following equations 
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where gi’s are the element values of the prototypical lowpass filter. 
The procedures of developing the bandpass filter with controllable dual passbands are 
provided below. 

 
3.1 Formula development 
A. Equal bandwidth (1 f1 = 2 f2) 
With i1 = i2 = i = 0 and Rf as the ratio of f2 to f1, the following equations are derived 
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As the fractional bandwidth of the passband is characterized by the 3 dB band-edge 
frequency of lower and upper bands, a steeper slope and a narrower bandwidth in the 
passband may be obtained with an increasing order of the filter. As a result, the formula of 
1 needs to be modified. With the assistance of statistical inferences, the orders, 1 and Rf of 
the proposed dual-passband filter should be in the range of 3-8, 1-21% and 1.5-4, 
respectively. Therefore the modified formula can be expressed as 
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B. Unequal bandwidth (1 f1  2 f2) 
When the bandwidths of two passbands are unequal, the electrical lengths, i1 and i2, are 
not equal, either. With i1 = b and i2 = i-1 = i = a, the following equations are obtained 
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Similarly, the orders, 1 and Rf of the proposed dual-passband filter should be in the range 
of 3-6, 2-15% and 2.17-3.5, respectively. Therefore the formula of 1 needs to be modified as 
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where Y0 = Yn = 0. 
Consequently, we can obtain the following equations 
 

2 2
1 2

, 1 1 2
1 1

,    for   1, , 1i i
i i i i

b bJ i n
g g g g

 

       (7) 

1 1 2 2b b    (8) 
where gi’s are the element values of the prototypical lowpass filter. 
The procedures of developing the bandpass filter with controllable dual passbands are 
provided below. 

 
3.1 Formula development 
A. Equal bandwidth (1 f1 = 2 f2) 
With i1 = i2 = i = 0 and Rf as the ratio of f2 to f1, the following equations are derived 
 

2 1fb R b  (9) 

0 0sec( ) sec( )fR    (10) 

0 1
0

1

sini
S i i

g gY
R g g




   (11) 

0 1
11 1

1 0
t

S

g gY Y
R 

 


 (12) 

2
2 1 0 0

2 1 0
0 1

sectan S it
i i

R YY Y
g g
 

 
   

 

 (13) 

1it i iY Y Y   (14) 
As the fractional bandwidth of the passband is characterized by the 3 dB band-edge 
frequency of lower and upper bands, a steeper slope and a narrower bandwidth in the 
passband may be obtained with an increasing order of the filter. As a result, the formula of 
1 needs to be modified. With the assistance of statistical inferences, the orders, 1 and Rf of 
the proposed dual-passband filter should be in the range of 3-8, 1-21% and 1.5-4, 
respectively. Therefore the modified formula can be expressed as 
 

1 1 2m a aMF MF    (15) 
where 

   1
4

0.9 ( 1.5) 0.5 0.2( 3) 0.25 0.08( 4)
N

a f
i

MF R N i


         (16) 

 1 1

2 1 1

1 1

( 1) 0.01( 1) ,     1% 14%
( 1) 0.08( 1),       15% 20%
( 1) ,                              21%

a

MF N
MF MF N

MF

       


       
    

 (17) 

 
 

0.76,                                                                 3 and 1.5

0.76 1.29 ( 4) ,                                    4 and 1.5

0.76 1.29 ( 4) 1.31 0.75( 2) ,    4 and 

f

f

f

N R

MF A N N R

A N R N

 

    

       1.5fR








 
(18) 

0.18,       3 5
0.12,      6 8

N
A

N
 

   
 (19) 

B. Unequal bandwidth (1 f1  2 f2) 
When the bandwidths of two passbands are unequal, the electrical lengths, i1 and i2, are 
not equal, either. With i1 = b and i2 = i-1 = i = a, the following equations are obtained 
 

1 2f
B D R
C E

        
   

 (20) 

0 1

1

sini a
S i i

g gY
R g g




   (21) 

2

1
4

2i
Q Q PS

Y
P

  
  (22) 

2i
G HY
K


  (23) 

where 
2 2

2 2

tan sec tan sec cot tan cot( ) tan( )

      tan csc tan tan tan( ) tan( ) cot sec

      tan tan tan( ) tan( )

a b a b a b a b f a f b

a b a a b f a f b b a b

a b f a f b

B R R

R R

R R

         

         

   

        
      

   

 
(24) 

 2tan sec tan( ) tan( ) tan cota b f a f b b bC R R          (25) 
2

2

2

tan( )sec ( ) cot tan cot( ) tan( )

      tan( )csc ( ) tan tan tan( ) tan( )

      tan sec ( ) cot tan( ) tan cot( )

a f b f a a b f a f b

a f b f a a b f a f b

b b f b a f a a f a

D R R R R

R R R R

R R R

      

      

      

    
    

    

 (26) 

2

2

tan( ) tan( ) tan ( ) tan tan tan( )

      cot cot tan ( ) tan( )
f a f a f b a b f b

a b f a f b

E R R R R

R R

     

   

  



 (27) 

2 2 2
1 ( tan sec tan sec )i a b a b a bG Y         (28) 

1 12 tani aH Y b   (29) 
2 2

12 tan cot sec tan cscb it b a b it a b aK b Y Y          (30) 
2 4 2 4 2 2tan cot sec tan cot sec 2 sec seca b a a b a b b a b a bP                (31) 

2 2 2 2 2 2 2 2
1

2
1

2 tan sec csc sec sec tan tan csc sec

      tan sec (tan cot )
it a b a a a a b it a b a b a b

b a b b b

Q Y b Y

b

            

    

  
 

 (32) 

2 2 4 2 2 2cot ( cot sec tan sec csc )it a b b b a b a aS Y           (33) 
Similarly, the orders, 1 and Rf of the proposed dual-passband filter should be in the range 
of 3-6, 2-15% and 2.17-3.5, respectively. Therefore the formula of 1 needs to be modified as 
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3.2 Simulation and Experimental Results 
Following are design examples of the three-ordered dual-passband bandpass filters with 
multilayered structure. Below are fabricated examples categorized by two passbands with 
equal or unequal bandwidths. 
A. Two passbands with equal bandwidth (1 f1 = 2 f2) 
Figure 4 shows the three-ordered dual-passband filter. The central frequencies of two 
passbands are set at 2 and 5.3 GHz. The bandwidth of both passbands is chosen as 260 MHz, 
which is 13% of the first passband’s central frequency. Moreover, the selected ripple for the 
prototypical Chebyshev lowpass filter is 0.01 dB. As a result, the electrical length 0 and the 
impedances Z11, Z12, Z21, Z22 and Z1 are obtained as 49.3o, 14.59, 14.64, 17.75, 27.71 and 81.9 
, respectively. According to these calculated parameters, theoretical predictions of the 
dual-passband bandpass filter are shown in Fig. 5c. Furthermore, with the assistance of full-
wave electromagnetic simulatorSonnet (Sonnet Software Inc.), these calculated parameters 
are converted into the multilayered structure. 
 

 
Fig. 4. Architecture of the three-ordered dual-passband filter whose passbands have equal 
bandwidth 
 
The proposed multilayered dual-passband bandpass filter is fabricated on Dupont 951, 
whose dielectric constant and loss tangent are 7.8 and 0.0045, respectively. The multilayered 
2/5.3 GHz bandpass filter is designed on 11 substrates of 0.09 mm, and its overall size is 4.98 
mm  4.01 mm  0.99 mm. Figures 5a and 5b show the 3D architecture and the photograph 
of this fabricated filter; Fig. 5c also presents the measured results. 
 

       
(a) 3D architecture                                                          (b)  Photograph 

 

 
(c) Responses of the theoretical prediction and measurement 

Fig. 5. Three-ordered 2/5.3 GHz dual-passband bandpass filter whose passbands have equal 
bandwidth 
 
On the one hand, within the first passband (1.8-2.2 GHz), the measured insertion loss is < 1.6 
dB, whereas the return loss is > 18 dB. On the other hand, within the second passband (5.16-
5.51 GHz), the measured insertion loss is < 2.2 dB, whereas the return loss is also > 18 dB. 
B. First passband with greater bandwidth (1 f1 > 2 f2) 
Figure 6 shows the architecture of the three-ordered dual-passband filter. The central 
frequencies of two passbands are set at 2 and 5.3 GHz. The bandwidths of the first and 
second passband are chosen as 300 and 200 MHz, respectively, which are 15% and 10% of 
the first passband’s central frequency. Moreover, the selected ripple for the prototypical 
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A. Two passbands with equal bandwidth (1 f1 = 2 f2) 
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which is 13% of the first passband’s central frequency. Moreover, the selected ripple for the 
prototypical Chebyshev lowpass filter is 0.01 dB. As a result, the electrical length 0 and the 
impedances Z11, Z12, Z21, Z22 and Z1 are obtained as 49.3o, 14.59, 14.64, 17.75, 27.71 and 81.9 
, respectively. According to these calculated parameters, theoretical predictions of the 
dual-passband bandpass filter are shown in Fig. 5c. Furthermore, with the assistance of full-
wave electromagnetic simulatorSonnet (Sonnet Software Inc.), these calculated parameters 
are converted into the multilayered structure. 
 

 
Fig. 4. Architecture of the three-ordered dual-passband filter whose passbands have equal 
bandwidth 
 
The proposed multilayered dual-passband bandpass filter is fabricated on Dupont 951, 
whose dielectric constant and loss tangent are 7.8 and 0.0045, respectively. The multilayered 
2/5.3 GHz bandpass filter is designed on 11 substrates of 0.09 mm, and its overall size is 4.98 
mm  4.01 mm  0.99 mm. Figures 5a and 5b show the 3D architecture and the photograph 
of this fabricated filter; Fig. 5c also presents the measured results. 
 

       
(a) 3D architecture                                                          (b)  Photograph 

 

 
(c) Responses of the theoretical prediction and measurement 

Fig. 5. Three-ordered 2/5.3 GHz dual-passband bandpass filter whose passbands have equal 
bandwidth 
 
On the one hand, within the first passband (1.8-2.2 GHz), the measured insertion loss is < 1.6 
dB, whereas the return loss is > 18 dB. On the other hand, within the second passband (5.16-
5.51 GHz), the measured insertion loss is < 2.2 dB, whereas the return loss is also > 18 dB. 
B. First passband with greater bandwidth (1 f1 > 2 f2) 
Figure 6 shows the architecture of the three-ordered dual-passband filter. The central 
frequencies of two passbands are set at 2 and 5.3 GHz. The bandwidths of the first and 
second passband are chosen as 300 and 200 MHz, respectively, which are 15% and 10% of 
the first passband’s central frequency. Moreover, the selected ripple for the prototypical 
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Chebyshev lowpass filter is 0.01 dB. With the electrical length a as 35.9o, the electrical length 
b and the impedances Z11, Z12, Z21, Z22 and Z1 are then obtained as 64.3o, 14.17, 13.44, 18.64, 
28.34 and 88.24 , respectively. According to these calculated parameters, theoretical 
predictions of the dual-passband bandpass filter are shown in Fig. 7c. 

 
Fig. 6. Architecture of the three-ordered dual-passband filter whose passbands have unequal 
bandwidths 
 
The multilayered 2/5.3 GHz bandpass filter is fabricated on 12 substrates of 0.09 mm, and 
its overall size is 4.98 mm  4.06 mm  1.08 mm. Figures 7a and 7b show the 3D architecture 
and the photograph of this fabricated filter; Fig. 7c also presents the measured results. 
 

      
(a) 3D architecture                                                 (b) Photograph 

 

 
(c) Responses of the theoretical prediction and measurement 

Fig. 7. Three-ordered 2/5.3 GHz dual-passband bandpass filter whose first passband’s 
bandwidth is greater 
 
On the one hand, within the first passband (1.79-2.35 GHz), the measured insertion loss is < 
1.6 dB, whereas the return loss is > 20 dB. On the other hand, within the second passband 
(5.2-5.5 GHz), the measured insertion loss is < 2.1 dB, whereas the return loss is > 15 dB. 
C. First passband with smaller bandwidth (1 f1 < 2 f2) 
Figure 6 also shows the architecture of the three-ordered dual-passband filter. The central 
frequencies of two passbands remain as 2 and 5.3 GHz. The bandwidths of the first and 
second passband are chosen as 200 and 300 MHz, respectively, which are 10% and 15% of 
first passband’s central frequency. Moreover, the selected ripple for the prototypical 
Chebyshev lowpass filter is 0.01 dB. With the electrical length a as 51o, the electrical length  
 

     
(a) 3D architecture                                         (b) Photograph 
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On the one hand, within the first passband (1.79-2.35 GHz), the measured insertion loss is < 
1.6 dB, whereas the return loss is > 20 dB. On the other hand, within the second passband 
(5.2-5.5 GHz), the measured insertion loss is < 2.1 dB, whereas the return loss is > 15 dB. 
C. First passband with smaller bandwidth (1 f1 < 2 f2) 
Figure 6 also shows the architecture of the three-ordered dual-passband filter. The central 
frequencies of two passbands remain as 2 and 5.3 GHz. The bandwidths of the first and 
second passband are chosen as 200 and 300 MHz, respectively, which are 10% and 15% of 
first passband’s central frequency. Moreover, the selected ripple for the prototypical 
Chebyshev lowpass filter is 0.01 dB. With the electrical length a as 51o, the electrical length  
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(c) Responses of the theoretical prediction and measurement 

Fig. 8. Three-ordered 2/5.3 GHz dual-passband bandpass filter whose first passband’s 
bandwidth is smaller 
 
b and the impedances Z11, Z12, Z21, Z22 and Z1 are then obtained as 47.1o, 11.89, 11.2, 11.28, 
13.69 and 74.59 , respectively. According to these calculated parameters, theoretical 
predictions of the dual-passband bandpass filter are shown in Fig. 8c. 
The multilayered 2/5.3 GHz bandpass filter is fabricated on 10 substrates of 0.09 mm, and 
its overall size is 4.98 mm  3.6 mm  0.9 mm. Figures 8a and 8b show the 3D architecture 
and the photograph of this fabricated filter; Fig. 8c also presents the measured results. 
On the one hand, within the first passband (1.85-2.22 GHz), the measured insertion loss is < 
1.8 dB, whereas the return loss is > 20 dB. On the other hand, within the second passband 
(5.14-5.62 GHz), the measured insertion loss is < 2.5 dB, whereas the return loss is > 18 dB. 

 
4. Multi-passband filter fabrication 
 

The multi-passband filter can be obtained from (1) to (4). The fabricated examples of triple- 
and quadruple-passband filters are introduced below. 

 
4.1 Triple-passband filter 
Figure 9 shows the architecture of the three-ordered triple-passband filter. The central 
frequencies of three passbands are set as 2, 5 and 8 GHz. The bandwidths of the first, second 
and third passband are chosen as 200, 300 and 200 MHz, respectively, which are 10%, 15% 
and 10% of the first passband’s central frequency. Moreover, the selected ripple for the 
prototypical Chebyshev lowpass filter is 0.01 dB. With the electrical length a as 35.5o, the 
electrical length b and the impedances Z11, Z12, Z13, Z21, Z22, Z23 and Z1 are then obtained as 
37.2o, 20.3, 17.51, 20.34, 29.89, 13.21, 29.84 and 67.7 , respectively. According to these 
calculated parameters, theoretical predictions of the triple-passband bandpass filter are 
shown in Fig. 10c. 

 
Fig. 9. Architecture of the three-ordered triple-passband filter whose passbands have 
unequal bandwidths 
 
The multilayered 2/5/8 GHz bandpass filter is fabricated on 10 substrates of 0.09 mm, and 
its overall size is 4.72 mm  3.7 mm  0.9 mm. Figures 10a and 10b show the 3D architecture 
and the photograph of this fabricated filter; Fig. 10c also presents the measured results. 
 

          
(a) 3D architecture                                           (b) Photograph 
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(c) Responses of the theoretical prediction and measurement 

Fig. 8. Three-ordered 2/5.3 GHz dual-passband bandpass filter whose first passband’s 
bandwidth is smaller 
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shown in Fig. 10c. 
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The multilayered 2/5/8 GHz bandpass filter is fabricated on 10 substrates of 0.09 mm, and 
its overall size is 4.72 mm  3.7 mm  0.9 mm. Figures 10a and 10b show the 3D architecture 
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(c) Responses of the theoretical prediction and measurement 

Fig. 10. Three-ordered 2/5/8 GHz triple-passband bandpass filter whose second passband’s 
bandwidth is greater 
 
Within the first passband (1.66-2.11 GHz), the measured insertion loss is < 1.4 dB, whereas 
the return loss is > 16.8 dB. Moreover, within the second passband (4.6-5.35 GHz), the 
measured insertion loss is < 1.8 dB, whereas the return loss is > 16 dB. Furthermore, within 
the third passband (7.84-8.14 GHz), the measured insertion loss is < 3 dB, whereas the return 
loss is > 15 dB. 

 
4.2 Quadruple-passband filter 
Figure 11 shows the architecture of the three-ordered quadruple-passband filter. The central 
frequencies of four passbands are set as 2, 5, 8 and 11.3 GHz. The bandwidth of four 
passbands is all chosen as 180 MHz, which is 9% of the first passband’s central frequency. 
Moreover, the selected ripple for the prototypical Chebyshev lowpass filter is 0.01 dB. As a 
result, the electrical length 0 and the impedances Z11, Z12, Z13, Z14, Z21, Z22, Z23, Z24 and Z1 
are obtained as 26.8o, 21.79, 19.61, 22.74, 14.54, 27.49, 16.01, 14.04, 19.84 and 71.5 , 
respectively. According to these calculated parameters, theoretical predictions of the 
quadruple-passband bandpass filter are shown in Fig. 12c. 
 

 
Fig. 11. Architecture of the three-ordered quadruple-passband filter whose passbands have 
equal bandwidth 
 

      
(a) 3D architecture                                             (b) Photograph 
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(c) Responses of the theoretical prediction and measurement 

Fig. 10. Three-ordered 2/5/8 GHz triple-passband bandpass filter whose second passband’s 
bandwidth is greater 
 
Within the first passband (1.66-2.11 GHz), the measured insertion loss is < 1.4 dB, whereas 
the return loss is > 16.8 dB. Moreover, within the second passband (4.6-5.35 GHz), the 
measured insertion loss is < 1.8 dB, whereas the return loss is > 16 dB. Furthermore, within 
the third passband (7.84-8.14 GHz), the measured insertion loss is < 3 dB, whereas the return 
loss is > 15 dB. 

 
4.2 Quadruple-passband filter 
Figure 11 shows the architecture of the three-ordered quadruple-passband filter. The central 
frequencies of four passbands are set as 2, 5, 8 and 11.3 GHz. The bandwidth of four 
passbands is all chosen as 180 MHz, which is 9% of the first passband’s central frequency. 
Moreover, the selected ripple for the prototypical Chebyshev lowpass filter is 0.01 dB. As a 
result, the electrical length 0 and the impedances Z11, Z12, Z13, Z14, Z21, Z22, Z23, Z24 and Z1 
are obtained as 26.8o, 21.79, 19.61, 22.74, 14.54, 27.49, 16.01, 14.04, 19.84 and 71.5 , 
respectively. According to these calculated parameters, theoretical predictions of the 
quadruple-passband bandpass filter are shown in Fig. 12c. 
 

 
Fig. 11. Architecture of the three-ordered quadruple-passband filter whose passbands have 
equal bandwidth 
 

      
(a) 3D architecture                                             (b) Photograph 
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(c) Responses of the theoretical prediction and measurement 

Fig. 12. Three-ordered 2/5/8/11.3 GHz quadruple-passband bandpass filter 
 
The multilayered 2/5/8/11.3 GHz bandpass filter is fabricated on 12 substrates of 0.09 mm, 
and its overall size is 4.72 mm  3.7 mm  1.08 mm. Figures 12a and 12b show the 3D 
architecture and the photograph of this fabricated filter; Fig. 12c also presents the measured 
results. 
Within the first passband (1.77-2.3 GHz), the measured insertion loss is < 1 dB, whereas the 
return loss is > 17 dB. Moreover, within the second passband (5.14-5.48 GHz), the measured 
insertion loss is < 1.8 dB, whereas the return loss is > 16 dB. In addition, within the third 
passband (8.06-8.4 GHz), the measured insertion loss is < 3 dB, whereas the return loss is > 
15 dB. Furthermore, within the fourth passband (11.05-11.85 GHz), the measured insertion 
loss is < 4 dB, whereas the return loss is > 12.5 dB. 

 
5. Conclusion 
 

A novel structure of the multi-passband bandpass filters has been proposed in this article. 
Multi-sectional short-circuit transmission lines shunted with transmission lines are utilized. 
By properly choosing the proposed structure’s electrical lengths and impedances, multiple 
passbands can be easily controlled. 
In addition, the design procedures have been described in detail, and 3D architectures are 
provided. Because of the parasitic effect among capacitors for a physical 3D circuit, there is 
some slight difference between the theoretical predictions and measured results. However, 
generally speaking, the measured results match well with the theoretical predictions. 
Therefore with high integration and compact size, the proposed multi-passband filter is 
suitable for implementation in a multi-chip module. 
By the way, because insertion loss measurement is related to the degree and bandwidth of a 
filter, the performance of a filter with resonators can be well indicated by translating the 
measurement into an unloaded Q of a resonator. 
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(c) Responses of the theoretical prediction and measurement 

Fig. 12. Three-ordered 2/5/8/11.3 GHz quadruple-passband bandpass filter 
 
The multilayered 2/5/8/11.3 GHz bandpass filter is fabricated on 12 substrates of 0.09 mm, 
and its overall size is 4.72 mm  3.7 mm  1.08 mm. Figures 12a and 12b show the 3D 
architecture and the photograph of this fabricated filter; Fig. 12c also presents the measured 
results. 
Within the first passband (1.77-2.3 GHz), the measured insertion loss is < 1 dB, whereas the 
return loss is > 17 dB. Moreover, within the second passband (5.14-5.48 GHz), the measured 
insertion loss is < 1.8 dB, whereas the return loss is > 16 dB. In addition, within the third 
passband (8.06-8.4 GHz), the measured insertion loss is < 3 dB, whereas the return loss is > 
15 dB. Furthermore, within the fourth passband (11.05-11.85 GHz), the measured insertion 
loss is < 4 dB, whereas the return loss is > 12.5 dB. 

 
5. Conclusion 
 

A novel structure of the multi-passband bandpass filters has been proposed in this article. 
Multi-sectional short-circuit transmission lines shunted with transmission lines are utilized. 
By properly choosing the proposed structure’s electrical lengths and impedances, multiple 
passbands can be easily controlled. 
In addition, the design procedures have been described in detail, and 3D architectures are 
provided. Because of the parasitic effect among capacitors for a physical 3D circuit, there is 
some slight difference between the theoretical predictions and measured results. However, 
generally speaking, the measured results match well with the theoretical predictions. 
Therefore with high integration and compact size, the proposed multi-passband filter is 
suitable for implementation in a multi-chip module. 
By the way, because insertion loss measurement is related to the degree and bandwidth of a 
filter, the performance of a filter with resonators can be well indicated by translating the 
measurement into an unloaded Q of a resonator. 
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