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1. Introduction 
 

The widely applied framework for calibrating measurement systems is described in the 
GUM – The Guide to the Expression of Uncertainty in Measurements (ISO GUM, 1993). 
Despite its claimed generality, it is evident that this guide focuses on measurements of 
stationary quantities described by any finite set of constant parameters, such as any constant 
or harmonic signal. Non-stationary measurements are nevertheless ubiquitous in modern 
science and technology. An expected non-trivial unique time-dependence, as for instance in 
any type of crash test, is often the primary reason to perform a measurement. Many 
formulations of the guide are indeed difficult to interpret in a dynamic context. For instance, 
correction and uncertainty are referred to as being universal constant quantities for direct 
interpretation. These claims seize to be true for non-stationary dynamic measurements. 
A measurement is here defined as stationary if a time-independent parameterization of the 
quantity of interest is used. The classification is thus relative, and ultimately depends on 
personal ability and taste. A given measurement may be stationary in one context but not in 
another. Static and stationary measurements can be analysed similarly (ISO GUM, 1993) 
since constant parameters are used in both cases. 
The term ‘dynamic’ is frequently used, but with rather different meanings. The use of the 
term ‘dynamic measurement’ is often misleading as it normally refers to the mere time-
dependence, which itself never requires a dynamic analysis. Instead, the classification into a 
dynamic or static measurement that will be adopted refers to the relation between the 
system and the signal: “The key feature that distinguishes a dynamic from a static 
measurement is the speed of response (bandwidth) of the measurement systems as 
compared to the speed at which the measured signal is changing” (Esward, 2009, p. 1). 
This definition indirectly involves the acceptable accuracy through the concept of response 
time or bandwidth. In this formulation, a dynamic responds much slower than a static 
measurement system and therefore needs a dynamic rather than a static analysis. The 
relativity between the system and the signal is crucial – no signal or system can be ‘dynamic’ 
on its own. A static analysis is often sufficient whether it refers to a measurement of a 
constant, stationary or non-stationary time-dependent quantity. Indirectly and misleadingly 
the guide (ISO GUM, 1993) indicates that this is always the case. This is apparent from the 
lack of discussion of e.g. differential or difference model equations, time delay, temporal 
correlations and distortion. The difference between ensemble and time averages is not 
mentioned, but is very important for non-stationary non-ergodic measurements.  

9
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Even strongly imprecise statements of measurement uncertainty may in practice have 
limited consequences. It may be exceedingly difficult to even illustrate an incorrect analysis 
due to neglect or erroneous treatment of dynamic effects. Dynamic artefacts or fundamental 
physical signals corresponding to fundamental constants like the unit of electric charge do 
not exist. These aspects are probably the cause to why dynamic analysis still has not 
penetrated the field of metrology to the same extent as in many other related fields of 
science and engineering. By limiting the calibration services to only include 
characterizations and not provide methods or means to translate this information to the 
more complex targeted measurement, the precious calibration information can often not be 
utilized at all (!) to assess the quality of the targeted measurement. The framework Dynamic 
Metrology presented in this chapter is devoted to bridge this gap from a holistic point of 
view. The discussion will focus on concepts from a broad perspective, rather than details of 
various applications. Referencing will be sparse. For a comprehensive exploration and list of 
references the reader is advised to study the original articles (Hessling, 2006; 2008a-b; 
2009a), which provide the basis of Dynamic Metrology. 

 
2. Generic aspects of non-stationary dynamic measurements 
 

The allowed measurement uncertainty enters into the classification of dynamic 
measurements through the definitions of response time of the system and change of rate of 
possible signals. This is plausible since the choice of tools and analysis (static/stationary or 
dynamic) is determined by the acceptable accuracy. 
As recognized a long time ago by the novel work of Wiener in radar applications (Wiener, 
1949), efficient dynamic correction will always involve a subtle balance between reduction 
of systematic measurement errors and unwanted amplification of measurement noise. How 
these contributions to the measurement uncertainty combines and changes with the degree 
of correction is therefore essential. The central and complex role of the dynamic 
measurement uncertainty in the correction contrasts the present stationary treatment. 
Interactions are much more complex in non-stationary than in stationary measurements. 
Therefore, engineering fields such as microwave applications and high speed electronics 
dedicated to dynamic analysis have taken a genuinely system-oriented approach. As micro-
wave specialists know very well, even the simplest piece of material needs careful attention 
as it may require a full dynamic specification. This has profound consequences. Calibration 
of only vital parts (like sensors) might not be feasible as it only describes one ingredient of a 
complex dynamic ‘soup’. Its taste may depend on all ingredients, but also on how it is 
assembled and served. Testing the soup in the relevant environment may be required. 
Sometimes the calibration procedures have to leave the lab (in vitro) and instead take place 
under identical conditions to the targeted measurements (in situ). 
The relativity between signal and system has practical consequences for every measurement. 
Repeated experiments will result in different signals and hence different performance. The 
dynamic correction will be unique and must be re-calculated for every measured signal. 
There will thus never be universal dynamic corrections for non-stationary measurements, as 
can be found for stationary measurements in a calibration laboratory. 
The need for repeated in situ evaluation illustrates the pertinent and critical aspect of 
transferability of the calibration result. This is seldom an issue for stationary calibration 
methods where a limited set of universal numbers is sufficient to describe the result. 
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Stationary measurements have minute variations in comparison to the enormous freedom of 
non-stationary events. Physical generation of all possible non-stationary signals in 
calibrations will always be an insurmountable challenge. Indirect analyses based on 
uncertain and potentially abstract dynamic models are required. In turn, these models are 
deduced from limited but nevertheless, for the purpose complete testing against references. 
This testing is usually referred to as ‘dynamic calibration’ while the model extraction is 
denoted ‘system identification’. Here calibration will be associated to the combined operation 
of testing and model identification. The testing operation will be called ‘characterization’. 
The performance of the targeted non-stationary measurements will be assessed with 
calculations using measured signals and an uncertain indirect model of the measurement. 
Essentially, the intermediate stage of modelling reduces the false appearance of extremely 
complex measurements due to the high dimensionality of the signals (directly observable) to 
the true much lower complexity of the measurement described by the systems (indirectly 
observable). It is the indirect modelling that makes the non-stationary dynamic analysis of 
measurements possible. 
The measurand is often a function of a signal rather than a measurable time-dependent 
quantity of any kind. The measurand could be the rise time of oscilloscopes, the vibration 
dose R for adverse health effects for whole body vibrations, complex quantities such as the 
error vector magnitude (EVM) of WCDMA signals in mobile telecommunication 
(Humphreys & Dickerson, 2007), or power quality measures such as ‘light flicker’ (Hessling, 
1999). Usually these indexes depend on time-dependent signals and do not provide 
complete information. A complete analysis of signals and systems is required to build a 
traceability chain from which the measurands can be estimated at any stage. As illustrated 
in Fig. 1, the measurement uncertainty is first propagated from the characterization to the 
model, from the model to the targeted measurement, and perhaps one step further to the 
measurand. The final step will not be addressed here since it is application-specific without 
general procedures. Fortunately, the propagation is straight-forward using the definition of 
the measurand often described in detail in standards (for the examples mentioned in this 
paragraph, EA-10/07, ISO 2631-5, 3GPP TS, IEC 61000-4-15). 
The analysis of non-stationary dynamic measurements generally requires strongly 
interacting dynamic models. In situ calibrations of large complex systems as well as 
repeated in situ evaluations for every measurement may be needed. The uncertainty must 
be propagated in two or more stages. Realized in full, this requires nothing less than a new 
paradigm to be introduced in measurement science. 
 

 
Fig. 1. Propagation (arrows) of non-stationary (full) measurement uncertainty compared to 
the conventional stationary case (ISO GUM, 1993) (dashed). 

Dynamic model 
(parameterized) 

Targeted 
measurement 

Measurand Characterization 
(calibration) 

www.intechopen.com



Advances in Measurement Systems224

 

3. State-of-the-art dynamic analysis  
 

The level of applications of dynamic analyses varies greatly. Leading manufacturers of 
measurement equipment are often well ahead of measurement science, as the realization of 
dynamic operations is facilitated by detailed product knowledge. However, dynamic design 
usually requires a substantial amount of compromises. Maximal bandwidth or slew-rate 
may for instance be incompatible with good time domain performance. A neutral evaluation 
in terms of an extended calibration service is strongly needed. Nevertheless, in many cases 
the motivation is low, as the de-facto standards of calibration are restricted and simplified. 
The motivation should primarily originate from end-users. The field of dynamic analysis in 
the context of calibration, or waveform metrology, is currently emerging at major national 
metrology institutes in a number of applications. This is the precursor for changing 
calibration standards and procedures to better account for the experimental reality. 
The development of calibration of accelerometers illuminates the progress. One part of a 
present standard (ISO 16063, 2001) is based on the shock sensitivity of accelerometers. The 
calibration has suffered from poor repeatability due to large overseen dynamic errors 
(Hessling, 2006) which depend on unspecified details of the pulse excitation. A complete 
specification would not solve the problem though, as the pulse would neither be possible to 
accurately realize in most calibration experiments, nor represent the variation of targeted 
measurements. Despite this deficiency, manufacturers have provided dynamic correction of 
accelerometers for many years (Bruel&Kjaer, 2006). The problem with the present shock 
calibration is now about to be resolved with an indirect analysis based on system 
identification, which also provides good transferability. The solution parallels the analysis to 
be proposed here. Beyond this standard, dynamic correction as well as uncertainty 
evaluation for this system has also recently been proposed (Elster et al., 2007). 
Mechanical fatigue testing machines and electrical network analyzers are comparable, as 
they both have means for generating the excitation. Their principles of dynamic calibration 
are nonetheless different in almost all ways. For network analyzers, simple daily in situ 
calibrations with built-in software correction facilities are made by end-users using 
calibrated calibration kits. Testing machines usually have no built-in correction. Present 
dynamic calibration procedures (ASTM E 467-98a, 1998) are incomplete, direct and utilize 
calibration bars which are not calibrated. This procedure could be greatly improved if the 
methods of calibrating network analyzers would be transferred and adapted to mechanical 
testing machines. 
The use of oscilloscopes is rapidly evolving. In the past they were used for simpler 
measurement tasks, typically detecting but not accurately quantifying events. With the 
advent of sampling oscilloscopes and modern signal processing the usage has changed 
dramatically. Modern sampling techniques and large storage capabilities now make it 
possible to accurately resolve and record various signals. Dynamic correction is sometimes 
applied by manufacturers of high performance oscilloscopes. Occasionally national 
laboratories correct for dynamic effects. A dissatisfying example is the standard (EA-10/07, 
1997) for calibrating oscilloscopes by evaluating the rise time of their step response. 
Unfortunately, a scalar treatment of a non-stationary signal is prescribed. This results in the 
same type of calibration problem as for the shock sensitivity of accelerometers described 
above. The uncertainty of the rise time cannot even in principle be satisfactorily evaluated, 
as relevant distortions of the generated step are not taken into account. Further, interaction 
effects are not addressed, which is critical for an instrument that can be connected to a wide 
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range of different equipments. Correction is often synthesized taking only an approximate 
amplitude response into account (Hale & Clement, 2008). Neglecting the phase response in 
this way is equivalent to not knowing if an error should be removed by subtraction or 
addition! Important efforts are now made to account for such deficiencies (Dienstfrey et al., 
2006; Williams et al., 2006). Many issues, such as how to include it in a standardized 
calibration scheme and transfer the result, remain to be resolved. 
A general procedure of dynamic analysis in metrology remains to be formulated, perhaps as 
a dynamic supplement to the present guide (ISO GUM, 1993). As advanced dynamic 
modelling is currently not a part of present education curriculum in metrology, a substantial 
amount of user-friendly software needs to be developed. Most likely, the present calibration 
certificates must evolve into small dedicated computer programs which apply dynamic 
analysis to each measured signal and are synthesized and optimized according to the results 
of the calibration. In short, the infra-structure (methods and means) of an extended 
calibration service for dynamic non-stationary measurements needs to be built. 

 
4. Dynamic Metrology – a framework for non-stationary dynamic analysis 
 

In the context of calibration, the analysis of non-stationary dynamic measurements must be 
synthesized in a limited time frame without detailed knowledge of the system. In 
perspective of the vast variation of measurement systems and non-stationary signals, 
robustness and transferability are central aspects. There are many requirements to consider: 

 Generality: Vastly different types of systems should be possible to model. These 
could be mechanical or electrical transducers, amplifiers, filters, signal processing, 
large and/or complex systems, hybrid systems etc. 

 Interactions: Models of strong interactions between calibrated subsystems are 
often required to include all relevant influential effects.  

 Robustness: There exists no limit regarding the complexity of the system. This 
requires low sensitivity to modelling and measurement errors etc. 

 In situ calibration and analysis: Virtually all methods must be possible to transfer 
to common measurement computers and other types of computational hardware. 

 Transferability: All results and methods must be formulated to enable almost fool-
proof transfer to end-users without virtually any knowledge of dynamic analysis. 

 
A framework (Dynamic Metrology) dedicated to analysis of dynamic measurements was 
recently proposed (Hessling, 2008b). All methods were based on standard signal processing 
operations easily packed in software modules. The task of repeated dynamic analysis for 
every measurement may effectively be distributed to three parties with different chores: 
Experts on Dynamic Metrology (1) derive general synthesis methods. These are applied by 
the calibrators (2) to determine dedicated but general software calibration certificates for the 
targeted measurement, using specific calibration information. The end users (3) apply these 
certificates to each measurement with a highly standardized and simple [‘drag-and-drop’] 
implementation. Consequently, Dynamic Metrology involves software development on two 
levels. The calibrators as well as the end users need computational support, the former to 
synthesize (construct and adapt), the latter to realize (apply) the methods. For the steps of 
system identification, mathematical modelling and simulation reliable software packages 
are available. Such tools can be integrated with confidence into Dynamic Metrology. What 
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remains is to adapt and combine them into ‘toolboxes’ or modules for synthesis (calibrator) 
and realization (end-user), similar to what has been made for system identification (Kollár, 
2003). This fairly complex structure is not a choice, but a consequence of; general goals of 
calibration, the application to non-stationary dynamic measurements and the fact that only 
the experts on Dynamic Metrology are assumed to have training in dynamic analysis. 
Prototype methods for all present steps of analysis contained in Dynamic Metrology will be 
presented here. Dynamic characterization (section 4.1) provides the fundamental 
information about the measurement system. Using this information and parametric system 
identification (section 4.2), a dynamic model (section 4.2.1) with associated uncertainty 
(section 4.2.2) is obtained. From the dynamic model equation the systematic dynamic error 
can be estimated (section 4.3). The dynamic correction (section 4.4) is supposed to reduce 
this error by applying the optimal approximation to the inverse of the dynamic model 
equation. To evaluate the measurement uncertainty (section 4.5), the expression of 
measurement uncertainty (section 4.5.1) is derived from the dynamic model equation. For 
every uncertain parameter, a dynamic equation for its associated sensitivity is obtained. The 
sensitivities will be signals rather than numbers and can be realized using digital filtering, or 
any commercially available dynamic simulator (section 4.5.2). The discussion is concluded 
with an overview of all known limitations of the approach and expected future 
developments (section 4.6), and a summary (section 5). The versatility of the methods will be 
illustrated with a wide range of examples (steps of analysis given in parenthesis):  

 Material testing machines (identification) 
 Force measuring load cells (characterization, identification) 
 Transducer systems for measuring force, acceleration or pressure (correction, 

measurement uncertainty – digital filtering) 
 All-pass filters,  electrical/digital (dynamic error) 
 Oscilloscopes and related generators (characterization, identification, correction) 
 Voltage dividers for high voltage (measurement uncertainty – simulations) 

 
4.1 Characterization 
The raw information of the measurement system required for the analysis is obtained from 
the characterization, where the measurement system is experimentally tested against a 
reference system. In perspective of the targeted measurement, the testing must be complete. 
All relevant properties of the system can then be transformed or derived from the results, 
but are not explicitly given. Using a representation in time, frequency or something else is 
only a matter of practical convenience (Pintelon & Schoukens, 2001). For instance, the 
bandwidth can be derived from a step response. The result consists of a numerical 
presentation with associated measurement uncertainty, strictly limited to the test signal(s). 
Different parts of the system can be characterized separately, provided the interactions can 
also be characterized. The simplest alternative is often to characterize whole assembled 
systems. When the environment affects the performance it is preferable to characterize the 
system in situ with a portable dynamic reference system. One example is the use of 
calibration kits for calibrating network analyzers. The accuracy of characterization of any 
subsystem should always be judged in comparison to the performance of the whole system. 
There is no point in knowing any link of a chain better than the chain as a whole. 
How physical reference systems are realized is specific to each application. The test signals 
are however remarkably general. The test signals do not have to be non-stationary to be 
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used for analysis of non-stationary measurements. On the contrary, stationary signals 
generally give the highest accuracy. Usually there are important constraints on the relation 
between amplitude and speed of change/bandwidth of the signals. Harmonic sweeps 
generally yield the most accurate characterization, but test signals of high amplitude and 
high frequency may be difficult to generate and the testing procedure can be slow. Various 
kinds of impulses can be generated when stored mechanic, electric or magnetic energy is 
released. To control the spectrum of the signal frequency sweeps are superior, while high 
amplitude and sometimes high speed often requires the use of pulses. The design of 
excitation signals is important for the quality of modelling, and is thus an integral part of 
system identification (Pintelon & Schoukens, 2001). 
The two mechanical examples will illustrate an in-vitro sensor and a corresponding in-situ 
system characterization. The non-trivial relation between them will be explored in 
section 4.2.3. The two electrical examples illustrate the duality of calibrating generators and 
oscilloscopes, or more generally, transmitters and receivers. The least is then characterized 
with the best performing instrument. The examples convey comparable dynamic 
information of the devices under test, but differently, with different accuracy and in 
different ranges. The often used impulse  h , step  v  and continuous  fisH 2  or 
discrete time (   STfizG 2exp , ST  sampling time) frequency  f  response 
characterizations are related via the Laplace-  L  and z-transform  Z , respectively, 
 

      
    thLsH

thZzG
dt
dvth




 , . (1) 

 
Stationary sources of uncertainty (e.g. mass, temperature, pressure) are usually rather easy 
to estimate, but often provide minor contributions. For non-stationary test signals the largest 
sources of the uncertainty normally relate to the underlying time-dependent dynamic event. 
Typical examples are imbalances of a moving mechanical element or imperfections of 
electrical switching. All relevant sources of uncertainty must be estimated and propagated 
to the characterization result by detailed modelling of the experimental set up. The task of 
estimating the measurement uncertainty of the characterization is thus highly specialized 
and consequently not discussed in this general context. The uncertainty of the dynamic 
characterization is the fundamental ‘seed’ of unavoidable uncertainty, that later will be 
propagated through several steps as shown in Fig. 1 and combined with the uncertainty of 
the respective measurement (sections 4.2.2 and 4.5.1). 

 
4.1.1 Example: Impulse response of load cell 
An elementary example of characterization is a recent impulse characterization of a force 
measuring load cell displayed in Fig. 2 (left) (Hessling, 2008c, Appendix A). This force 
sensor is used in a material testing machine (Fig. 4, left). The load cell was hung up in a rope 
and hit with a heavy stiff hammer. As the duration of the pulse was estimated to be much 
less than the response time of the load cell, its shape could be approximated with an ideal 
Dirac-delta impulse. The equivalent force amplitude was unknown but of little interest: The 
static amplification of the load cell is more accurately determined from a static calibration. 
The resulting oscillating normalized impulse response is shown in Fig. 2 (right). 
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Fig. 2. Measured impulse response (right) of a load cell (left), on different time scales. The 
sampling rate is 20 kHz and the response is normalized to unit static amplification. 

 
4.1.2 Example: Impulse response of oscilloscope and step response of generator 
Oscilloscopes can be characterized with an optoelectronic sampling system (Clement et al., 
2006). A short impulse is then typically generated from a 100-fs-long optical pulse of a 
pulsed laser, and converted to an electrical signal with a photodiode. A reference 
oscilloscope characterized with a reference optoelectronic sampling system may in turn be 
used to characterize step generators. Example raw measurements of a photodiode impulse 
and a step generator are illustrated in Fig. 3. A traceability chain can be built upon such 
repeated alternating characterizations of generators and oscilloscopes. If the measurand is 
the rise time it can be estimated from each characterization but not propagated with 
maintained traceability. 
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Fig. 3. Example measurement of an optoelectronic pulse with a sampling oscilloscope (left) 
as described in Clement et al., 2006, and measurement of a voltage step generator with a 
different calibrated oscilloscope (right). 
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4.2 System identification 
System identification refers here to the estimation of parametric models and their 
uncertainty (Pintelon & Schoukens, 2001), even though the subject also includes non-
parametric methods (Ljung, 1999). To adapt the basic procedure of identifying a model from 
the experimental characterization (section 4.1) to metrology, follow these steps: 

1. Choose a criterion for comparing experimental and modelled characterization. 
2. Select a structure for the dynamic model of the measurement. Preferably the choice 

is based on physical modelling and prior knowledge. General ‘black-box’ rather 
than physical models should be utilized for complex systems.  

3. Find the numerical values of all model parameters: 
a. Choose method of optimization. 
b. Assign start values to all parameters. 
c. Calculate the hypothetical characterization for the dynamic model. 
d. Compare experimental and modelled characterization using the criterion 

in step 1. 
e. Adjust the parameters of the dynamic model according to step 3a. 
f. Repeat from c until there is no further improvement in step 3d. 

4. Evaluate the performance of the dynamic model by studying the model mismatch. 
5. Repeat from step 2 until the performance evaluation in step 4 is acceptable. 
6. Propagate the measurement uncertainty of the characterization measurement to the 

uncertainty of the dynamic model. 
 
There are some important differences in this approach compared to the standard procedure 
of system identification (Ljung, 1999). Validation of the model is an important step for 
assessing the correctness of the model, but validation in the conventional sense is here 
omitted. The reason for this is that it requires at least two characterization experiments to 
form independent sets of data, one for ‘identification’ and another for ‘validation’. Often 
only one type of experimental characterization of acceptable accuracy is available. It is then 
unfortunately impossible to validate the model against data. This serious deficiency is to 
some extent compensated for by a more detailed concept of measurement uncertainty. The 
correctness of the model is expressed through the uncertainty of the model, rather than 
validated by simulations against additional experimental data. All relevant sources of 
uncertainty should be estimated in the preceding step of characterization, and then 
propagated to the dynamic model in the last step (6) of identification. Corresponding 
propagation of uncertainty is indeed discussed in the field of system identification, but 
perhaps not in the widest sense. The suggested approach is a pragmatic adaptation of well 
developed procedures of system identification to the concepts of metrology. 
The dynamic model is very often non-linear in its parameters (not to be confused with 
linearity in response!). This is the case for any infinite-impulse response (IIR) pole-zero 
model. Measurement noise and modelling errors of a large complex model might result in 
many local optima in the comparison (step 3d). Obtaining convergence of the numerical 
search may be a challenge, even if the model structure is valid. Assigning good start values 
to the parameters (step 3b) and limiting the variation in the initial iterations (step 3e), might 
be crucial. The model may also be identified and extended sequentially (step 2) using the 
intermediate results as start values for the new model. A sequential approach of this kind is 
seldom the fastest alternative but often remarkably robust. 
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A common criterion (step 1) for identifying the parameters is to minimize the weighted 
square of the mismatch. For frequency response characterization and a symmetric positive 
definite weighting matrix  lkW  , , the estimated parameters  q̂  are expressed in the 
residual  kiqH ,  defined as the difference between modelled and measured response 
(T  represents transposition  and   complex conjugation),  
 

      qHWqHq T

q
 minargˆ . (2) 

 
4.2.1 Modelling dynamic measurements 
Dynamic models are never true or false, but more or less useful and reliable for the intended 
use. The primary goal is to strongly reduce the complexity of the characterization to the 
much lower complexity of a comparatively small model. The difference between the 
dimensionality of the characterization and the model determines the confidence of the 
evaluation in step 4. The maximum allowed complexity of the model for acceptable quality 
of evaluation can be roughly estimated from the number of measured points of the 
characterization. For a general linear dynamic measurement the model consists of one or 
several differential (CT: continuous time) or difference (DT: discrete time) equations relating 
the (input) quantity  tx  to be measured and the measured (output) signal  ty , 
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where     ,2,1,0,,  kkTyykTxx SkSk  , ST  being the sampling time. In both cases it is 
often convenient to use a state-space formulation (Ljung, 1999), with a system of model 
equations linear in the differential (CT) or translation (DT) operator. State space equations 
also allow for multiple input multiple output (MIMO) systems. The related model equation 
(Eq. 3) can easily and uniquely be derived from any state space formulation. Thus, assuming 
a model equation of this kind is natural and general. This is very important since it provides 
a unified treatment of the majority of LTI models used in various applications for describing 
physical processes, control operations and CT/DT signal processing etc. 
An algebraic model equation in the transform variable s  or z  is obtained by applying the 
Laplace s-transform to the CT model or the z-transform to the DT model in Eq. 3, 
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These relations are often expressed in terms of transfer functions      sXsYsH   or 
     zXzYzG  . The polynomials are often factorized into their roots, ‘zeros’ (numerator) 

and ‘poles’ (denominator). Another option is to use physical parameters. In electrical circuits 
lumped resistances, capacitances and inductances are often preferred, while in mechanical 
applications the corresponding elements are damping, mass and spring constants. In the 
examples, the parameterization will be a variable number of poles and zeroes. The 
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fundamental reason for this choice is that it provides not only a very general and effective, 
but also widely used and understood parameterization. Good initial values of the 
parameters are in many cases fairly easy to assign by studying the frequency response, and 
it is straight-forward to extend any model and identify it sequentially. 

 
4.2.2 Uncertainty of dynamic model 
The performance of the identified model (step 4) can be explored by studying the properties 
of the residual  kiqH ,ˆ . If the model captures all features of the characterization, the 
autocorrelation functions of the residual and the measurement noise are similar. For 
instance, they should both decay rapidly if the measurement noise is uncorrelated (white). 
There are many symmetries between the propagation of uncertainty from the 
characterization to the model (step 6), and from the model to the targeted measurement 
(section 4.5.1), see Fig. 1. The two propagations will therefore be expressed similarly. The 
concept of sensitivity is widely used in metrology, and will be utilized in both cases. Just as 
in section 4.5.1, measured signals must be real-valued, which requires the use of real-valued 
projections  qq,  of the pole and zero deviations q  (Hessling, 2009a). The deviation in 
modelled characterization for a slight perturbation   is given by,    qqiqET ˆ,,ˆ    
(compare Eq. 12). The matrix  iqE ,ˆ  of sampled sensitivity systems organized in rows is 
represented in the frequency domain, since the characterization is assumed to consist of 
frequency response functions. Row n  of this matrix is given by  iqEn ,ˆ in Eq. 18. The 
minus sign reflects the fact that the propagation from the characterization to the model is the 
inverse of the propagation from the model to the correction of the targeted measurement. If 
the measured characterization deviates by an amount  i  from its ensemble mean, the 
estimated parameters will deviate from their ensemble mean according to ̂ , 
 

      


TTT

R
EWE  


minargˆ . (5) 

 
The problem of finding the real-valued projected deviation   (Eq. 5) closely resembles the 
estimation of all parameters q  of the dynamic model (Eq. 2). The optimization over R  is 
constrained, but much simpler as the model of deviation is linear. Contrary to the problem 
of non-linear estimation, the linear deviations due to perturbed characterizations can be 
found explicitly;      WEWEE T 

1
Re,Rê . From this solution, the covariance of 

all projections is readily found (   denotes average over an ensemble of measurements and 
let  ˆ ), 
 

   TTTTT Re
2
1

 . (6) 

 
This expression propagates the covariance of the characterization experiment  T  to 

T , which is related to the covariance of the estimated dynamic model. Within the field 
of system identification (Pintelon & Schoukens, 2001) similar expressions are used, but with 
sensitivities denoted Jacobians. If the model is accurate the residual is unbiased and reflects 
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the uncertainty of the characterization,          TTTT HHHHHH . 
Otherwise there are systematic errors of the model and the residual is biased, 0H . Not 
only the covariance of the characterization experiment but also the systematic errors of the 
identified model should be propagated to the uncertainty. The systematic error H  can 
however not be expressed in the model or its uncertainty, as that is how the residual H  is 
defined. A separate treatment according to section 4.3 is thus required: A general upper 
bound of the dynamic error H  valid for the targeted measurement should be added 
directly and linearly to the final uncertainty of the targeted measurement (Hessling, 2006). 
Only one or at most a few realizations of the residual H  are known, since the number of 
available characterizations is limited. Therefore it is difficult to evaluate ensemble averages. 
However, if the residual is ‘stationary’ (i.e. do not change in a statistical sense) over a 
frequency interval  , the system is ergodic over this interval. The average over an 
ensemble of experiments can then be exchanged with a restricted mixed average over 
frequency and just a few  1m  experimental characterizations, 
 

               
 

 
m

k

kk diHiH
m

iHiH
1

2
,

121 2
1 






 , (7) 

 
where   0221   . If the correlation range is less than the interval of stationary 
residual,      021    iHiH  for 0 , all elements can be estimated. 
As model identification requires experimental characterizations, some of the previous 
examples will be revisited. The comparison of the load cell and the material testing machine 
models will illustrate a non-trivial relation between the behaviour of the system (machine) 
and the part (load cell) traditionally assumed most relevant for the accuracy of the targeted 
measurement. The propagation of uncertainty (Eq. 6) will not be discussed due to limited 
space, and as it is a mere transformation of numerical numbers. 

 
4.2.3 Example: Models of load cell and material testing machine 
Load cells measure the force in mechanical testing machines often used for fatigue testing of 
materials and structures, see Fig. 4 (left). It is straightforward to characterize the whole 
machine by means of built-in force actuators and calibration bars equipped with strain-
gauges for measuring force. The calibration bar and load cell outputs can then be compared 
in a calibration experiment. The load cell can also be characterized separately as explained 
in section 4.1.1. A recent frequency response characterization and identification of a machine 
and a load cell (Hessling, 2008c) is compared in Fig. 4 (right) and shown in full in Fig. 5. 
There is no simple relation or scaling between the amplitude and phases of the frequency 
responses of the load cell and the installed testing machine. Accurate dynamic 
characterization in situ thus appears to be required. 
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Fig. 4. Magnitude (right, top) and phase (right, bottom) of the frequency response of 
identified models of a testing machine (left, Table 1: 2*) and its load cell. The legend applies 
to both figures. The magnitude variation of the load cell is magnified 5 times for clarity. 
 
The autocorrelation of the residual for the load cell (Fig. 6, bottom left) clearly indicates 
substantial systematic errors. The large residual may be caused by an insufficient dynamic 
model or a distorted impulse used in the characterization (section 4.1.1). The continuous 
distribution of mass of the load cell might not be properly accounted for in the adopted 
lumped model. If the confidence in the model is higher than the random disturbances of the 
excitation, the residual H  may be reduced before propagated to the model uncertainty. 
Confidence in any model can be formulated as prior knowledge within Bayesian estimation 
(Pintelon & Schoukens, 2001). The more information, from experiments or prior knowledge, 
the more accurate and reliable the model will be. However, the fairly complex relation 
between the machine and the load cell dynamics strongly reduces the need for accurate load 
cell models. The more important testing machine model is clearly of higher quality (Fig. 6). 
Pole-zero models of different orders were identified for the testing machine (Table 1). A 
vibration analysis of longitudinal vibration modes in a state-space formulation (Hessling, 
2008c) provided the basic information to set up and interpret these models in terms of 
equivalent resonance and base resonances. Model 2* is considered most useful. 
 
 Load cell Machine 
Model (complexity) - 0 1 2* 3 4 
Equiv. resonance (Hz)  2380 635 607 614 616 617 
Base resonances (Hz)  - - 33.7 33.6 

91.4 
33.6 
91.3 
79.6 

33.6 
91.2 
79.3 
69.3 

Weighted residuals1 22e-3 48e-4 9.8e-4 6.4e-4 6.4e-4 6.3e-4 
Table 1. Identified load cell and material testing machine models. 1Defined as the root-mean-
square of the residuals, divided by the amplification at resonance (load cell), or zero 
frequency (machine). Not all parameters are displayed (Hessling, 2008c). 
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Fig. 5. Model fits for the load cell (left) and the material testing machine (right, Table 1: 2*). 
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Fig. 6. Magnitude (top) and auto-correlation (bottom) of the residuals H  for the load cell 
(left) and model 2* (Table 1) of the material testing machine (right). 
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4.2.4 Example: Model of oscilloscope / step generator 
The oscilloscope and the generator (section 4.1.2) can be identified in the same manner 
(Eq. 1). When differentiation is applied, attention has to be paid to noise amplification. It can 
be mitigated with low-pass filtering. The generator is modelled as consisting of an ideal step 
generator and of a linear time-invariant system which describes all physical limitations. The 
identified generator model in Fig. 7 may be used to compensate oscilloscope responses for 
imperfections of the generator. Several corrections for generators and oscilloscopes can be 
accumulated in a traceability chain and applied in the final step of any evaluation, as all 
operations commute. The model has non-minimum phase (zeros outside the unit circle of 
the z-plane). This will have consequences for the synthesis of correction (section 4.4.1). 
The structure of the generator model could not be derived as it did not correspond to any 
physical system. Instead, poles and zero were successively added until the residual did not 
improve significantly. The low resolution of the characterization limited the complexity of 
possible models. In contrast to the previous example, a discrete rather than continuous time 
model was utilized for simultaneous identification and discretization in time. 
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Fig. 7. Magnitude (left, top) and phase (left, bottom) of frequency response functions for an 
oscilloscope step generator. The characterization    is derived from the step response in 
Fig. 3 (right). The model (line) corresponds to poles and zeros shown in the z-plane (right). 

 
4.3 Systematic error 
The dynamic error of a dynamic measurement depends strongly on the variation of the 
measured signal. The more accurately an error needs to be estimated, the more precise the 
categorization must be. This manifests a generic problem: To estimate the error with high 
precision the variation of the physical signal must be well known, but then there would be 
no need to make a dynamic measurement! Ergo, error estimates are always rather 
inaccurate. This predicament does however not motivate the common neglect of important 
error mechanisms (Hessling, 2006). If not taken into account by any means, there is no 
definite limit to how imprecise the error estimates can be! For substantial correction or 
precise control though, a low uncertainty of the characterization is an absolute requirement. 
The concept of dynamic error is intimately related to the perceived time delay. If the time 
delay is irrelevant it has to be calculated and compensated for when evaluating the error! 
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Distortion of the signal caused by non-perfect dynamic response of the measurement system 
makes the determination of the time delay ambiguous. The interpretation of dynamic error 
influences the deduced time delay. A joint definition of the dynamic error and time delay is 
thus required. The measured signal can for instance be translated in time (the delay) to 
minimize the difference (the error signal) to the quantity that is measured. The error signal 
may be condensed with a norm to form a scalar dynamic error. Different norms will result in 
different dynamic errors, as well as time delays. As the error signal is determined by the 
measurement system, it can be determined from the characterization (section 4.1) or the 
identified model (section 4.2), and the measured signal. 
The norm for the dynamic error should be governed by the measurand. Often it is most 
interesting to identify an event of limited duration in time where the signal attains its 
maximum, changes most rapidly and hence has the largest dynamic error. The largest ( 1L  
norm) relative deviation in the time domain is then a relevant measure. To achieve unit static 
amplification, normalize the dynamic response  ty  of the measurement system to the 
excitation   Btx  . A time delay   and a relative dynamic error   can then be defined jointly 
as (Hessling, 2006), 
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The error signal in the time domain is expressed in terms of an error frequency response 
function         0exp,~ HiHiH    related to the transfer function H  of the 
measurement system. The expression applies to both continuous time   i , as well as 
discrete time systems (  sTi exp , sT  being the sampling time interval). It is advanced 
in time to adjust for the time delay, in order to give the least dynamic error. The average is 
taken over the approximated magnitude of the input signal spectrum normalized to one, 
  1B , which defines the set B . This so-called spectral distribution function (SDF) 

(Hessling, 2006) enters the dynamic error similarly to how the probability distribution 
function (PDF) enters expectation values. The concept of bandwidth B  of the 
system/signal/SDF is generalized to a ‘global’ measure insensitive to details of  B  and 
applicable for any measurement. The error estimate is an upper bound over all non-linear 
phase variations of the excitation as only the magnitude is specified with the SDF. The 
maximum error signal  Ex  has the non-linear phase   ,~ iH  and reads (time 0t  
arbitrary), 
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0 ,~argcos1
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diHttB
tx

tx

BEt

E . (9) 

 
The close relation between the system and the signal is apparent: The non-linear phase of 
the system is attributed to the maximum error signal parameterized in properties of the SDF. 
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The dynamic error and time delay can be visualized in the complex plane (Fig. 8), where the 
advanced response function        iHiH exp,~

  is a phasor ‘vibrating’ around the 
positive real axis as function of frequency. 

 
Fig. 8. The dynamic error   equals the weighted average of   ,~ iH  over  , which in 
turn is minimized by varying the time delay parameter  . 
 
For efficient numerical evaluation of this dynamic error, a change of variable may be 
required (Hessling, 2006). The dynamic error and the time delay is often conveniently 
parameterized in the bandwidth B  and the roll-off exponent of the SDF  B . This 
dynamic error has several important features not shared by the conventional error bound, 
based on the amplitude variation of the frequency response within the signal bandwidth: 

 The time delay is presented separately and defined to minimize the error, as is 
often desired for performance evaluation and synchronization. 

 All properties of the signal spectrum, as well as the frequency response of the 
measurement system are accounted for: 

o The best (as defined by the error norm) linear phase approximation of the 
measurement system is made and presented as the time delay. 

o Non-linear contributions to the phase are effectively taken into account 
by removing the best linear phase approximation. 

o The contribution from the response of the system from outside the 
bandwidth of the signals is properly included (controlled by the roll-off 
of  B ). 

 A bandwidth of the system can be uniquely defined by the bandwidth of the SDF 
for which the allowed dynamic error is reached. 

 
The simple all-pass example is chosen to illustrate perhaps the most significant property of 
this dynamic error – its ability to correctly account for phase distortion. This example is 
more general than it may appear. Any incomplete dynamic correction of only the magnitude 
of the frequency response will result in a complex all-pass behaviour, which can be 
described with cascaded simple all-pass systems. 
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4.3.1 Example: All-pass system 
The all-pass system shifts the phase of the signal spectrum without changing its magnitude. 
All-pass systems can be realized with electrical components (Ekstrom, 1972) or digital filters 
(Chen, 2001). The simplest ideal continuous time all-pass transfer function is given by, 
 

 












is
is

s
s

sH
,1

01
/1
/1

0

0


 . (10) 

 
The high frequency cut-off that any physical system would have is left out for simplicity. For 
slowly varying signals there is only a static error, which for this example vanishes (Fig. 9, top 
left). The dynamic error defined in Eq. 8 becomes substantial when the pulse-width system 
bandwidth product increases to order one (Fig. 9, top right), and might exceed 50% (!) (Fig. 9, 
bottom left).  For very short pulses, the system simply flips the sign of the signal (Fig. 9, bottom 
right). In this case the bandwidth of the system is determined by the curvature of the phase 
related to  200 f . The traditional dynamic error bound based on the magnitude of the 
frequency response vanishes as it ignores the phase! The dynamic error is solely caused by 
different delays of different frequency components.  This type of signal degradation is indeed 
well-known (Ekstrom, 1972). In electrical transmission systems, the same dispersion 
mechanism leads to “smeared out” pulses interfering with each other, limiting the maximum 
speed/bandwidth of transmission. 
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Fig. 9. Simulated measurement (solid) of a triangular pulse (dotted) with the all-pass system 
(Eq. 10). Time is given in units of the inverse cross-over frequency 1

0
f  of the system. 
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Estimated error bounds are compared to calculated dynamic errors for simulations of 
various signals in Fig. 10. The utilization 0ff B  is much higher than would be feasible in 
practice, but is chosen to correspond to Fig. 9. The SDFs are chosen equal to the magnitude 
of the Bessel (dotted) and Butterworth (dashed, solid) low-pass filter frequency response 
functions. Simulations are made for triangular (), Gaussian (), and low-pass Bessel-
filtered square pulse signals ( , □). The parameter n  refers to both the order of the SDFs as 
well as the orders of the low-pass Bessel filters applied to the square signal (FiltSqr). The 
dynamic error bound varies only weakly with the type (Bessel/Butterworth) of the SDFs: 
the Bessel SDF renders a slightly larger error due to its initially slower decay with 
frequency. As expected, the influence from the asymptotic roll-off beyond the bandwidths is 
very strong. The roll-off in the frequency domain is governed by the regularity or 
differentiability in the time domain. Increasing the order of filtering  n  of the square pulses 
(FiltSqr) results in a more regular signal, and hence a lower error. All test signals have 
strictly linear phase as they are symmetric. The simulated dynamic errors will therefore only 
reflect the non-linearity of the phase of the system while the estimated error bound also 
accounts for a possible non-linear phase of the signal. For this reason, the differences 
between the error bounds and the simulations are rather large.  
 

0 0.5 1 1.5 2
0

20

40

60

80

100

120

f
B
 / f

0

ε
 (%

)

SDF: Bessel n=2
SDF: Butter  n=2
SDF: Butter  n=∞

SIM: Triangular
SIM: Gauss
SIM: FiltSqr n=1
SIM: FiltSqr n=2

 
Fig. 10. Estimated dynamic error bounds (lines) for the all-pass system and different SDFs, 
expressed as functions of bandwidth, compared to simulated dynamic errors (markers). 

 
4.4 Correction 
Restoration, de-convolution (Wiener, 1949), estimation (Kailath, 1981; Elster et al., 2007), 
compensation (Pintelon et al., 1990) and correction (Hessling 2008a) of signals all refer to a 
more or less optimal dynamic correction of a measured signal, in the frequency or the time 
domain. In perspective of the large dynamic error of ideal all-pass systems (section 4.3.1), 
dynamic correction should never even be considered without knowledge of the phase 
response of the measurement system. In the worst case attempts of dynamic correction 
result in doubled, rather than eliminated error.  
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The goals of metrology and control theory are similar, in both fields the difference between 
the output and the input of the measurement/control system should be as small as possible. 
The importance of phase is well understood in control theory: The phase margin (Warwick, 
1996) expresses how far the system designed for negative feed-back (error reduction – 
stability) operates from positive feed-back (error amplification – instability). If dynamic 
correction of any measurement system is included in a control system it is important to 
account for its delay, as it reduces the phase margin. Real-time correction and control must 
thus be studied jointly to prevent a potential break-down of the whole system! All internal 
mode control (IMC)-regulators synthesize dynamic correction. They are the direct 
equivalents in feed-back control to the type of sequential dynamic correction presented here 
(Fig. 11). 

 
Fig. 11. The IMC-regulator F  (top) in a closed loop system is equivalent to the direct 
sequential correction 1 HHC  (bottom) of the [measurement] system H  proposed here.  
 
Regularization or noise filtering is required for all types of dynamic correction, CH  must 
not (metrology) and can not (control) be chosen identical to the inverse 1H . Dynamic 
corrections must be applied differently in feed-back than in a sequential topology. The 
sequential correction CH  presented here can be translated to correction within a feed-back 
loop with the IMC-regulator structure F . Measurements are normally analyzed afterwards 
(post-processing). That is never an option for control, but provides better and simpler ways 
of correction in metrology (Hessling 2008a). Causal application should always be judged 
against potential ‘costs’ such as increased complexity of correction and distortion due to 
application of stabilization methods etc. 
Dynamic correction will be made in two steps. A digital filter is first synthesized using a 
model of the targeted measurement. This filter is then applied to all measured signals. 
Mathematically, measured signals are corrected by propagating them ‘backwards’ through 
the modelled measurement system to their physical origin. The synthesis involves inversion 
of the identified model, taking physical and practical constraints into account to find the 
optimal level of correction. Not surprisingly, time-reversed filtering in post-processing may 
be utilized to stabilize the filter. Post-processing gives additional possibilities to reduce the 
phase distortion, as well as to eliminate the time delay. 
The synthesis will be based on the concept of filter ‘prototypes’ which have the desirable 
properties but do not always fulfil all constraints. A sequence of approximations makes the 
prototypes realizable at the cost of increased uncertainty of the correction. For instance, a 
time-reversed infinite impulse response filter can be seen as a prototype for causal 
application. One possible approximation is to truncate its impulse response and add a time 
delay to make it causal. The distortion manifests itself via the truncated tail of the impulse 
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response. The corresponding frequency response can be used to estimate the dynamic error 
as in section 4.3. This will estimate the error of making a non-causal correction causal. 
Decreasing the acceptable delay increases the cost. If the acceptable delay exceeds the 
response time, there is no cost at all as truncation is not needed. 

The discretization of a continuous time digital filter prototype can be made in two ways: 
1. Minimize the numerical discrepancy between the characterization of a digital filter 

prototype and a comparable continuous time characterization for 
a. a calibration measurement  
b. an identified model  

2. Map parameters of the identified continuous time model to a discrete time model 
by means of a unique transformation. 

 
Alternative 1 closely resembles system identification and requires no specific methods for 
correction. In 1b, identification is effectively applied twice which should lead to larger 
uncertainty. The intermediate modelling reduces disturbances but this can be made more 
effectively and directly with the choice of filter structure in 1a. As it is generally most 
efficient in all kinds of ‘curve fitting’ to limit the number of steps, repeated identification as 
in 1b is discouraged. Indeed, simultaneous identification and discretization of the system as 
in 1a is the traditional and best performing method (Pintelon et al., 1990). Using mappings 
as in 2 (Hessling 2008a) is a very common, robust and simple method to synthesize any type 
of filter. In contrast to 1, the discretization and modelling errors are disjoint in 2, and can be 
studied separately. A utilization of the mapping can be defined to express the relation 
between its bandwidth (defined by the acceptable error) and the Nyquist frequency. The 
simplicity and robustness of a mapping may in practice override the cost of reduced 
accuracy caused by the detour of continuous time modelling. Alternative 2 will be pursued 
here, while for alternative 1a we refer to methods of identification discussed in section 4.2 
and the example in section 4.4.1. 
As the continuous time prototype transfer function 1H  for dynamic correction of H  is un-
physical (improper, non-causal and ill-conditioned), many conventional mappings fail. The 
simple exponential pole-zero mapping (Hessling, 2008a) of continuous time  kk zp ~,~  to 
discrete time  kk zp ,  poles and zeros can however be applied. Switching poles and zeros to 
obtain the inverse of the transfer function of the original measurement system this 
transformation reads ( ST  the sampling time interval), 
 

 
 Skk

Skk

Tzp
Tpz

~exp

~exp



. (11) 

 
To stabilize and to cancel the phase, the reciprocals of unstable poles and zeros outside the 
unit circle in the z-plane are first collected in the time-reversed filter, to be applied to the 
time-reversed signal with exchanged start and end points. The remaining parameters build 
up the other filter for direct application forward in time. An additional regularizing low-
pass noise filter is required to balance the error reduction and the increase of uncertainty 
(Hessling, 2008a). It will here be applied in both time directions to cancel its phase. For 
causal noise filtering, a symmetric linear phase FIR noise filter can instead be chosen. 
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4.4.1 Example: Oscilloscope step generator 
From the step response characterization of a generator (Fig. 3, right), a non-minimum phase 
model was identified in section 4.2.4 (Fig. 7, right). The resulting prototype for correction is 
unstable, as it has poles outside the unit circle in the z-plane. It can be stabilized by means of 
time-reversal filtering, as previously described. In Fig. 12, this correction is applied to the 
original step signal. As expected (EA-10/07), the correction reduces the rise time T about as 
much as it increases the bandwidth. 
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Fig. 12. Original (dashed) and corrected (full) response of the oscilloscope generator (Fig. 3).  
 
Two objections can be made to this result: 1. No expert on system identification would 
identify the model and validate the correction against the same data. 2. The non-causal 
oscillations before the step are distinct and appear unphysical as all physical signals must be 
causal. The answer to both objections is the use of an extended and more detailed concept of 
measurement uncertainty in metrology, than in system identification: (1) Validation is made 
through the uncertainty analysis where all relevant sources of uncertainty are combined. 
(2) The oscillations before the step must therefore be ‘swallowed’ by any relevant measure 
of time-dependent measurement uncertainty of the correction. 
The oscillations (aberration) are a consequence of the high frequency response of the 
[corrected] measurement system. The aberration is an important figure of merit controlled 
by the correction. Any distinct truncation or sharp localization in the frequency domain, as 
described by the roll-off and bandwidth, must result in oscillations in the time domain. 
There is a subtle compromise between reduction of rise time and suppression of aberration: 
Low aberration requires a shallow roll-off and hence low bandwidth, while short rise time 
can only be achieved with a high bandwidth. It is the combination of bandwidth and roll-off 
that is essential (section 4.3). A causal correction requires further approximations. 
Truncation of the impulse response of the time-reversed filter is one option not yet explored. 
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4.4.2 Example: Transducer system 
Force and pressure transducers as well as accelerometers (‘T’) are often modelled as single 
resonant systems described by a simple complex-conjugated pole pair in the s-plane. Their 
usually low relative damping may result in ‘ringing’ effects (Moghisi, 1980), generally 
difficult to reduce by other means than using low-pass filters (‘A’). For dynamic correction 
the s-plane poles and zeros of the original measurement system can be mapped according to 
Eq. 11 to the z-plane shown in Fig. 13. As this particular system has minimum phase (no 
zeros), no stabilization of the prototype for correction is required. A causal correction is 
directly obtained if a linear phase noise filter is chosen (Elster et al. 2007).  Nevertheless, a 
standard low-pass noise filter was chosen for application in both directions of time to easily 
cancel its contribution to the phase response completely. 
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Fig. 13. Poles (x) and zeros (o) of the correction filter: cancellation of the transducer (T) as 
well as the analogue filter (A), and the noise filter (N). 
 
The system bandwidth after correction was mainly limited by the roll-off of the original 
system, and the assumed signal-to-noise ratio  dB50 . In Fig. 14 (top) the frequency 
response functions up to the noise filter cut-off, and the bandwidths defined by 5% 
amplification error before    and after    correction are shown. This bandwidth 
increased 65%, which is comparable to the REq-X system (Bruel&Kjaer, 2006). The 
utilization of the maximum dB6 bandwidth set by the cross-over frequency of the noise 
filter was as high as %93 . This ratio approaches 100% as the sampling rate increases 
further and decreases as the noise level decreases. The noise filter cut-off was chosen 

AN ff 2 , where Af  is the cross-over frequency of the low-pass filter. The performance of 
the correction filter was verified by a simulation (Matlab), see Fig. 14 (bottom). Upon 
correction, the residual dynamic error (section 4.3) decreased from %10  to %6 , the 
erroneous oscillations were effectively suppressed and the time delay was eliminated. 
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Fig. 14. Magnitude (top) and phase (middle) of frequency response functions for the original 
measurement system  MH  , the correction filter  CG  and the total corrected system  F , 
and simulated correction of a triangular pulse (bottom): corrected signal (Corr), residual 
error (Err), and transducer signal before (Td) and after (Td+Af) the analogue filter. Time is 
given in units of the inverse resonance frequency 1

Cf  of the transducer. 
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4.5 Measurement uncertainty 
Traditionally, the uncertainty given by the calibrator is limited to the calibration experiment. 
The end users are supposed to transfer this information to measurements of interest by 
using an uncertainty budget. This budget is usually a simple spreadsheet calculation, which 
at best depends on a most rudimentary classification of measured signals. In contrast, the 
measurement uncertainty for non-stationary signals will generally have a strong and 
complex dependence on details of the measured signal (Elster et al. 2007; Hessling 2009a). 
The interpretation and meaning of uncertainty is identical for all measurements – the 
uncertainty of the conditions and the experimental set up (input variables) results in an 
uncertainty of the estimated quantity (measurand). The unresolved problems of non-
stationary uncertainty evaluation are not conceptual but practical. How can the uncertainty 
of input variables be expressed, estimated and propagated to the uncertainty of the 
estimated measurand? As time and ensemble averages are different for non-ergodic systems 
such as non-stationary measurements, it is very important to state whether the uncertainty 
refers to a constant or time-dependent variable. In the latter case, also temporal correlations 
must be determined. Noise is a typical example of a fluctuating input variable for which 
both the distribution and correlation is important. If the model of the system correctly 
catches the dynamic behaviour, its uncertainty must be related to constant parameters. The 
lack of repeatability is often used to estimate the stochastic contribution to the measurement 
uncertainty. The uncertainty of non-stationary measurements can however never be found 
with repeated measurements, as variations due to the uncertainty of the measurement or 
variations of the measurand cannot even in principle be distinguished. 
The uncertainty of applying a dynamic correction might be substantial. The stronger the 
correction, the larger the associated uncertainty must be. These aspects have been one of the 
most important issues in signal processing (Wiener, 1949), while it is yet virtually unknown 
within metrology. The guide (ISO GUM, 1993, section 3.2.4) in fact states that “it is assumed 
that the result of a measurement has been corrected for all recognized significant systematic 
effects and that every effort has been made to identify such effects”. Interpreted literally, 
this would by necessity lead to measurement uncertainty without bound. Also, as stated in 
section 4.4.1 the correction of the oscilloscope generator in Fig. 12 only makes sense 
(causality) if a relevant uncertainty is associated to it. This context elucidates the pertinent 
need for reliable measures of non-stationary measurement uncertainty. 
The contributions to the measurement uncertainty will here be expressed in generalized 
time-dependent sensitivity signals, which are equivalent to the traditional sensitivity 
constants. The sensitivity signals are obtained by convolving the generating signals with the 
virtual sensitivity systems for the measurement. The treatment here includes one further step 
of unification compared to the previous presentation (Hessling, 2009a): The contributions to 
the uncertainty from measurement noise and model uncertainty are evaluated in the same 
manner by introducing the concept of generating signals. Digital filters or software 
simulators will be proposed tools for convolution. Determining the uncertainty of input 
variables is considered to be a part of system identification (section 4.2.2), assumed to 
precede the propagation of dynamic measurement uncertainty addressed here. 
The measurement uncertainty signal is generally not proportional to the measured signal. 
This typical dynamic effect does not imply that the system is non-linear. Rather, it reveals 
that the sensitivity systems differ fundamentally from the measurement system.  
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4.5.1 Expression of measurement uncertainty 
To evaluate the measurement uncertainty (ISO GUM, 1993), a model equation is required. 
For a dynamic measurement it is given by the differential or difference equation introduced 
in the context of system identification (section 4.2). Also in this case it will be convenient to 
use the corresponding transformed algebraic equations (Eq. 4), preferably given as transfer 
functions parameterized in poles and zeros, or physical parameters. 
The measurement uncertainty is associated to the quantity of interest contained in the model 
equation. For measured uncorrected signals, the uncertainty is probably strongly dominated 
by systematic errors (section 4.3). The model equation for correction is the inverse model 
equation/transfer function for the direct measurement, adjusted for approximations and 
modifications required to realize the correction. Generally, a system analysis (Warwick, 
1996) of the measurement and all applied operations will provide the required model. For 
simplicity, this section will only address random contributions to the measurement 
uncertainty associated to the dynamic correction discussed in section 4.4.  
The derivation of the expression of uncertainty in dynamic measurements will be similar for 
CT and DT, due to the identical use of poles and zeros. Instead of using the inverse Laplace 
and z-transform, the expressions will be convolved in the time domain with digital filters or 
dynamic simulators. The propagation of uncertainty from the characterization to the model 
(section 4.2.2), and from the model to the correction of the targeted measurement discussed 
here will be evaluated analogously; the model equation or transfer function will be 
linearized in its parameters and the uncertainty expressed through sensitivity signals. For an 
efficient model only a few weakly correlated parameters are required. The covariance matrix 
is in that case not only small but also sparse. As the number of sensitivity signals scales with 
the size of this matrix, the propagation of uncertainty will be simple and efficient. 
The time-dependent deviation   of the signal of interest from its ensemble mean can be 
expressed as a matrix product between the deviations   of all m  variables from their 
ensemble mean, and matrix   of all sensitivity signals organized in rows,  
 

   knnnk
T

m
T e   ,, 21  . (12) 

 
The sensitivity signal nk  for parameter n , evaluated at time kt , is calculated as a 
convolution    between the impulse response ne  of the sensitivity system nE  and a 
generating signal n . Both the response ne  and the signal n  are generally unique for 
every parameter. In contrast to the previous formulation (Hessling, 2009a), the vector   
here represents all uncertain input variables, noise  y  as well as static and dynamic 
model parameters  q . The covariance of the error signal is found directly from this 
expression by squaring and averaging    over an ensemble of measurements, 
 

 TTT  . (13) 

 
The variance or squared uncertainty at different times are given by the diagonal elements of 

T . The matrix T  and columns of   is the covariance matrix of input variables and 
sensitivity at a given time often written as (ISO GUM, 1993)  xxu ,  and c , respectively. 
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The combination of Eq. 6 and Eq. 13 propagates the uncertainty of the characterization    
to any time domain measurement    in two steps via the model (Fig. 1), directly    or 
indirectly    via the sensitivity systems E . Physical constraints are fulfilled for all 
realizations of equivalent measurements   , for the parameterization (poles, zeros), and for 
all representations (frequency and time domain). 
The covariance matrix T  will usually be sparse, since different types of variables (such 
as noise  2

Nu  and model parameters  2
Du , as well as disjoint subsystems  22

2
2

1 ,, DnDD uuu   
characterized separately) usually are uncorrelated, 
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For each source of uncertainty, the following has to be determined from the model equation: 

a. Uncertain parameter n . 
b. Sensitivity system  zEn , or  sEn . 
c. Generating signal for evaluating sensitivity,  tn . 

 
The presence of measurement noise  ty  is equivalent to having a signal source without 
control in the transformed model equation (Eq. 4). It is thus trivial that the noise propagates 
through the dynamic correction  zG 1ˆ   just like the signal itself,      zYzGzX  1ˆˆ  :  

a. The uncertain parameters are the noise levels at different times,  nnn tyy   . 
b. The sensitivity system is identical to the estimated correction,    zGzEn

1ˆ  . 
c. The sensitivity signal is simply the impulse response of the correction, 1ˆ  nknk g . 

The generating signal1 is thus a delta function, nknk   . 
 
The contribution due to noise to the covariance of the corrected signal at different times is 
directly found using Eq. 13, 

               112 ˆˆ  gyygu TT
N  . (15) 

 
The covariance matrix Tyy  will be band-diagonal with a width set by the correlation 
time of the noise. This time is usually very short as noise is more or less random. The band 
of Tyy  is widened by the impulse response 1ˆ g , as it is propagated to 2

Nu . The matrix 
2
Nu  is thus also band-diagonal, but with a width given by the sum of the correlation times of 

the noise and the impulse response 1ˆ g  of the correction. Evidently, not only the probability 

                                                                 
1 The introduction of generating signals may appear superfluous in this context. 
Nevertheless, it provides a completely unified treatment of noise and model uncertainty 
which greatly simplifies the general formulation. In addition, the concept of generating 
signals provides more freedom to propagate any obscure source of uncertainty. 

www.intechopen.com



Advances in Measurement Systems248

 

distributions but also the temporal correlations of the noise and the uncertainty of the 
correction are different.  
If the noise is independent of time in a statistical sense, it is stationary. In that case the 
covariance matrix will only depend on the time difference of the arguments, 

lkYkl uyy   2 , and thus has a diagonal structure (lines indicate equal elements), 
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Further, if the noise is not only stationary but also uncorrelated (white), 0kk   . Only the 
diagonal will be non-zero. The noise will in this case propagate very simply, 
 

    221112112 ˆˆˆdiag,ˆˆ N
T

Y
T

N cggguggu 



  . (17) 

 
The variance given by 222

YNN ucu   is as required time-independent since the source is 
stationary. The sensitivity Nc  to stationary uncorrelated measurement noise is simply given 
by the quadratic norm of the impulse response of the correction. 
The propagation of model uncertainty is more complex, because model variations propagate 
in a fundamentally different manner from noise. Direct linearization will give, 
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Logarithmic derivatives are used to obtain relative deviations of the parameters and to find 
simple sensitivity systems  sqEn ,  of low order. Therefore, the generating signals are the 
corrected rather than the measured signals. This difference can be ignored for a minor 
correction, as the accuracy of evaluating the uncertainty then is less than the error of 
calculation. 
If the model parameters  nq  are physical: 

a. The uncertain parameters can be the relative variations, nnn qq  . 
b. The sensitivity systems are  sqEn , . 
c. The generating signals are all given by the corrected measured signal,  knk tx̂ . 

 
For non-physical parameterizations all implicit constraints must be properly accounted for. 
Poles and zeros are for instance completely correlated in pairs as any measured signal must 
be real-valued. This correlation could of course be included in the covariance matrix T . 
A simpler alternative is to remove the correlation by redefining the uncertain parameters. 
The generating signals  knk tx̂  remain, but the sensitivity systems change accordingly 
(Hessling, 2009a) (   denotes scalar vector/inner product in the complex s- or z-plane): 
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a. For complex-valued pairs of poles and zeros, two projections can be used as 
uncertain parameters,     2,1, 



 rqqqqq

r
n

r
nnnnr  . For all real-valued poles 

and zeros q  the variations can still be chosen as nnn qq  . 
b. The sensitivity systems can be written as       1ˆˆˆˆ 


nmmn

q sqqsqqssE , 
 qsEq

11  for real-valued and  qsEq
22  and  qsEq

12  for the projections  q1  
and  q2  of complex-valued pairs of poles and zeros, respectively. 

 
Non-physical parameters require full understanding of implicit requirements but may yield 
expressions of uncertainty of high generality. Large, complex and different types of 
measurement systems can be evaluated with rather abstract but structurally simple 
analyses. Physical parameterizations are highly specific but straight forward to use. The first 
transducer example uses the general pole-zero parameterization. The second voltage divider 
example will utilize physical electrical parameters. 
The conventional evaluation of the combined uncertainty does not rely upon constant 
sensitivities. As a matter of fact, the standard quadratic summation of various contributions 
(ISO GUM, 1993) is already included in the general expression (Eq. 13). The contributions 
from different sources of uncertainty are added at each instant of time, precisely as 
prescribed in the GUM for constant sensitivities. The same applies to the proceeding 
expansion of combined standard uncertainty to any desired level of confidence. In addition, 
the temporal correlation is of high interest for non-stationary measurement. That is non-
trivially inherited from the correlation of the sensitivity signals specific for each 
measurement, according to the covariance of the uncertain input variables (Eq. 13). 

 
4.5.2 Realization of sensitivity filters 
The sensitivity filters are specified completely by the sensitivity systems  sqE , . Filters are 
generally synthesized or constructed from this information to fulfil given constraints. The 
actual filtering process is implemented in hardware or computer programs. The realization of 
sensitivity filters refers to both aspects. Two examples of realization will be suggested and 
illustrated: digital filtering and dynamic simulations.  
The syntheses of digital filters for sensitivity and for dynamic correction described in 
section 4.4 are closely related. If the sensitivity systems are specified in continuous time, 
discretization is required. The same exponential mapping of poles and zeros as for 
correction can be used (Eq. 11). The sensitivity filters for the projections n  will be universal 
(Hessling, 2009a). Digital filtering will be illustrated in section 4.5.3, for the transducer 
system corrected in section 4.4.2. 
There are many different software packages for dynamic simulations available. Some are 
very general and each simulation task can be formulated in numerous ways. Graphic 
programming in networks is often simple and convenient. To implement uncertainty 
evaluation on-line, access to instruments is required. For post-processing, the possibility to 
import and read measured files into the simulator model is needed. The risk of making 
mistakes is reduced if the sensitivity transfer functions are synthesized directly in discrete or 
continuous time. The Simulink software (Matlab) of Matlab has all these features and will be 
used in the voltage divider example (Hessling, 2009b) in section 4.5.4. 
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4.5.3 Example: Transducer system – digital sensitivity filters 
The uncertainty of the correction of the electro-mechanical transducer system (section 4.4.2) 
is determined by the assumed covariance of the model and of the noise given in Table 2.  
 

dB 502 Yu , stationary, uncorrelated (’white’) Measurement noise 
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8.09.003.002.0000
9.0101.005.0000
03.001.04.01.0000

02.005.01.01000
00002.01.00
00001.010
0000005.0

10Mu  

Covariance of:  
static amplification K , 
transducer  T and  
low-pass filter  2,1 AA  
zero projections 21,  

Table 2. Covariance of the transducer system. The projections 21 ,  are anti-correlated as 
the zeros approach the real axis (Hessling, 2009a), see entries (6,7)/(7,6) of 2

Mu  and Fig. 13. 
 
The cross-over frequency Nf  of the low-pass noise filter of the correction strongly affects 
the sensitivity to noise, 36Nc  for AN ff 3  but only 6.2Nc  for AN ff 2  (section 4.4.2), 
where Af  is the low-pass filter cut-off. In principle, the stronger the correction (high cut-off 
Nf ) the stronger the amplification of noise. The model uncertainty increases rapidly at high 

frequencies because of bandwidth limitations. The systematic errors caused by imperfect 
discretization in time are negligible if the utilization is high, %100  (section 4.4.2). The 
uncertainty in the high frequency range mainly consists of: 

1. Residual uncorrected dynamic errors 
2. Measurement noise amplified by the correction 
3. Propagated uncertainty of the dynamic model 

 
For optimal correction, the uncorrected errors (1) balance the combination of noise (2) and 
model uncertainty (3). Even though the correction could be maximized up to the theoretical 
limit of the Nyquist frequency for sampled signals, it should generally be avoided. Rather 
conservative estimates of systematic errors are advisable, as a too ambitious dynamic 
correction might do more harm than good. It should be strongly emphasized that the noise 
level should refer to the targeted measurement, not the calibration! As the optimality 
depends on the measured signal, it is tempting to synthesize adaptive correction filtering 
related to causal Kalman filtering (Kailath, 1981). With post-processing and a recursive 
procedure the adaptation could be further improved. This is another example (besides 
perfect stabilization) of how post-processing may be utilized to increase the performance 
beyond what is possible for causal correction. 
The sensitivity signals for the model are found by first applying the correction filter 1ˆ g  
and then the universal filter bank of realized sensitivity systems  zqEn ,  (Eq. 18) (Hessling, 
2009a) (omitted for brevity). Three complex-valued pole pairs with two projections, one for 
the transducer  T  and two for the filter  21 ImIm,2,1 AA zzAA   results in six unique 
sensitivity signals. For a triangular signal, some sensitivity signals  1,AT  are displayed in 

www.intechopen.com



Metrology for non-stationary dynamic measurements 251

 

Fig. 15 (top). The sensitivities for the transducer and filter models are clearly quite different, 
while for the two filter zero pairs they are similar (sensitivities for 2A  omitted). The 
standard measurement uncertainty Cu  in Fig. 15 (bottom) combines noise ( NY uu  ) and 
model uncertainty  DM uu  , see covariance in Table 2. Any non-linear static contribution 
to the uncertainty has for simplicity been disregarded. To evaluate the expanded 
measurement uncertainty signal, the distribution of measured values at each instant of time 
over repeated measurements of the same triangular signal must be inferred. 
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Fig. 15. Measurement uncertainty Cu  (bottom) for correction of the electro-mechanical 
transducer system (Section 4.4.2), and associated sensitivities for the transducer zero pair T 
projections (top left) and the filter zero pair A1 projections (top right). The measurand  x  
(top: dotted, bottom:  1,1MK uu   (Table 2)) is rescaled and included for comparison. Time is 
given in units of the inverse resonance frequency 1

Cf  of the transducer. 
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4.5.4 Example: Voltage divider for high voltage – simulated sensitivities 
Voltage dividers in electrical transmission systems are required to reduce the high voltages 
to levels that are measurable with instruments. Essentially, the voltage divider is a gearbox 
for voltage, rather than speed of rotation. The equivalent scheme for a capacitive divider is 
shown in Fig. 16. The transfer function/model equation is found by the well-known 
principle of voltage division, 
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KsH . (19) 

 

Linearization of H  in 212121 ,,,,,, CCLLRRK  yields seven different sensitivity systems 
which can be realized directly in Simulink by graphic programming (Fig. 17). 
 

 
Fig. 16. Electrical model of capacitive voltage divider for high voltage (left) with covariance 
(right). The high (low) voltage input (output) circuit parameters are labelled HV (LV). 

 
Fig. 17. Simulink model for generating model sensitivity from corrected signals (Corr). Here, 

  ,nXq HVn XX  where    2,1,,,  nCLRX  and HVX  the total for the HV circuit. 
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As the physical high-frequency cut-off was not modelled (Eq. 19), no noise filter was 
required. To calculate the noise sensitivity from the impulse response (Eq. 17), proper and 
improper parts of the transfer function had to be analyzed separately (Hessling, 2009b). In 
Fig. 18 the uncertainty of correcting a standard lightning impulse ( HVu ) is simulated. The 
signal could equally well have been any corrected voltmeter signal, fed into the model with 
the data acquisition blocks of Simulink. The CLR ,,  parameters were derived from 
resonance frequency  MHz 8.03.2Cf  and relative damping  4.02.1  of the HV and 
LV circuits, and nominal ratio of voltage division 10001K . The resulting sensitivities are 
shown in Fig. 18 (left). The measurement uncertainty of the correction  Cu  in Fig. 18 (right) 
contains contributions from the noise ( NLV uu  ) and the model  DM uu  .  
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Fig. 18. Model sensitivities   (left) for the standard lightning impulse HVu  (left: KHVu  , 
right:  1,1MK uu  ), and measurement uncertainty Cu  (right) for dynamic correction. 

 
4.6 Known limitations and further developments 
Dynamic Metrology is a framework for further developments rather than a fixed concept. 
The most important limitation of the proposed methods is that the measurement system 
must be linear. Linear models are often a good starting point, and the analysis is applicable 
to all non-linear systems which may be accurately linearized around an operating point. 
Even though measurements of non-stationary quantities are considered, the system itself is 
assumed time-invariant. Most measurement systems have no measurable time-dependence, 
but the experimental set up is sometimes non-stationary. If the time-dependence originates 
from outside the measurement system it can be modelled with an additional influential 
(input) signal. 
The propagation of uncertainty has only been discussed in terms of sensitivity. This requires 
a dynamic model of the measurement, linear in the uncertain parameters. Any obscure 
correlation between the input variables is however allowed. It is an unquestionable fact that 
the distributions often are not accurately known. Propagation of uncertainty beyond the 
concept of sensitivity can thus seldom be utilized, as it requires more knowledge of the 
distributions than their covariance. 
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The mappings for synthesis of digital filters for correction and uncertainty evaluation are 
chosen for convenience and usefulness. The over-all results for mappings and more accurate 
numerical optimization methods may be indistinguishable. Mappings are very robust, easy 
to transfer and to illustrate. The utilization ratio of the mapping should be defined 
according to the noise filter cross-over rather than, as customary, the Nyquist frequency. 
This fact often makes the mappings much less critical. 
The de-facto standard is to evaluate the measurement uncertainty in post-processing mode. 
Non-causal operations are then allowed and sometimes provide signal processing with 
superior simplicity and performance. Instead of discussing causality, it is more appropriate 
to state a maximum allowed time delay. When the ratio of the allowed time delay to the 
response time of the measurement system is much larger than one, also non-causal 
operations like time-reversed filtering can be accurately realized in real-time. If the ratio is 
much less than one, it is difficult to realize any causal operation, irrespectively of whether 
the prototype is non-causal or not. Finding good approximations to fulfil strong 
requirements on fast response is nevertheless one topic for future developments. 
Finding relevant models of interaction in various systems is a challenge. For analysis of for 
instance microwave systems this has been studied extensively in terms of scattering 
matrices. How this can be joined and represented in the adopted transfer function formalism 
needs to be further studied. 
Interpreted in terms of distortion there are many different kinds of uncertainty which need 
further exploration. The most evident source of distortion is a variable amplification in the 
frequency domain, which typically smoothes out details. A finite linear phase component is 
equivalent to a time delay which increases the uncertainty immensely, if not adjusted for. 
Distortion due to non-linear phase skews or disperses signals. All these effects are presently 
accounted for. However, a non-linear response of the measurement system gives rise to 
another type of systematic errors, often quantified in terms of total harmonic distortion 
(THD). A harmonic signal is then split into several frequency components by the 
measurement system. This figure of merit is often used e.g. in audio reproduction. Linear 
distortion biases or colours the sound and reduces space cognition, while non-linear 
distortion influences ‘sound quality’. Non-linear distortion is also discussed extensively in 
the field of electrical power systems, as it affects ‘power quality’ and the operation of the 
equipment connected to the electrical power grid. A concept of non-linear distortion for 
non-stationary measurements is missing and thus a highly relevant subject for future 
studies. 

 
5. Summary 
 

In the broadest possible sense Dynamic Metrology is devoted to the analysis of dynamic 
measurements. As an extended calibration service, it contains many novel ingredients 
currently not included in the standard palette of metrology. Rather, Dynamic Metrology 
encompasses many operations found in the fields of system identification, digital signal 
processing and control theory. The analyses are more complex and more ambiguous than 
conventional uncertainty budgets of today. The important interactions in non-stationary 
measurements may be exceedingly difficult to both control and to evaluate. In many 
situations, in situ calibrations are required to yield a relevant result. Providing metrological 
services in this context will be a true challenge. 
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Dynamic Metrology is currently divided into four blocks. The calibrator performs the 
characterization experiment (1) and identifies the model of the measurement (2). The dynamic 
correction (3) and evaluation of uncertainty (4) are synthesized for all measurements by the 
calibrator, while these steps must be realized by the end user for every single measurement. The 
proposed procedures of uncertainty evaluation for non-stationary quantities closely resemble the 
present procedure formulated in the Guide to the Expression of Uncertainty in Measurement 
(ISO GUM, 1993), but its formulation needs to be generalized and exemplified since for instance: 

 The sensitivities are generally time-dependent signals and not constants. 
 The sensitivity is not proportional to the measured or corrected signal. 
 The uncertainty refers to distributions over ensembles and temporal correlations. 
 The model equation is one or several differential or difference equation(s). 
 The uncertainty, dynamic correction or any other comparable signal is unique for 

every combination of measurement system and measured or corrected signal. 
 Proper estimation of systematic errors requires a robust concept of time delay. 
 Complete dynamic correction must never be the goal, as noise would be amplified 

without any definite bound. 
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