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Abstract 
  

Many handheld force-feedback devices have been proposed to provide a rich experience 
with mobile devices. However, previously reported devices have been unable to generate 
both constant and translational force. They can only generate transient rotational force since 
they use a change in angular momentum. Here, we exploit the nonlinearity of human 
perception to generate both constant and translational force. Specifically, a strong 
acceleration is generated for a very brief period in the desired direction, while a weaker 
acceleration is generated over a longer period in the opposite direction. The internal human 
haptic sensors do not detect the weaker acceleration, so the original position of the mass is 
"washed out". The result is that the user is tricked into perceiving a unidirectional force. This 
force can be made continuous by repeating the motions. This chapter describes the pseudo-
attraction force technique, which is a new force feedback technique that enables mobile 
devices to create a the sensation of two-dimensional force. A prototype was fabricated in 
which four slider-crank mechanism pairs were arranged in a cross shape and embedded in a 
force feedback display. Each slider-crank mechanism generates a force vector. By using the 
sum of the generated vectors, which are linearly independent, the force feedback display 
can create a force sensation in any arbitrary direction on a two-dimensional plane. We also 
introduce an interactive application with the force feedback display, an interactive robot, 
and a vision-based positioning system. 

  
1. Introduction 
  

Haptic interfaces in virtual environments allow users to touch and feel virtual objects. 
Significant research activities over 20 years have led to the commercialization of a large 
number of sophisticated haptic interfaces including PHANToM and SPIDAR. However, 
most of these interfaces have to use some type of mechanical linkage to establish a fulcrum 
relative the ground (Massie & Salisbury, 1994; Sato, 2002), use huge air compressors (Suzuki 
et al., 2002; Gurocak et al., 2003), or require that a heavy device be worn (Hirose et al., 2001), 
thus preventing these mobile devices from employing haptic feedback. 
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Although haptic feedback provides many potential benefits as regards the use of small 
portable hand-held devices (Ullmer & Ishii 2000; Luk et al., 2006), the haptic feedback in 
mobile devices consists exclusively of vibrotactile stimuli generated by vibrators (MacLean 
et al., 2002). This is because it is difficult for mobile devices to produce a kinesthetic 
sensation. Moreover, the application of low-frequency forces to a user requires a fixed 
mechanical ground that mobile haptic devices lack. To make force-feedback devices 
available in mobile devices, ungrounded haptic feedback devices have been developed since 
they are more mobile and can operate over larger workspaces than grounded devices 
(Burdea, 1996). The performance of ungrounded haptic feedback devices is less accurate 
than that of grounded devices in contact tasks. However, ungrounded haptic feedback 
devices can provide comparable results in boundary detection tests (Richard & Cutkosky, 
1997). Unfortunately, typical ungrounded devices based on the gyro effect (Yano et al., 2003) 
or angular momentum change (Tanaka et al., 2001) are incapable of generating both constant 
and directional forces; they can generate only a transient rotational force (torque) sensation. 
In addition, Kunzler and Runde pointed out that gyro moment displays are proportional to 
the mass, diameter, and angular velocity of the flywheel (Kunzler & Runde, 2005). 
There are methods for generating sustained translational force without grounding, such as 
propulsive force or electromagnetic force. Recently, there have been a number of proposals 
for generating both constant and directional forces without an external fulcrum. These 
includeusing two oblique motors whose velocity and phase are controlled (Nakamura & 
Fukui, 2007), simulating kinesthetic inertia by shifting the center-of-mass of a device 
dynamically when the device is held with both hands (Swindells et al., 2003), and producing 
a pressure field with airborne ultrasound (Iwamoto et al., 2008). 

  
2. Pseudo-Attraction Force Technique 
  

2.1 Haptic interface using sensory illusions 
To generate a sustained translational force without grounding, we focused on the 
characteristic of human perception, which until now has been neglected or inadequately 
implemented in haptic devices. Although human beings always interact with the world 
through human sensors and effectors, the perceived world is not identical to the physical 
world (Fig. 1). For instance, when we watch television, the images (a combination of RGB 
colors) we see are different from physical images (a composition of all wavelengths of light), 
and TV animation actually consists of a series of still pictures. Such phenomena are usually 
interpreted by converting them to subjectively equivalent phenomena. These distortions of 
human perception, including systematic errors or illusions, have been exploited when 
designing human interfaces. Moreover, some illusions have the potential to enable the 
development of new haptic interfaces (Hayward 2008). Therefore, the study of haptic 
illusions can provide valuable insights into not only human perceptual mechanisms but also 
the design of new haptic interfaces. 

 

 
 

Fig. 1. Difference between perceived world and physical world. 

  
2.2 Principle 
The method, which is called the pseudo-attraction force technique, exploits the 
characteristics of human perception to generate a force sensation, using different 
acceleration patterns for two directions to create a perceived force imbalance, and thereby 
produce the sensation of directional pushing or pulling. Specifically, a strong acceleration is 
generated for a very brief time in the desired direction, while a weaker acceleration is 
generated over a longer period in the opposite direction. The weaker acceleration is not 
detected by the internal human haptic sensors, so the original position of the mass is 
"washed out". The result is that the user is tricked into perceiving a unidirectional force. This 
force can be made continuous by repeating the motions. Figure 2 shows a model of the 
nonlinear relationship between physical and psychophysical quantities. If the acceleration 
patterns are well designed, a kinesthetic illusion of being pulled can be created because of 
this nonlinearity. 
  

 
 

Fig. 2. Nonlinear relationship between physical and psychophysical quantities. 
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2.3 Implementation 
To generate the asymmetric back-and-forth motion of a small, constrained mass, we have 
adopted a swinging slider-crank mechanism as a quick motion mechanism (Fig. 3). In the 
mechanism, the rotation of a crank (OB) makes the weight slide backwards and forwards 
with asymmetric acceleration. The force display is composed of a single degree of freedom 
(DOF) mechanism. The force vector of the asymmetric oscillation is 
  

2

2 )()(F
dt

txdmt   (1) 

  
where m is the weight. The acceleration is given by the second derivative with respect to 
time of the motion of the weight x, which is given by 
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x(t) = OD, d = OA, l1 = OB, l2 = BC, l3 = CD, and ωt = AOB in Fig. 3. ω is the constant angular 
velocity, and t is time. 
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Fig. 3. Overview of the swinging slider-crank mechanism for generating asymmetric 
oscillation. The slider (weight) slides backwards and forwards as the crank (OB) rotates. 
Point A causes the slide to turn about the same point. Since the relative link lengths (AB:AC) 
are changed according to the rotation of the crank, the slider (weight) moves with 
asymmetric acceleration. 
  
We fabricated a prototype of the force display. In the prototype, d = 28 mm, l1 = 15 mm, l2 = 
60 mm, and l3 = 70 mm. The actual acceleration values of the prototype were measured with 
a laser sensor (Keyence Inc., LK-G150, sampling 20 kHz) employing a seventh order LPF 
Butterworth filter with a cut-off frequency of 100 Hz (Fig.4).  

 

 
 

Fig. 4. Actual asymmetric acceleration value with the LPF (blue solid line) vs. the calculated 
value (black dotted line). Humans perceive a unidirectional force by holding the haptic 
device. This is because the strong and weak acceleration periods yield different sensations, 
although the device physically generates a bidirectional force. 
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Fig. 4. Actual asymmetric acceleration value with the LPF (blue solid line) vs. the calculated 
value (black dotted line). Humans perceive a unidirectional force by holding the haptic 
device. This is because the strong and weak acceleration periods yield different sensations, 
although the device physically generates a bidirectional force. 
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3. Requirements for perceiving pseudo-attraction force 
  

There are still many aspects of the perception of the pseudo-attraction force that are not well 
understood, but knowledge has been accumulating. In this section, we introduce various 
parameters for eliciting the pseudo-attraction force through experimental results. 

  
3.1 Acceleration profile 
First, we determined whether oscillations with asymmetric acceleration elicit the perception 
of a pseudo-attraction force. Two oscillations with different acceleration profiles were 
compared as haptic stimuli: asymmetric acceleration (shown in Fig. 4) and symmetric 
acceleration (control). For the asymmetric acceleration stimuli, the average percentage 
correct scores (i.e., how often the perceived force direction matched the crank-to-slider 
direction in Fig. 3) for all subjects were approximately 100% at frequencies below 10 cycles 
per second when we used a binary judgment task (forward or backward). For the symmetric 
acceleration stimuli, the scores were between 25% and 75%, which is the chance level. These 
results show that the symmetric acceleration could not generate a directed force sensation. 
We performed a binomial test for the average percent correct scores, which showed no 
significant effect of the control stimuli for any of the frequencies. This means that symmetric 
acceleration does not elicit the perception of a pseudo-attraction force. Again, no directional 
force was felt if the mass were merely moved back and forth, but different acceleration 
patterns for the two directions to create a perceived force imbalance produced the 
perception of a pseudo-attraction force (Amemiya & Maeda, 2009). 

  
3.2 Frequency of acceleration 
Frequency of acceleration plays an important role in eliciting the perception of a pseudo-
attraction force. Oscillations with high frequency might create a continuous force sensation, 
but previous experimental results showed that the performance decreased steadily at 
frequencies over ten cycles per second (Amemiya et al., 2008). However, low frequency 
oscillation tends to be perceived as a knocking sensation. If we wish to create a sustained 
rather than a transient force sensation such as the sensation of being pulled continuously, 
the frequency should be in the 5 to 10 cycles per second range. In addition, those who 
experienced the stimuli strongly perceived the sensation at 5 cycles per second independent 
of other parameters (Amemiya & Maeda, 2009). 

  
3.3 Gross weight of force display 
Changes in the gross weight and the weight of the reciprocating mass affects the perceived 
force sensation. Experimental results have shown that lighter gross weights and a heavier 
reciprocating mass yield higher percent-correct scores in binary judgment tasks for all 
frequencies (Amemiya & Maeda, 2009). Considering the Weber fraction of force perception, 
the differential threshold of force perception is thought to increase as the gross weight 
increases. In addition, the increase in the gross weight may work as a mass damper, which 
would reduce the gain of the effective pulse acceleration. The threshold of the ratio of the 
gross weight and the weight of the reciprocating mass was 16 %, which is a rough standard 
for effective force perception in the developed prototype. 

  

 

3.4 Angular resolution 
The azimuth accuracy of the perceived force direction versus the stimulated direction 
generated by an asymmetric acceleration has been examined (Amemiya et al., 2006). The 
orientation of the force vector was altered from 0 to 360° on the horizontal plane in 15° steps 
(24 vectors). The subjects were required to reply with one of 360 degrees in a static posture. 
The results showed that the root mean square of the angular errors between response and 
stimulus was approximately 20 degrees. When users move or rotate their bodies, i.e., 
dynamically explore the force vector, their angular resolution would be higher than that in a 
static posture. 

  
3.5 Cancellation of orthogonal oscillation 
If asymmetric oscillation was generated by rotational mechanism such as the slider-crank 
mechanism, a force perpendicular to the directional one were created because of the motion 
of the linkages. The side-to-side force prevents the user from sensing the desired direction. 
The side-to-side force should be cancelled out completely, for instance, by using two 
identical but mirror-reversed mechanisms (Amemiya et al., 2008). 

  
4. Application 
  

4.1 Overview  
For broad social use, we designed an interactive application of haptic navigation based on  a 
pseudo-attraction force display. The scenario was as follows. A waiter (user) in a cafe wants to 
deliver a drink ordered by a customer (target). The waiter does not know where the customer is 
sitting. However, his “smart tray” creates an attraction force centered on the customer and guides the 
waiter to him/her. Since the guidance is based on force sensation, the guidance information is useful 
regardless of the waiter’s age or language ability. Moreover, since the guidance directions are 
transmitted via touch, the other senses remain available to the waiter, making it easier for him to 
move through even the most crowded areas. Finally, the instructions remain entirely private; no one 
else can discover that the waiter is receiving instructions.  

  
4.2 System configuration 
The system consists of a tray held by the user (waiter), a small bag containing a battery and 
a control device, and a position and direction identification system based on infrared LEDs 
and a wide-angle camera (Fig. 5). The force display and infrared LEDs are embedded in the 
tray. The user's position and posture are detected by placing three super-high luminance 
infrared LEDs (OD-100, OPTO Diode Corp., peak wavelength 880 nm, beam angle 120 
degrees), at the corners of a right-angled isosceles triangle (side length = 100 mm) on the 
tray. The infrared rays are captured by a ceiling-mounted IEEE1394 black and white CMOS 
camera (Firefly MV, FFMV-03MTM; Point Grey Research Inc.) with a wide-angle lens (field 
angle 175 degrees). The positions and orientations of each IR-LED are obtained by 
binarizing the brightness value from the acquired camera image with OpenCV library, and 
calculating the position and orientation from the relationship with a right-angled isosceles 
triangle formed by three dots (Fig. 6). 
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4.1 Overview  
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pseudo-attraction force display. The scenario was as follows. A waiter (user) in a cafe wants to 
deliver a drink ordered by a customer (target). The waiter does not know where the customer is 
sitting. However, his “smart tray” creates an attraction force centered on the customer and guides the 
waiter to him/her. Since the guidance is based on force sensation, the guidance information is useful 
regardless of the waiter’s age or language ability. Moreover, since the guidance directions are 
transmitted via touch, the other senses remain available to the waiter, making it easier for him to 
move through even the most crowded areas. Finally, the instructions remain entirely private; no one 
else can discover that the waiter is receiving instructions.  

  
4.2 System configuration 
The system consists of a tray held by the user (waiter), a small bag containing a battery and 
a control device, and a position and direction identification system based on infrared LEDs 
and a wide-angle camera (Fig. 5). The force display and infrared LEDs are embedded in the 
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tray. The infrared rays are captured by a ceiling-mounted IEEE1394 black and white CMOS 
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angle 175 degrees). The positions and orientations of each IR-LED are obtained by 
binarizing the brightness value from the acquired camera image with OpenCV library, and 
calculating the position and orientation from the relationship with a right-angled isosceles 
triangle formed by three dots (Fig. 6). 
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Fig. 5. System configuration. 
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Fig. 6. Vision-based position and posture identification system. The white dots in the camera 
image are the infrared LEDs. 

  
The user must hold the tray horizontally because of the drink being carried on it. Therefore, 
the user’s posture can be presumed by detecting three IR-LEDs. The image capture rate is 
about 60 fps. The camera height is about 3.0 m and the camera faces the ground. When three 
points can be acquired, the position measurement error does not exceed 100 mm. This is 
sufficient for our demonstration since the distance to the targets is about 1,000 mm.  
There are two ways to generate a two-dimensional force vector (Fig. 7), and we fabricate 
each prototype. A turntable-based force display is one module based on a slider-crank 
mechanism with a turntable (Fig. 8). The direction of the force display module is controlled 
with a stepper motor (bipolar, step angle 1.8 degrees, 1/4 micro step drive; KH42HM2-851; 
Japanese Servo Ltd.). engaged by a belt with a belt pulley installed in the turntable 
(Amemiya et al., 2009). 
A vector-summation-based force display is designed to generate a force sensation in at least 
eight cardinal directions by the summation of linearly independent force vectors. Four 
slider-crank mechanism pairs are embedded in the force display in the shape of a crosshair. 
By combining force vectors generated by each slider-crank mechanism, the force display can 
create a virtual force in eight cardinal directions on a two-dimensional plane. 

 

The target is several bear-shaped robots (RobotPhone; Iwaya Inc.). As the customer speaks, 
he also moves his head and hands to communicate with gestures. 

  
4. 3 Demonstration procedure 
The user moved towards the target following the direction indicated by the perceived force 
sensation. The force direction was controlled so that it faced the target (customer) based on 
the posture detection system. Control instructions were sent from the computer to the 
microcomputer via a wireless link (XBee-PRO (60 mW) ZigBee module; MaxStream) when 
required. The user chose one customer by stopping in front of the target. If this choice was 
correct, the customer (bear-shaped robot) said, ‘‘thank you’’; otherwise, the customer said, 
‘‘I did not order this’’ while moving his head and hands to communicate with gestures. 
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4. 4 Discussion 
We demonstrated the above application at an international conference and exhibition. The 
average rate of correct delivery to the target exceeded 75 % (note that none of the 
participants received any initial training), indicating that the navigation support provided is 
effective and appropriate. The results show the usefulness of the proposed technique. The 
few delivery failures appear to be due to tracking errors in the camera system or a delay 
between the rotation of the stepper motor and the user’s perception of the change. Moreover, 
we believe the force’s amplitude to be attenuated by the connection of the device to the tray, 
and this attenuation also influenced delivery failure. We sometimes observed that not all the 
LEDs could be detected since some were occasionally obscured by the participant. System 
robustness could be improved by adopting a different position and posture identification 
system. This haptic navigation could be also applied to a navigation system for the visually 
impaired (Amemiya & Sugiyama 2009). 

  
5. Conclusion and future potential 
  

The developed haptic display based on a pseudo-attraction force technique conveyed a 
kinesthetic illusion of being pulled or pushed. The ability of the haptic display to realize a 
wide-area social support system was discussed. Future work will include extending the 
reach by using a global positioning system to allow outdoor use. 
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