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1. Introduction 

In 1974 Stephen Hawking predicted that gravitational black holes would emit thermal 
radiation and decay (Hawking, 1974). This radiation, emitted from an area called the event 
horizon, is since known as Hawking radiation. To date it is still one of the most intriguing 
physical effects and bears great importance for the development of a quantum theory of 
gravity, cosmology and high energy physics. 
The Hawking effect is one of a rich class of quantum properties of the vacuum (Birrell & 
Davies, 1984; Brout et. al., a; Milonni, 1994). For example, in the Unruh effect (Moore, 1970; 
Fulling, 1973; Davies, 1975; DeWitt, 1975; Unruh, 1976), an accelerated observer perceives 
the Minkowski vacuum as a thermal field. The physics of Hawking radiation leaves us with 
fascinating questions about the laws of nature at transplanckian scales, the conservation of 
information and physics beyond the standard model. Because of the thermal nature of the 
radiation, it is characterized by a temperature, the Hawking temperature. For stable 
astronomical black holes this lies far below the temperature of the cosmic microwave 
background, such that an observation of Hawking radiation in astrophysics seems unlikely. 
Laboratory analogues of black holes have the potential to make the effect observable 
(Unruh, 1981; Schleich & Scully, 1984). The space-time geometry of the gravitational field 
can be represented in coordinates that act as an effective flow (Novello et al., 2002; Volovik, 
2003; Unruh, 1981; Jacobson, 1991; Rousseaux et al., 2008). The event horizon lies where the 
flow velocity appears to exceed the speed of light in vacuum. Analogue systems are thus 
inspired by the following intuitive idea (Unruh, 1981): the black hole resembles a river 
(Jacobson, 1991; Rousseaux et al., 2008), a moving medium flowing towards a waterfall, the 
singularity. Imagine that the river carries waves propagating against the current with speed 
c’. The waves play the role of light where c’ represents c, the speed of light in vacuum. 
Suppose that the closer the river gets to the waterfall the faster it flows and that at some 
point the speed of the river exceeds c’. Clearly, beyond this point no wave can propagate 
upstream anymore. The point of no return is the horizon. 
In this chapter we are explaining a recent approach to the realization of an event horizon in 
optics (Philbin et. al, 2008). We start by describing the propagation of light in optical fibers 
and show the analogy to a curved space-time geometry. In Sec. 4 we quantize the field 
equation and give a Hamiltonian. Then we can use the geometrical optics approximation in 
Sec. 5 to find the behavior of light at a horizon, before we describe the scattering process that 
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is the analogue to Hawking radiation (Sec. 6). In Sec. 7 we describe the experimental 
findings of frequency shifts at the optical horizon and compare them to our predictions 
before we conclude. 

2. Background 

Nothing, not even light, can escape from a gravitational black hole. Yet according to quantum 
physics, the black hole is not entirely black, but emits waves in thermal equilibrium (Hawking, 
1974; 1975; Birrell & Davies, 1984; Brout et. al. , a). The waves consist of correlated pairs of 
quanta, one originates from the inside and the other from the outside of the horizon. Seen from 
one side of the horizon, the gravitational black hole acts as a thermal black-body radiator 
sending out Hawking radiation (Hawking, 1974; 1975; Birrell & Davies, 1984; Brout et. al. , a). 
The effective temperature depends on the surface gravity (Hawking, 1974; 1975; Birrell & 
Davies, 1984; Brout et. al. , a) that, in our analogue model, corresponds to the flow-velocity 
gradient at the horizon (Novello et al., 2002; Volovik, 2003; Unruh, 1981; Jacobson, 1991). 
Many systems have been proposed for laboratory demonstrations of analogues of Hawking 
radiation. One type of recent proposal (Garay et al., 2000; Giovanazzi et al., 2004; 
Giovanazzi, 2005) suggests the use of ultracold quantum gases such as alkali Bose-Einstein 
condensates or ultracold alkali Fermions (Giovanazzi, 2005). When a condensate in a 
waveguide is pushed over a potential barrier it may exceed the speed of sound (typically a 
few mm/s) and is calculated to generate a Hawking temperature of about 10nK (Giovanazzi 
et al., 2004). Helium-3 offers a multitude of analogues between quantum fluids and the 
standard model, including Einsteinian gravity (Volovik, 2003). For example, the analogy 
between gravity and surface waves in fluids (Schützhold & Unruh, 2002) has inspired ideas 
for artificial event horizons at the interface between two sliding superfluid phases (Volovik, 
2002), but, so far, none of the quantum features of horizons has been measured in Helium-3. 
Proposals for optical black holes (Leonhardt & Piwnicki, 2000; Leonhardt, 2002) have relied 
on slowing down light (Milonni, 2004) such that it matches the speed of the medium 
(Leonhardt & Piwnicki, 2000) or on bringing light to a complete standstill (Leonhardt, 2002), 
but in these cases absorption may pose a severe problem near the horizon where the spectral 
transparency window (Milonni, 2004) vanishes. 
But do we have to physically move the medium for establishing a horizon? Waves in the river 
may also see a horizon if the river depth changes due to some barrier, as the flow speed is 
increased above the barrier. There is again a black hole horizon just before the barrier. The 
situation is indistinguishable if the water of the river is at rest and the barrier is dragged along 
the river bed. Thus the medium can be locally disturbed and the wave speed can be reduced 
locally, leading to a situation of moving horizons in a medium at rest. Any Hawking radiation 
emitted this way will be immensely Doppler shifted to higher frequencies. Such ideas were 
discussed for moving solitons and domain walls (Jacobson & Volovik, 1998) in superfluid 
Helium-3 (Volovik, 2003) and more recently for microwave transmission lines with variable 
capacity (Schützhold & Unruh, 2005), but they have remained impractical so far. 
Ultrashort optical pulses seem suited for this scenario as optical frequencies and velocities are 
very high. Moving a medium at a fraction of the speed of light seems illusive. The novel idea 
described in this chapter (Philbin et. al, 2008), illustrated in Fig. 1, is based on the nonlinear 
optics of ultrashort light pulses in optical fibers (Agrawal, 2001) where we exploit the 
remarkable control of the nonlinearity, birefringence and dispersion in microstructured fibers 
(Russell, 2003; Reeves et al., 2003). More recently, ultrashort laser pulse filamentation has been 
shown to exhibit asymptotic horizons based on similar principles (Faccio et al., 2009). 
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Fig. 1. Fiber-optical horizons. Left: a light pulse in a fiber slows down infrared probe light 
attempting to overtake it. Right: the diagrams are in the co-moving frame of the pulse. (a) 
Classical horizons. The probe is slowed down by the pulse until its group velocity matches 
the pulse speed at the points indicated in the figure, establishing a white hole at the back 
and a black hole at the front of the pulse. The probe light is blue-shifted at the white hole 
until the optical dispersion releases it from the horizon. (b) Quantum pairs. Even if no probe 
light is incident, the horizon emits photon pairs corresponding to waves of positive 
frequencies from the outside of the horizon paired with waves at negative frequencies from 
beyond the horizon. An optical shock has steepened the pulse edge, increasing the 
luminosity of the white hole (Philbin et. al, 2008). 

3. Effective moving medium and metric 

The fundamental idea behind the fiber-optical event horizon is the nonlinear and local 
modification of the refractive index of the fiber by a propagating pulse. As we will see later, 
this refractive index modification has to be ultrafast, i.e. the contributing nonlinearity is the 
optical Kerr effect (Agrawal, 2001): the (linear) effective refractive index of the fiber, n0, 

gains an additional contribution δn that is proportional to the instantaneous pulse intensity I 
at position z and time t, 

 (1) 

This contribution to the effective refractive index n moves with the pulse. It acts as a local 
modification of the wave speed and thus as an effective moving medium, although nothing 
material is moving. 
In what follows we will review how this nonlinearity arises in a fiber-waveguide, how it 
forms an effective moving medium, and that the fields follow a metric in analogy to a space-
time manifold in the dispersionless case. 

3.1 Waveguides 
The waveguide confines light in the x and y direction and light propagates along the z 
direction. We assume a fiber homogeneous in z and with the Fourier-transformed susceptibility 

 (2) 

We represent the Fourier-transformed electric field strengths as 

 (3) 

where we assume linearly polarized light. Also we require that the fiber modes U are 
eigenfunctions of the transversal part of the wave equation for monochromatic light with 

eigenvalues β 2(ω), 
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(4) 

For single-mode fibers, only one eigenvalue β 2(ω) exists. 

The eigenvalues β 2(ω) of the transversal modes set the effective refractive indices n(ω) of the 

fiber for light pulses E(t, z) defined by the relation 

 
(5) 

In the absence of losses within the frequency range we are considering, the Fourier-

transformed gχ# (ω) in the longitudinal mode equation (4) is real for real ω and the 

longitudinal mode equation (4) is Hermitian and positive. Since the linear susceptibility χg(t) 

is real, gχ# (ω) is an even function, which implies that n2(ω) and β 2(ω) are even. 

3.2 Effective moving medium 
In our case, an intense ultrashort optical pulse interacts with a weak probe field, an incident 

wave of light or the vacuum fluctuations of the electromagnetic field itself (Milonni, 1994). 

The vacuum fluctuations are carried by modes that behave as weak classical light fields as 

well. The pulse is polarized along one of the eigen-polarizations of the fiber; the probe field 

may be co- or cross polarized. We assume that the intensity profile I(z, t) of the pulse 

uniformly moves with constant velocity u during the interaction with the probe, neglecting 

the small deceleration due to the Raman effect and pulse distortions. Since the probe field is 

weak we can safely neglect its nonlinear interaction with the pulse or itself. As the intensity 

profile of the pulse is assumed to be fixed, we focus attention on the probe field. We 

describe the probe by the corresponding component A of the vector potential that generates 

the electric field E and the magnetic field B, with 

 (6) 

The probe field obeys the wave equation 

 
(7) 

where χ denotes the susceptibility due to the Kerr effect of the pulse on the probe. β is given 

by Eq. (5) and we denote the effective refractive index by n0. Equation (7) shows that the 

pulse indeed establishes an effective moving medium (Leonhardt, 2003). It is advantageous 

to use the retarded time τ and the propagation time ζ as coordinates, defined as 

 
(8) 

because in this case the properties of the effective medium depend only on τ. τ and ζ play 

the roles of space and of time, respectively. The z and t derivatives are replaced by 

 
(9) 
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and the wave equation (7) becomes 

 
(10)

where the total refractive index n consists of the effective linear index n0 and the Kerr 
contribution of the pulse, 

 (11)

Since χ 2 n0 we approximate 

 
(12)

where we can ignore the frequency dependance of n0 in χ/(2n0). Note that Eq. (8) does not 

describe a Lorentz transformation to an inertial system, but the τ and ζ are still valid 
coordinates. 

3.3 Dispersionless case and metric 
For simplicity, we consider the dispersionless case where the refractive index n0 of the probe 
does not depend on the frequency. Note that a horizon inevitably violates this condition, 
because here light comes to a standstill, oscillating at increasingly shorter wavelengths, 
leaving any dispersionless frequency window. However, many of the essentials of horizons 
are still captured within the dispersionless model. 
First, we can cast the wave equation (10) in a relativistic form, introducing a relativistic 
notation (Landau & Lifshitz, 1975) for the coordinates and their derivatives 

 (13)

and the matrix 

 
(14)

that resembles the inverse metric tensor of waves in moving fluids (Unruh, 1981; Visser, 
1998). Adopting these definitions and Einstein’s summation convention over repeated 
indices the wave equation (10) appears as 

 (15)

which is almost the free wave equation in a curved space-time geometry (Landau & Lifshitz, 
1975) (In the case of a constant refractive index the analogy between the moving medium 

and a space-time manifold is perfect1.). The effective metric tensor gµν is the inverse of 

gµν
 (Landau & Lifshitz, 1975). We obtain 

                                                 
1
 The exact wave equation in a curved space time geometry is  where g is 

the determinant of the metric tensor (Landau & Lifshitz, 1975). In the case (14) g depends 
only on the refractive index n and hence g is constant for constant n. 
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(16)

In subluminal regions where the velocity c/n of the probe light exceeds the speed of the 
effective medium, i.e. the velocity u of the pulse, the measure of time u2n2/c2 – 1 in the metric 

(16) is negative. Here both ∂τ and ∂ζ are timelike vectors (Landau & Lifshitz, 1975). In 
superluminal regions, however, c/n is reduced such that u2n2/c2 – 1 is positive. A horizon, 
where time stands still, is established where the velocity of light matches the speed of the 
pulse. 

4. Lagrangian formulation and Hamiltonian 

We have now seen that the probe is interacting within an effective moving medium in a way 
similar to waves in moving fluids, mimicking space-time in general relativity. To find the 
classical as well as quantum mechanical evolution of the field, we will next find a suitable 
Lagrangian density and the canonical Hamiltonian. Then we expand the quantized vector 
potential in terms of creation and annihilation operators. 

4.1 Action 
The theory of quantum fields at horizons (Hawking, 1974; 1975; Birrell & Davies, 1984; Brout 
et. al. , a) predicts the spontaneous generation of particles. The quantum theory of light in 
dielectric media at rest has reached a significant level of sophistication (See e.g. Knöll et. al., 
2001), because it forms the foundation of quantum optics (Leonhardt, 2003; See e.g. U. 
Leonhardt, 1993), but quantum light in moving media is much less studied (Leonhardt, 
2003). In optical fibers, light is subject to dispersion, which represents experimental 
opportunities and theoretical challenges: we should quantize a field described by a classical 
wave equation of high order in the retarded time. Moreover, strictly speaking, dispersion is 
always accompanied by dissipation, which results in additional quantum fluctuations (See 
e.g. Knöll et. al., 2001). Here, however, we assume to operate in frequency windows where 
the absorption is negligible. To deduce the starting point of the theory, we begin with the 
dispersionless case in classical optics and then proceed to consider optical dispersion for 
light quanta. 
The classical wave equation of one-dimensional light propagation in dispersionless media 
follows from the Principle of Least Action (Landau & Lifshitz, 1975) with the action of the 
electromagnetic field in SI units 

 

(17)

and hence the Lagrangian density 

 
(18)

In order to include the optical dispersion in the fiber and the effect of the moving pulse, we 

express the refractive index in terms of β(ω) and the effective susceptibility χ(τ) caused by 

the pulse, using Eqs. (5) and (11) with ω = i∂τ. We thus propose the Lagrangian density 
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(19)

In the absence of losses, β 2(ω) is an even function (Sec. 3.1). We write down the Euler-

Lagrange equation (Landau & Lifshitz, 1975) for this case 

 
(20)

and obtain the wave equation (10). Thus the Lagrangian density (19) is correct. 

4.2 Quantum field theory 

According to the quantum theory of fields (Weinberg, 1999) the component A of the vector 

potential is described by an operator ˆ .A  Since the classical field A is real, the operator Â  

must be Hermitian. For finding the dynamics of the quantum field we quantize the classical 

relationship between the field, the canonical momentum density and the Hamiltonian: we 

replace the Poisson bracket between the field A and the momentum density ∂L /∂(∂ζ A) by 

the fundamental commutator between the quantum field Â  and the quantized momentum 

density (Weinberg, 1999). We obtain from the Lagrangian (19) the canonical momentum 

density 

 
(21)

and postulate the equivalent of the standard equal-time commutation relation (Weinberg, 

1999; Mandel &Wolf, 1995) 

 
(22)

We obtain the Hamiltonian 

 

(23)

One verifies that the Heisenberg equation of the quantum field Â  is the classical wave 

equation (10), as we would expect for fields that obey linear field equations. 

4.3 Mode expansion 

Since the field equation is linear and classical, we represent Â  as a superposition of a 

complete set of classical modes multiplied by quantum amplitudes ˆ .ka  The mode expansion 

is Hermitian for a real field such as the electromagnetic field, 

 
(24)
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The modes Ak obey the classical wave equation (15) and are subject to the orthonormality 
relations (Birrell & Davies, 1984; Brout et. al., a; Leonhardt, 2003) 

 (25)

with respect to the scalar product 

 
(26)

The scalar product is chosen such that it is a conserved quantity for any two solutions A1 

and A2 of the classical wave equation (10), 

 (27)

with a prefactor to make the commutation relations between the mode operators 

particularly simple and transparent. The scalar product serves to identify the quantum 

amplitudes ˆ
ka  and †ˆ

ka : the amplitude ˆ
ka  belongs to modes Ak with positive norm, whereas 

the Hermitian conjugate †ˆ
ka  is the quantum amplitude to modes *

kA  with negative norm, 

because 

 (28)

Using the orthonormality relations (25) we can express the mode operators ˆ
ka  and †ˆ

ka  as 

projections of the quantum field Â  onto the modes Ak and *
kA  with respect to the scalar 

product (26), 

 (29)

We obtain from the fundamental commutator (22) and the orthonormality relations (25) of 
the modes the Bose commutation relations 

 (30)

Therefore light consists of bosons and the quantum amplitudes ˆ
ka  and †ˆ

ka  serve as 

annihilation and creation operators. 

The expansion (24) is valid for any orthonormal and complete set of modes. Consider 

stationary modes with frequencies  ,
kω  such that 

 (31)

We substitute the mode expansion (24) in the Hamiltonian (23) and use the wave equation 
(10) and the orthonormality relations (25) to obtain 

 
(32)

Each stationary mode contributes ¥ ,
kω  to the total energy that also includes the vacuum 

energy. The modes with positive norm select the annihilation operators of a quantum field, 
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whereas the negative norm modes pick out the creation operators. In other words, the norm 

of the modes determines the particle aspects of the quantum field. In the Unruh effect 

(Moore, 1970; Fulling, 1973; Unruh, 1976; Davies, 1975; DeWitt, 1975), modes with positive 

norm consist of superpositions of positive and negative norm modes in the frame of an 

accelerated observer (Birrell & Davies, 1984; Brout et. al. , a). Consequently, this observer 

perceives the Minkowski vacuum as thermal radiation (Moore, 1970; Fulling, 1973; Unruh, 

1976; Davies, 1975; DeWitt, 1975). In the Hawking effect (Hawking, 1974; 1975), the 

scattering of light at the event horizon turns out to mix positive and negative norm modes, 

giving rise to Hawking radiation. 

5. Field evolution in the geometrical optics approximation 

Here we will derive Hamilton’s equations in the geometrical optics approximation to 
understand the frequency shifts of light near a horizon. 
To quantitatively describe this effect, we will derive the frequency ω’ in a co-moving frame 
that is connected to the laboratory-frame frequency ω by the Doppler formula 

 
(33)

For a stable pulse, ω’ is a conserved quantity, whereas ω follows the contours of fixed ω’ 

when δn varies with the intensity profile of the pulse, see Fig. 4. If δn becomes sufficiently 

large, the frequency ω completes an arch from the initial ω1 to the final ω2; it is blue-shifted 
by the white-hole horizon. At a black-hole horizon, the arch is traced the other way round 

from ω2 to ω1. For the frequency at the center of the arches an infinitesimal δn is sufficient to 
cause a frequency shift; at this frequency the group velocity of the probe matches the group-
velocity of the pulse. 

5.1 Geometrical optics 
A moving dielectric medium with constant refractive index but nonuniform velocity 
appears to light exactly as an effective space-time geometry (Leonhardt, 2003)2. Since a 
stationary 1 + 1 dimensional geometry is conformally flat (Nakahara, 2003) a coordinate 
transformation can reduce the wave equation to describing wave propagation in a uniform 
medium, leading to plane-wave solutions (Leonhardt & Philbin, 2006). The plane waves 
appear as phase-modulated waves in the original frame. Consequently, in this case, 
geometrical optics is exact. In our case, geometrical optics provides an excellent 
approximation, because the variations of the refractive index are very small. 
Consider a stationary mode A. We assume that the mode carries a slowly varying amplitude 

A and oscillates with a rapidly changing phase ϕ, 

 (34)

We represent the phase as 

 
(35)

                                                 
2 see footnote 1 in Sec. 3.3 
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and obtain from the wave equation (10) the dispersion relation 

 
(36)

by neglecting all derivatives of the amplitude A. Here n includes the additional 

susceptibility χ due to the Kerr effect of the pulse according to Eq. (11). The dispersion 
relation has two sets of solutions describing waves that are co- or counter-propagating with 
the pulse in the laboratory frame. Counter-propagating waves will experience the pulse as a 
tiny transient change of the refractive index, whereas co-propagating modes may be 
profoundly affected. 
Consider the solution given by Eq. (33). In this case, we obtain outside of the pulse in the 

laboratory frame ϕ = n(ω/c)z–ωt, which describes light propagating in the positive z 
direction. Consequently, the branch (33) of the dispersion relation corresponds to co-

propagating light waves. We also see that ω is the frequency of light in the laboratory frame, 

whereas ω’ is the frequency in the frame co-moving with the pulse. Equation (33) describes 
how the laboratory-frame and the co-moving frequencies are connected due to the Doppler 
effect. 

In order to find the evolution of the amplitude A, we substitute in the exact scalar product 

(26) the approximation (34) with the phase (35) and the dispersion relation (33). In the limit 

ω′
1  → ω′

2  we obtain 

 
(37)

which should give δ( ω′
1  − ω′

2 ) according to the normalization (25). The dominant, diverging 

contribution to this integral, generating the peak of the delta function, stems from τ →±∞ 

(Landau & Lifshitz, 1977). Hence, for ω′
1  → ω′

2 , we replace ϕ in the integral by ϕ at τ →±∞ 

where ω does not depend on τ anymore, 

 
(38)

which gives δ( ω′
1  − ω′

2 ) for 

 
(39)

and positive frequencies ω in the laboratory frame. Note that positive frequencies ω’ in the 

co-moving frame correspond to negative ω in superluminal regions where the pulse moves 
faster than the phase-velocity of the probe light. 
Hamilton’s equations (Landau & Lifshitz, 1976) determine the trajectories of light rays in the 

co-moving frame, parameterized by the pulse-propagation time ζ. Here τ plays the role of 
the ray’s position. Comparing the phase (35) with the standard structure of the eikonal in 
geometrical optics (Born & Wolf, 1999) or the semiclassical wave function in quantum 

mechanics (Landau & Lifshitz, 1977) we notice that –ω plays the role of the conjugate 
momentum here. Therefore, we obtain Hamilton’s equations with a different sign than usual 
(Landau & Lifshitz, 1976), 

www.intechopen.com



Analogue of the Event Horizon in Fibers  

 

147 

 
(40)

Now we express τ$  in terms of the group index in the laboratory frame. The group velocity vg 

is the derivative of the frequency ω with respect to the wave number nω/c (Agrawal, 2001) 

 
(41)

We obtain from the first of Hamilton’s equations (40) and the Doppler formula (33) 

 
(42)

where ′
gv  denotes the difference between the group velocity of the probe vg and the pulse 

speed u. We see that the velocity τ$  in the co-moving frame (8) vanishes when the Kerr 

susceptibility χ reduces the group velocity c/ng such that it matches the speed of the pulse u. 

Since ω$  does not vanish here in general, the ray does not remain there, but changes 

direction in the co-moving frame. 
At such a turning point we expect a violation of the validity of geometrical optics (Landau & 
Lifshitz, 1977). For example, the amplitude (39) would diverge here. Geometrical optics is an 
exponentially accurate approximation when 

 
(43)

as we see from the analogy to the semiclassical approximation in quantum mechanics 

(Landau & Lifshitz, 1977). Here the cycle T plays the role of the wavelength. We get 

 
(44)

Consequently, geometrical optics indeed is no longer valid near a turning point where 

 
(45)

This turning point defines a group velocity horizon where the pulse has slowed down the 
probe such that it matches the speed of the pulse. At this horizon the incident mode is 
converted into a mode that represents another solution of the dispersion relation; a red-or 

blue-shifted wave, depending on the dispersion and the sign of the first derivative of χ with 

respect to τ at the group velocity horizon. White holes correspond to increasing χ and black 

holes to decreasing χ. White holes blue-shift, because incident waves freeze in front of the 
horizon, oscillating with increasing frequency. Black holes red-shift, because they stretch 
any emerging waves (also because black holes are time-reversed white holes). Due to the 
dispersion of the fiber, the refractive index changes with frequency. In turn, the dispersion 
limits the frequency shifting by tuning the light out of the grip of the horizon. In particular, 
the dispersion limits the blue-shifting at white-hole horizons to respectable but finite 

frequencies, considering the tiny magnitude of χ, as we discuss in Sec. 7.1. 

www.intechopen.com



 Advances in Lasers and Electro Optics 

 

148 

At the event horizons of astrophysical black holes, similar effects are expected (t’Hooft, 1985; 
Jacobson, 1991) when, due to the wave-number divergence, the wavelength of light is 
reduced below the Planck length scale  where G is the gravitational constant. The 
physics beyond the Planck scale is unknown. This trans-Planckian physics should regularize 
the logarithmic phase singularities (Birrell & Davies, 1984; Brout et. al. , a) of modes at the 
event horizon. Studies of trans-Planckian physics indicate, that the Hawking effect of the 
black hole is not affected (Unruh, 1995; Brout et al. , b). On the other hand, the quantum 
radiation of white holes is dominated by trans-Planckian physics, because of the extreme 
blue shift at white-hole horizons. It has been predicted (Corley & Jacobson, 1999; Leonhardt 
& Philbin, 2007) that black-hole white-hole pairs could act as black hole lasers in a regime of 
anomalous group velocity dispersion. From a theoretical point of view, trans-Planckian 
physics regularizes some of the arcane features of quantum black holes and gives a more 
natural picture of the physics behind the Hawking effect (Brout et al. , b). In our case, the 
optical analogue of trans-Planckian physics, optical dispersion, is known in principle and 
turns out to be to the advantage of the experiment. 

6. Hawking effect 

Imagine instead of a single probe mode a set of probe modes. The modes should be 
sufficiently weakly excited such that they do not interact with each other, but they 
experience the cross Kerr effect of the pulse, the presence of the medium (1) moving with 
the velocity u. Themodes constitute a quantum field of light in a moving medium 
(Leonhardt, 2003). 
A phase-velocity horizon is formed if the pulse has slowed down the probe such that its phase 

velocity is lower than the speed of the pulse. The condition for this horizon is: 

 
(46)

Here an additional effect occurs: the spontaneous creation of photon pairs, Hawking radiation. 

In the near ultraviolet around λ = 300nm, the dispersion of fibers is dominated by the bare 

dispersion of glass where n0(ω) rapidly grows with frequency (Agrawal, 2001), exceeding 
the group index c/u of the pulse. For such ultraviolet modes, the pulse moves at 
superluminal speed. According to the Doppler formula (33) these superluminal modes 

oscillate with negative frequencies ω’ in the co-moving frame for positive frequencies ω in 

the laboratory frame, and vice versa. Moreover, each subluminal mode with positive ω has a 

superluminal partner oscillating at the same co-moving frequency ω’, but with negative 
laboratory frequency, see Fig. 2. The Kerr susceptibility of the pulse may slow down the 
subluminal modes such that the pulse moves at superluminal speed. As we will show in this 
section, in this case suband superluminal modes are partially converted into each other and 
photon pairs are created, even if the modes were initially in their vacuum states (Birrell & 
Davies, 1984; Brout et. al., a). This process is the optical analogue of Hawking radiation 

(Hawking, 1974; 1975). Photons with positive ω’ correspond to the particles created at the 
outside of the black hole (Birrell & Davies, 1984; Brout et. al., a), while the negative-
frequency photons represent their partners beyond the horizon. 
In the fiber-optical case, the photon pairs are distinguishable from the intense pulse, because 
their frequencies differ by an octave. Furthermore, one can discriminate the Hawking effect 
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Fig. 2. Doppler-shifted frequency versus wavelength (Philbin et. al, 2008). The figure shows 

the co-moving frequency (33) (in 1015Hz) for the micro-structured fiber versus the 

wavelength λ (in nm). We used the fiber dispersion data in Eq. (72), apart from two 
constants that we fitted to the Sellmeier formula for fused silica at short wavelengths 
(Agrawal, 2001). 

from other nonlinear optical processes, such as Four-Wave Mixing, because it is not subject 
to their phase-matching conditions (Agrawal, 2001). Moreover, in addition to observing 
Hawking radiation per se, one could detect the correlations of the Hawking partners — a feat 
that is utterly impossible in astrophysics, because there the partner particles are lost beyond 
the horizon of the black hole. 
Thus in this section we investigate the scattering mechanism which leads to Hawking 
radiation for our analogue system in a classical as well as quantized treatment. 

6.1 Classical Hawking effect 
For simplicity, we consider a single white-hole horizon, not the combination of black- and 
white-hole horizons generated by a moving pulse. We will argue later that in practice the 
white-hole will dominate the Hawking effect, which a-posteriori justifies this simplification. 

Suppose, without loss of generality, that at τ =0 the Kerr-reduced phase-velocity of the 
probe, c/n, matches the group velocity of the pulse u. We assume that the mode conversion 

occurs near this point and expand the Kerr susceptibility χ as a linear function in τ, 

 
(47)

The group velocity of the incident probe is much lower than the pulse speed u and so both 
the sub- and the superluminal probe travels from the front of the pulse to the back, from 
negative to positive retarded time τ. For a white-hole horizon χ increases for decreasing 
retarded time, and so χ$ (0) < 0. 

We proceed similar to (Brout et al. , b) and focus on the conversion region where we 
Fourier-transform with respect to τ the wave equation (10) with the refractive index (11) for 
stationary waves in the co-moving frame and using the linear expansion (47). The frequency 
conjugate to τ is the laboratory-frame frequency ω. We replace τ by –i∂ω, ∂ζ by –iω’ and ∂τ  by 

–iω, denote the Fourier-transformed vector potential by A# , and obtain 

 
(48)
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This first-order equation has the exact solution 

 

(49)

with constant 0
#A . We introduce 

 
(50)

Note that the phase φ contains a logarithmic contribution, 

 
(51)

This logarithmic asymptotics of the phase will lead to the characteristic mode conversion at 

the phase velocity horizon. In order to see this, we Fourier-transform A#  back to the domain 

of the retarded time, 

 
(52)

and use the saddle-point approximation, i.e. we quadratically expand the phase φ + ωτ 

around the stationary points where ∂ω(φ +ωτ) vanishes and perform the integration as 

Gaussian integrals along the direction of steepest descent. One easily verifies that the 
stationary points are the solutions of the dispersion relation (36). We denote the two 

solutions by ω± indicating their sign. We obtain for the second derivative in the quadratic 
expansion 

 
(53)

The Gaussian integrals at ω± are proportional to the inverse square root of ∂ 2
ω (φ + ωτ). We 

see from Eqs. (40) and (42) that they are consistent with the amplitudes (39) of geometrical 

optics. Consequently, we obtain a superposition of the two waves (34) that correspond to the 

two physically-relevant branches of the dispersion relation (36). We denote the positive-

frequency wave by A+ and the negative-frequency component by *A− . The star indicates that 

this component resembles the complex conjugate of a mode, because a mode predominantly 

contains positive laboratory-frame frequencies, according to the normalization (39). The 

coefficient of *A−  is given by the exponential of the phase integral from the positive branch 

ω+ to the negative frequency ω_ on the complex plane. The amplitude of the coefficient is the 

exponent of the imaginary part of the phase integral, while the phase of the coefficient is 

given by the real part. We can incorporate the phase of the superposition coefficient in the 

prefactor (39), but not the amplitude. The imaginary part of the phase integral comes from 

the logarithmic term (51), giving πω’/α ’. Therefore, the relative weight of the negative-

frequency component in the converted mode is exp(–πω’/α ’). We thus obtain for τ < 0 
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(54)

where Z denotes a constant for given ω’. We determine the physical meaning of Z in Sec. 6.2, 
but here we can already work out its value by the following procedure: consider a 

wavepacket with co-moving frequencies around ω’ that crosses the horizon. Suppose that 
this wavepacket is normalized to unity. After having crossed the horizon, the norm of the 
positive-frequency component is Z, while the negative-frequency component has the 

negative norm –Zexp(–2πω’/α ’). The sum of the two components must give unity, and so 

 
(55)

We represent Z1/2 as coshξ and obtain from Eq. (55) 

 (56)

Consequently, the incident wave A± is converted into the superposition A± coshξ + *A∓  sinh ξ 

when it crosses the horizon from positive to negative τ. Hence we obtain for this process the 

mode 

 
(57)

Equation (57) describes the fate of a classical wave that crosses the horizon. A negative-

frequency component is generated with weight sinh2 ξ relative to the initial wave, but, since 

coshξ > 1, the positive-frequency wave has been amplified. The mode conversion at the 

horizon is thus an unusual scattering process where the concerted modes are amplified, at 

the expense of the energy of the driving mechanism, the pulse in our case. (It is also 

mathematically unusual — the Hawking effect corresponds to scattering without turning 

points in the complex plane.) Wherever there is amplification of classical waves, i.e. 

stimulated emission of waves, there also is spontaneous emission of quanta (Caves, 1982) — 

in the case of horizons, Hawking radiation. 

6.2 Hawking radiation 
Suppose that no classical probe light is incident; the modes A±in are in the vacuum state. The 

incident modes are characterized by the asymptotics A± for τ > 0 while outgoing modes are 

required to approach A± for τ < 0. We perform the superposition 

 (58)

and see that A±out obeys the asymptotics 

 
(59)

as required for outgoing modes. The modes (57) and (58) describe two sets of mode 

expansions (24) of one and the same quantum field; for a given ω’ the sum of A±in â ±in and 
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†
in in

* ˆA a± ±  over the two signs ± of ω must give the corresponding sum of A±out â ±out and 

†
out out

* ˆA a± ± . Consequently, 

 (60)

and by inversion 

 (61)

The vacuum state |vac〉 of the incident field is the eigenstate of the annihilation operators 

â ±in with zero eigenvalue (the state that the â ±in annihilate), 

 (62)

To find out whether and how many quanta are spontaneously emitted by the horizon, we 

express the in-coming vacuum in terms of the out-going modes. We denote the out-going 

photon-number eigenstates, the out-going Fock states (Leonhardt, 2003), by |n+,n–〉 with the 

integers n±. Using the standard relations for the annihilation and creation operators 

 (63)

one verifies that â ±in vanishes for the state 

 
(64)

This is the remarkable result obtained by Hawking (Hawking, 1974; 1975) for the horizon of 

the black hole. First, it shows that the event horizon spontaneously generates radiation from 

the incident quantum vacuum. Second, the emitted radiation consists of correlated photon 

pairs, each photon on one side is correlated to a partner photon on the other side, because 

they are always produced in pairs. The total quantum state turns out to be an Einstein-

Podolski-Rosen state (Leonhardt, 2003), the strongest entangled state for a given energy 

(Barnett & Phoenix, 1989; 1991). Third, light on either side of the horizon consists of an 

ensemble of photon-number eigenstates with probability 1 2 '/ 'nZ e πω α− − . This is a Boltzmann 

distribution of n photons with energies n¥ω’. Consequently, the horizon emits a Planck 

spectrum of blackbody radiation with the Hawking temperature of (Philbin et. al, 2008): 

 
(65)

where kB denotes Boltzmann’s constant. Fourth, this Planck spectrum is consistent with 

Bekenstein’s black-hole thermodynamics (Bekenstein, 1973): black holes seem to have an 

entropy and a temperature. 

In our case, the spectrum of the emitted quanta is a Planck spectrum for the frequencies ω’ 
in the co-moving frame, as long as a phase-velocity horizon exists. We performed our 
analysis for the white-hole horizon, but, since black holes are time-reversed white holes, we 
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arrive at the same result for the black hole, except that the roles of the incident and outgoing 

modes are reversed. In the laboratory frame, the spectrum is given by the dependance of ω’ 

on the laboratory frequency ω outside of the pulse, i.e. by the dispersion relation (33) for χ = 

0. In our case, ω(ω’) is single-valued for the spectral region where phase-velocity horizons 
are established, see Fig. 2, and so the spectra of black- and white-hole horizons are identical 

for identical α ’. For evaluating α ’ we consider δn at τ = 0, where 

 
(66)

Note that T’ denotes the Hawking temperature in the co-moving frame, defined with respect 

to the Doppler-shifted frequencies ω’, a temperature that is characterized by the Doppler-

shifted Hawking frequency α ’ in regions away from the pulse. We use the Doppler formula 

(33) with the refractive index (1) and the linearization (47) taken at τ = 0, and obtain 

 
(67)

Consequently, the Hawking temperature T in the laboratory frame is 

 
(68)

T does not depend on the magnitude of δn, as long as a phase velocity horizon is 
established. Even the small refractive index variations of nonlinear-fiber optics (Agrawal, 

2001) may lead to a substantial Hawking temperature when δn varies on the scale of an 
optical wavelength. Thus the particle-production rate depends primarily on the sharpness of 
the pulse. This important feature makes the experimental observation of Hawking radiation 
in optical fibers feasible, as modern few-cycle pulses are only a couple of wavelengths long 
(F. X. Kärtner, 2004; Brabez & Krausz, 2000). In addition, an optical shock can form and lead 
to significant further steepening of the trailing (white hole) edge of the pulse at the expense 
of the luminosity of the black hole (Agrawal, 2001; Philbin et. al, 2008). Assuming that the 
steepness of this shock front is comparable to twice the frequency of the pulse carrier, 8 × 

1014Hz, the Hawking temperature (68) reaches 103K, many orders of magnitude higher than 
condensed-matter analogues of the event horizon (Garay et al., 2000; Giovanazzi et al., 2004; 
Giovanazzi, 2005; Jacobson & Volovik, 1998). 

7. Experiment 

We will now describe the experimental observation of frequency shifting of light at the 
group velocity horizon. Based on the theory of Secs. 3 - 6, we also derive mathematical 
expressions for the amount of blue shifting, for the spectral shape, and for estimating the 
efficiency of this process. We discuss the experimental proceedings and findings and 
compare them with the theory. 
Soliton interactions in fibers are well studied. The connection to event horizons, however, 
had not been made and thus experiments merely focussed on related nonlinear effects such 
as optical pulse trapping in fibers (Efimov et al., 2005; Nishizawa & Goto, 2002; Gorbach & 
Skryabin, 2007; Hill et al., 2009) and pulse compression in fiber gratings (optical push 
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broom) (de Sterke, 1992; Steel et al., 1994; Broderick et al., 1997). The measurements 
described here for the first time focussed on the frequency shifts connected to analogues of 
the event horizon.  
In order to observe the frequency shifts at the horizon we launch a pulse into the fiber to 
establish a group velocity horizon as explained in Sec. 5. We also launch a continuous wave 
of light, a probe, that follows the pulse with slightly higher group velocity, attempting to 

overtake it. The probe wavelength λ is chosen much longer than the pulse wavelength λ0 in 

order to separate the two. While approaching the pulse, the Kerr contribution δn slows down 
the probe until the probe’s group velocity reaches the speed of the pulse. The trailing end of 
the pulse establishes a white-hole horizon, an object that light cannot enter, unless it tunnels 
through the pulse. Conversely, the front end creates a black-hole horizon for probe light that 

is slower than the pulse. Since δn is small, the initial group velocity of the probe should be 
sufficiently close to the speed of the pulse. 
In microstructured fibers (Russell, 2003) the group velocity dispersion can be engineered 
such that the group velocity of pulses of 800nm carrier wavelength matches the group 
velocities of probe light in the infrared around 1500nm. At the horizon of an astrophysical 
black hole light freezes, reaching wavelengths shorter than the Planck scale where the 

physics is unknown (The Planck length is given by  where G is the gravitational 
constant.) (t’Hooft, 1985; Jacobson, 1991). In our case, the fiber-optical analogue of Trans-
Planckian physics is known and simple — it is contained in the frequency-dependance of 
the refractive index n, the dispersion of the fiber. At the trailing end of the pulse the 
incoming probe modes are compressed, oscillating with increasing frequency; they are blue-
shifted. In turn, the dispersion limits the frequency shifting by tuning the probe out of the 
horizon. In the case of normal group-velocity dispersion the blue-shifted light falls behind. 

7.1 Dispersion 
The creation of artificial event horizons in optical fibers critically depends on the properties 
of these fibers. Microstructured fibers (Knight et. al., 1996; Russell, 2003) have an 
arrangement of holes close to the fiber core along the fiber. In the simplest picture, the holes 
lower the local refractive index in the transverse plane of the fiber, leading to substantially 
larger index variations compared to conventional fibers. In particular, the anomalous group 
velocity dispersion required for solitons can be generated at wavelengths reaching the 
visible. To create an artificial event horizon, an intense optical pulse has to be formed inside 
the fiber. Optical solitons (Hasegawa & Tappert, 1973; Mollenauer et al, 1980; Agrawal, 
2001) offer a unique possibility for nondispersive stable pulses in fibers. These can be 
ultrashort, allowing for very high peak powers to drive the nonlinearity of the fiber. 
The dispersion parameter D of optical fibers is defined as the change of group delay per 
wavelength change and fiber length. Its units are usually ps/(nmkm). Since the group delay 

per length is given by ng/c and ng/c=∂β/∂ω, we have (Agrawal, 2001) 

 
(69)

The group velocity dispersion is often also characterized by β2, 

 
(70)
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The group velocity dispersion is normal for positive β2 and negative D, and anomalous for 

negative β2 and positive D. 
 

 

Fig. 3. Two measurements of the dispersion parameter D for the fiber used in the 
experiments (Philbin et. al, 2008). Red: technical specification; dotted: result of Alexander 
Podlipensky & Philip Russell, Max Planck Research Group in Optics, Information and 
Photonics, Erlangen, Germany. As the total shaded area vanishes, the two wavelengths at 
either end are group velocity matched. 

For the creation of a horizon we chose a commercial microstructured fiber, model NL-PM-
750B by Crystal Fiber A/S. Figure 3 shows the dispersion of the single mode fiber. The red 
curve is the manufacturer technical specification; the dotted line was measured for our 
particular fiber sample by Alexander Podlipensky and Philip Russell at the Max Planck 
Research Group in Optics, Information and Photonics in Erlangen, Germany. The fiber 
dispersion is anomalous between ≈ 740nm and ≈ 1235nm wavelength and normal otherwise. 
Further fiber properties are summarized in Table 1. Solitons can be created in this fiber 
using ultrashort pulses from Ti:Sapphire lasers. Light that would probe the horizon and 
experience blue shifting as a result, will have to be slowed down by the Kerr effect of the 
pulse such that its group velocity matches the speed u of the pulse. The Kerr nonlinearity is 
small, and so the initial group velocity of the probe should be only slightly higher than u. 
Integrating Eq. (69) we obtain 

 
(71)

Here λ0 and λ denote the center wavelengths of the pulse and the probe light, respectively. 
Therefore, the probe light travels at the speed of the pulse if the integral of D vanishes, as 
illustrated by the shaded areas in Fig. 3. This probe wavelength is called the group velocity-

matched wavelength λm (and ωm the group velocity-matched frequency). For a pulse carrier-

wavelength of 800nm and this fiber we obtain λm ≈ 1500nm. This value of λm is useful and 
justifies the choice of fiber, because it is a standard wavelength for optical communication 
equipment and it is clearly separated from our spectrally broad pulses. Integrating Eq. (69) 
twice we obtain the propagation constant 

 
(72)
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where n is the linear effective refractive index of the fiber and ω0 and ω denote the carrier 

frequency of pulse and probe, respectively.  

In general, the two eigenmodes of polarization of the fiber have slightly different 

propagation constants β. This birefringence creates a refractive index difference ∆n between 

the polarization modes. Our fiber exhibits strong birefringence ∆n of a few times 10–4. This 

leads to non-negligible changes in the group velocity as we will see later. 

 

 
 

Table 1. Properties of fiber NL-PM-750B (Philbin et. al, 2008). Dispersion data according to 
Crystal Fiber \ Alexander Podlipensky & Philip Russell, Max Planck Research Group in 
Optics, Information and Photonics, Erlangen. Nonlinearity according to Crystal Fiber. The 

fiber birefringence ∆n and length L were measured by the authors. The symbols are defined 
in the text. 

7.2 Frequency shifts 
Let us now consider the frequency shifts at a group velocity horizon. During the pulse-

probe interaction, the co-moving frequency ω’ is a conserved quantity and so the probe 

frequency ω follows a contour line of ω’ as a function of the nonlinear susceptibility 

χ induced by the pulse, see Fig. 4. The maximal χ experienced by the probe is proportional 

to the peak susceptibility χ0 experienced by the pulse: assuming perfect mode overlap of 

pulse and probe, χmax reaches 2χ0 when the probe and the pulse are co-polarized and 2χ0/3 

when they are cross-polarized (Agrawal, 2001). If the pulse is a soliton, the peak 

susceptibility and dispersion are connected as (Agrawal, 2001) 

 
(73)

where D0 denotes the dispersion parameter at the carrier wavelength λ0. For example, for a 

soliton at λ0=800nm whose full width at half maximum (FWHM) is 70fs (corresponding to 

T0=40fs), for n0=1.5, Dm=30ps/(nmkm) the peak susceptibility χ0 is 2 × 10–6. Nevertheless, we 

show that this small variation in the optical properties is sufficient to generate a significant 

wavelength shift at the horizon. 

We obtain the contours of ω’ from the Doppler formula (33). We use relations (12) and (72), 

but integrate from the group velocity-matching point, 
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Fig. 4. Doppler contours. The pulse shifts the laboratory frequency ω (or the wavelength λ) 

of a probe along the contour line of constant ω’ as a function (74) of the refractive-index 

change δn = χ/(2n0). For a sufficiently intense pulse δn reaches the top of a contour. In this 
case the probe light completes an arch on the diagram while leaving the pulse; it is red- or 
blue-shifted, depending on its initial frequency (Philbin et. al, 2008). 

 

(74)

   
(75)

The contours of ω’ do not depend on ω′
m nor on the scaling factor πu/λm. Because Dm = D(λm) 

< 0, they form inverted parabolas with a maximum at λm for the corresponding χmax. They 

intersect the axis of zero χ at the incident and the emerging wavelengths. Here |Dm|c(λ – 

λm)2/λm equals χmax/n0, and so we get 

 

(76)

Using again that the pulse is a soliton, we obtain 

 

(77)

with r=2 for co-polarized and r=2/3 for cross-polarized pulse and probe light. According to 

Fig. 4 the probe light can maximally be wavelength-shifted from +δλ to –δλ over the range 

2δλ. For the soliton mentioned above the group velocity dispersion D0 is about 

30ps/(nmkm). Using λm ≈ 1500nm and Dm ≈ –160ps/(nmkm), the wavelength shift 2δλ is 

20nm in the co-polarized case and 2δλ=12nm in the cross-polarized case. 
We also derive a simple estimate of the efficiency of the frequency shifting. The probe 
undergoes frequency conversion at the horizon. However, because the group velocities of 
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the probe vg and of the pulse u are similar, only a small fraction of the total probe light can 
be converted within the finite length of the fiber. The pulse and the slightly faster probe 
light travel through the fiber in t=L/u and tp=L/vg with t > tp. The time difference multiplied 
with the probe power Pprobe is the energy Ecoll converted by pulse collision: Ecoll=Pprobe L(1/u 

– 1/vg). Therefore, the fraction η of probe power that is frequency converted is 

 (78)

where νrep is the repetition rate of the pulses and 1/vg=∂β/∂ω ≈1/u + Dmδλ was used. For 

L=1.5m and νrep=80MHz the maximal conversion efficiency η is on the order of 10–4. Note 
that this model assumes that all of the probe light that interacts with the pulse is frequency 
shifted. However, in reality this rate can be lower due to the effect of tunnelling of probe 
light through the pulse. 

7.3 Experimental results 
The experiment is arranged as displayed in Fig. 5. A modelocked Ti:Sapphire laser (Mai Tai, 
Spectra Physics) delivers 70-fs pulses (FWHM) in the near infrared (NIR) at 80MHz 
repetition rate. These linearly polarized pulses are coupled to either one of the principal axes 
of the microstructured fiber of length L=1.5m. The polarization is rotated by a half-wave 
plate. Note that the polarizing beam splitter (PBS) only acts on the probe light. At the fiber 
output temporal autocorrelation traces and spectra are taken to determine the pulse energy 
necessary to create a fundamental soliton. For the center wavelength of 803nm, a dispersion 

D0=30ps/(nmkm) and a nonlinearity γ of 0.1W–1m–1, 70-fs solitons are generated at 5pJ pulse 

energy corresponding to 400µW average power for the repetition rate νrep = 80MHz. 
 

 

Fig. 5. Light from a continuous infrared (IR) laser is filtered by a diffraction grating (G) and 
is steered into a microstructured fiber (MF) by a polarizing beam splitter (PBS), a half wave 
plate (HWP), and a coupling lens (L). Near-infrared (NIR) pulses are launched as well. After 
the fiber the pulses are removed by a dichroic filter (DF) and the probe spectrum is taken 
through a standard single mode fiber (SMF) (Philbin et. al, 2008). 

The output pulse length equalled the 70-fs input pulse length at an input power of 

approximately 320µW. This indicates that a soliton has formed. The observed power in 

comparison with the predicted power of 400µW illustrates the uncertainty in the actual fiber 

dispersion and nonlinearity. The observed Raman-induced soliton self-frequency shift 
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(Agrawal, 2001; Mitschke & Mollenauer, 1986; Gordon, 1986) was P 4nm. Note that this shift 

decelerates the pulse and hence is changing the group velocity-matched wavelength λm in 

the infrared (IR). To calculate how much λm is shifted, we use Eq. (71), replacing λ0 and 

λ with λ0 + δλ0 and λm + δλr and linearize. In this way we get 

 
(79)

For the dispersion data shown in Fig. 3, a wavelength change of 4nm of the pulse changes λm 

by δλr = –0.75nm. Since the probe light is wavelength-shifted symmetrically around λm, there 
is a change of the wavelength shift of up to –1.5nm. 
The probe light is derived from a tunable external grating diode laser (Lynx Series, Sacher 
Lasertechnik). It delivers up to 20mW of continuous-wave light, tunable from 1460 to 1540nm. 
The probe light is reflected off a diffraction grating to reduce fluorescence emitted near lasing 
bandwidth. With another half-wave plate the probe light is coupled into the fiber onto one of 

the principal axes. Depending on wavelength, 100 to 600µW of probe power were coupled 
through the fiber. After the fiber we use a dichroic optic to filter out all of the pulse light and 
couple the IR light into a single-mode fiber connected to an optical spectrum analyzer. 
 

 

Fig. 6. Measurement of blue-shifting at a white-hole horizon (Philbin et. al, 2008). Spectrum 

of the blue-shifted light for a copolarized input probe of λ = 1506nm. Traces with (green) 
and without (black) pulses are shown on the logarithmic scale. Their difference is the 

normalized signal on the linear scale (red). The peak at ω2 is the blue-shifted wave. 

Figure 6 shows a typical output spectrum. This spectrum was taken with pulse and probe 

aligned to the slow axis of the fiber. At λ=1506nm the diode-laser input line is visible as a 

strong signal. From λ=1502nm to λ=1510nm we detect residual weak spontaneous emission 
from the laser that was not completely eliminated by the diffraction grating. Traces with and 
without pulses present in the fiber are taken and subtracted, leading to the signal displayed 
on a linear scale (red color). The signal is normalized by the amount of probe power and by 
the resolution bandwidth of 0.5nm. With the pulses present, a clear peak appears on the 
blue side of the input probe light near 1493nm. Since the blue-shifted light is generated from 
the part of the probe light that overlapped with the pulse during fiber propagation, it 
constitutes itself a pulse of finite length. Hence, this length is determined by the relative 
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group velocity of probe light and the pulse, see for example Eq. (78). In turn, the unshifted 
probe light is partially depleted, forming a gap in intensity. These features lead to a spectral 
broadening of both the shifted and unshifted probe light by a few nanometers. The spectra 
display clearly the blueshifting of waves as predicted by the theory of optical event 
horizons. In what follows we look at the influence of probe detuning as well as polarization 
changes, before we perform a direct fit of the spectrum in Fig.6 to the theory. 

From the measurements shown in Fig. 6, the efficiency of the blue-shifting is 1.1 × 10–5, less 

than the estimated 10–4. This indicates that a significant part of the probe light tunnels 
through the pulse; the pulse is too short /weak to establish a nearly perfect barrier. In the 
tunneling region of the pulse the laboratory frequency ω – ωm is imaginary. In order to 
estimate the maximal imaginary part of ω we consider the extreme case where the initial 
frequency of the probe reaches the group velocity-matched frequency ωm characterized by  
ω’ = ω′

m . We solve Eq. (74) for ω and obtain 

 
(80)

Assuming χ ≈ 2 × 10–6
 at the soliton peak, n0 ≈ 1.5, λm = 1500nm and Dm = –160ps/(nmkm) the 

imaginary part of ω reaches about 5THz. This is insufficient to significantly suppress 
tunnelling through a 70-fs pulse, because the product of Imω and T0 is much smaller than 
unity. For longer or more intense pulses we expect perfectly efficient frequency conversion 
at the horizon. 
Increasing the probe wavelength further away from λm is shifting light further to the blue 
side of the spectrum, because the wavelength shifts symmetrically around the group 
velocity-matched wavelength, according to Eq. (76) and Fig. 4. Figure 7 displays the spectra 
of shifted light for three detunings of the probe light from the group velocity-matched 
wavelength λm. As expected, the spectra move towards shorter wavelengths by the same 
amount as the probe laser was tuned towards longer wavelengths. 
We also measured how the signal strength, the spectrum integrated over the signal peak, 
evolves with increasing probe power (Philbin et. al, 2008). A clear linear dependence was 
found in agreement with our theoretical model. This measurement proves that the probe 
indeed is a probe, not influencing the pulses via nonlinear effects. 
Changing the input polarizations changes the group velocities of pulse and probe and 
therefore the group velocity-matched wavelength λm shifts by an amount δλm. If we change 
for example the pump polarization from the fast to the slow axis, the inverse group velocity 
β1(λ0) increases as ng0/c is replaced by (ng0 +∆n0)/c. To maintain group velocity matching, 
β1(λm) has to change accordingly by ∆n0/c. We use Eq. (71), linearizing around λm, and get 

 (81)

For Dm=–160ps/(nmkm) and ∆n0=7.5 × 10–4
 we obtain δλm ≈ –16nm ≈ 2δλ. This means that 

the polarization change induces a velocity change that is too large to maintain the optical 
horizon. Therefore, when changing polarizations, the probe laser has to be retuned to a 
wavelength were frequency shifting can be observed. 
Figure 8 shows spectra for all four different polarization combinations. As expected, the 
group velocity-matched wavelength changes. Note that there also is a difference in λm for 
the two co-polarized cases, indicating small changes in the dispersion profile for the two 
polarization axes, a dispersion of the birefringence. 
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Fig. 7. Spectra for different input probe wavelengths. Since the probe mode is mirrored 

around the group velocity-matched wavelength λm, increasing probe wavelengths 
experience increasing blue shifting, as is also illustrated by the contours of Fig. 4 (Philbin et. 
al, 2008). 

 

Fig. 8. Blue-shifted spectra for all four polarization combinations. Co-polarized spectra on 
the slow and fast axis in (a) and (b) and cross-polarized spectra with pulses slow (c) and fast 
(d). Group velocity-matched wavelengths are (a) 1499.5nm (b) 1503.2nm (c) 1486.4nm and 
(d) 1513.3nm (Philbin et. al, 2008). 
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7.4 Theoretical curve fitting of spectra 
With the theory at hand, a functional expression for the spectra of the frequency-shifted 
probe light can be found. For brevity we are giving the results, the full calculation can be 
found in (Philbin et. al, 2008). The Fourier component of the shifted probe field is given by: 

 

(82)

Here A0 is the overall amplitude, ωs is the shifted probe frequency, ηr is a phenomenological 

inclusion of the soliton self-frequency shift (Mitschke & Mollenauer, 1986; Gordon, 1986) in 

terms of a reduced blue-shifted part of the spectrum. The parameter q = πc|Dm|L/ω 2
m  

combines the experimental parameters fiber length L, dispersion Dm, and group velocity-

matched frequency ωm. Finally, G(x) = +∞
−∞∫  e–ξ 2/π(x – ξ)dξ. The power spectrum measured 

corresponds to | A# |2. 
Figure 6 also shows the fit of the observed spectrum with the theoretical curve (82). As 

fitting parameters we used the overall amplitude A0, the shifted probe frequency ωs and 

group velocity-matched frequency ωm, the dispersion Dm and ηr. We obtain a very good fit 

for A0 = 4.1 × 1012 W s , λs = 1505.31nm, λm = 1499.38nm, Dm = –187ps/(nmkm) and ηr = 0.80. 

The shift in λp to λs is consistent with the effect (79) of the soliton self-frequency shift. The 

fitted values for Dm and λm agree with the independently measured dispersion and the 

group velocity-matched frequency calculated from the dispersion curve of Fig. 3. 

8. Conclusion 

In conclusion, we have developed a theory for artificial event horizons in fibers. 
Experimentally, light was blue-shifted by a near group velocity-matched pulse. The 
measured data was explained by the presence of an optical group velocity horizon inside 
the fiber. A very good agreement between theory and experiment was observed. The blue 
shifting corresponds to the optical analogue of trans-Planckian frequency shifts in 
astrophysics (t’Hooft, 1985; Jacobson, 1991). The temperature of analogue Hawking 
radiation was calculated to show that the system gives a realistic chance for experimental 
observation. In this way, we have demonstrated classical optical effects of the event horizon 
in our analogue system, a first step towards tabletop astrophysics (Ball, 2001). 
Aside from the prospect of analogue Hawking radiation, the group velocity horizons could 
be used for ultrafast delay lines, dispersion management, frequency conjugation, or 
quantum frequency conversion. 
We are indebted to Govind Agrawal, Malcolm Dunn, Theodor Hänsch, Alan Miller, Renaud 
Parentani and Wilson Sibbett for discussions and technical support. We thank Alexander 
Podlipensky and Philip Russell for measuring the dispersion of our fiber. Our paper is 
supported by the Leverhulme Trust, EPSRC, COVAQIAL, the Ultrafast Photonics Facility at 
St Andrews, and Leonhardt Group Aue. 
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