
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322389721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Building an application - generation of ‘items tree’ based on transactional data 109

Building an application - generation of ‘items tree’ based on transactional 
data

Mihaela Vranić, Damir Pintar and Zoran Skočir

x 
 

Building an application - generation of  
‘items tree’ based on transactional data  

 
Mihaela Vranić, Damir Pintar and Zoran Skočir 

University of Zagreb, 
Faculty of Electrical Engineering and Computing 

Croatia 

 
1. Introduction     
 

Association rules method is a commonly known and frequently used technique of 
undirected data mining. One of the commonly known drawbacks of this technique is that it 
often discovers a very large number of rules, many of which are trivial, uninteresting or 
simply variations of each other. Domain experts have to go through many of these rules to 
draw a meaningful conclusion which could be acted upon. Another issue that may arise is 
that investigation of obtained association ruleswhich cannot provide information about 
actual distances between items that transactions include (distances being a term describing 
how often items show up together in same transactions). In this particular case the actual 
absolute distances are not as important as the relative ones. A feature such as a compact 
presentation of such distances between items could be used by some business environments 
to quickly and dynamically produce usable business decisions. Realizing the problem of 
great quantity of association rules, investigations on redundancy elimination were done and 
results are presented in (Pasquier et al., 2005) and (Xu, Li, 2007). Here described approach is 
different from those – final goal is different and acquired structure should be interpreted in 
specific way. 
Driven by issues described above, we have created an application that goes trough 
presented transactional data multiple times and creates association rules on various levels. 
The final outcome of created rules is a table that reflects relative distances between items. 
Chapter is arranged as follows:  
Firstly, in paragraph 2, motivation and problem description is elaborated upon in more 
detail. Also, some examples of possible usages are given. 
Short introduction to the main method used in this article (method of association rules) is 
given in paragraph 3. Basic terms, measurements used in this method along with examples 
of its usage are addressed here and certain strengths and weaknesses are elaborated upon. 
Paragraph 4 introduces tools bearing relevant connections to the one this chapter deals with. 
Chosen technologies for the application realization are discussed in paragraph 5. 
Application functionality is described in detail in paragraph 6. This paragraph also deals 
with many issues that emerged with corresponding solutions.  

7
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The application was applied on a real life dataset. Its functionality and performance 
parameters are depicted in paragraph 7. This performance, of course, depends on dataset 
characteristics, so information about dataset origin is also included. Insight on how certain 
characteristics of dataset can affect application performance will be given.   
There are some fields where the application can be improved. That is left for further 
investigation and described in paragraph 8.  
Finally, paragraph 9 provides concluding thoughts. 
Work presented in this chapter concentrates on issues of developing the application core – 
an algorithm which would in reasonable time provide data which reflects connections 
between items based on their co-occurrence in same transactions. In subsequent chapters 
this final data will be referred to as the ‘tree data’.   
However, visual presentation of the ‘tree data’ describing the generated tree was also 
considered. There are some available open source tree presentations based on XML. Even 
though the application doesn’t recognize our generated ‘tree data’ as input, transformation 
between our tree data and required XML document should be simple and straightforward.   

 
2. Motivation and Problem Definition  
 

Retail industry, telecommunication industry, insurance companies and other various 
industries produce and store great quantities of transactional data. For example, in medicine 
data about patients, therapies, patient reactions etc. is being recorded on daily basis. In this 
great quantity of data many patterns that could be acted upon are often hidden. If we take 
retail industry as an example then visual presentation of the distance between items found 
in the store depending on actual market basket contents could be very helpful.  This data 
could help not only to ensure more effective placement of products on the shelves, but also 
to provide assistance for customers who could find products they are interested in with 
more ease. Mentioned findings could also be used to discover some connections which 
could lead to revelations of hidden causalities.   
Transactional data can reveal which items often show up together in some transactions. 
Certain measure (i.e. aforementioned distance) between items could be introduced. Items 
that very often show up together in same transactions should be considered as close ones, 
and items that relatively rarely show up together transactions should express greater 
distance between each other. Based on that distance between items graphical tree 
presentation containing items could be formed. Close items should be connected very early 
in a tree (near the tree leaves), while distanced items should connect to each other in a part 
of a tree closer to the tree root.      
Our goal was to find a way to generate data clearly depicting ‘closeness’ of items with 
following characteristics:  

 data has to be transferable to the graphical tree representation,  
 items should be connected if certain proportion of recorded transactions suggests 

their ‘closeness’,  
 the number of tree levels must be reasonable in order to be manageable by a 

human analyst (this prerequisite is necessary because of the large number of 
expected items to be found in transactions). 

Certain technologies and available techniques were chosen to construct a solution for the 
presented problem. Some guidance for that matter is given in (Campos et al., 2005). Decision 

was made to use a widely known data mining method of association rules generation. This 
method has already developed certain measures that could be used to determine item 
closeness. However, multiple usages of that method will be necessary to construct multiple 
tree levels.  
Attribute distance algorithms were also considered. However, requirement for the 
application to take into account some measures that reflect ratio in which items appear 
together and on that bases stop further growth of the item tree encouraged us to use the 
association rules method instead.   

 
3. General Idea and Theoretical Base of Association Rules 
 

For introduction of association rules and for various explanations (Agrawal et al., 1993) and 
(Hand et al., 2001) were used. 

 
3.1 Basic terms 
Association rules represent local patterns in data. This descriptive data mining method 
results in a set of probabilistic statements that discover co-occurrence of certain attributes 
(items). Some basic terms that will be used further on will now be introduced: 

Let I={i1, i2,..., in} be a set of n binary attributes called items.   
Let T={t1, t2, ..., tm} be a set of transactions. Each transaction tj has a unique ID and 
contains a subset of attributes in I.  
A rule has a simple form: if A then B (or simply A  B), where A, BI and AB=Ø. 
A and B are sets of items (shortly itemsets). A is called antecedent, and B is called 
consequent of the rule. 

The idea of this widely used and explored method could be easily explained on 
transactional data concerning purchases in retail - supermarket. In that case I represents a 
collection of products (items) that could be bought in the store, and every tj collects some of 
available products depending on the realized transactions by customers. By analyzing 
accomplished transactions through a certain time period, some regularities will emerge – for 
example: transactions that contain bread very often contain milk (bread and milk are items 
that co-occur in same transactions). Association rule for this relationship looks like: bread  
milk. Example given here depicts one of the most common usages of association rules 
method – so-called Market Basket Analysis. However, depending of the data at hand, 
association rules could bring to surface various types of regularities. I could be set of binary 
attributes that depict some entities or cases of some interest to us. In that case, association 
rules give us insight that existence of some attribute (attributes) often implicates appearance 
of some other attribute (attributes). Dataset example is given in Table 1. Rows present 
transactions, while columns present binary attributes-items. Data should be read like this: 
items A and B are included in the first transaction. 
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The application was applied on a real life dataset. Its functionality and performance 
parameters are depicted in paragraph 7. This performance, of course, depends on dataset 
characteristics, so information about dataset origin is also included. Insight on how certain 
characteristics of dataset can affect application performance will be given.   
There are some fields where the application can be improved. That is left for further 
investigation and described in paragraph 8.  
Finally, paragraph 9 provides concluding thoughts. 
Work presented in this chapter concentrates on issues of developing the application core – 
an algorithm which would in reasonable time provide data which reflects connections 
between items based on their co-occurrence in same transactions. In subsequent chapters 
this final data will be referred to as the ‘tree data’.   
However, visual presentation of the ‘tree data’ describing the generated tree was also 
considered. There are some available open source tree presentations based on XML. Even 
though the application doesn’t recognize our generated ‘tree data’ as input, transformation 
between our tree data and required XML document should be simple and straightforward.   

 
2. Motivation and Problem Definition  
 

Retail industry, telecommunication industry, insurance companies and other various 
industries produce and store great quantities of transactional data. For example, in medicine 
data about patients, therapies, patient reactions etc. is being recorded on daily basis. In this 
great quantity of data many patterns that could be acted upon are often hidden. If we take 
retail industry as an example then visual presentation of the distance between items found 
in the store depending on actual market basket contents could be very helpful.  This data 
could help not only to ensure more effective placement of products on the shelves, but also 
to provide assistance for customers who could find products they are interested in with 
more ease. Mentioned findings could also be used to discover some connections which 
could lead to revelations of hidden causalities.   
Transactional data can reveal which items often show up together in some transactions. 
Certain measure (i.e. aforementioned distance) between items could be introduced. Items 
that very often show up together in same transactions should be considered as close ones, 
and items that relatively rarely show up together transactions should express greater 
distance between each other. Based on that distance between items graphical tree 
presentation containing items could be formed. Close items should be connected very early 
in a tree (near the tree leaves), while distanced items should connect to each other in a part 
of a tree closer to the tree root.      
Our goal was to find a way to generate data clearly depicting ‘closeness’ of items with 
following characteristics:  

 data has to be transferable to the graphical tree representation,  
 items should be connected if certain proportion of recorded transactions suggests 

their ‘closeness’,  
 the number of tree levels must be reasonable in order to be manageable by a 

human analyst (this prerequisite is necessary because of the large number of 
expected items to be found in transactions). 

Certain technologies and available techniques were chosen to construct a solution for the 
presented problem. Some guidance for that matter is given in (Campos et al., 2005). Decision 

was made to use a widely known data mining method of association rules generation. This 
method has already developed certain measures that could be used to determine item 
closeness. However, multiple usages of that method will be necessary to construct multiple 
tree levels.  
Attribute distance algorithms were also considered. However, requirement for the 
application to take into account some measures that reflect ratio in which items appear 
together and on that bases stop further growth of the item tree encouraged us to use the 
association rules method instead.   

 
3. General Idea and Theoretical Base of Association Rules 
 

For introduction of association rules and for various explanations (Agrawal et al., 1993) and 
(Hand et al., 2001) were used. 

 
3.1 Basic terms 
Association rules represent local patterns in data. This descriptive data mining method 
results in a set of probabilistic statements that discover co-occurrence of certain attributes 
(items). Some basic terms that will be used further on will now be introduced: 

Let I={i1, i2,..., in} be a set of n binary attributes called items.   
Let T={t1, t2, ..., tm} be a set of transactions. Each transaction tj has a unique ID and 
contains a subset of attributes in I.  
A rule has a simple form: if A then B (or simply A  B), where A, BI and AB=Ø. 
A and B are sets of items (shortly itemsets). A is called antecedent, and B is called 
consequent of the rule. 

The idea of this widely used and explored method could be easily explained on 
transactional data concerning purchases in retail - supermarket. In that case I represents a 
collection of products (items) that could be bought in the store, and every tj collects some of 
available products depending on the realized transactions by customers. By analyzing 
accomplished transactions through a certain time period, some regularities will emerge – for 
example: transactions that contain bread very often contain milk (bread and milk are items 
that co-occur in same transactions). Association rule for this relationship looks like: bread  
milk. Example given here depicts one of the most common usages of association rules 
method – so-called Market Basket Analysis. However, depending of the data at hand, 
association rules could bring to surface various types of regularities. I could be set of binary 
attributes that depict some entities or cases of some interest to us. In that case, association 
rules give us insight that existence of some attribute (attributes) often implicates appearance 
of some other attribute (attributes). Dataset example is given in Table 1. Rows present 
transactions, while columns present binary attributes-items. Data should be read like this: 
items A and B are included in the first transaction. 
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transaction
/item 

A B C D 

1 1 1 0 0 
2 1 1 0 1 
3 1 1 1 0 
4 1 1 1 1 
5 0 1 1 0 
6 0 0 0 1 
7 0 0 1 0 

Table 1. The dataset example 
 
Data given in Table 1, can also be presented in other formats, depending on the 
requirements of the specific tool used for analysis.   
Typical characteristics of transactions are that they don’t contain same number of items, and 
number of items they contain is rather small (comparing to the whole set I). Datasets are 
consequently very sparse. As stated before, this data mining method is suitable for 
categorical datasets. Number of items is usually very high as well as the number of possible 
rules.  

 
3.2 Measurements 
All rules that could be formed don’t have the same level of interest or significance. That’s 
why certain measurements and constraints on them are introduced. The best known 
constraints are minimum thresholds on support and confidence. Their definition is: 
Support of the itemset A (notice that A could contain one or more items) is the probability of 
appearance of itemset A in random transaction:  

nstransactio of number total
Aitemset contain that  nstransactio of numbersupp(A)  =p(A) 

(1) 

 

Confidence of a rule A  B is: 

Aitemset contain that  nstransactio of number
Bitemset  and Aitemset  thcontain bothat  nstransactio of number) conf(A  B  

p(A)
B)p(A,

 supp(A)
B)supp(A) conf(A 


 B

 

 

 
 
 
 
 

(2) 

In other words confidence is the probability of itemset B appearing in a specific transaction 
if we know that itemset A is included in it. Most confident rules are generally most valuable 
ones1. However, there are some cases where they work poorly compared to the random 
choice of transaction where certain item appears. That is the reason for introducing a new 
measure: rule lift. 

 

1 Support is sometimes called coverage, while synonym for confidence is accuracy.  

 
ntransactio randomin  B of appearance of yprobabilit

confidence rule) lift(A  B  

p(B)
1
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,
B

 

 

 
 
 
 
 

(3) 

Association rules are required to satisfy a user-specified minimum support and minimum 
confidence. Algorithms first find all itemsets that satisfy given support, and then rules that 
could be formed from this itemsets are examined to satisfy minimum confidence. Real issue 
in terms of processing time and capacity is the first step since number of candidate itemsets 
grows exponentially with number of items. Many algorithms for generating association 
rules were presented over time. One of the most used one is Apriory algorithm, which is 
also implemented in the tools that are to be used in application described in this book 
chapter.     

 
3.3 Common usage, strengths and weaknesses 
Rule structure is quite simple and interpretable. However, one has to be careful since these 
rules don’t have to describe causal relationships but only state the fact of co-occurrence of 
items in transactions.  
As stated before, this descriptive data mining method lets data tell its own story. Depending 
on the adapted parameters, rules with support and confidence greater that specified 
minimum are generated. Previous knowledge and some experimentation is required to 
tweak the parameters in such manner so the algorithm yields the best possible results – so 
not to end up with an extremely low number of rules or to get thousands of them. 
Furthermore, it is common to get a large number of rules that present fairly obvious facts 
(like connecting certain attributes which is predetermined before and not really a 
revelation), and special attention has to be taken to distinct such results apart from the new, 
potentially useful information. It is often hard for the analyst to get a clear picture of 
connections between items (attributes) since one connection is expressed with many rules 
(e.g. A  B; B  A; A,C  B; B,C  A...). Furthermore, it is often difficult to distinguish 
which connections are stronger than others.  
Application described in this chapter resulted from seeking a way to present rules in a 
manner which would enable better understanding and faster reaction of business analyst 
responsible for rule interpretation and forming of actable business decisions. 

 
4. Available Viewer Applications 
 

The problem of interpreting high quantities of association rules emerged early with usage of 
given method and algorithms. Many tools tried to resolve this issue by providing various 
graphical representations of constructed rules. Some tools enable the analyst to pick an 
antecedent or consequent which results in rules that satisfy this condition being displayed 
(e.g. Oracle Data Miner). Other tools incorporate modules like ‘Association Rules Tree 
Viewer’ (e.g. Orange - component-based data mining software). Those applications enable 
tree-like association rules presentation. Rules antecedents appear as tree roots while 
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transaction
/item 

A B C D 

1 1 1 0 0 
2 1 1 0 1 
3 1 1 1 0 
4 1 1 1 1 
5 0 1 1 0 
6 0 0 0 1 
7 0 0 1 0 

Table 1. The dataset example 
 
Data given in Table 1, can also be presented in other formats, depending on the 
requirements of the specific tool used for analysis.   
Typical characteristics of transactions are that they don’t contain same number of items, and 
number of items they contain is rather small (comparing to the whole set I). Datasets are 
consequently very sparse. As stated before, this data mining method is suitable for 
categorical datasets. Number of items is usually very high as well as the number of possible 
rules.  

 
3.2 Measurements 
All rules that could be formed don’t have the same level of interest or significance. That’s 
why certain measurements and constraints on them are introduced. The best known 
constraints are minimum thresholds on support and confidence. Their definition is: 
Support of the itemset A (notice that A could contain one or more items) is the probability of 
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In other words confidence is the probability of itemset B appearing in a specific transaction 
if we know that itemset A is included in it. Most confident rules are generally most valuable 
ones1. However, there are some cases where they work poorly compared to the random 
choice of transaction where certain item appears. That is the reason for introducing a new 
measure: rule lift. 
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Association rules are required to satisfy a user-specified minimum support and minimum 
confidence. Algorithms first find all itemsets that satisfy given support, and then rules that 
could be formed from this itemsets are examined to satisfy minimum confidence. Real issue 
in terms of processing time and capacity is the first step since number of candidate itemsets 
grows exponentially with number of items. Many algorithms for generating association 
rules were presented over time. One of the most used one is Apriory algorithm, which is 
also implemented in the tools that are to be used in application described in this book 
chapter.     

 
3.3 Common usage, strengths and weaknesses 
Rule structure is quite simple and interpretable. However, one has to be careful since these 
rules don’t have to describe causal relationships but only state the fact of co-occurrence of 
items in transactions.  
As stated before, this descriptive data mining method lets data tell its own story. Depending 
on the adapted parameters, rules with support and confidence greater that specified 
minimum are generated. Previous knowledge and some experimentation is required to 
tweak the parameters in such manner so the algorithm yields the best possible results – so 
not to end up with an extremely low number of rules or to get thousands of them. 
Furthermore, it is common to get a large number of rules that present fairly obvious facts 
(like connecting certain attributes which is predetermined before and not really a 
revelation), and special attention has to be taken to distinct such results apart from the new, 
potentially useful information. It is often hard for the analyst to get a clear picture of 
connections between items (attributes) since one connection is expressed with many rules 
(e.g. A  B; B  A; A,C  B; B,C  A...). Furthermore, it is often difficult to distinguish 
which connections are stronger than others.  
Application described in this chapter resulted from seeking a way to present rules in a 
manner which would enable better understanding and faster reaction of business analyst 
responsible for rule interpretation and forming of actable business decisions. 

 
4. Available Viewer Applications 
 

The problem of interpreting high quantities of association rules emerged early with usage of 
given method and algorithms. Many tools tried to resolve this issue by providing various 
graphical representations of constructed rules. Some tools enable the analyst to pick an 
antecedent or consequent which results in rules that satisfy this condition being displayed 
(e.g. Oracle Data Miner). Other tools incorporate modules like ‘Association Rules Tree 
Viewer’ (e.g. Orange - component-based data mining software). Those applications enable 
tree-like association rules presentation. Rules antecedents appear as tree roots while 
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consequents form branches. If multiple antecedent elements are present then second 
antecedent element forms a new branch. This branch is further expanded to leaves 
(consequents) or more complex branches (further antecedent elements).    
Main goal of the existing software solutions is to enable better representation of rules 
generated in one step – algorithm applied once and producing rules satisfying thresholds of 
minimal support and confidence.  
One drawback of such presentation is that the same rule – connection between two 
attributes appears in more than one place in a tree which results in basic problem of difficult 
readability not being resolved by those applications and/or tools. Our main goal is to form a 
tree where an item will always appear only once. 

 
5. Technologies and Tools 
 

Association rules as a data mining technique is pretty demanding when it comes to 
processing time and power. We wanted to distance our application from the ETL process 
and enable it to work with the data that is already in the database. That is why we decided 
to use database inbuilt data mining functionalities. Those functionalities are available in 
Oracle Database 11g Enterprise Edition and known as ODM (Oracle Data Mining). Choice of 
this technology brought us certain important advantages: data mining models are treated as 
objects inside the database and data mining processes use database inbuilt functions to 
maximize scalability and time efficiency. Furthermore, security is resolved by the database 
which makes it relatively simple to update the data (this usually depends on actual data 
sources, organization business rules, etc.). ODM offers a few application programming 
interfaces which could be used to develop the final application, such as PL/SQL and Java 
API. Decision to use PL/SQL and direct access to database objects that keep various 
information on final association rules model was made, due to flexibility it offers and 
opportunity to tweak the finally developed algorithm to best suit our needs. Algorithm was 
stored as a script containing both PL/SQL blocks and DDL instructions. Java was chosen to 
further develop the aforementioned developed algorithm and tweak parameters for every 
step of tree level generation.   

 
6. Application Functionality 
 

6.1 ‘Tree representation’ data 
For better understanding of following steps a clarification of the goal and its data 
representation must be presented. As stated before, final goal of the application is to 
generate a tree-like structure that reflects co-occurrence of items in the same transactions (or 
co-occurrence of attributes in the observations). A presentation that corresponds to structure 
is presented in Fig. 1 (on the left). This tree-like structure has to be mapped to the data in 
some way. Expected characteristics of the data model are:  

 to be straightforward and easily transferable to the tree-like structure 
 to be easily readable  
 preference that every algorithm step (which generates one tree level) corresponds 

to one data structure (for example column in a relational table).     

Decision to adopt the data model corresponding to the one presented in Fig. 1 (on the right) 
was made. Final data model consist of one relational table where every row presents one 
item (making the column of item ID necessary), and other columns which reflect item’s 
belonging to certain groups on various levels.  

Fig. 1. Final tree-like structure and its data representation 
 
Level column interpretation works like this: items having the same number in a certain 
column belong to the same group on that level and are connected in a tree structure (in that 
level). If there are items that on a certain level don’t have items to be grouped with (on 
certain criteria) then they have a unique group number in that column – i.e. there are no 
other items to share their group number with (in Fig. 1 – Item 3 on level 1 has a unique group 
number 2). Numbers (group marks) N1, N2... depend on number of group identification on 
certain level and identified groups on previous levels. If a binary tree is created formulas for 
N1 and general Nj are provided below:  
 

2
1G

N1N       

2
jG

NjN  1j  

 
Where:  
    N – total number of items 
    Nj – maximum group number on level j 
    Gj – number of formed groups on level j 
 

It is important to emphasize that some groups consist of only one element from previous 
level (e.g. G1-2). The existence of this group is not necessary and in final graphical 
representation it doesn’t have to be displayed.    

 
6.2 Overall algorithm 
To generate the tree representation data described in the previous paragraph, multiple level 
data generation (further called one step creation) must be preformed and acceptably saved 
to the whole model. Items present the tree leaves of the final model. Data mining method of 
association rules will be used for generation of each level – one model per tree level. 
Generation of each level will further in the text be addressed as one step creation – or ‘OSC’.   
Level 1 will capture items that are most closely related (closest in the terms described in 
paragraph 2 of this chapter). For every following level parameters of association rules 
generation will be loosened to the extent permitted by the analyst. Depending on the 

... 

Item 1 

Item 2 

Item 3 

G1-1 

G2-1 

... 

G2-N2 Item N 

G1-2 

G1-N1 

... 

ITEM Level 1 Level2 
Item 1 1 1 
Item 2 1 1 
Item 3 2 1 
...  ...  ... 
Item N N1 N2 
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consequents form branches. If multiple antecedent elements are present then second 
antecedent element forms a new branch. This branch is further expanded to leaves 
(consequents) or more complex branches (further antecedent elements).    
Main goal of the existing software solutions is to enable better representation of rules 
generated in one step – algorithm applied once and producing rules satisfying thresholds of 
minimal support and confidence.  
One drawback of such presentation is that the same rule – connection between two 
attributes appears in more than one place in a tree which results in basic problem of difficult 
readability not being resolved by those applications and/or tools. Our main goal is to form a 
tree where an item will always appear only once. 

 
5. Technologies and Tools 
 

Association rules as a data mining technique is pretty demanding when it comes to 
processing time and power. We wanted to distance our application from the ETL process 
and enable it to work with the data that is already in the database. That is why we decided 
to use database inbuilt data mining functionalities. Those functionalities are available in 
Oracle Database 11g Enterprise Edition and known as ODM (Oracle Data Mining). Choice of 
this technology brought us certain important advantages: data mining models are treated as 
objects inside the database and data mining processes use database inbuilt functions to 
maximize scalability and time efficiency. Furthermore, security is resolved by the database 
which makes it relatively simple to update the data (this usually depends on actual data 
sources, organization business rules, etc.). ODM offers a few application programming 
interfaces which could be used to develop the final application, such as PL/SQL and Java 
API. Decision to use PL/SQL and direct access to database objects that keep various 
information on final association rules model was made, due to flexibility it offers and 
opportunity to tweak the finally developed algorithm to best suit our needs. Algorithm was 
stored as a script containing both PL/SQL blocks and DDL instructions. Java was chosen to 
further develop the aforementioned developed algorithm and tweak parameters for every 
step of tree level generation.   

 
6. Application Functionality 
 

6.1 ‘Tree representation’ data 
For better understanding of following steps a clarification of the goal and its data 
representation must be presented. As stated before, final goal of the application is to 
generate a tree-like structure that reflects co-occurrence of items in the same transactions (or 
co-occurrence of attributes in the observations). A presentation that corresponds to structure 
is presented in Fig. 1 (on the left). This tree-like structure has to be mapped to the data in 
some way. Expected characteristics of the data model are:  

 to be straightforward and easily transferable to the tree-like structure 
 to be easily readable  
 preference that every algorithm step (which generates one tree level) corresponds 

to one data structure (for example column in a relational table).     

Decision to adopt the data model corresponding to the one presented in Fig. 1 (on the right) 
was made. Final data model consist of one relational table where every row presents one 
item (making the column of item ID necessary), and other columns which reflect item’s 
belonging to certain groups on various levels.  

Fig. 1. Final tree-like structure and its data representation 
 
Level column interpretation works like this: items having the same number in a certain 
column belong to the same group on that level and are connected in a tree structure (in that 
level). If there are items that on a certain level don’t have items to be grouped with (on 
certain criteria) then they have a unique group number in that column – i.e. there are no 
other items to share their group number with (in Fig. 1 – Item 3 on level 1 has a unique group 
number 2). Numbers (group marks) N1, N2... depend on number of group identification on 
certain level and identified groups on previous levels. If a binary tree is created formulas for 
N1 and general Nj are provided below:  
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2
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Where:  
    N – total number of items 
    Nj – maximum group number on level j 
    Gj – number of formed groups on level j 
 

It is important to emphasize that some groups consist of only one element from previous 
level (e.g. G1-2). The existence of this group is not necessary and in final graphical 
representation it doesn’t have to be displayed.    

 
6.2 Overall algorithm 
To generate the tree representation data described in the previous paragraph, multiple level 
data generation (further called one step creation) must be preformed and acceptably saved 
to the whole model. Items present the tree leaves of the final model. Data mining method of 
association rules will be used for generation of each level – one model per tree level. 
Generation of each level will further in the text be addressed as one step creation – or ‘OSC’.   
Level 1 will capture items that are most closely related (closest in the terms described in 
paragraph 2 of this chapter). For every following level parameters of association rules 
generation will be loosened to the extent permitted by the analyst. Depending on the 
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starting dataset and enforced parameters certain number of levels will be created. Level 
presenting the tree root doesn’t have to be reached.    
Data has to be adjusted for each OSC activity (except for the first one where certain 
characteristics of input data are presumed). After performing each OSC, model results have 
to be extracted and tree representation data has to be updated. OSC activity is realized by 
SQL script containing both PL/SQL blocks and SQL DDL commands (further referred as 
OSC script).  
Because of the necessary DDL commands, OSC can’t be encapsulated in a PL/SQL 
procedure. Therefore a custom Java class was used for creation of user interface and 
orchestration of the entire process, taking into account parameter inputs made by the user 
(analyst). Java class is the one responsible for running the OSC script (of course depending 
on certain conditions).     
Fig. 2 presents the overall application functionality. One can notice that the process of data 
input (with all checkups that go with it) is left in care of other applications. User is only 
required to name the table containing input transactional data. 
Java class functionality is presented by functional blocks in red colour, while the basic 
functionalities of OSC script are presented in green. Final result of the main Java class 
method is development of tree representation data. Graphical presentation of developed data 
model is not the focus of this text and is left for further investigation. Technology to present 
it is left to final user preferences. However, researches on this matter were also made. There 
are some open-source solutions that enable interactive graphical presentations of tree-like 
structures through Internet browsers (e.g. Google Interactive Treeview). Transformation of the 
generated relational tree representation data into a (for example) XML file – which 
mentioned tool uses as its input - is rather straightforward.  
 

 
Fig. 2. Developed algorithm shown through main functionality blocks 
 
Input data parameters and its adjustment through algorithm should be elaborated in more 
detail. At algorithm start-up, analyst is required to specify the following boundaries: top 
and bottom support and confidence (measures used in association rules methods) together 
with acceptable number of tree levels (L). Top boundaries are used to form the first level of 
item tree. All items included in generated association rules with support and confidence 
greater than parameters used as input for certain step are connected. Through following 

steps those starting measures are being lowered until they reach bottom support and 
confidence. 
The actual purpose of bottom support and confidence is based on the fact that analyst is not 
interested in connections between items which are not supported by certain proportions of 
transactions. If analyst wants to utilize even minimal number of transactions supporting 
certain connections (so no item is left unconnected except the ones that appear in 
transactions containing only one item) than bottom support and confidence should be set to 
value near zero.  
At this moment, algorithm that adjusts parameters between OSC steps in linear way is 
developed (distance between bottom and top parameters is divided by (L-1) and parameters 
through whole process are tweaked to reach from top levels to bottom ones through (L-1) 
steps). It is possible for the algorithm to reach the tree root even earlier – but that depends 
on the actual data being analyzed.   

 
6.3 Generation of one tree level – recurring step in detail  
This paragraph will present the developed OSC script in more detail and elaborate the 
decisions made during its construction.  
Decision to use some database structures directly (i.e. tables which keep data about 
generated model in the specific step) was made. Usage of PL/SQL data mining API when 
forming groups of items would slow the whole process down. The most important parts of 
OSC script are: 
 
A) view creation 

Database inbuilt data mining functions require certain presentation of transactional 
data.  

B) setup of  model parameters  
For this, a special table is created. This table is named settings table. 

C) model generation 
PL/SQL data mining API is used to perform model generation.  
Input parameters are:  

a. model name 
b. mining function (association rules with only one available algorithm – 

Apriory) 
c. data table name (view in our case) 
d. column which identifies each transaction specification 
e. settings table name. 

D) created database structures  
As a consequence of the previous step certain tables that keep information about 
generated model (association rules) are created. This step is implicit and doesn't require 
custom coding. Most important tree tables are: 

T1: encloses information of antecedent and consequent itemsets IDs 
along with measurements connected with the rule 

T2:   reflects structure of each itemset 
T3:   presents all items in separated rows. 
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starting dataset and enforced parameters certain number of levels will be created. Level 
presenting the tree root doesn’t have to be reached.    
Data has to be adjusted for each OSC activity (except for the first one where certain 
characteristics of input data are presumed). After performing each OSC, model results have 
to be extracted and tree representation data has to be updated. OSC activity is realized by 
SQL script containing both PL/SQL blocks and SQL DDL commands (further referred as 
OSC script).  
Because of the necessary DDL commands, OSC can’t be encapsulated in a PL/SQL 
procedure. Therefore a custom Java class was used for creation of user interface and 
orchestration of the entire process, taking into account parameter inputs made by the user 
(analyst). Java class is the one responsible for running the OSC script (of course depending 
on certain conditions).     
Fig. 2 presents the overall application functionality. One can notice that the process of data 
input (with all checkups that go with it) is left in care of other applications. User is only 
required to name the table containing input transactional data. 
Java class functionality is presented by functional blocks in red colour, while the basic 
functionalities of OSC script are presented in green. Final result of the main Java class 
method is development of tree representation data. Graphical presentation of developed data 
model is not the focus of this text and is left for further investigation. Technology to present 
it is left to final user preferences. However, researches on this matter were also made. There 
are some open-source solutions that enable interactive graphical presentations of tree-like 
structures through Internet browsers (e.g. Google Interactive Treeview). Transformation of the 
generated relational tree representation data into a (for example) XML file – which 
mentioned tool uses as its input - is rather straightforward.  
 

 
Fig. 2. Developed algorithm shown through main functionality blocks 
 
Input data parameters and its adjustment through algorithm should be elaborated in more 
detail. At algorithm start-up, analyst is required to specify the following boundaries: top 
and bottom support and confidence (measures used in association rules methods) together 
with acceptable number of tree levels (L). Top boundaries are used to form the first level of 
item tree. All items included in generated association rules with support and confidence 
greater than parameters used as input for certain step are connected. Through following 

steps those starting measures are being lowered until they reach bottom support and 
confidence. 
The actual purpose of bottom support and confidence is based on the fact that analyst is not 
interested in connections between items which are not supported by certain proportions of 
transactions. If analyst wants to utilize even minimal number of transactions supporting 
certain connections (so no item is left unconnected except the ones that appear in 
transactions containing only one item) than bottom support and confidence should be set to 
value near zero.  
At this moment, algorithm that adjusts parameters between OSC steps in linear way is 
developed (distance between bottom and top parameters is divided by (L-1) and parameters 
through whole process are tweaked to reach from top levels to bottom ones through (L-1) 
steps). It is possible for the algorithm to reach the tree root even earlier – but that depends 
on the actual data being analyzed.   

 
6.3 Generation of one tree level – recurring step in detail  
This paragraph will present the developed OSC script in more detail and elaborate the 
decisions made during its construction.  
Decision to use some database structures directly (i.e. tables which keep data about 
generated model in the specific step) was made. Usage of PL/SQL data mining API when 
forming groups of items would slow the whole process down. The most important parts of 
OSC script are: 
 
A) view creation 

Database inbuilt data mining functions require certain presentation of transactional 
data.  

B) setup of  model parameters  
For this, a special table is created. This table is named settings table. 

C) model generation 
PL/SQL data mining API is used to perform model generation.  
Input parameters are:  

a. model name 
b. mining function (association rules with only one available algorithm – 

Apriory) 
c. data table name (view in our case) 
d. column which identifies each transaction specification 
e. settings table name. 

D) created database structures  
As a consequence of the previous step certain tables that keep information about 
generated model (association rules) are created. This step is implicit and doesn't require 
custom coding. Most important tree tables are: 

T1: encloses information of antecedent and consequent itemsets IDs 
along with measurements connected with the rule 

T2:   reflects structure of each itemset 
T3:   presents all items in separated rows. 
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E) rules ordering 
Multiple connections among few items may appear. To ensure that the most significant 
ones are presented in level groupings, rules are ordered and confidence is chosen as an 
order criteria. In the future only one PL/SQL instruction has to be altered to change this 
criterion (if the analyst needs such a change). 

F) elimination of itemsets and rules 
To take into account only those rules which only concern two-way connections, all 
itemsets containing more than one item are eliminated together with the corresponding 
rules. There are a few reasons for that step: final tree is intended to present structure 
where relative distance between two items can be compared with a distance between 
other two items. Rules which have more elements in antecedent or consequent can’t be 
properly depicted in intended tree structure.   

G) formation of item groups  
Items that are not already occupied by some group in a certain level are grouped 
together on the basis of sequential reading of ordered rules. They are being assigned the 
next unused number - group mark. 

H) population of group column 
A certain number of items is expected not to take part in any groups on specific level. 
They will have NULL values in certain table cells. Group column must be populated 
with unused numbers – group marks.   

I) storing of the tree level information 
Finally, useful information about performed groupings is saved to the special table 
which is to be used outside of the OSC step. 

J) transactional data modulation  
To be able to perform the next level generation, transactional data needs to be altered. 
In the next step association rule modelling must be performed on groups formed on 
previous level.  

K) index creation 
On certain phases of the OSC step indexes have to be created to speed up the whole 
process (without them required time for some steps may exceed required time for 
model generation). 

L) cleansing of some structures  
Every OSC step generates structures that are to be used in the next OSC step. For that 
reason cleansing of those structures must be preformed. 

 
6.4 Possible issues 
Major issues and questions that emerged during OSC script creation are described in this 
chapter. 
 
(A) TRANSACTIONAL DATA MODULATION AND ITS CONSEQUENCES  
First issue is the one concerning the changes of transactional data. Data is changed to enable 
performing each consecutive step and to avoid losing information about item ‘connections’. 
The real question is whether the final measures (produced by models after transactional 
data change) are acceptable and how the tree structure should be interpreted.   
Implemented algorithm in each transaction replaces original item ID with the newly 
assigned group mark. Since association rules measures are important for the next level of 

tree structure generation, a question may arise regarding the consequence of replacing a 
group of items with one sole item which will represent the entire group. 
To best depict the problem, transactional data presented in Table 1 is used as an example to 
make a tree structure model. Certain measures for the input data can be calculated 
(equations (2) and (3)). Support of items and item pairs is presented in Table 2. This table is 
orthogonally symmetric since supp(A,B)=supp(B,A) which is a consequence of a support 
definition.   
 

 A B C D 
A 4/7 4/7 2/7 2/7 
B 4/7 5/7 3/7 2/7 
C 2/7 3/7 4/7 1/7 
D 2/7 2/7 1/7 3/7 

Table 2. Calculated support for dataset example 
 
Table 3 presents calculated confidence of possible binary rules for the same example data. 
Items presented at row beginnings represent antecedents and columns present consequents 
(e.g. conf(BA)=4/5). Since generally conf(AA)=1, these measures were not marked in 
the table.   

      consequent 
antecedent\

A B C D 

A  1 1/2 1/2 
B 4/5  3/5 2/5 
C 1/2 3/4  1/4 
D 2/3 2/3 1/3 

Table 3. Calculated confidence for possible binary rules  
 
If parameters for first level creation are set in such a way that only items A and B are 
connected in a group called X (conf(AB)=1), than one of the possible representations of 
final model is depicted on Fig.3. 

 
Fig. 3. Possible formation of a tree structure based on example data 
 
Two important questions may arise concerning the replacement of A and B with a 
group/item named X: 

- what happens to the relationships of items unaffected by this new group?  
- what happens to the measures of possible rules which include ‘new item’ X? 
 

Regarding relationships between items unaffected by formed group, the following facts 
stand: 

- support of those items remains the same 
- support of itemsets that don’t contain X remains the same (e.g. supp(C,D)) 

A 

B 

C 

X 
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E) rules ordering 
Multiple connections among few items may appear. To ensure that the most significant 
ones are presented in level groupings, rules are ordered and confidence is chosen as an 
order criteria. In the future only one PL/SQL instruction has to be altered to change this 
criterion (if the analyst needs such a change). 

F) elimination of itemsets and rules 
To take into account only those rules which only concern two-way connections, all 
itemsets containing more than one item are eliminated together with the corresponding 
rules. There are a few reasons for that step: final tree is intended to present structure 
where relative distance between two items can be compared with a distance between 
other two items. Rules which have more elements in antecedent or consequent can’t be 
properly depicted in intended tree structure.   

G) formation of item groups  
Items that are not already occupied by some group in a certain level are grouped 
together on the basis of sequential reading of ordered rules. They are being assigned the 
next unused number - group mark. 

H) population of group column 
A certain number of items is expected not to take part in any groups on specific level. 
They will have NULL values in certain table cells. Group column must be populated 
with unused numbers – group marks.   

I) storing of the tree level information 
Finally, useful information about performed groupings is saved to the special table 
which is to be used outside of the OSC step. 

J) transactional data modulation  
To be able to perform the next level generation, transactional data needs to be altered. 
In the next step association rule modelling must be performed on groups formed on 
previous level.  

K) index creation 
On certain phases of the OSC step indexes have to be created to speed up the whole 
process (without them required time for some steps may exceed required time for 
model generation). 

L) cleansing of some structures  
Every OSC step generates structures that are to be used in the next OSC step. For that 
reason cleansing of those structures must be preformed. 

 
6.4 Possible issues 
Major issues and questions that emerged during OSC script creation are described in this 
chapter. 
 
(A) TRANSACTIONAL DATA MODULATION AND ITS CONSEQUENCES  
First issue is the one concerning the changes of transactional data. Data is changed to enable 
performing each consecutive step and to avoid losing information about item ‘connections’. 
The real question is whether the final measures (produced by models after transactional 
data change) are acceptable and how the tree structure should be interpreted.   
Implemented algorithm in each transaction replaces original item ID with the newly 
assigned group mark. Since association rules measures are important for the next level of 

tree structure generation, a question may arise regarding the consequence of replacing a 
group of items with one sole item which will represent the entire group. 
To best depict the problem, transactional data presented in Table 1 is used as an example to 
make a tree structure model. Certain measures for the input data can be calculated 
(equations (2) and (3)). Support of items and item pairs is presented in Table 2. This table is 
orthogonally symmetric since supp(A,B)=supp(B,A) which is a consequence of a support 
definition.   
 

 A B C D 
A 4/7 4/7 2/7 2/7 
B 4/7 5/7 3/7 2/7 
C 2/7 3/7 4/7 1/7 
D 2/7 2/7 1/7 3/7 

Table 2. Calculated support for dataset example 
 
Table 3 presents calculated confidence of possible binary rules for the same example data. 
Items presented at row beginnings represent antecedents and columns present consequents 
(e.g. conf(BA)=4/5). Since generally conf(AA)=1, these measures were not marked in 
the table.   

      consequent 
antecedent\

A B C D 

A  1 1/2 1/2 
B 4/5  3/5 2/5 
C 1/2 3/4  1/4 
D 2/3 2/3 1/3 

Table 3. Calculated confidence for possible binary rules  
 
If parameters for first level creation are set in such a way that only items A and B are 
connected in a group called X (conf(AB)=1), than one of the possible representations of 
final model is depicted on Fig.3. 

 
Fig. 3. Possible formation of a tree structure based on example data 
 
Two important questions may arise concerning the replacement of A and B with a 
group/item named X: 

- what happens to the relationships of items unaffected by this new group?  
- what happens to the measures of possible rules which include ‘new item’ X? 
 

Regarding relationships between items unaffected by formed group, the following facts 
stand: 

- support of those items remains the same 
- support of itemsets that don’t contain X remains the same (e.g. supp(C,D)) 
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- previous two entries result in no effect on the possible rules not containing X. 
Depicted features are desirable and welcome. 
 

Regarding possible rules which include ‘new item’ X, measure calculations show the 
following: 
 

- supp(X)>=max(supp(A), supp(B)) 

- supp(X)<supp(A)+supp(B) 

- support of itemsets that include X increases:  
(supp(X,C)=supp((AvB),C)>= max(supp(A,C), supp(B,C)) 

- confidence of rules that incorporate X as an antecedent will fall somewhere 
between conf(AC) and conf(BC).  

- confidence of rules that incorporate X as a consequent will be greater than 
conf(CA) and conf(CB) (support of (X,C) is equal or greater than supp(A,C) or 
supp(B,C) while support of antecedent remains the same).  

From these observations, following reasoning could be made: item X will display closeness 
to some other item (e.g. item C) in the case that both of its components (A and B) display 
closeness to C. If A is ‘close’ to C but B isn’t, than the appearance frequency of A and B in 
transactional data has to be taken into account. If appearance of A is frequent, while B is 
rare, than measure of closeness (conf(XC)) will be more influenced by item A and X would 
be relatively close to C. That means that X (as antecedent) exposes more average (or 
tenderer) features than its components with the number of supporting transactions also 
affecting the outcome. Explained and depicted features of grouping item X are also desirable 
and acceptable.  
When examining X as a consequent, it can be stated that it can more easily be connected to 
other items than can solely items A and B, which is also logical consequence of grouping. 
Final tree representation should be interpreted in the following way: based on transactional 
data, items A and B are close i.e. connected. If X is further connected to C then we can say 
that item group of A and B exposes closeness to C. However, direct connection between A 
and C cannot be stated (likewise for items B and C). 
 
(B) ELIMINATION OF TRANSACTIONS CONTAINING ONLY ONE ITEM 
In real life datasets which the authors have encountered many transactions exist which 
contain only one item. These cases also emerge in our application usage. After making 
certain groups and modulating transactional data for the new step, it is possible that some 
transactions exist which include only one item which is result of grouping (e.g. first 
transaction in Table 1, after replacing A and B with X, contains only one item). Such 
transactions seemingly do not contribute to further analysis and could potentially be 
eliminated. 
However, it is worth to consider the impact of these eliminations on further rules 
development. To demonstrate consequences of transaction elimination, first example is used 
and then ratios are generalized. Example of transactional data presented in Table 1 is used, 
where on level 1 of a tree structure items A and B are connected and form ‘new item’ X. 
Renewed transactional data is presented in Table 4.  
 

transaction
/item 

X C D 

1 1 0 0 
2 1 0 1 
3 1 1 0 
4 1 1 1 
5 1 1 0 
6 0 0 1 
7 0 1 0 

Table 4. Example - transformed data after first level creation  
 
For analysis, three general cases are recognized. All possible combinations of item 
relationships belong to one of them: 

- rules where X is antecedent 
- rules where X is consequent 
- rules not containing X; 

where X is the single item in eliminated transaction.  
Measures for given example: 

- before elimination of first transaction:  
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- previous two entries result in no effect on the possible rules not containing X. 
Depicted features are desirable and welcome. 
 

Regarding possible rules which include ‘new item’ X, measure calculations show the 
following: 
 

- supp(X)>=max(supp(A), supp(B)) 

- supp(X)<supp(A)+supp(B) 

- support of itemsets that include X increases:  
(supp(X,C)=supp((AvB),C)>= max(supp(A,C), supp(B,C)) 

- confidence of rules that incorporate X as an antecedent will fall somewhere 
between conf(AC) and conf(BC).  

- confidence of rules that incorporate X as a consequent will be greater than 
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be relatively close to C. That means that X (as antecedent) exposes more average (or 
tenderer) features than its components with the number of supporting transactions also 
affecting the outcome. Explained and depicted features of grouping item X are also desirable 
and acceptable.  
When examining X as a consequent, it can be stated that it can more easily be connected to 
other items than can solely items A and B, which is also logical consequence of grouping. 
Final tree representation should be interpreted in the following way: based on transactional 
data, items A and B are close i.e. connected. If X is further connected to C then we can say 
that item group of A and B exposes closeness to C. However, direct connection between A 
and C cannot be stated (likewise for items B and C). 
 
(B) ELIMINATION OF TRANSACTIONS CONTAINING ONLY ONE ITEM 
In real life datasets which the authors have encountered many transactions exist which 
contain only one item. These cases also emerge in our application usage. After making 
certain groups and modulating transactional data for the new step, it is possible that some 
transactions exist which include only one item which is result of grouping (e.g. first 
transaction in Table 1, after replacing A and B with X, contains only one item). Such 
transactions seemingly do not contribute to further analysis and could potentially be 
eliminated. 
However, it is worth to consider the impact of these eliminations on further rules 
development. To demonstrate consequences of transaction elimination, first example is used 
and then ratios are generalized. Example of transactional data presented in Table 1 is used, 
where on level 1 of a tree structure items A and B are connected and form ‘new item’ X. 
Renewed transactional data is presented in Table 4.  
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For analysis, three general cases are recognized. All possible combinations of item 
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where X is the single item in eliminated transaction.  
Measures for given example: 

- before elimination of first transaction:  
 

7
5)supp( X ;

7
4)supp( C ;

7
3)supp( D ;

7

3supp(X,C)  ;
7

1 supp(C,D)   

5
3conf(X  )C ; 

4
3conf(C  )X ;

4
1conf(C  )D  

 
- after elimination of the first transaction: 

 

  
6
4)(supp' X ; 

6
4)(supp' C ; 

6
3)(supp' D ; 

6
3C)(X,supp'  ; '

6

1 supp(C,D)   

4
3(Xconf'  )C ; 

4
3(Cconf'  )X ; 

4
1(Cconf'  )D  

 
To generalize - if m transactions are eliminated because they contained only one item, 
measures change in the following way: 

- before elimination of first transaction:  
 

t
d)supp(

t
c)supp(

t
x)supp(







D

C

X

 t

t

gsupp(X,C)   

h supp(C,D)





 

www.intechopen.com



Application of Machine Learning122

c
hconf(C

c
g

conf(C

x
g

conf(X







)

)

)

D

X

C

 

(4) 
 
 

(5) 
 
 

(6) 
- after elimination of m transaction: 

m-t
d)(supp'

m-t
c)(supp'

m-t
m-x)(supp'







D

C

X

 
'

t-m

'
t-m

gsupp(X,C)   

h supp(C,D)





 

c
h(Cconf'

c
g

(Cconf'

m-x
g

(Xconf'







)

)

)

D

X

C

 

(7) 
 
 
(8) 
 
 
(9) 

 

Comparing (4), (5) and (6) with (7), (8) and (9) the following conclusion can be made: 
confidence of rules containing X as consequent and confidence of rules not containing X 
remains the same but confidence of rules containing X as antecedent increases. Therefore 
elimination of transactions containing only one item on various levels should not be 
performed since it could skew the real relationships between items.  
This decision could also be supported by an extreme case example where item X is the only 
item appearing in many transactions, with only one transaction where it appears with 
another item - C. If we eliminate transactions which include only one item then conf(XC) 
would be 1, which is very far from the true relationship.  
 
(C) DIFFERENT TREE STRUCTURES DEPICTING THE SAME TRANSACTIONAL 
DATA AS A CONSEQUENCE OF DIFFERENT PARAMETER INPUT 
For the same transactional data, various final tree presentations could be made depending 
on parameter input. Two extremes would be:  

- very loose parameters 
- strict parameters with slight changes from one step to another. 

Fig. 4 presents two outcomes depending on the input parameters.  
 

 
Fig. 4. Two tree-like structure outcomes depending on input parameters 
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What is loose and what is strict usually depends on characteristics of the input dataset. This 
is an issue best left to analyst’s discretion; analyst should tweak the parameters to get the 
structure he/she feels is the most informative and could most easily be acted upon.  

 
7. Results on Real-life Dataset 
 

7.1 Data set Characteristics 
Datasets can vary in great extent when their various characteristics are in question. These 
characteristics influence overall performance of the generated application. Therefore some 
characteristics of dataset at hand used for verification of application performance will be 
presented first.    
Number of transactions and number of items are the most obvious characteristics of 
dataset and usually the most important ones. Example dataset presented in Table 1 includes 
7 transactions and 4 items.  
Data density could be presented by a ratio between realized appearances of items in 
transactions compared to the case where every transaction includes all items. Density is for 
the most datasets very low and therefore is often multiplied by 100 to form ‘modified data 
density’ (i.e. if average transaction includes every hundredth item the density results in 1). 
Data density for example data is 15/(7*4)=0,53  (53% of table cells are populated with value 
‘1’). It could be useful to notice the most frequently appearing item and what is number of 
transactions where it could be found (e.g. item B appears in most transactions, 5 of them).  
Average number of items per transaction gives a good insight on the input dataset (for 
given example this ratio is 2,29).  
Application performance was examined on few real-life datasets. The one which clearly 
demonstrates the performance of generated application was chosen. It holds data of market 
basket contents in one computer store. Characteristics of chosen dataset are given in Table 5.  
 

Dataset characteristic Value
Number of transactions 940 
Number of items 14 
Data density 0,21 
Number of transactions where the most 
frequently appearing item appeared 

303 (32%) 

Average number of items per transaction 2,98 
Table 5. Characteristics of examined real-life dataset    
 
First step is the most critical one, so it will be examined in more detail.  
12 rules were found with parameters set to values: 
 

- minimal support: 0,1 
- minimal confidence: 0,1. 
 

Those rules resulted in 2 item groups: one containing 4 items and one containing 2 items 
(Table 6). Two groups that satisfied first setting chosen by the analyst resulted in a pretty 
good score comparing to 12 association rules those groups stemmed from and which analyst 
doesn’t have to read. Of course, this concise presentation resulted in some information loss, 
but it happened in accordance with analyst decision of parameter setting.   

www.intechopen.com



Building an application - generation of ‘items tree’ based on transactional data 123

c
hconf(C

c
g

conf(C

x
g

conf(X







)

)

)

D

X

C

 

(4) 
 
 

(5) 
 
 

(6) 
- after elimination of m transaction: 

m-t
d)(supp'

m-t
c)(supp'

m-t
m-x)(supp'







D

C

X

 
'

t-m

'
t-m

gsupp(X,C)   

h supp(C,D)





 

c
h(Cconf'

c
g

(Cconf'

m-x
g

(Xconf'







)

)

)

D

X

C

 

(7) 
 
 
(8) 
 
 
(9) 

 

Comparing (4), (5) and (6) with (7), (8) and (9) the following conclusion can be made: 
confidence of rules containing X as consequent and confidence of rules not containing X 
remains the same but confidence of rules containing X as antecedent increases. Therefore 
elimination of transactions containing only one item on various levels should not be 
performed since it could skew the real relationships between items.  
This decision could also be supported by an extreme case example where item X is the only 
item appearing in many transactions, with only one transaction where it appears with 
another item - C. If we eliminate transactions which include only one item then conf(XC) 
would be 1, which is very far from the true relationship.  
 
(C) DIFFERENT TREE STRUCTURES DEPICTING THE SAME TRANSACTIONAL 
DATA AS A CONSEQUENCE OF DIFFERENT PARAMETER INPUT 
For the same transactional data, various final tree presentations could be made depending 
on parameter input. Two extremes would be:  

- very loose parameters 
- strict parameters with slight changes from one step to another. 

Fig. 4 presents two outcomes depending on the input parameters.  
 

 
Fig. 4. Two tree-like structure outcomes depending on input parameters 

A 

B 

C 

D 

 G1 
G2 

G3 

A 

B 

C 

D 

  G1 

What is loose and what is strict usually depends on characteristics of the input dataset. This 
is an issue best left to analyst’s discretion; analyst should tweak the parameters to get the 
structure he/she feels is the most informative and could most easily be acted upon.  

 
7. Results on Real-life Dataset 
 

7.1 Data set Characteristics 
Datasets can vary in great extent when their various characteristics are in question. These 
characteristics influence overall performance of the generated application. Therefore some 
characteristics of dataset at hand used for verification of application performance will be 
presented first.    
Number of transactions and number of items are the most obvious characteristics of 
dataset and usually the most important ones. Example dataset presented in Table 1 includes 
7 transactions and 4 items.  
Data density could be presented by a ratio between realized appearances of items in 
transactions compared to the case where every transaction includes all items. Density is for 
the most datasets very low and therefore is often multiplied by 100 to form ‘modified data 
density’ (i.e. if average transaction includes every hundredth item the density results in 1). 
Data density for example data is 15/(7*4)=0,53  (53% of table cells are populated with value 
‘1’). It could be useful to notice the most frequently appearing item and what is number of 
transactions where it could be found (e.g. item B appears in most transactions, 5 of them).  
Average number of items per transaction gives a good insight on the input dataset (for 
given example this ratio is 2,29).  
Application performance was examined on few real-life datasets. The one which clearly 
demonstrates the performance of generated application was chosen. It holds data of market 
basket contents in one computer store. Characteristics of chosen dataset are given in Table 5.  
 

Dataset characteristic Value
Number of transactions 940 
Number of items 14 
Data density 0,21 
Number of transactions where the most 
frequently appearing item appeared 

303 (32%) 

Average number of items per transaction 2,98 
Table 5. Characteristics of examined real-life dataset    
 
First step is the most critical one, so it will be examined in more detail.  
12 rules were found with parameters set to values: 
 

- minimal support: 0,1 
- minimal confidence: 0,1. 
 

Those rules resulted in 2 item groups: one containing 4 items and one containing 2 items 
(Table 6). Two groups that satisfied first setting chosen by the analyst resulted in a pretty 
good score comparing to 12 association rules those groups stemmed from and which analyst 
doesn’t have to read. Of course, this concise presentation resulted in some information loss, 
but it happened in accordance with analyst decision of parameter setting.   

www.intechopen.com



Application of Machine Learning124

After updating transactional data2, a number of items are represented as one item in further 
analysis. Therefore there are some duplicate entries of items belonging to certain 
transactions that could be eliminated. For example, let items A and B belong to transaction 
ti, and they are grouped and their group is presented by ‘item X’, then duplicate recording 
of item X belonging to transaction ti is not necessary. Immediate benefit is that data for 
transaction representation is reduced from 2804 rows to 2345 rows. In the following steps 
this reduction is reiterated resulting in shorter execution time for every subsequent level 
creation.   
Application performance could be demonstrated by setting following input parameters: 

- minimal support: 0,1-0,08;  
- minimal confidence=0,1 
- expected levels=3.  

Resulting model is presented in Table 6. As it can be observed, there are some items that 
relatively rarely show up together with any other item in transactions and they stay as 
solitary leaves. If we take a look at the real items that are connected, some combinations of 
items are quite logical, for instance: External 8X CD-ROM and CD-RW, High Speed Pack of 5.  
Final model data presentation, given in Table 6, shows that our data representation can 
easily be converted to a graphical tree-like structure. Readability can be improved simply by 
sorting the columns data – going from the levels closest to the root towards those nearer to 
the leaves. 
 

Item_id Name Level_1 Level_2 Level_3 
12 18" Flat Panel Graphics 

Monitor
3 2 1 

9 SIMM- 16MB PCMCIAII 
card

3 2 1 

8 Keyboard Wrist Rest 8 2 1 
7 External 8X CD-ROM 2 3 1 
10 CD-RW, High Speed 

Pack of 5 
2 3 1 

11 Multimedia speakers- 3" 
cones

9 3 1 

3 Standard Mouse 1 1  
4 Extension Cable 1 1  
14 Model SM26273 Black 

Ink Cartridge 
4 1  

2 Mouse Pad 4 1  
1 Y Box 5   
5 Envoy Ambassador 6   
6 Envoy 256MB - 40GB 7   
13 O/S Documentation Set - 

English
10   

Table 6. Resulting model for real-life dataset   
 
Each following step data characteristics change: number of items decreases, data density 
increases and number of items per transaction decreases.   

2 Every realization of item’s appearance in transaction is presented in a separate row. 

Application testing showed that not only data characteristics influenced final model 
structure (number of groupings per level and level numbers) but also the nature of data in 
question. For the optimal use of application analyst should be closely acquainted with 
business problem, available data and usability of final model.   

 
8. Further work 
 

There are some areas in application functioning that could be improved. The most 
important one concerns parameter adjusting since it has great effect on application 
functionality and final outcome. Dataset characteristics play the most important role here so 
in the future application should give the analyst suggestions for parameter setup based on 
input dataset. It would prevent analyst from straying and would offer him a priori guidance 
on what choices could potentially be the most effective. Some researches regarding usage of 
data density in mining association rules have already been undertaken. Its usage is even 
further investigated in (Cheung et al., 2007) where new measures of data density for 
quantitative attributes are introduced. 
In some cases analysts will want to investigate on how some specific item groups are 
connected to other items, for example illness symptoms that are somehow connected to 
diseases or other symptoms.Insight in belonging tree structure could bring upon some new 
notions. For that matter a feature to bundle some items in advance will be offered by 
application.   
The bottleneck of implemented algorithm is the need for repeated creation of association 
rules in each step. However, some time improvements could be made by optimizations of 
SQL commands and PL/SQL blocks.  

 
9. Conclusion 
  

New approach to well known data mining method of association rules is developed and 
elaborated. In a nutshell, an application was created which generates a tree-like structure 
representing an interpretation of relationship between items based on their co-occurrence in 
transactional data.Survey of existing applications’ functionalities using association rules is 
presented, along with motivation to make rather different solution. Way of interpretation of 
developed solution is clearly elaborated.  
Application was realized with Java technology and uses database in-built data mining 
functions.  This technology bundle gave us both flexibility and advantages of optimizations 
through direct in-base data structure manipulation. One more benefit of such approach is 
that data doesn’t have to be transferred from its original source. Although association rules 
are quite resource exhausting method, with reasonable parameters input for specific dataset, 
good performance characteristics were accomplished.  
During application development some issues emerged. They were examined and most 
important decisions along with reasoning are presented in this chapter. 
There are many possible usages of developed tool and data model. It is quite easy to 
interpret it and exploit it. However, like with every data mining method, final functionality 
and benefits depend on quality of input data and analyst acquaintance with business 
problem, the data and application itself.   
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