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1. Introduction

The classification of Internet packet traffic aims at associating a sequence of packets (a flow)
to the application that generated it. The identification of applications is useful for many pur-
poses, such as the usage analysis of network links, the management of Quality of Service,
and for blocking malicious traffic. The techniques commonly used to recognize the Internet
applications are based on the inspection of the packet payload or on the usage of well-known
transport protocol port numbers. However, the constant growth of new Internet applications
and protocols that use random or non-standard port numbers or applications that use packet
encryption requires much smarter techniques. For this reason several new studies are con-
sidering the use of the statistical features to assist the identification and classification process,
performed through the implementation of machine learning techniques. This operation can
be done offline or online. When performed online, it is often a requirement that it is performed
early, i.e. by looking only at the first packets in a flow.
In the context of real-time and early traffic classification, we need a classifier working with as
few packets as possible so as to introduce a small delay between the beginning of the packet
flow and the availability of the classification result. On the other hand, the classification per-
formance grows as the number of observed packets grows. Therefore, a trade-off between
classification delay and classification performance must be found.
In this work, the features we consider for the classification of traffic flows are the sizes of the
first n packets in the client-server direction, with n a given number. With these features, good
results can be obtained by looking at as few as 5 packets in the flow. We also show that the
C4.5 decision tree algorithm generally yields the best results, outperforming Support Vector
Machines and clustering algorithms such as the Simple K-Means algorithm.
As a novel result, we also present a new set of features obtained by considering a packet
flow in the context of the activity of the Internet host that generated them. When classifying
a flow, we take into account some features obtained by collecting statistics on the connection
generation process. This is to exploit the well-known result that different Internet applications
show different degrees of burstiness and time correlation. For example, the email generation
process is compatible to a Poisson process, whereas the request of web pages is not Poisson
but, rather, has a power-law spectrum.
By considering these features, we greatly enhance the classification performance when very
few packets in the flow are observed. In particular, we show that the classification perfor-
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mance obtained with only n = 3 packets and the statistics on the connection generation pro-
cess is similar to the performance obtained with n = 5 packets and no information on the
connection process, therefore achieving a much shorter classification delay.
Section 2 gives a resume of the most significant work in the field and describe the various
facets of the problem. In that section we also introduce the Modified Allan Variance, which
is the mathematical tool that we use to measure the power-law exponent in the connection
generation process. In Section 3 we describe the classification procedure and the traffic traces
used for performance evaluation.
Section 4 discusses the experimental data and shows the evidence of power-law behavior of
the traffic sources. In Section 5 we compare some machine learning algorithms proposed
in the literature in order to select the most appropriate for the traffic classification problem.
Specifically, we compare the C4.5 decision tree, the Support Vector Machines, and the Simple
K-Means clustering algorithm.
In Section 6 we introduce the novel classification algorithms that exploit the per-source fea-
tures and evaluate their performance in Section 7. Some conclusions are left for the final
section.

2. Background Material

2.1 Related Work

Nguyen & Armitage (2008) identify three basic traffic classification approaches based on ma-
chine learning:

• clustering, based on unsupervised learning;

• classification, based on supervised learning;

• hybrid approaches, combining the best of both supervised and unsupervised tech-
niques.

Roughan et al. (2004) propose the Nearest Neighbors (NN), Linear Discriminant Analysis
(LDA) and the Quadratic Discriminant Analysis (QDA) algorithms to identify the QoS class
of different applications. The authors identify a list of possible features calculated over the
entire flow duration. In the reported results, the authors obtain a classification error value in
the range of 2.5% to 12.6%, depending on whether three or seven QoS classes are used.
Moore & Zuev (2005) propose the application of Bayesian techniques to traffic classification.
In particular they used the Naive Bayes technique with Kernel Estimation (NBKE) and the
Fast Correlation-Based Filter (FCBF) methods with a set of 248 full-flow features, including
the flow duration, packet inter-arrival time statistics, payload size statistics, and the Fourier
transform of the packet inter-arrival time process. The reported results show an accuracy of
approximately 98% for web-browsing traffic, 90% for bulk data transfer, 44% for service traffic,
and 55% for P2P traffic.
Auld et al. (2007) extend the previous work by using a Bayesian neural network. The classi-
fication accuracy of this technique reaches 99%, when the training data and the test data are
collected on the same day, and reaches 95% accuracy when the test data are collected eight
months later than the training data.
Nguyen & Armitage (2006a;b) propose a new classification method that considers only the
most recent n packets of the flow. The collected features are packet length statistics and packet
inter-arrival time statistics. The obtained accuracy is about 98%, but the performance is poor if
the classifier misses the beginning of a traffic flow. This work is further extended by proposing
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the training of the classifier by using statistical features calculated over multiple short sub-
flows extracted from the full flow. The approach does not result in significant improvements
to the classifier performance.
Park et al. (2006a;b) use a Genetic Algorithm (GA) to select the best features. The authors
compare three classifiers: the Naive Bayes with Kernel Estimation (NBKE), the C4.5 decision
tree, and Reduced Error Pruning Tree (REPTree). The best classification results are obtained
using the C4.5 classifier and calculating the features on the first 10 packets of the flow.
Crotti et al. (2007) propose a technique, called Protocol Fingerprinting, based on the packet
lengths, inter-arrival times, and packet arrival order. By classifying three applications (HTTP,
SMTP and POP3), the authors obtain a classification accuracy of more than 91%.
Verticale & Giacomazzi (2008) use the C4.5 decision tree algorithm to classify WAN traffic.
The considered features are the lengths of the first 5 packets in both directions, and their inter-
arrival times. The results show an accuracy between 92% and 99%.
We also review some fundamental results on the relation between different Internet applica-
tions and power-law spectra.
Leland et al. (1993) were among the first in studying the power-law spectrum in LAN packet
traffic and concluded that its cause was the nature of the data transfer applications.
Paxson & Floyd (1995) identified power-law spectra at the packet level also in WAN traffic
and also conducted some investigation on the connection level concluding that Telnet and
FTP control connections were well-modeled as Poisson processes, while FTP data connections,
NNTP, and SMTP were not.
Crovella & Bestavros (1997) measured web-browsing traffic by studying the sequence of file
requests performed during each session, where a session is one execution of the web-browsing
application, finding that the reason of power law lies in the long-tailed distributions of the
requested files and of the users’ “think-times”.
Nuzman et al. (2002) analyzed the web-browsing-user activity at the connection level and at
the session level, where a session is a group of connections from a given IP address. The
authors conclude that sessions arrivals are Poisson, while power-law behavior is present at
the connection level.
Verticale (2009) shows that evidence of power-law behavior in the connection generation pro-
cess of web-browing users can be found even when the source activity is low or the observa-
tion window is short.

2.2 The Modified Allan Variance

The MAVAR (Modified Allan Variance) was originally conceived for frequency stability char-
acterization of precision oscillators in the time domain (Allan & Barnes, 1981) and was origi-
nally conceived with the goal of discriminating noise types with power-law spectrum of kind
f−α, recognized very commonly in frequency sources. Recently, Bregni & Jmoda (2008) pro-
posed MAVAR as an analysis tool for Internet traffic. It has been demonstrated to feature su-
perior accuracy in the estimation of the power-law exponent, α, coupled with good robustness
against non stationarity in the data. Bregni & Jmoda (2008) and Bregni et al. (2008) successfully
applied MAVAR to real internet traffic analysis, identifying fractional noise in experimental
results, and to GSM telephone traffic proving its consistency to the Poisson model. We briefly
recall some basic concepts.
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Given an infinite sequence {xk} of samples of an input signal x(t), evenly spaced in time with
sampling period τ0, MAVAR is defined as:

Modσ
2
y (τ) =
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where τ = nτ0 is the observation interval and the operator 〈·〉 denotes infinite-time averaging.
In practice, given a finite set of N samples over a measurement interval T = (N − 1)τ0, the
MAVAR can be computed using the ITU-T standard estimator (Bregni, 2002):
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with n = 1,2, · · · ,⌊N/3⌋.
We consider the random processes x(t) with one-sided Power Spectral Density (PSD) modeled
as:

Sx( f ) = h f−α, (3)

where α and h are the model parameters. Such random processes are commonly referred to as
power-law processes. For these processes, the infinite-time average in (1) converges for α < 5.
The MAVAR obeys a simple power law of the observation interval τ (ideally asymptotically
for n → ∞, keeping constant nτ0 = τ, in practice for n > 4):

Modσ
2
y (τ) ≃ Aµτ

µ (4)

where µ = α − 3 and Aµ is a constant.
Therefore, if x(t) obeys (3), a log-log plot of the MAVAR ideally looks as a straight line, whose
slope µ gives the exponent estimate α = µ + 3 of the power-law component. Bregni & Jmoda
(2008) show these estimates to be accurate, therefore we choose this tool to analyze power
laws in traffic traces.

3. Classification Procedure

Figure 1 shows the general architecture for traffic capture. Packets coming from a LAN to the
Internet and vice versa are all copied to a PC, generally equipped with specialized hardware,
which can either perform real-time classification or simply write to a disk a traffic trace, which
is a copy of all the captured packets. In case the traffic trace is later made public, all the packets
are anonymized by substituting their IP source and destination addresses and stripping the
application payload.
In order to have repeatable experiments, in our research work we have used publicly available
packet traces. The first trace, which we will refer to as Naples, contains traffic related to TCP
port 80 generated and received by clients inside the network of University of Napoli “Federico
II” reaching the outside world (Network Tools and Traffic Traces, 2004). The traces named Auck-
land, Leipzig, and NZIX contain a mixture of all traffic types and are available at the NLANR
PMA: Special Traces Archive (2009) and the WITS: Waikato Internet Traffic Storage (2009). Table 1
contains the main parameters of the used traces.
Figure 2 shows the block diagram of the traffic classification procedure.

Internet
LAN

Traffic Capture

www.intechopen.com



Automatic Internet Trafic Classiication for Early Application Identiication 25

Internet
LAN

Traffic Capture

Fig. 1. Architecture of the Traffic Capture Environment.

Name Length (hh:mm) Date Start Time (hh:mm)

Auckland (a) 24:00 June 11th, 2001 00:00
Auckland (b) 24:00 June 12th, 2001 00:00
Leipzig (a) 4:23 Feb. 21st, 2003 12:14
Leipzig (b) 4:24 Feb. 21st, 2003 16:37
Naples 1:00 June 14th, 2004 11:00
NZIX (a) 24:00 July 6th, 2000 00:00
NZIX (b) 24:00 July 7th, 2000 00:00

Table 1. Parameters of the Analyzed Traffic Traces

Given a packet trace, we use the NetMate Meter (2006) and netAI, Network Traffic based Appli-
cation Identification (2006) tools to group packets in traffic flows and to elaborate the per-flow
metrics. In case TCP is the transport protocol, a flow is defined as the set of packets belonging
to a single TCP connection. In case UDP is used, a flow is defined as the set of packets with
the same IP addresses and UDP port numbers. A UDP flow is considered finished when no
packets have arrived for 600 s. If a packet with the same IP addresses and UDP port numbers
arrives when the flow is considered finished, it is considered the first packet in a new flow
between the same couple of hosts.
For each flow, we measure the lengths of the first n packets in the flow in the client-server
direction. These data are the per-flow metrics that will be used in the following for classifying
the traffic flows. We also collect the timestamp of the first packet in the flow, which we use as
an indicator of the time of the connection request.
For the purpose of training the classifier, we also collect the destination port number for each
flow. This number will be used as the data label for the purpose of validating the proposed
classification technique. Of course, this approach is sub-optimal in the sense that the usage
of well-known ports cannot be fully trusted. A better approach would be performing deep
packet inspection in order to identify application signatures in the packet payload. However,
this is not possible with public traces, which have been anonymized by stripping the payload.
In the rest of the paper we will made the assumption that, in the considered traffic traces,
well-known ports are a truthful indicator of the application that generated the packet flow.
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Traffic
Packet Trace

Reconstruction
of Traffic Flows

Collection
of per-Flow
Attributes

Classification
of the flow

Labeling Training

Fig. 2. Block diagram of classification procedure.

The collected data are then passed to the R software (R Development Core Team, 2008) to
collect the per-source metrics, to train the classifier, and to perform the cross-validation tests.
In particular we used the Weka (Witten & Frank, 2000) and the libsvm (Chang & Lin, 2001) li-
braries. From the timestamps of the first packets in each flow, we obtain the discrete sequence
x

p
i (k), which counts the connection requests from the i-th client, associated to the p-th trans-

port port, in the k-th time interval. Each interval is long τ0 = 1 s. Each time a new connection
request arrives, the sequence x

p
i (k) is updated and we compute the metrics in Table 2.

Metric Definition

Coefficient of Variation the ratio between the standard deviation of
x

p
i (k) and its mean

Skewness the standardized third moment of x
p
i (k)

Kurtosis the standardized fourth moment of x
p
i (k)

Power-law exponent the exponent α of the power-law compo-
nent in the Power Spectral Density of x

p
i (k)

Table 2. Per-source metrics.

4. The Power-law Exponent

In this section, we present some results on the power-law behavior of the connection request
process by commenting the measurements on the Naples traffic trace, which contains only
web-browsing traffic, and the Auckland(a) traffic trace, which contains a mix a different traffic
types.
Figure 3 shows the three sequences x80

1 (k), x80
2 (k), and x80(k). The first sequence is obtained

by considering only connections from a single IP address, which we call Client 1. Similarly, the
second sequence is obtained considering connections from Client 2. Finally, the third sequence
is obtained considering all the connections in the trace. The total traffic trace is one-hour long
and the two clients considered are active for all the duration of the measurement. Neither the
aggregated connection arrival process nor the single clients show evident non stationarity.
As discussed in Section 2.2, the slope of Modσ

2 vs τ in the log-log plot can be used as a
measure of the power-law exponent. In order to avoid border effects and poor confidence
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Fig. 3. Connection requests per second in the Naples traffic trace.
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Fig. 4. MAVAR computed on the sequence of connection requests from two random clients
and from all the clients in the Naples traffic trace.

in the values of Modσ
2, we calculate α by considering only the range 4τ0 ≤ τ < 0.3maxkτ0,

as suggested in (Bregni & Jmoda, 2008). Figure 4 shows the MAVAR calculated on the three
sequences. In the considered range of τ, the three curves in Figure 4 have a similar slope,
corresponding to the values of α1 = 0.28 and α2 = 0.35 for clients 1 and 2 respectively, and
α = 0.24 for the aggregated process. These data confirm our expectations that the sum of
sequences showing power-law behavior also shows power-law behavior.
We have considered so far only TCP connection requests to servers listening on port number
80, which is the well-known port for HTTP data traffic. We expect that traffic using differ-
ent application protocols shows a different time-correlation behavior. With reference to the
Auckland traffic trace, we have extracted the per-client connection request sequence x

p
i (k) con-

sidering only requests for servers listening on the TCP ports 25, 80, 110, and 443, which are
the well-known ports for SMTP, HTTP, POP3, and HTTPS. We have also considered requests
for servers listening on either TCP or UDP port 53, which is the well-known port for DNS
requests.
Figure 5 shows the estimate mα for the various destination ports, obtained by averaging the
value of α measured for the clients with at least 50 connection requests in the observation
window. The figure also shows 95% confidence intervals for the mean. From the observation
of Figure 5, we also notice that the confidence intervals for the estimate of the power-law
exponent of the email application traffic includes α = 0 both for port 25 and 110, therefore
showing no evidence of power-law behavior. Instead, the estimates for web requests, both on
insecure (port 80) and on secure connections (port 443) have overlapping confidence intervals
not including α = 0. Then we conclude that these processes come from similar populations
and show evidence of power-law behavior. Finally, the confidence interval for DNS requests
does not include α = 0 and does not overlap with web traffic, allowing us to conclude that,
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Fig. 5. Estimated power-law exponent of the connection requests process for different destina-
tion port numbers in the Auckland traffic trace. Estimations are averaged over all the clients
and 95% confidence intervals are shown.

from the point of view of time-correlation, the DNS request process shows evidence of power-
law behavior and comes from a different population than web traffic.

5. Comparison of Learning Algorithms

In this section, we compare three algorithms proposed for the classification of traffic flows.
In order to choose the classification algorithm to be used in the hybrid schemes discussed
later, we performed a set of experiments by training the classifiers using the Auckland(a),
NZIX(a), and Leipzig(a) traffic traces and testing the performance by classifying the Auck-
land(b), NZIX(b), and Leipzig(b) traffic traces, respectively.
To ease a comparison, we performed our assessment by using the same 5 applications as in
(Williams et al., 2006), i.e. FTP-data, Telnet, SMTP, DNS (both over UDP and over TCP), and
HTTP. In all the experiments, traffic flows are classified by considering only the first 5 packets
in the client server direction. The performance metric we consider is the error rate, calcu-
lated as the ratio between the misclassified instances to the total instances in the data set. We
consider two supervised learning algorithms namely the C4.5 Decision Tree and the Support
Vector Machines (SVM), and an unsupervised technique, namely the Simple K-means.
For the SVM, we considered the polynomial kernel with degrees d = 2 and d = 3 and the RBF
kernel. In the polynomial case we normalized attributes in the range [0,1], while in the RBF
case we normalized attributes in the range [−1,1], as suggested in (Abe, 2005).
To choose the cost parameter we performed a 10-fold cross validation on the Auckland(a)
traffic trace and obtained the best results with the following configurations: polynomial kernel
with degree d = 2 and cost C = 106; RBF kernel with exponent γ = 4 and cost C = 103.
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Fig. 6. Maximum entropy of clusters in the simple k-means clustering.

C4.5 SVM SVM Simple K-means
(Polynomial) (RBF)

Auckland 0.8% 7.8% 4.3% 11%
Leipzig 0.6% 3.6% 4.3% 12%
NZIX 0.5% 1.9% 0.2% 7%

Table 3. Error rate for three traffic traces with the different classification techniques.

For the Simple K-Means, we tried different values for the number of clusters. Since the algo-
rithm could not perfectly separate the labeled instances, we labeled each cluster with the most
common label. To choose the number of clusters, we performed a 10-fold cross validation
on the Auckland(a) traffic trace. For several possible choices for the number of clusters, we
computed the entropy of each cluster. In Figure 6 we plot the entropy of the cluster that has
the maximum entropy versus the number of clusters. The figure does not show a clear depen-
dency of the maximum entropy on the number of clusters, so we decided to use 42 clusters,
because, in the figure, it corresponds to a minimum.
Table 3 reports the measured error rate for the selected classifiers in the three experiments.
Comparing the experiments we do not see a clear winner. With the Auckland and Leipzig
traces, C4.5 performs better, while SVM with RBF kernel yields the best results with the NZIX
trace. In the Leipzig case, however, the SVM with RBF kernel perform worse than the SVM
with polynomial kernel. The Simple K-means technique always shows the highest error rate.
Since the C4.5 classifier seems to give the best results overall, in the following we will consider
this classifier as the basis for the hybrid technique.

6. The Hybrid Classification Technique

As discussed in Section 4, the statistical indexes computed on the connection-generation pro-
cess depend on the application that generated the packet flow. Therefore, we introduce a new
classifier capable of exploiting those indexes. The block diagram of this new classifier, which
we will refer to as the hybrid classifier, is shown in Figure 7.
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Fig. 7. Block diagram of the hybrid classifier.

As usual, we capture the packets from the communication link and reconstruct the TCP con-
nections. We also collect the per-flow features, which comprise the length of the first n packets
in the flow. In addition, we maintain running statistics on the connection generation process.
For each pair (IP source, destination port number), we calculate the per-source attributes dis-
cussed in Section 3 and listed in Table 2. It is worth noting that all these attributes do not
require to keep in memory the whole list of the connection request arrival times, because they
can be updated with a recurrence formula each time a new connection request arrives. As dis-
cussed in Section 4, when a given IP source has generated only a few requests, the statistical
indexes have a large error, so we do not consider them for the purpose of traffic classification.
Instead, when the IP source has generated many connection requests, the statistical indexes
show better confidence, so we use them for classification. In order to choose whether the in-
dexes are significant or not, we compare the total number of connections that the source has
generated to a given threshold, ξ, which is a system parameter. If the source has generated
fewer than ξ connections, we perform classification of the traffic flow by using only the flow
attributes (i.e. the sizes of the first packets). Otherwise, if the source has generated more than
ξ connections, we perform classification by using both the flow attributes and the source at-
tributes (i.e. the statistical indexes). The same rule applies to training data. Labeled flows
generated by IP sources that, up to that flow, have generated fewer requests than ξ, are used
to train the classifier using only flow attributes. On the other hand, the labeled flows gener-
ated by IP sources that have generated more than ξ requests are used to train the classifier
using both the per-flow and the per-source attributes. In both cases, the used classifier is a
C4.5 decision tree.
The number of the packets to consider for classification is a critical parameter. The more pack-
ets are considered, the less the classification error. However, collecting the required number of
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packets requires time, during which the flow remains unclassified. It would be better to per-
form classification as soon as possible. In this work, we consider the scenario in which only
the packets from the client to the server are available. In this scenario, we have observed that
the hit ratio does not grow significantly if more than 5 packets are considered. This is consis-
tent to results in (Bernaille et al., 2006). However, we will show that the average time needed
to collect 5 packets is usually in the order of the hundreds of ms, depending on the network
configuration. On the other hand, if classification were performed considering only the first
3 packets per flow, the time required would drop significantly. Classification performance,
however, would be much worse.
In this work, we propose a hybrid classification technique that aims at achieving good classi-
fication performance but requiring as few packets as possible. In order to evaluate the perfor-
mance of the hybrid classifier, we consider the following configurations.
The first two configurations, which we will refer to as non-hybrid perform classification by
using only the packets sizes. For each flow, the first n packets are collected and then their
sizes are fed to the classifier. The time required to collect the required data corresponds to the
time required to collect exactly n packets. If the flow contains fewer packets, then classification
can be performed only when the flow is over. We consider the cases where either n = 3 or n = 5
packets.
The third configuration, which we will refer to as basic hybrid classifier splits the incoming flows
in two sets, depending on the IP source activity, as explained above. Then, the first n packets
are collected and classification is performed by using the packet sizes and, possibly, the source
statistical indexes. Since the source indexes are available at the flow beginning, exploitation of
these features introduces no delay. Therefore the basic hybrid classifier is appealing because
it yields a better hit ratio than the non-hybrid classifier using the same number of packets, n.
In this chapter, we consider the case where n = 3.
Finally, we consider the enhanced hybrid classifier. Similarly to the basic configuration, this
classifier splits the incoming flows in two sets depending on the IP source activity. However,
the number of packets collected for each flow depends on the set. For the flows coming from
low activity sources, the classifier waits for n1 packets, whereas, for the flows coming from
high activity sources, the classifier waits for n2 packets. Since this second classifier already has
valuable information for performing classification, it needs fewer packets, therefore n1 > n2.
This way, the result of classification is obtained more quickly for those flows coming from high
activity sources and for which other data are available. We consider the case where n1 = 5
and n2 = 3. Since the decision of which set each flow belongs to depends on the threshold
ξ, if the threshold is low, then the classification is quicker, but the hit ratio is lower because
the statistical indexes are less reliable. On the other hand, if the threshold is higher, then
classification is slower, but more precise. At the extrema, if ξ = 0, the performance converges
to that of the basic hybrid classifier; as ξ goes to infinity, performance converges to that of the
non-hybrid classifier with n = n1.

7. Numerical Results

In this Section, we evaluate the performance of the proposed traffic classification techniques.
The first set of experiments is a validation using the NZIX traffic traces. The classifier is trained
using the NZIX(a) trace and the tests are performed using the NZIX(b) trace. Figure 8(a) shows
the error rate obtained with the different techniques. The best results are obtained with the
non-hybrid classification considering the first n = 5 packets in the flow, which results in a
percentage of misclassified flows of about 1.8%. The non-hybrid classifier does not use any
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Fig. 8. Classification performance. Training with the NZIX(a) traffic trace and tests with the
NZIX(b) traffic trace.
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per-source attribute, so the results are independent of the threshold ξ and Figure 8(a) shows
this result as an horizontal line. On the other hand, the worst results are obtained with the non-
hybrid classifier using the first n = 3 packets in the flow. This classifier results in an error rate
of about 8%. We discuss these results by comparing the achieved classification performance
to the delay between the beginning of the flow and the time to obtain the classifier output.
In Figure 8(b), we show the average time necessary to collect the number of packets required
by the classification algorithm. The non-hybrid algorithm with n = 5, which shows the best
classification performance, gives an answer after, on average, 750 ms. Conversely, the non-
hybrid classification technique with n = 3 only requires half of that time, giving its output
after only 350 ms.
The hybrid techniques try to achieve good classification performance, while requiring fewer
packets. The Basic Hybrid technique only requires n = 3 packets, so it yields the same delay as
the non-hybrid technique with n = 3, the classification error, however, is much lower, ranging
from 5.2% to about 6.3% depending on the threshold ξ. The threshold controls the minimum
number of connection requests necessary to have confidence in the per-source attributes and
use them in classifying the flows coming from that source. Therefore, the Basic Hybrid tech-
nique reduces the classification error by 2% yielding no increase in the classification delay.
The classification performance is influenced by the threshold, but not to a great extent.
The Enhanced Hybrid technique tries to strike a balance between the error rate and the delay.
In Figure 8(a), we plot the classification error rate versus the threshold. When the threshold
is 0, most of the flows are classified considering n2 = 3 packets plus the per-source attributes,
so the classification performance converges to the classification performance of the Basic Hy-
brid technique. Independently of the threshold, some flows cannot take advantage of the
per-source attributes because these attributes cannot be computed, for example because the
source must have been active for at least some time interval in order to compute the power
law exponent α; therefore, the results for the Basic and the Enhanced techniques do not coin-
cide. As the threshold grows, fewer flows take advantage of the per-source attributes and are
classified using the non hybrid scheme with n1 = 5 packets. On the other hand, the per-source
attributes are more reliable and the classification performance is better. Figure 8(a) shows that
the error rate drops to as low as 2.5% when ξ = 200 connection requests.
The drawback is that, as the threshold increases, more and more flows are classified using
more packets and the delay increases. Figure 8(b) shows that, when ξ = 200, the classification
delay is about 500 ms. This delay is about 150 ms more than the delay obtained with the Basic
scheme, which has a much worse classification performance, and is 250 ms less than the delay
of the non hybrid scheme with n = 5, which only yields slightly better results.
Figure 9 shows a similar experiment with the Auckland data set. The classifier is trained with
the Auckland(a) traffic trace and the tests are performed on the Auckland(b) traffic trace. In
Figure 9(a) we plot the error rate versus the threshold, ξ. With this data set, the non hybrid
technique with n = 3 packets performs poorly, with an error rate of about 30%. Instead, if n = 5
packets are considered, the error rate drops to about 2.5%, which is similar to the error rate
obtained with the NZIX data set. Figure 9(b) shows that the average delay required to collect
n = 3 and n = 5 packets is similar, being 200 ms and 235 ms, respectively. In this scenario the
hybrid techniques are less appealing, because the delay difference is limited. However, these
techniques yield some advantage also in this scenario. In Figure 9(a) we observe that, as the
threshold increases, both the Basic and the Enhanced schemes show better classification per-
formance. The Basic Hybrid Classifier settles at an error rate of about 15% when the threshold
is larger or equal to 100 connection requests. Larger values do not seem to give better results.
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Fig. 9. Classification performance. Training with the Auckland(a) traffic trace and tests with
the Auckland(b) traffic trace.
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Therefore the Basic scheme halves the error rate without increasing the delay. The Enhanced
scheme shows even better results: with ξ = 100, the Enhanced Hybrid Classifier has an error
rate of 9%, which drops to 6% when ξ = 200. From 9(b) we observe that the Enhanced classi-
fier shows a delay of about 215 ms for ξ = 100 and only slightly more for ξ = 200. This delay
is halfway between the delay of the non hybrid classifier with n = 3 and with n = 5.

8. Conclusions

In this work, we report experimental results about the classification of Internet traffic by ex-
amining the packet flow in the client-server direction. We focus on the problem of early appli-
cation identification, which requires to find a balance between the classification accuracy and
the number of packets required by the classifier.
The contribution of this work is twofold. First, we compare the performance of some well-
known supervised and unsupervised classification techniques, namely the C4.5 decision tree,
the Support Vector Machines, and the Simple K-Means. We performed validation tests on
three traffic traces containing a mix of traffic from different applications and concluded that
the C4.5 decision tree algorithm has the best performance overall, even if the SVMs follow
closely. The unsupervised technique always yields the worst performance.
Second, we introduce a new classification scheme based on the observation that the connection
generation process from a given traffic source is influenced by the application generating the
requests. In particular, we show that, in experimental data, the Power Spectral Density of
such processes often shows a power-law behavior. Therefore, we propose to use the measured
power-law exponent of the traffic source as an additional feature in the classification of a traffic
flow. This new feature comes at no additional delay, because its computation is based on the
timestamps of the initial packets of past flows.
By using this feature we were able to significantly reduce the classification error rate in all
the considered scenarios. Further, we also propose an enhanced scheme in which we perform
classification using the first 5 packets in a flow for low-activity sources and the first 3 packets
in flow for high-activity sources. By using this scheme, we obtain a low error rate and, at the
same time, we have low average classification delay.
There are some possible future directions for this research. In this work, we did not consider
the problem of training a classifier on a data set collected on a given link and used on a dif-
ferent link. We expect that the classification error rate increases, but that the per-flow features
still yield an increased accuracy, because the connection request process mainly depends on
the application and is weakly dependent on the specific network context. In order to study the
portability of a classifier it is necessary to use traces captured at different sites but in the same
day and at the same hour. This is because traffic patterns evolve over time. Another possible
future work is the study of the temporal evolution of the connection generation process.
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