
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322389712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 63

Using Learning Automata to Enhance Local-Search Based SAT Solvers
with Learning Capability

Ole-Christoffer Granmo and Noureddine Bouhmala

0

Using Learning Automata to Enhance

Local-Search Based SAT Solvers
with Learning Capability

Ole-Christoffer Granmo and Noureddine Bouhmala
University of Agder; Vestfold University College

Norway

1. Introduction

The conflict between exploration and exploitation is a well-known problem in machine learn-
ing and other areas of artificial intelligence. Learning Automata (LA) Thathachar & Sastry
(2004); Tsetlin (1973) capture the essence of this conflict, and have thus occupied researchers
for over forty years. Initially, LA were used to model biological systems, however, in the last
decades they have also attracted considerable interest because they can learn the optimal ac-
tion when operating in unknown stochastic environments. Furthermore, they combine rapid
and accurate convergence with low computational complexity.
Recent applications of LA include allocation of polling resources in web monitoring Granmo
et al. (2007), allocation of limited sampling resources in binomial estimation Granmo et al.
(2007), and optimization of throughput in MPLS traffic engineering Oommen et al. (2007). LA
solutions have furthermore found application within combinatorial optimization problems.
In Gale et al. (1990); Oommen & Ma (1988) a so-called Object Migration Automaton is used
for solving the classical equipartitioning problem. An order of magnitude faster convergence
is reported compared to the best known algorithms at that time. A similar approach has also
been discovered for the Graph Partitioning ProblemOommen & Croix (1996). Finally, the list
organization problem has successfully been addressed by LA schemes. These schemes have
been found to converge to the optimal arrangement with probability arbitrary close to unity
Oommen & Hansen (1987).
In this chapter we study a new application domain for LA, namely, the Satisfiability (SAT)
problem. In brief, we demonstrate how the learning capability of LA can be incorporated
into selected classical local-search based solvers for SAT-like problems, with the purpose of
allowing improved performance by means of learning. Furthermore, we provide a detailed
empirical evaluation of the resulting LA based algorithms, and we analyze the effect that the
introduced learning has on the local-search based solvers.

1.1 The Satisfiability (SAT) Problem

The SAT problem was among the first problems shown to be NP complete and involves deter-
mining whether an expression in propositional logic is true in some model Cook (1971). Thus,
solving SAT problems efficiently is crucial for inference in propositional logic. Further, other
NP complete problems, such as constraint satisfaction and graph coloring, can be encoded as

5

www.intechopen.com

Application of Machine Learning64

SAT problems. Indeed, a large number of problems that occur in knowledge-representation,
learning, VLSI-design, and other areas of artificial intelligence, are essentially SAT problems.
It is accordingly the case that SAT solver improvements will have a direct impact in all of these
areas.
Most SAT solvers use a Conjunctive Normal Form (CNF) representation of propositional logic
expressions. In CNF, an expression in propositional logic is represented as a conjunction of
clauses, with each clause being a disjunction of literals, and a literal being a Boolean variable or
its negation. For example, the expression P ∨ Q̄ consists of one single clause, containing the
two literals P and Q̄. P is simply a Boolean variable and Q̄ denotes the negation of the Boolean
variable Q. Thus, according to propositional logic, the expression P ∨ Q̄ becomes True if either
P is True or Q is False.
More formally, a SAT problem can be defined as follows. A propositional expression
Φ =

∧m
j=1 Cj with m clauses and n Boolean variables is given. Each Boolean variable,

xi, i ∈ {1, . . . , n}, takes one of the two values, True or False. Each clause Cj, j ∈ {1, . . . , m}, in
turn, is a disjunction of Boolean variables and has the form:

Cj =

∨

k∈Ij

xk

 ∨

∨

l∈ Īj

x̄l

 ,

where Ij, Īj ⊆ {1,n}, I ∩ Īj = ∅, and x̄i denotes the negation of xi.
The task is to determine whether there exists an assignment of truth values to the variables
under which Φ evaluates to True. Such an assignment, if it exists, is called a satisfying assign-
ment for Φ, and Φ is called satisfiable. Otherwise, Φ is said to be unsatisfiable. Note that
since we have two choices for each of the n Boolean variables, the size of the search space S
becomes |S| = 2n. That is, the size of the search space grows exponentially with the number
of variables.

1.2 Chapter Contributions

Among the simplest and most effective algorithms for solving SAT problems are local-search
based algorithms that mix greedy hill-climbing (exploitation) with random non-greedy steps
(exploration). This chapter demonstrates how the greedy and random components of such
local-search algorithms can be enhanced with LA-based stochastic learning. We will use both
pure Random Walk as well as the well-known GSAT algorithm Selman et al. (1994), combined
with Random Walk, as demonstration algorithms. The LA enhancements are designed so that
the actions that the LA chose initially mimic the behavior of GSAT/Random Walk. However,
as the LA explicitly interact with the SAT problem at hand, they learn the effect of the ac-
tions that are chosen, which allows the LA to gradually and dynamically shift from random
exploration to goal-directed exploitation.
We finally provide a detailed comparative analysis of the new LA based algorithms’ perfor-
mance, showing the effect that the introduced stochastic learning has on the enhanced local-
search based algorithms. The benchmark set used contains randomized and structured prob-
lems from various domains, including SAT-encoded Bounded Model Checking Problems, Lo-
gistics Problems, and Block World Planning Problems.

1.3 Chapter Organization

The chapter is organized as follows. In section 2 we provide a brief overview of selected
algorithms for the SAT problem. Furthermore, we take a closer look at the Random Walk

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 65

and GSAT with Random Walk algorithms, before we in section 3 explain how these latter
algorithm can be enhanced with learning capability, using the basic concepts of LA. In section
4, we report the results obtained from testing the resulting new approaches on an extensive
test suit of problem instances. Finally, in section 5 we present a summary of our work and
provide ideas for further research.

2. Methods for SAT

The SAT has been extensively studied due to its simplicity and applicability. The simplicity
of the problem coupled with its intractability makes it an ideal platform for exploring new
algorithmic techniques. This has led to the development of several algorithms for solving
SAT problems which usually fall into two main categories: systematic algorithms and local
search algorithms. We hereby undertake the task of describing selected algorithms from these
two categories.

2.1 Systematic Search Algorithms

Systematic search algorithms are guaranteed to return a satisfying truth assignment to a SAT
problem if one exists and prove that it is unsatisfiable otherwise. The most popular and effi-
cient systematic search algorithms for SAT are based on the Davis-Putnam (DP)Davis & Put-
nam (1960) procedure, which enumerates all possible variable assignments. This is achieved
by constructing a binary search tree, which is expanded until one either finds a satisfying truth
assignment or one can conclude that no such assignment exists. In each recursive call of the
algorithm the propositional formula Φ is simplified by means of unit propagation. That is, a
Boolean variable xi is selected according to a predefined rule from the n Boolean variables
available. Next, all the clauses that include the literal xi are found, and the literal is deleted
from all of these clauses. Let C = {C1, C2, ...Ck} be the set of k(<= m) clauses obtained from
this process. Similarly, let D = {D1, D2, ...Dr} denotes the set of l(<= m) clauses obtained
after deleting the literal x̄i in the same manner. Moreover, let R = {R1, R2,R(m−k−r)} repre-
sent the set (m-k-r) of clauses that does not include any of these two literals. Then, the original
proportional formula is reduced to:

Φsimpler =

k
∧

i=1

r
∧

j=1

(Ai ∨ Bj)

(m−r−k)
∧

l=1

Rl .

Note that the propositional formula Φsimpler does not contain the Boolean variable xi because
none of C, D or R does (by way of construction). If thus an empty clause is obtained, the
current partial assignment cannot be extended to a satisfying one and backtracking is used to
proceed with the search; if an empty formula is obtained, i.e., all clauses are satisfied, the algo-
rithm returns a satisfying assignment. If neither of these two situations occur, an unassigned
variable is chosen and the algorithm is called recursively after adding a unit clause contain-
ing this variable and its negation. If all branches are explored and no satisfying assignment
has been reached, the formula is found to be unsatisfiable. For efficiency reasons, the search
tree is explored in depth first search manner. Since we are only interested in whether the SAT
problem is satisfiable or not, we stop as soon as the first solution is found. The size of the
search tree depends on the branching rule adopted (how to select the branch variable) thereby
affecting the overall efficiency of DP. This has led to the development of various improved DP
variants which differ in the schemes employed to maximize the efficiency of unit propagation
in their branching rules.

www.intechopen.com

Application of Machine Learning66

2.2 Stochastic Local Search Algorithms (SLS)

The above indicated class of algorithms can be very effective on specific classes of problems,
however, when problems scales up, their solution effectiveness typically degrades in an ex-
ponential manner. Indeed, due to their combinatorial explosive nature, large and complex
SAT problems are hard to solve using systematic search algorithms. One way to overcome
the combinatorial explosion is to abandon the goal of systematically conducting a complete
search.

2.2.1 Local Search as Iterative Optimization

Local search algorithms are based on what is perhaps the oldest optimization method — trial
and error. Typically, they start with an initial assignment of truth values to variables, ran-
domly or heuristically generated. The SAT problem can then be reformulated as an iterative
optimization problem in which the goal is to minimize the number of unsatisfied clauses (the
objective function). Thus, the optimum is obtained when the value of the objective function
equals zero, which means that all clauses are satisfied. During each iteration, a new value
assignment is selected from the "neighborhood" of the present one, by performing a "move".
Most local search algorithms use a 1-flip neighborhood relation, which means that two truth
value assignments are considered to be neighbors if they differ in the truth value of only one
variable. Performing a move, then, consists of switching the present value assignment with
one of the neighboring value assignments, e.g., if the neighboring one is better (as measured
by the objective function). The search terminates if no better neighboring assignment can be
found. Note that choosing a fruitful neighborhood, and a method for searching it, is usually
guided by intuition — theoretical results that can be used as guidance are sparse.

2.2.2 GSAT, GSAT with Random Walk, and WalkSAT

One of the most popular local search algorithms for solving SAT is GSAT Selman et al. (1992).
Basically, GSAT begins with a random generated assignment of truth values to variables, and
then uses a so-called steepest descent heuristic to find the new variable-value assignment,
i.e., the 1-flip neighbor with the least number of unsatisfied clauses is always selected as the
new truth assignment. After a fixed number of such moves, the search is restarted from a
new random assignment. The search continues until a solution is found or a fixed number
of restarts have been performed. An extension of GSAT, referred to as random-walk Selman
et al. (1994) has been realized with the purpose of escaping from local optima. In a random
walk step, a randomly unsatisfied clause is selected. Then, one of the variables appearing
in that clause is flipped, thus effectively forcing the selected clause to become satisfied. The
main idea is to decide at each search step whether to perform a standard GSAT or a random-
walk strategy with a probability called the walk probability. Another widely used variant of
GSAT is the WalkSAT algorithm originally introduced in McAllester et al. (1997). It first picks
randomly an unsatisfied clause, and then, in a second step, one of the variables with the
lowest break count, appearing in the selected clause, is randomly selected. The break count of
a variable is defined as the number of clauses that would be unsatisfied by flipping the chosen
variable. If there exists a variable with break count equals to zero, this variable is flipped,
otherwise the variable with minimal break count is selected with a certain probability. It turns
out that the choice of unsatisfied clauses, combined with the randomness in the selection of
variables, enable WalkSAT and GSAT with random walk to avoid local minima and to better
explore the search space.

t
}{ , ,..., r21

, 2,..., m1{ }

{ 1, ,2 ..., }s
t+1 (t t),

t

tt () Action

Response

Automaton

Environment

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 67

2.3 Weight-based Schemes

Recently, new algorithms Gent & T.Walsh (1993); Glover (1989); Hansen & Jaumand (1990);
I.Gent & Walsh (1995) have emerged using history-based variable selection strategies in order
to avoid flipping the same variable repeatedly. Apart from GSAT and its variants, several
clause weighting based SLS algorithms Cha & Iwama (1995)Frank (1997) have been proposed
to solve SAT problems. The key idea is to associate the clauses of the given CNF formula with
weights. Although these clause weighting SLS algorithms differ in the manner clause weights
should be updated (probabilistic or deterministic), they all choose to increase the weights of all
the unsatisfied clauses as soon as a local minimum is encountered. In essence, clause weight-
ing acts as a diversification mechanism rather than a way of escaping local minima. Finally,
many other generic SLS algorithms have been applied to SAT. These includes techniques such
as Simulated Annealing Spears (1993), Evolutionary Algorithms A.E.Eiben & van der Hauw
(1997), and Greedy Randomized Adaptive Search Procedures Johnson & Trick (1996).

3. Solving SAT Problems Using Learning Automata

This section demonstrates how the greedy and random components of local-search algorithms
can be enhanced with LA-based stochastic learning. We will use both pure Random Walk
and GSAT with Random Walk, as demonstration algorithms. We start by defining the basic
building block of our scheme — the Learning SAT Automaton — before we propose how several
such LA can form a game designed to solve SAT problems.

3.1 A Learning SAT Automaton

Generally stated, a learning automaton performs a sequence of actions on an environment. The
environment can be seen as a generic unknown medium that responds to each action with some
sort of reward or penalty, perhaps stochastically. Based on the responses from the environment,
the aim of the learning automaton is to find the action that minimizes the expected number
of penalties received. Figure 1 illustrates the interaction between the learning automaton and
the environment. Because we treat the environment as unknown, we will here only consider
the definition of the learning automaton. A learning automaton can be defined in terms of a

βt
}{α ,α ,...,αr21

β , β2,...,βm1{ }

φφ{ 1, φ ,2 ..., }s

φφ t+1 (← t β t)F ,

α t

φ tα t G(←) Action

Response

Automaton

Environment

Fig. 1. A learning automaton interacting with an environment

www.intechopen.com

Application of Machine Learning68

quintuple Narendra & Thathachar (1989):

{Φ, α, β,F (·, ·),G(·, ·)}.

Φ = {φ1, φ2, . . . , φs} is the set of internal automaton states, α = {α1, α2, . . . , αr} is the set
of automaton actions, and, β = {β1, β2, . . . , βm} is the set of inputs that can be given to the

automaton. An output function αt = G[φt] determines the next action performed by the
automaton given the current automaton state. Finally, a transition function φt+1 = F [φt, βt]
determines the new automaton state from:

1. The current automaton state.

2. The response of the environment to the action performed by the automaton.

Based on the above generic framework, the crucial issue is to design automata that can learn
the optimal action when interacting with the environment. Several designs have been pro-
posed in the literature, and the reader is referred to Narendra & Thathachar (1989); Thathachar
& Sastry (2004) for an extensive treatment.
We now target the SAT problem, and our goal is to design a team of Learning Automata
that seeks the solution of SAT problems. To achieve this goal, we build upon the work of
Tsetlin and the linear two-action automaton Narendra & Thathachar (1989); Tsetlin (1973) as
described in the following.
First of all, for each literal in the SAT problem that is to be solved, we construct an automaton
with

• States: Φ = {−N − 1,−N, . . . ,−1, 0, . . . , N − 2, N}.

• Actions: α = {True, False}.

• Inputs: β = {reward, penalty}.

Figure 2 specifies the G and F matrices. The G matrix can be summarized as follows. If the

TrueFalse

−N −(N−1) −1 0 N−1N−2......

Reward
Penalty

Fig. 2. The state transitions and action selection of the Learning SAT Automaton

automaton state is positive, then action True will be chosen by the automaton. If on the other
hand the state is negative, then action False will be chosen. Note that since we initially do
not know which action is optimal, we set the initial state of the Learning SAT Automaton
randomly to either ’-1’ or ’0’.
The state transition matrix F determines how learning proceeds. As seen in the graph repre-
sentation of F found in the figure, providing a reward input to the automaton strengthens the
currently chosen action, essentially by making it less likely that the other action will be chosen
in the future. Correspondingly, a penalty input weakens the currently selected action by mak-
ing it more likely that the other action will be chosen later on. In other words, the automaton
attempts to incorporate past responses when deciding on a sequence of actions.

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 69

TrueFalse

−N −(N−1) −1 0 N−1N−2......

Reward
Penalty

3.2 Learning Automata Random Walk (LARW)

Procedure learning_automata_random_walk()

Begin
/* Initialization */
For i := 1 To n Do

/* The initial state of each automaton is set to either ’-1’ or ’1’ */
state[i] = random_element({−1, 0});
/* And the respective literals are assigned corresponding truth values */
If state[i] == -1 Then xi = False Else xi = True;

/* Main loop */
While Not stop(C) Do

/* Draw unsatisfied clause randomly */
Cj = random_unsatisfied_clause(C);

/* Draw clause literal randomly */
i = random_element(Ij ∪ Īj);

/* The corresponding automaton is penalized for choosing the “wrong” action */
If i ∈ Ij And state[i] < N − 1 Then

state[i]++;
/* Flip literal when automaton changes its action */
If state[i] == 0 Then

flip(xi);
Else If i ∈ Īj And state[i] > −N Then

state[i]−−;
/* Flip literal when automaton changes its action */
If state[i] == -1 Then

flip(xi);

/* Draw satisfied clause randomly */
Cj = random_satisfied_clause(C);

/* Draw clause literal randomly */
i = random_element(Ij ∪ Īj);

/* Reward corresponding automaton if it */
/* contributes to the satisfaction of the clause */
If i ∈ Ij And state[i] ≥ 0 And state[i] < N − 1 Then

state[i]++;
Else If i ∈ Īj And state[i] < 0 And state[i] > −N Then

state[i]−−;
EndWhile

End

Fig. 3. Learning Automata Random Walk (LARW) Algorithm

www.intechopen.com

Application of Machine Learning70

In addition to the definition of the LA, we must define the environment that the LA interacts
with. Simply put, the environment is a SAT problem as defined in Section 1. Each variable of
the SAT problem is assigned a dedicated LA, resulting in a team of LA. The task of each LA is
to determine the truth value of its corresponding variable, with the aim of satisfying all of the
clauses where that variable appears. In other words, if each automaton reaches its own goal,
then the overall SAT problem at hand has also been solved.

3.3 Learning Automata Random Walk (LARW)

With the above perspective in mind, we will now present the details of the LARW that we
propose. Figure 3 contains the complete pseudo-code for solving SAT problems, using a team
of LA. As seen from the figure, the LARW corresponds to an ordinary Random Walk, however,
both satisfied and unsatisfied clauses are used in the search. Furthermore, the assignment
of truth values to variables is indirect, governed by the states of the LA. At the core of the
LARW is a punishment/rewarding scheme that guides the team of LA towards the optimal
assignment. In the spirit of automata based learning, this scheme is incremental, and learning
is performed gradually, in small steps. To elaborate, in each iteration of the algorithm, we
randomly select a single clause. A variable is randomly selected from that clause, and the
corresponding automaton is identified. If the clause is unsatisfied, the automaton is punished.
Correspondingly, if the clause is satisfied, the automaton is rewarded, however, only if the
automaton makes the clause satisfied. As also seen, the algorithm alternates between selecting
satisfied and unsatisfied clauses.

3.4 Learning Automata GSATRW(LA-GSATRW)

Based on the same underlying principles that motivates the LARW, we will now present the
details of the LA-GSATRW that we propose. Figure 4 contains the complete pseudo-code
for solving SAT problems, using a team of LA. As seen from the figure, an ordinary GSATRW
strategy is used to penalize an LA when it “disagrees” with GSATRW, i.e., when GSATRW and
the LA suggest opposite truth values. Additionally, we use an “inverse” GSATRW strategy for
rewarding an LA when it agrees with GSATRW. Note that as a result, the assignment of truth
values to variables is indirect, governed by the states of the LA. Again, at the core of the LA-
GSATRW algorithm is a punishment/rewarding scheme that guides the team of LA towards
the optimal assignment. However, in this algorithm, the guidance is based on GSATRW rather
than pure RW.

3.5 Comments to LARW and LA-GSATRW

Like a two-action Tsetlin Automaton, our proposed LA seeks to minimize the expected num-
ber of penalties it receives. In other words, it seeks finding the truth assignment that mini-
mizes the number of unsatisfied clauses among the clauses where its variable appears.
Note that because multiple variables, and thereby multiple LA, may be involved in each
clause, we are dealing with a game of LA Narendra & Thathachar (1989). That is, multiple
LA interact with the same environment, and the response of the environment depends on the
actions of several LA. In fact, because there may be conflicting goals among the LA involved in
the LARW, the resulting game is competitive. The convergence properties of general compet-
itive games of LA have not yet been successfully analyzed, however, results exists for certain
classes of games, such as the Prisoner’s Dilemma game Narendra & Thathachar (1989).
In our case, the LA involved in the LARW are non-absorbing, i.e., every state can be reached
from every other state with positive probability. This means that the probability of reaching

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 71

Procedure learning_automata_gsat_random_walk()

Input : A set of clauses C; Walk probability p ;

Output : A satisfying truth assignment of the clauses, if found;

Begin
/* Initialization */
For i := 1 To n Do

/* The initial state of each automaton is set to either ’-1’ or ’1’ */
state[i] = random_element({−1, 0});
/* And the respective literals are assigned corresponding truth values */
If state[i] == -1 Then xi = False Else xi = True;

/* Main loop */
While Not stop(C) Do

If rnd(0, 1) ≤ p Then
/* Draw unsatisfied clause randomly */
Cj = random_unsatisfied_clause(C);
/* Draw clause literal randomly */
i = random_element(Ij ∪ Īj);

Else
/* Randomly select one of the literals whose flipping

minimizes the number of unsatisfied clauses */
i = random_element(Best_Literal_Candidates(C));

/* The corresponding automaton is penalized for choosing the “wrong” action */
If i ∈ Ij And state[i] < N − 1 Then

state[i]++;
/* Flip literal when automaton changes its action */
If state[i] == 0 Then

flip(xi);
Else If i ∈ Īj And state[i] > −N Then

state[i]−−;
/* Flip literal when automaton changes its action */
If state[i] == -1 Then

flip(xi);

If rnd(0, 1) ≤ p Then
/* Draw satisfied clause randomly */
Cj = random_satisfied_clause(C);
/* Draw clause literal randomly */
i = random_element(Ij ∪ Īj);

Else
/* Randomly select one of the literals whose flipping

maximizes the number of unsatisfied clauses */
i = random_element(Worst_Literal_Candidates(C));

/* Reward corresponding automaton if it */
/* contributes to the satisfaction of the clause */
If i ∈ Ij And state[i] ≥ 0 And state[i] < N − 1 Then

state[i]++;
Else If i ∈ Īj And state[i] < 0 And state[i] > −N Then

state[i]−−;
EndWhile

End

Fig. 4. Learning Automata GSAT Random Walk Algorithm

www.intechopen.com

Application of Machine Learning72

the solution of the SAT problem at hand is equal to 1 when running the game infinitely. Also
note that the solution of the SAT problem corresponds to a Nash equilibrium of the game.
In order to maximize speed of learning, we initialize each LA randomly to either the state
’-1’ or ’0’. In this initial configuration, the variables will be flipped relatively quickly because
only a single state transition is necessary for a flip. Accordingly, the joint state space of the
LA is quickly explored in this configuration. Indeed, in this initial configuration both of the
algorithms mimics their respective non-learning counterparts. However, as learning proceeds
and the LA move towards their boundary states, i.e., states ’-N’ and ’N-1’, the flipping of
variables calms down. Accordingly, the search for a solution to the SAT problem at hand
becomes increasingly focused.

4. Empirical Results

We here compare LARW and LA-GSATRW with their non-learning counterparts — the Ran-
dom Walk (RW) and the GSAT with Random Walk (GSATRW) schemes. A main purpose of
this comparison is to study the effect of the introduced stochastic learning. The benchmark
problems we used to achieve this contain both randomized and structured problems from var-
ious domains, including SAT-encoded Bounded Model Checking Problems, Graph Coloring
Problems, Logistics Problems, and Block World Planning Problems.

4.1 LARW Vs RW

As a basis for the empirical comparison of RW and LARW, we selected a benchmark
test suite of 3-colorable graphs that shows so-called phase transition. All the instances
are known to be hard and difficult to solve and are available from the SATLIB website
(http://www.informatik.tu-darmstadt.de/AI/SATLIB). The benchmark instances we use are
satisfiable and have been used widely in the literature.
Note that due to the stochastic nature of LARW, the number of flips required for solving a SAT
problem varies widely between different runs. Therefore, for each problem, we run LARW
and RW 100 times each, with a cutoff (maximum number of flips) which is sufficient (107) to
guarantee a success rate close to 100%.

4.1.1 Search Trajectory

The manner in which each LA converges to an assignment is crucial for better understanding
LARW’s behavior. In Figure 5 we show how the best and current assignment progress during
the search using a random 3-SAT problem with 150 variables and 645 clauses, taken from the
SAT benchmark library.
The plot to the left in Figure 5 suggests that problem solving with LARW happens in two
phases. In the first phase, which corresponds to the early part of the search (the first 5% of the
search), LARW behaves as a hill-climbing method. In this phase, which can be described as a
short one, up to 95% of the clauses are satisfied. The currently best score climbs rapidly at first,
and then flattens off as we mount a plateau, marking the start of the second phase. The plateau
spans a region in the search space where flips typically leave the best assignment unchanged.
The long plateaus becomes even more pronounced as the number of flips increases. More
specifically, the plateau appears when trying to satisfy the last few remaining clauses.
To further investigate the behavior of LARW once on the plateau, we looked at the corre-
sponding average state of the LA as the search progresses. The plot to the right in Figure
5 shows the resulting observations. At the start of plateau, search coincides in general with
an increase in the average state. The longer the plateau runs, the higher the average state

 560

 570

 580

 590

 600

 610

 620

 630

 640

 650

 1 10 100 1000 10000

#C
la

us
es

 S
at

is
fie

d

#Flips

Current
Best

Optimal
-6

-4

-2

 0

 2

 4

 6

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 S
ta

te

#Flips

True
False

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 73

 560

 570

 580

 590

 600

 610

 620

 630

 640

 650

 1 10 100 1000 10000

#C
la

us
es

 S
at

is
fie

d

#Flips

Current
Best

Optimal
-6

-4

-2

 0

 2

 4

 6

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 S
ta

te
#Flips

True
False

Fig. 5. (Left) LARW’s search space on a 150 variable problem with 645 clauses (uf150-645).
Along the horizontal axis we give the number of flips, and along the vertical axis the number
of satisfied clauses. (Right) Average state of LA. Horizontal axis gives the number of flips, and
the vertical axis shows the average state of automaton.

becomes. An automaton with high average state needs to perform a series of actions before
its current state changes to either −1 or 0, thereby making the flipping of the corresponding
variable possible. The transition between each plateau corresponds to a change to the region
where a small number of flips gradually improves the score of the current solution ending
with an improvement of the best assignment. The search pattern brings out an interesting
difference between LARW and the standard use of SLS. In the latter, one generally stops the
search as soon as no more improvements are found. This can be appropriate when looking
for a near-optimal solution. On the other hand, when searching for a global maximum (i.e.,
a satisfying assignment) stopping when no flip yields an immediate improvement is a poor
strategy.

4.1.2 Run-Length-Distributions (RLDs)

As an indicator of the behavior of the algorithm on a single instance, we choose the median
cost when trying to solve a given instance in 100 trials, and using an extremely high cutoff
parameter setting of Maxsteps = 107 in order to obtain a maximal number of successful tries.
The reason behind choosing the median cost rather than the mean cost is due to the large
variation in the number of flips required to find a solution. To get an idea of the variability of
the search cost, we analyzed the cumulative distribution of the number of search flips needed
by both LARW and RW for solving single instances. Due to non-deterministic decisions in-
volved in the algorithms (i.e., initial assignment, random moves), the number of flips needed
by both algorithms to find a solution is a random variable that varies from run to run. More
formally, let k denotes the total number of runs, and let f ′(j) denotes the number of flips for
the j-th successful run (i.e, run during which a solution is found) in a list of all successful runs,
sorted according to increasing number of flips, then the cumulative empirical RLD is defined

by P̂(f ′(j) ≤ f) =
|{j| f ′(j)≤ f }|

k . For practical reasons we restrict our presentation here to the
instances corresponding to small, medium, and large sizes from the underlying test-set.
Figures 6 and 7 show RLDs obtained by applying RW and LARW to individual SAT-encoded
graph coloring problem instances. As can be seen from the leftmost plot in Figure 6, we
observe that on the small size instance, the two algorithms show no cross-over in their corre-

www.intechopen.com

Application of Machine Learning74

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 128 256 512 1024 2048 4096 8192 16384 32768 65536

Fr
ac

tio
n

S
ol

ve
d

#Flips

Random Walk
LA Random Walk N=2
LA Random Walk N=3
LA Random Walk N=4
LA Random Walk N=6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1.04858e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

Random Walk
LA Random Walk N=2
LA Random Walk N=4
LA Random Walk N=6
LA Random Walk N=8

Fig. 6. (Left) Cumulative distributions for a 90-variable graph coloring problems with 300
clauses (flat90-300). (Right) Cumulative distribution for a 150-variable graph coloring problem
with 545 clauses (flat375-1403). Along the horizontal axis we give the number of flips, and
along the vertical axis the fraction of problems solved for different values of N.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA Random Walk N=4
LA Random Walk N=5
LA Random Walk N=6
LA Random Walk N=7
LA Random Walk N=8

Fig. 7. Cumulative distributions for a 375-variable graph coloring problem with 1403 clauses
(flat375-1403). Along the horizontal axis we give the number of flips, and along the vertical
axis the fraction of problems solved for different values of N.

sponding RLDs. This provides evidence for the superiority of LARW compared to RW (i.e,
N = 1) as it gives consistently higher success probabilities, regardless of the number of search
steps.
On the medium sized instance, to the right in Figure 6, we observe a stagnation behavior with
a low asymptotic solution probability corresponding to a value around 0.3. As can be easily
seen, both methods show the existence of an initial phase below which the probability for
finding a solution is 0. Both methods start the search from a randomly chosen assignment
which typically violates many clauses. Consequently, both methods need some time to reach
the first local optimum which possibly could be a feasible solution.
The plot in Figure 7 shows that the performance of RW for the large instance (flat375-1403)
degrades. Indeed, the probability of finding a feasible solution within the required number of
steps is 0. Further, note that the distance between the minimum and the maximum number
of search steps needed for finding a solution using RW is higher compared to that of LARW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

Fr
ac

tio
n

S
ol

ve
d

Mean Flips

Random Walk
LA Random Walk N=6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000

Fr
ac

tio
n

S
ol

ve
d

Mean Flips

Random Walk
LA Random Walk N=3

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 128 256 512 1024 2048 4096 8192 16384 32768 65536

Fr
ac

tio
n

S
ol

ve
d

#Flips

Random Walk
LA Random Walk N=2
LA Random Walk N=3
LA Random Walk N=4
LA Random Walk N=6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1.04858e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

Random Walk
LA Random Walk N=2
LA Random Walk N=4
LA Random Walk N=6
LA Random Walk N=8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA Random Walk N=4
LA Random Walk N=5
LA Random Walk N=6
LA Random Walk N=7
LA Random Walk N=8

and increases with the hardness of the instance. The learning automaton mechanism pays off
as the instance gets harder. Finally, observe that the probability of success gets higher as N

increases, to a certain level.

4.1.3 Mean Search Cost

In this section, we focus on the behavior of the two algorithms using 100 instances from a
test-set of small and medium sized problem instances. We chose not to include the plot for
the large instance (flat375-1403) because RW was incapable of solving it during the 100 trials.
For each instance the median search cost (number of local search steps) is measured and we
analyze the distribution of the mean search cost over the instances from each test-set. The
different plots show the cumulative hardness distributions produced by 100 trials on 100 in-
stances from a test-set.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

Fr
ac

tio
n

S
ol

ve
d

Mean Flips

Random Walk
LA Random Walk N=6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000

Fr
ac

tio
n

S
ol

ve
d

Mean Flips

Random Walk
LA Random Walk N=3

Fig. 8. (Left) Hardness distribution across test-set flat150-545. (Right) Hardness distribution
across test-set for flat90-300. Along the horizontal axis we give the median number of flips
per solution, and along the vertical axis the fraction of problems solved.

Several observations can be made from the plots in Figure 8, which show the hardness dis-
tributions of the two algorithms for SAT-encoding graph coloring problem instances. There
exists no cross-overs in the plots in either of the figures, which makes LARW the clear win-
ner. Note also RW shows a higher variability in search cost compared to LARW between the
instances of each test-set.
The distributions of the two algorithms confirm the existence of instances which are harder
to solve than others. In particular, as can be seen from the long tails of these distributions,
a substantial part of problem instances are dramatically harder to solve with RW than with
LARW. The harder the instance, the higher the difference between the average search costs of
two algorithms (a factor of approximately up to 50). This can be explained by the fact that
the automaton learning mechanism employed in LARW offers an efficient way to escape from
highly attractive areas in the search space of hard instances leading to a higher probability of
success, as well as reducing the average number of local search steps needed to find a solution.
The empirical hardness distribution of SAT-encoded graph coloring problems to the right in
Figure 8 shows that it was rather easy for both algorithms to find a feasible solution in each
trial across the test set flat90-300, with LARW showing on average a lower search cost within a
given probability compared to RW. The plot reveals the existence of some instances on which
RW suffers from a strong search stagnation behavior.

www.intechopen.com

Application of Machine Learning76

The plot located to the left in Figure 8 shows a striking poor average performance of RW com-
pared to LARW on the test set flat150-545. Conversely, LARW shows a consistent ability to
find solutions across the instances on this test set. For LARW, we observe a small variability
in search cost indicated by the distance between the minimum and the maximum number of
local search steps needed to find a solution. The differences in performance between these
two algorithms can be characterized by a factor of about 10 in the median. The performance
differences observed between the two algorithms for small size instances are still observable
and very significant for medium size instances. This suggests that LARW in general is consid-
erably more effective for larger instances.

4.2 LA-GSATRW Vs GSATRW

Since LA-GSATRW is more sophisticated and far more effective than LARW, we used larger
and harder problem instances to evaluate LA-GSATRW. In brief, we selected a benchmark
suite from different domains including problem instances from the Bejing SAT competition
held in 1996. Again, due to the random nature of the algorithms, when comparing LA-
GSATRW with GSATRW, we run the algorithms 100 times using a maximum number of flips
of 107 as a stopping criteria (guaranteeing a success rate close to 100%).

4.2.1 Search Space

The manner in which LA converges on assignment is crucial to a better understanding of LA-
GSATRW behaviour. In Figure 9, we show how the best found score and the current score
progress during the search on a SAT-encoded logistics problem.

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 100 1000 10000 100000 1e+06

Fr
ac

tio
n

S
at

is
fie

d

#Flips

Current
Best

-2

-1.5

-1

-0.5

 0

 0.5

 0 20000 40000 60000 80000 100000

A
ve

ra
ge

 S
ta

te

#Flips

True
False

Fig. 9. (Left) LA-GSATRW’s search space on a 828 variable problem with 6718 clauses (logis-
tics.a). Along the horizontal axis we give the number of flips, and along the vertical axis the
number of satisfied clauses. (Right) Average state of LA. Horizontal axis gives the number of
flips, and the vertical axis shows the average state of automaton.

The leftmost plot suggests that problem solving with LA-GSATRW also happens in two
phases. Again, in the first phase which corresponds to the early part of the search (the first
5% of the search) LA-GSATRW behaves as a hill-climbing method. In this phase, which can
be described as a short one, up to 95% of the clauses are satisfied. The best obtained score
climbs rapidly at first, and then flattens off as we reach a plateau, marking the start of the sec-
ond phase. The plateau spans a region in the search space where flips typically leave the best

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 77

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 100 1000 10000 100000 1e+06

Fr
ac

tio
n

S
at

is
fie

d

#Flips

Current
Best

-2

-1.5

-1

-0.5

 0

 0.5

 0 20000 40000 60000 80000 100000

A
ve

ra
ge

 S
ta

te

#Flips

True
False

assignment unchanged. The long plateaus becomes even more pronounced as the number of
flips increases, and occurs more specifically in trying to satisfy the last few remaining clauses.
To further investigate the behaviour of LA-GSATRW once on the plateau, we looked at the
corresponding average state of automaton as the search progresses. The rightmost plot in
Figure 9 shows the reported observations. The start of plateau search coincides in general with
an increase in the average state. The longer plateau, the higher average state.An automaton
with high average state needs to perform a series of actions before its current state changes
to either −1 or 0, thereby making the flipping of the corresponding variable possible. The
transition between each plateau corresponds to a change to the region where a small number
of flips gradually improves the score of the current solution ending with an improvement of
the best assignment.

4.2.2 Run-Length-Distributions (RLD)

In order to observe the variability of the search cost of GSATRW and LA-GSATRW, we ana-
lyzed the cumulative distribution of the number of search flips needed by the algorithms, as
defined in Section 4.1.2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 10. Cumulative distributions for a 600-variable random problem with 2550 clauses (f600).
(Right) Cumulative distribution for a 1000-variable random problem with 4250 clauses (f1000).
Along the horizontal axis we give the number of flips, and along the vertical axis the the
success rate.

Figures 10 and 11 show RLDs obtained by applying LA-GSATRW and GSATRW to individual
large random problems. As can be seen from the three plots, we observe that both algo-
rithms reach a success rate of 100% for f600 and f1000. However, on the large problem f2000,
GSATRW shows a low asymptotic solution probability corresponding to 0.37 compared to
0.45 for LA-GSATRW. Note also, that there is a substantial part of trials that are dramatically
hard to solve which explains the large variability in the length of the different runs of the
two algorithms. Again, the algorithms show the existence of an initial phase below which the
probability for finding a solution is 0. Both methods start the search from a randomly chosen
assignment which typically violates many clauses. Consequently, both methods need some
time to reach the first local optimum which possibly could be a feasible solution. The two al-
gorithms show no cross-over in their corresponding RLDs even though it is somewhat hard to
see for f600 but it becomes more pronounced for f1000 and f2000. The median search cost for
LA-GSATRW is 3%, 29%, and 17% of that of GSATRW for f600, f1000 and f2000 respectively.
The three plots provides evidence for the superiority of LA-GSATRW compared to GSATRW

www.intechopen.com

Application of Machine Learning78

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 11. (Left) Cumulative distributions for a 2000-variables random problem with 8500
clauses (f2000). Along the horizontal axis we give the number of flips, and along the verti-
cal axis the success rate.

as it gives consistently higher success probabilities while requiring fewer search steps than
GSATRW.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 12. (Left) Cumulative distributions for a 228-variable logistics problem with 6718 clauses
(logistics.a). (Right) Cumulative distribution for a 843-variable logistics problem with 7301
clauses (logistics.b). Along the horizontal axis we give the number of flips, and along the
vertical axis the success rate.

Figure 12 and 13 contains similar plots for SAT-encoded logistics problems. However, in this
case it is difficult to claim a clear winner among the algorithms. The number of search steps
varies between the different trials and is significantly higher with GSATRW than that of LA-
GSATRW. However, note that the median search cost for LA-GSATRW is 4%, 29%, 34% and
51% of that of GSATRW for Logistics-d,Logistics-b,Logistics-c, and Logistics-a, respectively.
We now turn to single SAT-encoded instances from the Blocks World Planning domain. The
crossing of the two RLDs at different points, as shown in figures 1516, indicates that there is
no complete dominance of one algorithm over the other when applied to the same problem.
Looking at figure 15 and taking the smallest problem (medium) as an example, we notice that
for smaller cutoff points, GSATRW achieves higher solution probabilities, while for larger
cutoff points LA-GSATRW shows increasingly superior performance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000 140000

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 79

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 13. (Left) Cumulative distributions for a 1141-variable logistics problem with 10719
clauses (logistics.c)). (Right) Cumulative distribution for a 4713-variable logistics problem
with 21991 clauses (logistics.d). Along the horizontal axis we give the number of flips, and
along the vertical axis the the success rate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000 140000

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 14. (Left) Cumulative distribution for a 116-variable Blocks World problem with 953
clauses (medium). (Right) Cumulative distribution for a 459 -variable Blocks World problem
with 4675 clauses (bw-large.a). Along the horizontal axis we give the number of flips, and
along the vertical axis the fraction of problems solved for different values of N.

It may be noted that GSATRW performs better than LA-GSATRW for the smallest problem
(up to 49% more steps than LA-GSATRW). However this gap is fairly small and is within 5%
for medium sized problems (bw-large.a, huge). On the other hand, for the larger problem
bw-large.b, the situation is reversed. GSATRW requires 16% more steps than LA-GSATRW.
An interesting observation that can be made from the above discussed plots is the ability of
both algorithms to show an improved performance when applied to structured problems,
such as SAT-encoded Blocks world and logistics problems. Taking for instance the large Block
world problem bw-large (1087 variables, 13772 clauses), the median search cost of both meth-
ods is around 95% better compared to that measured for Random-3-SAT problem f1000 (1000
variables, 4250 clauses). Finally, the plots in Figures 17 and 18 explore the behaviour of the
RLDs when for both algorithms when applied to BMC problems. Both algorithms reach a
success rate of 100% with the one exception that,for the medium size problem (bmc-ibm3),
the success rate was around 95%. Returning to Figure 17 then, for the smaller problem (bmc-

www.intechopen.com

Application of Machine Learning80

ibm-2), GSATRW dominates LA-GSATRW on the major part of the runs (i.e, approx 80%), as
it reaches high solution probabilities while requiring lower search cost. On the other hand, for
the medium sized problem (bmc-ibm-3), the situation is similar, but reversed.
Figure 18 shows the RLD for both algorithms for a larger problem (bmc-ibm-6). As can be seen
from the figure, the RLDs for both algorithms have roughly the same shape. The presence
of heavy tails in both RLDs indicates that both algorithms get stuck in local minima for a
relatively small number of trials. The median search cost for GSATRW is 15% of that of LA-
GSATRW for the bmc-ibm-2. However, LA-GSATRW shows a better performance for the
medium (improvement of about 8% in the median) and larger problems (improvement of
approximately 5%).
Table 1 shows the coefficient of variation (normalised standard deviations) for LA-GSATRW.
As can be seen from the previous plots, there is a large variability between the search cost of
the different runs. In particular, the long tails of the RLDs show that some of the runs requires
much more effort than others. For increasing problem sizes, there is no clear indication that
variability increases, as in the case of SAT-encoded BMC problems.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000 140000

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 15. (Left) Cumulative distribution for a 116-variable Blocks World problem with 953
clauses (medium). (Right) Cumulative distribution for a 459 -variable Blocks World problem
with 4675 clauses (bw-large.a). Along the horizontal axis we give the number of flips, and
along the vertical axis the fraction of problems solved for different values of N.

4.2.3 Excess deviation from the solution

Quite often, we observed stagnation behaviour with extremely low asymptotic solution prob-
abilities when applied to SAT-encoded quasigroup problems. The two algorithms were exe-
cuted to the allowed maximal number of steps and the percentage excess over the solution was
recorded. Figures 19 and 20 show the excess deviation over the solution sorted in increasing
order. As it can be seen from the plots, both algorithms suffers from severe stagnation indi-
cating incomplete behaviour of the two algorithms when applied to this class of problems.
At the exception of the problem qg3-08 where LA-GSATRW achieved a maximal success rate
of 0.04% compared to 0.03% for GSATRW, we observe a rapid deterioration of their perfor-
mance (success rate equals to 0%) with growing problem size. LA-GSATRW appears to have
an asymptotic convergence which is better than GSATRW to around 3% − 10% in average
excess of the solution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 81

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000 140000

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000 120000

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 16. (Left) Cumulative distributions for a 459-variable Blocks World problems with 7054
clauses (huge). (Right) Cumulative distribution for a 1087-variable Blocks world problem with
13772 (bw-large.b). Along the horizontal axis we give the number of flips, and along the
vertical axis the success rate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 17. (Left) Cumulative distributions for a 3628-variable BMC problem with 14468 clauses
(bmc-ibm2). (Right) Cumulative distribution for a 14930-variable BMC problem with 72106
clauses (bmc-ibm3). Along the horizontal axis we give the number of flips, and along the
vertical axis the success rate.

4.2.4 Wilcoxon Rank-Sum Test

The number of search flips needed by a meta heuristic to find a feasible solution may vary
significantly from run to run on the same problem instance due to random initial solutions
and subsequent randomized decisions. As RLDs are unlikely to be normally distributed, we
turn to the non-parametric Wilcoxon Rank test in order to test the level of statistical confidence
in differences between the median search cost of the two algorithms. The test requires that
the absolute values of the differences between the mean search costs of the two algorithms
are sorted from smallest to largest and these differences are ranked according to absolute
magnitude. The sum of the ranks is then formed for the negative and positive differences
separately. As the size of the trials increase, the rank sum statistic becomes normal. If the
null hypothesis is true, the sum of ranks of the positive differences should be about the same

www.intechopen.com

Application of Machine Learning82

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 18. Cumulative distributions for a 8710-variable BMC problems with 8710 clauses (bmc-
ibm6). Along the horizontal axis we give the number of flips, and along the vertical axis the
success rate.

Test-Problem LA-GSATRW

f600 11.36
f1000 9.42
f2000 3.90
logistics.a 8.85
logistics.b 7.76
logistics.d 6.14
medium 6.84
bw-large.a 9.12
huge 7.62
bw-large.b 10.49
ibm-bmc2 3.71
ibm-bmc3 3.89
ibm-bmc6 4.30

Table 1. Coefficient of variation.

as the sum of the ranks of the negative differences. Using two-tailed P value, significance
performance difference is granted if the Wilcoxon test is significant for P < 0.05
An initial inspection of Table 2 reveals two results. Firstly, the success rate of LA-GSATRW
was better in 12 problems and the difference in the median search cost was significant in 6
problems. On the other hand, GSASTRW gave better results in 5 problems in terms of success
rate but its performance was significant in only 2 cases.

5. Conclusions and Further Work

In this work, we have introduced a new approach based on combining Learning Automata
with Random Walk and GSAT w/Random Walk. In order to get a comprehensive overview of
the new algorithms’ performance, we used a set of benchmark problems containing different
problems from various domains. In these benchmark problems, both RW and GSATRW suf-
fers from stagnation behaviour which directly affects their performance. This phenomenon
is, however, only observed for LA-GSATRW on the largest problem instances. Finally, the

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

U
ns

at
is

fie
d

#Experiments

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

U
ns

at
is

fie
d

#Experiments

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

U
ns

at
is

fie
d

#Experiments

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0.0008

 0.00085

 0.0009

 0.00095

 0.001

 0.00105

 0.0011

 0.00115

 0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

U
ns

at
is

fie
d

#Experiments

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 83

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fr
ac

tio
n

S
ol

ve
d

#Flips

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

U
ns

at
is

fie
d

#Experiments

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

U
ns

at
is

fie
d

#Experiments

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 19. Excess deviation over the solution for LA-GSATRW and GSATRW. (Left) qg3-08 (512
variables, 10469 clauses). qg5-11 (1331 variables, 64054 clauses). Along the horizontal axis we
give the number of trials and along the vertical axis the percentage deviation over the solution.

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

U
ns

at
is

fie
d

#Experiments

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

 0.0008

 0.00085

 0.0009

 0.00095

 0.001

 0.00105

 0.0011

 0.00115

 0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

U
ns

at
is

fie
d

#Experiments

LA GSAT w/Random Walk (N=2)
GSAT w/Random Walk

Fig. 20. Excess deviation over the solution for LA-GSATRW and GSATRW. (Left) qg7-09 (729
variables, 22060 clauses). (Right) qg7-13 (2197 variables, 97072 clauses). Along the horizontal
axis we give the number of trials and along the vertical axis the percentage deviation over the
solution.

success rate of LA-GSATRW was better in 12 of the problems, and the difference in the me-
dian search cost was significantly better for 6 of the problems. GSASTRW, on the other hand,
gave better results in 5 of the problems in terms of success rate, while its performance was
significantly better only in 2 problems.
Based on the empirical results, it can be seen that the Learning Automata mechanism em-
ployed in LARW and LA-GSATRW offers an efficient way to escape from highly attractive
areas in the search space, leading to a higher probability of success as well as reducing the
number of local search steps to find a solution.
As further work, it is of interest to study how Learning Automata can be used to enhance
other Stochastic Local Search based algorithms, such as WalkSAT. Furthermore, more recent
classes of Learning Automata, such as the Bayesian Learning Automata family Granmo (2009)
may offer improved performance in LA based SAT solvers.

www.intechopen.com

Application of Machine Learning84

Problem SR: LA-GSATRW SR: GSATRW P value NULL Hypotheis

f600 53% 47% 0.19 Accept
f1000 62% 37% 0.00 Reject
f2000 32% 14% 0.00 Reject
logistic-a 74% 26% 0.00 Reject
logistic-b 54% 46% 0.09 Accept
logistic-c 59% 41% 0.02 Reject
logistic-d 54% 46% 0.29 Accept
bw-medium 36% 64% 0.02 Reject
bw-large-a 49% 51% 0.52 Accept
bw-huge 50% 50% 0.91 Accept
bw-large-b 53% 47% 0.82 Accept
bmc-ibm2 39% 61% 0.01 Reject
bmc-ibm3 52% 44% 0.18 Accept
bmc-ibm6 51% 49% 0.98 Accept
qg-03-08 20% 33% 0.16 Accept
qg-5-11 59% 38% 0.00 Reject
qg-7-9 33% 59% 0.61 Accept
qg-7-13 59% 33% 0.00 Reject

Table 2. Success rate (SR) and Wilcoxon statistical test.

6. References

A.E.Eiben & van der Hauw, J. (1997). Solving 3-sat with adaptive genetic algorithms, Proceed-
ings of the 4th IEEE Conference on Evolutionary Computation, IEEE Press, pp. 81–86.

Cha, B. & Iwama, K. (1995). Performance Tests of Local Search Algorithms Using New Types
of Random CNF Formula, Proceedings of IJCAI’95, Morgan Kaufmann Publishers,
pp. 304–309.

Cook, S. (1971). The complexity of theorem-proving procedures, Proceedings of the Third ACM
Symposuim on Theory of Computing, pp. 151–158.

Davis, M. & Putnam, H. (1960). A computing procedure for quantification theory, Journal of
the ACM 7: 201–215.

Frank, J. (1997). Learning short-term clause weights for gsat, Proceedings of IJCAI’97, Morgan
Kaufmann Publishers, pp. 384–389.

Gale, W., S.Das & Yu, C. (1990). Improvements to an Algorithm for Equipartitioning, IEEE
Transactions on Computers 39: 706–710.

Gent, L. & T.Walsh (1993). Towards an Understanding of Hill-Climbing Procedures for SAT,
Proceedings of AAAI’93, MIT Press, pp. 28–33.

Glover, F. (1989). Tabu search-part 1, ORSA Journal on Computing 1: 190–206.
Granmo, O.-C. (2009). Solving Two-Armed Bernoulli Bandit Problems Using a Bayesian

Learning Automaton, To Appear in International Journal of Intelligent Computing and
Cybernetics (IJICC) .

Granmo, O.-C., Oommen, B. J., Myrer, S. A. & Olsen, M. G. (2007). Learning Automata-
based Solutions to the Nonlinear Fractional Knapsack Problem with Applications to
Optimal Resource Allocation, IEEE Transactions on Systems, Man, and Cybernetics, Part
B 37(1): 166–175.

www.intechopen.com

Using Learning Automata to Enhance Local-Search
 Based SAT Solvers with Learning Capability 85

Hansen, P. & Jaumand, B. (1990). Algorithms for the maximum satisfiability problem, Com-
puting 44: 279–303.

I.Gent & Walsh, T. (1995). Unsatisfied variables in local search, Hybrid Problems,Hybrid Solu-
tions, IOS Press, pp. 73–85.

Johnson, D. & Trick, M. (1996). Cliques, Coloring, and Satisfiability, Volume 26 of DIMACS Series
on Discrete Mathematics and Theoritical Computer Science, American Mathematical
Society.

McAllester, D., Selman, B. & Kautz, H. (1997). Evidence for Invariants in Local Search, Pro-
ceedings of AAAI’97, MIT Press, pp. 321–326.

Narendra, K. S. & Thathachar, M. A. L. (1989). Learning Automata: An Introduction, Prentice
Hall.

Oommen, B. J. & Croix, E. V. S. (1996). Graph partitioning using learning automata, IEEE
Transactions on Computers 45(2): 195–208.

Oommen, B. J. & Hansen, E. R. (1987). List organizing strategies using stochastic move-to-front
and stochastic move-to-rear operations, SIAM Journal on Computing 16: 705–716.

Oommen, B. J. & Ma, D. C. Y. (1988). Deterministic learning automata solutions to the equipar-
titioning pr oblem, IEEE Transactions on Computers 37(1): 2–13.

Oommen, B. J., Misra, S. & Granmo, O.-C. (2007). Routing Bandwidth Guaranteed Paths in
MPLS Traffic Engineering: A Multiple Race Track Learning Approach, IEEE Transac-
tions on Computers 56(7): 959–976.

Selman, B., Kautz, H. A. & Cohen, B. (1994). Noise Strategies for Improving Local Search,
Proceedings of AAAI’94, MIT Press, pp. 337–343.

Selman, B., Levesque, H. & Mitchell, D. (1992). A new method for solving hard satisfiability
problems, Proceedings of AAA’92, MIT Press, pp. 440–446.

Spears, W. (1993). Simulated Annealing for Hard Satisfiability Problems. Technical Report,
Naval Research Laboratory, Washington D.C.

Thathachar, M. A. L. & Sastry, P. S. (2004). Networks of Learning Automata: Techniques for Online
Stochastic Optimization, Kluwer Academic Publishers.

Tsetlin, M. L. (1973). Automaton Theory and Modeling of Biological Systems, Academic Press.

www.intechopen.com

Application of Machine Learning86

www.intechopen.com

Application of Machine Learning

Edited by Yagang Zhang

ISBN 978-953-307-035-3

Hard cover, 280 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The goal of this book is to present the latest applications of machine learning, which mainly include: speech

recognition, traffic and fault classification, surface quality prediction in laser machining, network security and

bioinformatics, enterprise credit risk evaluation, and so on. This book will be of interest to industrial engineers

and scientists as well as academics who wish to pursue machine learning. The book is intended for both

graduate and postgraduate students in fields such as computer science, cybernetics, system sciences,

engineering, statistics, and social sciences, and as a reference for software professionals and practitioners.

The wide scope of the book provides them with a good introduction to many application researches of machine

learning, and it is also the source of useful bibliographical information.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ole-Christoffer Granmo and Noureddine Bouhmala (2010). Using Learning Automata to Enhance Local-

Search Based SAT Solvers with Learning Capability, Application of Machine Learning, Yagang Zhang (Ed.),

ISBN: 978-953-307-035-3, InTech, Available from: http://www.intechopen.com/books/application-of-machine-

learning/using-learning-automata-to-enhance-local-search-based-sat-solvers-with-learning-capability

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

