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1. Introduction  

Nowadays the level of automation in manufacturing industries has been increased 
dramatically. Some examples of these automation progresses are in cellular manufacturing 
and robotic cells. A growing body of evidence suggests that, in a wide variety of industrial 
settings, material handling within a cell can be accomplished very efficiently by employing 
robots (see (Asfahl, 1992)). Among the interrelated issues to be considered in using robotic 
cells are their designs, the scheduling of robot moves, and the sequencing of parts to be 
produced. 
Robotic cell problem in which robot is used as material handling system received 
considerable attentions. Sethi et al. (1992) proved that in buffer-less single-gripper two-
machine robotic cells producing single part-type and having identical robot travel times 
between adjacent machines and identical load/unload times, a 1-unit cycle provides the 
minimum per unit cycle time in the class of all solutions, cyclic or otherwise. For three 
machine case, Crama and van de Klundert (1999), and Brauner and Finke (1999) shown that 
the best 1-unit cycle is optimal solution for the class of all cyclic solutions. Hall et al. (1997; 
1998) considered the computational complexity of the multiple-type parts three-machine 
robotic cell problem under various robot movement policies. This problem is studied for no-
wait robotic cells too. For example Agnetis (2000) found an optimal part schedule for no-
wait robotic cells with three and two machines. Agnetis and pacciarelli (2000) have studied 
partscheduling problem for no-wait robotic cells, and found the complexity of the problem. 
Crama et al. (2000) studied flow-shop scheduling problems, models for such problems, and 
complexity of theses problems. Dawande et al. (2005) reviewed the recent developments in 
robotic cells and, provided a classification scheme for robotic cells scheduling problem. 
Some other special cases have been studied such as: Drobouchevitch et al. (2006) provided a 
model for cyclic production in a dual-gripper robotic cell. Gultekin et al. (2006) studied 
robotic cell scheduling problem with tooling constraints for a two-machine robotic cell 
where some operations can only be processed on the first machine and some others can only 
be processed on the second machine and the remaining can be processed on both machines. 
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Gultekin et al. (2007) considered a flexible manufacturing robotic cell with identical parts in 
which machines are able to do different operations and the operation time is not system 
parameter and is variable. They proposed a lower bound for 1-unit cycles and 2-unit cycles. 
Sriskandarajah et al. (1998) classified the part sequence problems associated with different 
robot movement policies, in this chapter a robot movement policy is considered, which its 
part scheduling problem is NP-Hard, and Baghchi et al. (2006) proposed to solve this 
problem, by a heuristic or meta-heuristic. In this chapter a meta-heuristic method based on 
particle swarm optimization is applied to solve the problem. 
In this chapter an m-machine flexible cyclic cell is considered. All parts in an MPS (A 
minimal part set) visit each machine in the same order, the production environment is 
cyclic, and parts are produced at the same order repeatedly. 
In this chapter, we consider multiple-type parts three-machine robotic cells which have 
operational flexibility in which the operations can be performed in any order; moreover 
each machine can be configured to perform any operation. To explain the problem, consider 
a machining centre where three machine tools are located and a robot is used to feed the 
machines namely 1 2 3, ,M M M (see figure 1). All parts are brought to and removed from the 
robotic cell by Automated Storage & Retrieval System (AS/RS). The pallets and feeders of 
the AS/RS system allow hundreds of parts to be loaded into the cell without human 
intervention. The machines can be configured to perform any operation. 

 
Fig. 1. Robotic work cell layout with three machines 
 
The aim of this chapter is to find a schedule for the robot movement and the sequence of 
parts to maximize throughput (i.e., to minimize cycle time), as it is showed that this problem 
is NP-Complete in general (see Hall et al. (1997)). Hence, this chapter proposes a novel 
hybrid particle swarm optimization (HPSO) algorithm to tackle the problem. To validate the 
developed model and solution algorithm, various test problems with different sizes is 
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randomly generated and the performance of the HPSO is compared with three benchmark 
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm), 
and PSO-II (constriction Particle Swarm Optimization algorithm). The rest of this chapter is 
organized as follows: The problem definition and required notations are presented in 
Section 2, Section 3 presents the developed mathematical model, and in Section 4, the 
proposed hybrid particle swarm optimization algorithm is described. The computational 
results are reported in Section 5, and the conclusions are presented in Section 6. 

 
2. Problem definition  

The robotic cell problem is a special case of the cyclic blocking flow-shop, where the jobs 
might block either the machine or the robot. In a cyclic schedule the same sequences repeat 
over and over and the state of the cell at the beginning of each cycle is the similar to the next 
cycle. It is assumed that the discipline for the movements of parts is an ordinary flow-shop 
discipline. That is a part meets machines 1 2 3, ,M M M consequently. 

 
2.1 Notations 
The following notation is used to describe the robotic cell problem: 
m  : The number of machines 
/I O  : The automated input-output system for the cell 

iPT  : The part-type i to be produced 

ir  : The minimal ratio of part i to be produced 

MPS  : The number of part set consisting ir  parts of type iPT  

n  : the total number of parts to be produced in the MPS ( 1 2 ... kn r r r    ) 

ia  : The processing time of part i on 1M  

ib  : The processing time of part i on 2M  

ic  : The processing time of part i on 3M  

  
: Robot travelling time between two successive machines (I/O is assumed as 
machine 0M ) 

  : The load/unload time of part i 
j
iw  : The robot waiting time on jM  to unload part i 
kS  : The robot movement policy S under category k 
kT  : The cycle time under kS  

In this study the standard classification scheme for scheduling problems: 1 2 3| |    is 

used where 1  indicates the scheduling environment, 2  describes the job characteristics 

and 3  defines the objective function (Dawande et al., 2005). For example 
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1
3 | 2, | tFRC k S C  denotes the minimization of cycle time for multi-type part problem 

in a three flow-shop robotic cell, restricted to robot move cycle 1S . 

 
2.2 Three machine robotic flow shop cell 3 | 2 | tFRC K C  
In the three machine robotic flow shop cell, there are six different potentially optimal 
policies for robot to move the parts between the machines (Bagchi et al., 2006). Sethi et al. 
(1992) showed that any potentially optimal one-unit robot move cycle in a m machine 
robotic cell can be described by exactly m+1 following basic activities: 

iM


 
: Load a part on iM  1,2,...,i m  

iM


 
: Unload a finished part from  iM  1,2,...,i m  

In other words, a cycle can be uniquely described by a permutation of the m+1 activity. The 
following are the available robot move cycles for m=3 flow-shop robotic cell (Sethi et al., 
1992): 

 1
3 1 2 3 3: , , , ,S M M M M M      

 2
3 1 3 2 3: , , , ,S M M M M M      

 3
3 3 1 2 3: , , , ,S M M M M M      

 4
3 2 3 1 3: , , , ,S M M M M M      

 5
3 2 1 3 3: , , , ,S M M M M M      

 6
3 3 2 1 3: , , , ,S M M M M M      

In this chapter we consider a three machine robotic cell problem under the 6S  policy 

(Figure 2). The problem of finding the best part sequence using the robot move cycle 6S  is 
NP-complete (Hall et al., 1998). 

 
Fig. 2. The robot movement under 6S  
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Lemma 1. The cycle times of one unit for the policy 6s  are given by: 
6

I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }                

Proof: According to figure 2 the robot movement under policy 6s  is as follow: 
Pickup part 2ip   from )( I/O   move it to )( M1   load 2ip   onto )( M1   go to )(2 M3   if 

necessary wait at )(w M 3
i

3 , unload ip  from )( M3   move it to )( I/O   drop ip  at )( I/O   

go to )(2 M2   if necessary wait at )(w M 2
1i

2
 , unload 1ip   from )( M2   move it to )( M3  , 

load 1iP  onto )( M3   go to )(2 M1   if necessary wait at )(w M 1
2i

1
 , unload 2iP  from 

)( M1   move it to )( M2   load 2iP onto )( M2   go to )(2 I/O   then start a new cycle by 
picking up the part 3iP . 
The cycle time by considering waiting times is as follow: 

6 2 1
, ( ) ( 1) ( 2) 1 2 312 8 i i i
I i i iT w w w      

        
2 1

1 ( 2) 2 3max{0, 8 4 }i i i
iw a w w   
      

1
2 ( 1) 3max{0, 8 4 }i i

iw b w  
     

2
3 ( ) 1max{0, 8 4 }i i

iw c w       
6
, ( ) ( 1) ( 2) ( 2) ( 1) ( )12 8 max{0, 8 4 , 8 4 , 8 4 }I i i i i i iT a b c                       

 
3. Developing mathematical model 

In this section we develop a systematic method to produce necessary mathematical 
programming formulation for robotic cells. Therefore first we model single-part type 
problem through Petri nets, and then extend the model to multiple-part type problem. 
A Petri-net is a four-tuple ( , , , )PN P T A W , where 1 2{ , ,..., }nP p p p  is a finite set of 

places, 1 2{ , ,..., }mT t t t is a finite set of transitions, ( ) ( )A P T T P     is a finite 

set of arcs, and : {1,2,3,...}W A  is a weight function. 

Every place has an initial marking 0 : {0,1,2,...}M P . If we assign time to the 
transitions we call it as Timed Petri net. 
The behaviour of many systems can be described by system states and their changes, to 
simulate the dynamic behaviour of system; marking in a Petri-net is changed according to 
the following transition (firing) rule: 1) A transition is said to be enabled if each input place 
p of t is marked at least with ( , )w p t  tokens, where ( , )w p t  is weight of the arc from p to 
t. 2) An enabled transition may or may not be fired (depending on whether or not the event 
takes place). A firing of an enabled transition t removes ( , )w p t  tokens from each input 

place p of t and adds ( , )w p t  tokens to each output place p of t , where ( , )w p t  is the 
weight of the arc from t to p. 
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3 | 2, | tFRC k S C  denotes the minimization of cycle time for multi-type part problem 

in a three flow-shop robotic cell, restricted to robot move cycle 1S . 

 
2.2 Three machine robotic flow shop cell 3 | 2 | tFRC K C  
In the three machine robotic flow shop cell, there are six different potentially optimal 
policies for robot to move the parts between the machines (Bagchi et al., 2006). Sethi et al. 
(1992) showed that any potentially optimal one-unit robot move cycle in a m machine 
robotic cell can be described by exactly m+1 following basic activities: 

iM


 
: Load a part on iM  1,2,...,i m  

iM


 
: Unload a finished part from  iM  1,2,...,i m  

In other words, a cycle can be uniquely described by a permutation of the m+1 activity. The 
following are the available robot move cycles for m=3 flow-shop robotic cell (Sethi et al., 
1992): 

 1
3 1 2 3 3: , , , ,S M M M M M      

 2
3 1 3 2 3: , , , ,S M M M M M      

 3
3 3 1 2 3: , , , ,S M M M M M      

 4
3 2 3 1 3: , , , ,S M M M M M      

 5
3 2 1 3 3: , , , ,S M M M M M      

 6
3 3 2 1 3: , , , ,S M M M M M      

In this chapter we consider a three machine robotic cell problem under the 6S  policy 

(Figure 2). The problem of finding the best part sequence using the robot move cycle 6S  is 
NP-complete (Hall et al., 1998). 

 
Fig. 2. The robot movement under 6S  
 
 

M3 M1

 

I/O 




M2 













 

Lemma 1. The cycle times of one unit for the policy 6s  are given by: 
6

I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }                

Proof: According to figure 2 the robot movement under policy 6s  is as follow: 
Pickup part 2ip   from )( I/O   move it to )( M1   load 2ip   onto )( M1   go to )(2 M3   if 

necessary wait at )(w M 3
i

3 , unload ip  from )( M3   move it to )( I/O   drop ip  at )( I/O   

go to )(2 M2   if necessary wait at )(w M 2
1i

2
 , unload 1ip   from )( M2   move it to )( M3  , 

load 1iP  onto )( M3   go to )(2 M1   if necessary wait at )(w M 1
2i

1
 , unload 2iP  from 

)( M1   move it to )( M2   load 2iP onto )( M2   go to )(2 I/O   then start a new cycle by 
picking up the part 3iP . 
The cycle time by considering waiting times is as follow: 

6 2 1
, ( ) ( 1) ( 2) 1 2 312 8 i i i
I i i iT w w w      

        
2 1

1 ( 2) 2 3max{0, 8 4 }i i i
iw a w w   
      

1
2 ( 1) 3max{0, 8 4 }i i

iw b w  
     

2
3 ( ) 1max{0, 8 4 }i i

iw c w       
6
, ( ) ( 1) ( 2) ( 2) ( 1) ( )12 8 max{0, 8 4 , 8 4 , 8 4 }I i i i i i iT a b c                       

 
3. Developing mathematical model 

In this section we develop a systematic method to produce necessary mathematical 
programming formulation for robotic cells. Therefore first we model single-part type 
problem through Petri nets, and then extend the model to multiple-part type problem. 
A Petri-net is a four-tuple ( , , , )PN P T A W , where 1 2{ , ,..., }nP p p p  is a finite set of 

places, 1 2{ , ,..., }mT t t t is a finite set of transitions, ( ) ( )A P T T P     is a finite 

set of arcs, and : {1,2,3,...}W A  is a weight function. 

Every place has an initial marking 0 : {0,1,2,...}M P . If we assign time to the 
transitions we call it as Timed Petri net. 
The behaviour of many systems can be described by system states and their changes, to 
simulate the dynamic behaviour of system; marking in a Petri-net is changed according to 
the following transition (firing) rule: 1) A transition is said to be enabled if each input place 
p of t is marked at least with ( , )w p t  tokens, where ( , )w p t  is weight of the arc from p to 
t. 2) An enabled transition may or may not be fired (depending on whether or not the event 
takes place). A firing of an enabled transition t removes ( , )w p t  tokens from each input 

place p of t and adds ( , )w p t  tokens to each output place p of t , where ( , )w p t  is the 
weight of the arc from t to p. 

www.intechopen.com



Swarm Robotics, From Biology to Robotics32

 

By considering a single-part type system, the robot arm at steady state is located at machine 

2M , therefore by coming back to this node we have a complete cycle for the robot arm. 
The related Petri net for robot movements is shown in Figure 3 and the descriptions of the 
nodes for this graph with respective execution times would be as follows: 

 
Fig. 3.  Petri net for 6s policy 
 

1R : go to )(3 M ; 2R : load )(3 M ;  3R : go to )2(1 M ; 

4R : unload )(1 M ; 5R : go to )2(2 M ;  6R : load )(2 M ; 

7R : go to input, pickup a new part, go to )3(1  M ; 8R : load )(1 M ; 

9R : go to )2(3 M ;  10R : unload )(3 M ;   

11R : go to output, drop the part, go to )3(3  M ; 12R : unload )(2 M ; 

jRP : wait at )( i
jj wM  is : starting time of iR ;   jsp : starting time of jRP  

 : 1M  is ready to be unloaded; 

 : 2M  is ready to be unloaded; 

 : 3M  is ready to be unloaded; 

By considering a multiple-part type system, at machine 1M , when we want to load a part 
on the machine we have to decide which part should be chosen such that the cycle time is 

P2 

P12  

’ 

R1 

R12 

R14 

P1 P3 R2 P4 R3 

P11 

R11 

P10 
P9 P8 P7 

P5 

P6 



’ 

’ 

 







w1 

w3 

w2 

a 
b 

c 

 

minimized. The same thing also can be achieved for 2M  and 3M . Based on the choosing 

gate definition we simply have three choosing gates as  ,  , and  . Thus we can write 

the following formulation using 0-1 integer variables 1ijx , 2ijx , and 3ijx as: 

1 4,1 8,
1

: 1 ( )
n

n t in i
i

s s C x a 


     

4, 1 8,
1

: 1 ( ) 2,..., .
n

j j j ij i
i

s s x a j n 


     

12, 6,
1

: 2 ( ) 1,..., .
n

j j j ij i
i

s s x b j n 


     

10, 2,
1

: 3 ( ) 1,..., .
n

j j j ij i
i

s s x c j n 


     

Definition. A marked graph is a Petri-net such that every place has only one input and only 
one output. 
Theorem 1. For a marked graph which every place has i m tokens (see figure 4), the 
following relation B A i ts s mC  , where As , Bs  are starting times of transitions A and B 

respectively, and tC  is cycle time, is true. 

 
Fig. 4. The marked graph in theorem 1 
 
Proof: see ref. (Maggot, 1984). 
 
In addition the following feasibility constraints assign unique positioning for every job: 
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To keep the sequence of the parts between the machines in a right order, we have to add the 
following constraints: 
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Where, we assume that 1,1, 11 ini xx  because of the cyclic repetition of parts.  
Thus the complete model for the three machine robotic cell with multiple-part would be as 
follows: 
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6min tC  
Subject to: 
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4. The proposed hybrid particle swarm optimization (HPSO) algorithm 

The particle swarm optimization (PSO) is a population based stochastic optimization 
technique that was developed by Kennedy and Eberhart in 1995 (Hu et al., 2004). The PSO 
inspired by social behavior of bird flocking or fish schooling. In PSO, each solution is a bird 
in the flock and is referred to as a particle. A particle is analogous to a chromosome in GAs 
(Kennedy and Eberhart, 1995). All particles have fitness values which are evaluated by the 
fitness function to be optimized, and have velocities which direct the flying of the particles. 

 

The particles fly through the problem space by following the particles with the best 
solutions so far (Shi and Eberhart, 1998). 
The general scheme of the proposed HPSO is presented in Figure 5. 
 

 
Fig 5. The schematic structure of the proposed HPSO 

In this chapter, we extend the discrete PSO of Liao et al. (2007) to solve the robotic cell 
problem. In the proposed HPSO the velocity of each particle is calculated according to 
equation (16). 
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Where 1c  and 2c  are the learning factors that control the influence of pBest and lBest. w  is 
the inertia weight which controls the exploration and exploitation abilities of algorithm. 

()rand  and ()Rand  are two independently generated random numbers, t  is the current 

iteration and a  and  b are two parameters that adjust the influence of the Frequency 
Matrix on velocity value. pBest is the best position which each particle has found since the 
first step and it represents the experiential knowledge of a particle. After the cloning 
procedure (the detailed of cloning procedure will be described in the next section), a 
neighborhood for each particle is achieved. The best particle in this neighborhood is selected 
as lBest. 
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4. The proposed hybrid particle swarm optimization (HPSO) algorithm 

The particle swarm optimization (PSO) is a population based stochastic optimization 
technique that was developed by Kennedy and Eberhart in 1995 (Hu et al., 2004). The PSO 
inspired by social behavior of bird flocking or fish schooling. In PSO, each solution is a bird 
in the flock and is referred to as a particle. A particle is analogous to a chromosome in GAs 
(Kennedy and Eberhart, 1995). All particles have fitness values which are evaluated by the 
fitness function to be optimized, and have velocities which direct the flying of the particles. 

 

The particles fly through the problem space by following the particles with the best 
solutions so far (Shi and Eberhart, 1998). 
The general scheme of the proposed HPSO is presented in Figure 5. 
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In this chapter, we extend the discrete PSO of Liao et al. (2007) to solve the robotic cell 
problem. In the proposed HPSO the velocity of each particle is calculated according to 
equation (16). 
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As Liao et al. (2007), the velocity values transfers from real numbers to the probability of 
changes by using the equation (17): 
  ( ) 1 1 exp( )id ids V V    (17) 

where ( )ids V stands for the probability of idx  taking the value 1. In the proposed 
algorithm, the new position (sequence) of each particle is constructed based on its 
probability of changes that calculated by equation (17). Precisely, for calculating the new 
position of each particle, the algorithm starts with a null sequence and places an 
unscheduled job j in position k (k = 1, 2, . . . , n) according to the probability that determined 
by equation (18): 
 ( , ) ( ) ( )i id idj F

q j k s V s V


   (18) 

where F is the set of the first f unscheduled jobs as present in the best particle (solution) 
obtained till current iteration. To achieve a complete sequence, the jobs are added one after 
another to the partial sequence. 
The proposed HPSO terminates after a given number of iterations and the best sequence is 
reported as the final solution for the problem. 

 
4.1 Cloning 
For avoiding local optimal solutions we implement cloning procedure which in summary 
can be described as follows: 

1. M copies of the solution are generated so that there are (M+1) identical solutions 
available. 

2. Each of the M copies are subjected to the swapping mutation. 
3. In each clone only the original solution participates in HPSO evolution procedure 

whereas the other copies of the solution would be discarded. 
4. The above procedure is repeated for all of the solutions in the swarm. 

 
4.2 Fitness evaluation 
As any metaheuristic algorithm, the HPSO uses a fitness function to quantify the optimality 

of a particle (sequence). The cycle times of one unit for the policy 6s  are given by: 
 

6
I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }                

 
Hence, the following equeation is applied to calculate the fitness function. 

 
4.3 Best Set formation 
In the proposed HPSO, to improve efficiency of the algorithm, the best solutions which are 
obtained so far are selected and kept in the Best Set. Then, the Best Set is applied to forming 
the Frequency Matrix in next phase of the algorithm. 
To form the Best Set, in the first iteration of algorithm and after the cloning phase of the 
algorithm, the B first best particles among all particles in the swarm are selected and placed 

 

in the Best Set. In the other iterations, only the particles that better than the existed particles 
in the Best Set are replaced with them. 

  
4.4 Frequency Matrix formation 
The Frequency Matrix is a matrix which represents the average times that a specific job goes 
to a specific position according to sequence of particles in the Best Set. To illustrate the 
Frequency Matrix formation procedure, assume that the following particles are in the Best 
Set. 
 
First particle (sequence):   (1,2,3,4,5) 
Second particle (sequence): (1,2,4,3,5) 
Third particle (sequence):  (1,2,3,5,4) 
 
Therefore, the Best Set will be as follows (Figure 6): 
 

5 4 3 2 1 Position 
Job 

0 0 0 0 1 1 

0 0 0 1 0 2 

0 .33 .66 0 0 3 

.33 .33 .33 0 0 4 

.66 .33 0 0 0 5 

Fig. 6. The example Frequency Matrix 

 
4.5 Inversion mutation 
The mutation operator causes a random movement in the search space that result in solution 
diversity. Inversion mutation is adopted in the proposed algorithm. The inversion mutation, 
as illustrated in Figure 7, selects two positions within a chromosome at random and then 
inverts the subsequence between these two positions. 
 

 
Fig. 7. General scheme inversion mutation 
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5. Experimental Results 

The performance of the proposed hybrid particle swarm optimization is compared with 
three well-known metaheuristic algorithms: GA, PSO-I, and PSO-II. These algorithms have 
been coded in the Visual Basic 6 and executed on a Pentium 4, 1.7 GHz, and Windows XP 
using 256 MB of RAM. Note that the performance of the proposed algorithm is also 
compared with Lingo 8 for small-sized problems. 

 
5.1. Benchmark algorithms 
At first, we present a brief discussion about the implementation of benchmark algorithms: 
GA, PSO-I, and PSO-II. 

 
5.1.1 Genetic algorithm (GA) 
Genetic Algorithm (GA) was developed by Holland in 1975 as a tool for solving complex 
optimization problems of large solution search spaces (Holland, 1992). GAs have been 
applied successfully to a wide variety of optimization problems to find optimal or near-
optimal solutions (Gen and Cheng, 1997). Thus, for evaluating the performance and 
reliability of the proposed PSO algorithm, we use GA as one of three benchmark algorithms. 
A pseudocode for the applied GA is provided in Figure 8. 

 
Fig. 8. Pseudocode for the Genetic Algorithm 

Begin; 
   Generate random population of N solutions; 
   For each solution: calculate fitness; 
   For i=1 to number of generations (G); 
      For j=1 to N × Crossovr_Rate;         
         Select two parents randomly; 
         Generate an offspring = crossover (Parent1 and Parent2); 
         Calculate the fitness of the offspring; 
         If the offspring is better than the worst solution then 
             Replace the worst solution by offspring; 
         Else generate a new random solution; 
      Next; 
      Do 
         Copy the ith best solution from previous generation to current generation; 
      Until population size (N) is not reached;  
      For k=1 to N × Mutation_Rate; 
         Select one solution randomly; 
         Generate a New_Solution = mutate (Solution); 
      Next; 
   Next; 
End. 

 

5.1.2 PSO-I (Basic algorithm) 
In this section, the structure of PSO-I (basic algorithm) is briefly described. The pseudocode 
of the applied PSO-I is provided in Figure 9. 

 
Fig. 9. Pseudocode for the PSO-I Algorithm (Shi and Eberhart, 1998)  
 
PSO is initialized with a group of random particles and then search for optima by updating 
each generation. In each iteration, particles are updated by following two best values. The 
first one is the location of the best solution a particle has achieved so far which referred it as 
pBest. Another best value is the location of the best solution in all the population has 
achieved so far. This value is called gBest (Shi and Eberhart, 1998). Equation (19) calculates a 
new velocity for each particle as follows. 

1 2() ( ) () ( )id id id id nd idV w V c Rand pBest x c rand nBest x           
(19) 

Where ()Rand and ()rand are two random numbers independently generated. 1c and 

2c are two learning factors, which control the influence of pBest and nBest on the search 
process. The global exploration and local exploitation abilities of particle swarm are 
balanced by using the inertia weight, w . Particles' velocities are bounded to a maximum 
velocity maxV  for managing the global exploration ability of PSO (Shi and Eberhart, 1998). 

Equation (20) updates each particle's position ( idx ) in the solution hyperspace. 
 

id id idx x V   
(20) 

 
5.1.3 PSO-II (Constriction algorithm) 
In this section, the structure of PSO-II (constriction algorithm) is expressed in a few words. 
Also the structure of PSO-II is similar to PSO-I (as illustrated in Figure 4), but in PSO-II the 
velocity for each particle is calculated according to equation (21) (Engelbrecht, 2005). 
    1 2id id id id nd idV V pBest x nBest x          (21) 

Where 

Initialize the particle population randomly 
Do 

Calculate fitness values of each particle 
Update pBest if the current fitness value is better than pBest 
Determine nBest for each particle: choose the particle with the best 
fitness value of all the neighbors as the nBest 
For each particle 

Calculate particle velocity according to (19) 
Update particle position according to (20) 

While maximum iterations or minimum criteria is not attained 
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Equation (22) is employed by considering the constraints that 4  and  0,1k . By 

employing the constriction approach under above mentioned constraints, convergence of 
the swarm to a stable point is guaranteed. The exploration and exploitation abilities of the 
algorithm are controlled by the parameter of equation (22): k (Engelbrecht, 2005). 
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Table 1. Problem inctances 

 
5.2 Test Problems 
To validate the proposed model and the proposed algorithm, various test problems are 
examined. The experiments are implemented in two folds: first, for small-sized problems, 
the other for large-sized ones. For both of these experiments, the values of   and   are 
equal to 1; the processing time for all parts on the all machine are uniformly generated in 
range [10, 100]. The problem instances are randomly generated as Table 1. 

 
5.3 Parameters selection 
For tuning the algorithms, extensive experiments were accomplished with different sets of 
parameters. In this section, we only summarize the most significant findings: 
Genetic algorithm 
No of Generation, Population Size, Crossover Rate (Linear order Crossover) and Mutation 
Rate (Inversion Mutation) for the small-sized problems were set to 50, 50, 1.0, and 0.2, 
respectively; and for the large-sized problems were set to 100, 100, 1.0 and 0.2, respectively. 
PSO-I algorithm 
No of Generation, Swarm Size, Learning factors ( 1c  and 2c ), and maxV for the small-sized 
problems were set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problems were 
set to 100, 100, 2, 2, and 3. The inertia weight for all problem inctances was set to 1.4 that 
linearly decreases to 0.9 in each iteration. 
PSO-II algorithm 

www.intechopen.com



A New Hybrid Particle Swarm Optimization Algorithm to  
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 41

 

 

 
2

2 4

k
  


  

 
(22) 

With 
 

1 2     (23) 

 
1 1 ()c Rand    (24) 

 
2 2 ()c rand    (25) 

Equation (22) is employed by considering the constraints that 4  and  0,1k . By 

employing the constriction approach under above mentioned constraints, convergence of 
the swarm to a stable point is guaranteed. The exploration and exploitation abilities of the 
algorithm are controlled by the parameter of equation (22): k (Engelbrecht, 2005). 

 
Small-sized problem Large-sized problem 

No. Of 
Parts 

Problem 
Number 

Problem 
Condition No. Of Parts Problem 

Number 
Problem 

Condition 
5 

1 iii cba   
50 

22 iii cba 
 

2 iii bca   23 iii bca 
 

3 iii cab   24 iii cab 
 

4 iii acb   25 iii acb 
 

5 iii bac   26 iii bac 
 

6 iii abc   27 iii abc 
 

7 Unconditional 
case 28 Uncondition

al case 
10 

8 iii cba   
75 

29 iii cba 
 

9 iii bca   30 iii bca 
 

10 iii cab   31 iii cab 
 

11 iii acb   32 iii acb 
 

12 iii bac   33 iii bac 
 

 

13 iii abc   34 iii abc 
 

14 Unconditional 
case 35 Uncondition

al case 
15 

15 iii cba   
100 

36 iii cba 
 

16 iii bca   37 iii bca 
 

17 iii cab   38 iii cab 
 

18 iii acb   39 iii acb 
 

19 iii bac   40 iii bac 
 

20 iii abc   41 iii abc 
 

21 Unconditional 
case 42 Uncondition

al case 
Table 1. Problem inctances 

 
5.2 Test Problems 
To validate the proposed model and the proposed algorithm, various test problems are 
examined. The experiments are implemented in two folds: first, for small-sized problems, 
the other for large-sized ones. For both of these experiments, the values of   and   are 
equal to 1; the processing time for all parts on the all machine are uniformly generated in 
range [10, 100]. The problem instances are randomly generated as Table 1. 

 
5.3 Parameters selection 
For tuning the algorithms, extensive experiments were accomplished with different sets of 
parameters. In this section, we only summarize the most significant findings: 
Genetic algorithm 
No of Generation, Population Size, Crossover Rate (Linear order Crossover) and Mutation 
Rate (Inversion Mutation) for the small-sized problems were set to 50, 50, 1.0, and 0.2, 
respectively; and for the large-sized problems were set to 100, 100, 1.0 and 0.2, respectively. 
PSO-I algorithm 
No of Generation, Swarm Size, Learning factors ( 1c  and 2c ), and maxV for the small-sized 
problems were set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problems were 
set to 100, 100, 2, 2, and 3. The inertia weight for all problem inctances was set to 1.4 that 
linearly decreases to 0.9 in each iteration. 
PSO-II algorithm 

www.intechopen.com



S
w

arm
 R

obotics, From
 B

iology to R
obotics

42 N
o of G

eneration, Sw
arm

 Size, Learning factors (
1 c and 

2
c

), and 
m

ax
V

for the sm
all-sized 

problem
s w

ere set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problem
s w

ere 
set to 100, 100, 2, 2, and 3. For all problem

 inctances, k
 w

as set to 0.5. 
H

PSO
 algorithm

 
N

o of G
eneration, Sw

arm
 Size, Learning factors (

1 c and 
2
c

), and 
m

ax
V

for the sm
all-sized 

problem
s w

ere set to 50, 50, 2, 2, and 5, respectively; and for the large-sized problem
s w

ere 
set to 100, 100, 2, 2, and 5, respectively. M

utation Rate, Best Set size, C
lone size, and F for all 

problem
 inctances w

ere set to  0.1, 7, 5, and 3, respectively. The inertia w
eight for all 

problem
 inctances w

as set to 1.4 that linearly decreases to 0.9 in each iteration. 

 5.4 N
um

erical results  
In this section, the proposed H

PSO
 is applied to the test problem

s, and its perform
ance is 

com
pared w

ith above m
entioned benchm

ark algorithm
s. Each algorithm

 w
as executed for 

15 tim
es and the m

ean results w
ere calculated. The num

erical results for various test 
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OFVa Time OFV Time OFV Time OFV Time OFV Time Ave. STD Ave. STD Ave. STD Ave. STD 

1 483 <1 483 0 <1 483 0 <1 483 0 <1 483 0 <1 
2 435 <1 435 0 <1 435 0 <1 435 0 <1 435 0 <1 
3 363 <1 363 0 <1 363 0 <1 363 0 <1 363 0 <1 
4 459 <1 459 0 <1 459 0 <1 459 0 <1 459 0 <1 
5 454 <1 458 0 <1 458 0 <1 458 0 <1 458 0 <1 
6 404 <1 404 0 <1 404 0 <1 404 0 <1 404 0 <1 
7 321 <1 323 0 <1 323 0 <1 323 0 <1 323 0 <1 
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21 1260 7200c 1145.9 18.9 1 1181.5 13.1 1 1178 13.9 <1 1123.6 14.1 2.8 

a Objective Function Value 
b Standard Deviation 
c denotes that the Lingo interrupted after this time and the best achieved value was reported 
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As shown in Tables 2 and 3, the proposed HPSO is superior to the benchmark algorithms in 
the most test problems.  
As illustrated in Tables 2 and 3, the proposed HPSO consumes more computational time 
than the benchmark algorithms. Because of the structure of the proposed HPSO, it can 
search smartly more regions of the search space that results in better solutions. Thus, this 
higher value of computational time is reasonable. 

 
6. Conclusions 

This chapter developed a new mathematical model for a cyclic multiple-part type three-

machine robotic cell problem under 6S  robot movement policy that minimizes the cycle 
time. The developed model is based on Petri nets and provides a new method to calculate 
cycle times by considering waiting times. It was proved that calculating cycle time under 

6S  policy is unary NP-complete. Hence, this chapter proposed a new hybrid particle 
swarm optimization (HPSO) algorithm to tackle the problem. To validate the developed 
model and solution algorithm, various test problems with different sizes were randomly 
generated and the performance of the HPSO was compared with three benchmark 
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm), 
and PSO-II (constriction Particle Swarm Optimization algorithm). The numerical results 
showed that the proposed HPSO outperforms the benchmark algorithms in the most 
problems, especially for large-sized problems. 
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As shown in Tables 2 and 3, the proposed HPSO is superior to the benchmark algorithms in 
the most test problems.  
As illustrated in Tables 2 and 3, the proposed HPSO consumes more computational time 
than the benchmark algorithms. Because of the structure of the proposed HPSO, it can 
search smartly more regions of the search space that results in better solutions. Thus, this 
higher value of computational time is reasonable. 

 
6. Conclusions 

This chapter developed a new mathematical model for a cyclic multiple-part type three-

machine robotic cell problem under 6S  robot movement policy that minimizes the cycle 
time. The developed model is based on Petri nets and provides a new method to calculate 
cycle times by considering waiting times. It was proved that calculating cycle time under 

6S  policy is unary NP-complete. Hence, this chapter proposed a new hybrid particle 
swarm optimization (HPSO) algorithm to tackle the problem. To validate the developed 
model and solution algorithm, various test problems with different sizes were randomly 
generated and the performance of the HPSO was compared with three benchmark 
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm), 
and PSO-II (constriction Particle Swarm Optimization algorithm). The numerical results 
showed that the proposed HPSO outperforms the benchmark algorithms in the most 
problems, especially for large-sized problems. 
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