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1. Introduction

The quantum-cascade laser is an unique source of the THz laser radiation operated in
continuous-wave and pulse regimes [Gmachl et al (2001)]. History of these lasers counts more
than ten years. However, many aspects of the carrier transport and interaction with light field
are still unclear. Very important question concerning physics of the quantum-cascade struc-
tures (QCS) is the following: which kind of transport, coherent or incoherent, is prevailed in
QCS? There were many discussions about the problem, and several attempts to estimate kind
of transport were successful especially [Iotti et al (2001)],[Weber et al (2009)]. The answer on
this question depends on conditions of QCS operation. For example, the coherent electron
transport is of interest in the non-equilibrium regime at femtosecond and picosecond time
intervals. The incoherent transport is prevalent at the high excitation level in the stationary
quasi-equilibrium regime. In both cases, the electron transport influence on optical properties
of the device. In this connection, the development of the theory for coherent and incoherent
electron transport regimes, included many-body effects and light-matter interactions in QCS,
is of actual interest.
In this chapter, we provide modeling of optical and transport properties of QCS uncover-
ing influence of the electron transport on optical characteristics. Lasing, light absorption and
spontaneous emission in QCS are accompanied and affected by many complicated transport
processes such as electron diffusion, drift, tunneling, recombination, generation, capture and
escape mediated by electron-electron, electron-phonon and electron-photon scattering events
[Piprek (2005)]. Most of these effects can be treated within the quasi-equilibrium approxi-
mation. However, the approximation is not valid at ultrashort time intervals which are of
interest nowadays due to rapid development of the femtosecond spectroscopy for semicon-
ductor nanostructures [Rulliere (2005)]. Other area demanding consideration of ultra-fast
non-equilibrium processes is THz emitting of QCS in the pulse regime; that is under rapid
development currently due to promising applications in fundamental and applied science
[Lee (2009)].
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Fig. 1. Coherent electron transport between two quantum wells with subband structure via
tunneling

To predict output optical characteristics of the quantum-cascade lasers, it is necessary to simu-
late dynamics of electrons, holes and photons in the non-equilibrium state. The peculiarity of
QCS is that the system is related to the open quantum systems. Moreover, the structure is char-
acterized by pronounced non-equilibrium regime of operation. There are several approaches
to modelling the transport in such a system. One of them is based on non-equilibrium Green’s
functions [Lee et al (2002)], another one is based on the density matrix theory [Iotti et al (2001)].
These two are not the only approaches to modeling transport in QCS. For example, rate equa-
tions are widely used in connection to this problem [Vukmirović (2005)]. However, these two
methods are most rigorous and controllable. They can be realized at various levels of approx-
imation and allow to estimate approximation error. In ideal case, they do not require any
fitting parameter and give results ab initio. Our consideration in this chapter is based on the
density matrix theory. As a result, we will derive kinetic equations describing dynamics of
carriers, polarization and inter-quantum-well tunneling currents for non-equilibrium regime
of the operation, and then, we discuss main features of transport and optical properties of
QCS.

2. Coherent and incoherent transport

2.1 Coherent transport

In this section, we will represent theoretical instruments proper for high accuracy modeling
of the electron transport in QCS. Up to date, many efforts have been made and much progress
has been achieved in modeling of the electron transport in QCS. Especially, it concerns station-
ary operating regime. Recently, advance in modeling of femtosecond optical response of QCS
has been reached [Iotti et al (2001)], [Weber et al (2009)]. Most successful approaches to elec-
tron transport modeling have been realized applying the density matrix theory [Meier (2007)].
This theory is especially suitable for the large open quantum systems with many-body inter-
actions. Therefore, we apply exactly the density matrix theory to realize systematic treatment
of the coherent and incoherent electron transport in semiconductor nanostructures.
Here, the simplest model heterostructure consisting of two interacting quantum wells is con-
sidered to make statements compact and clear. The sketch of energy levels for such a struc-
tures is shown in Fig. 1.
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Electron states in each quantum well are characterized by single-band structure when quan-
tum wells are uncoupled. The band structure, shown in Fig. 1(b), can be analytically expressed
as:

ε1,k = E1 +
h̄2k2

2m1
, (1)

ε2,k = E2 +
h̄2k2

2m2
= E1 + ∆ +

h̄2k2

2m2
. (2)

The electron in each quantum well is characterized by continuous energy spectra and has
states |1, k〉 in one quantum well and |2, k〉 in another one. The number in the ket vector
corresponds to the subband kind and the letter is the in-plane electron wave vector limited
by the 1st Brillouin zone (axial approximation is applied [Haug (2004)]). States should satisfy
completeness conditions [Meier (2007)]:

1̂ = ∑
j

∑
k

|j, k〉〈k, j|. (3)

In practice, each quantum well and barrier layer can be made of different semiconductor ma-
terials. This means that each quantum well can be characterized by own width, depth and
effective masses. That is why, we consider subband dispersion curves which are shifted rela-
tive each other by some value ∆ and characterized by different curvature.
It is well known that, if one turns on the interaction between quantum wells, the quantum
states of whole system are changed and each state of the system is splitted into bound and
antibound state. That is the picture for the stationary regime. However, the case of interest
is the time evolution of the system that is prepared in some non-stationary state in the initial
time moment. Even though quantum system is prepared in some defined stationary state,
following artificial modification of the system (by measurement event for example) can change
the energy spectrum and the ininial state is not stationary anymore. This leads to nontrivial
dynamical evolution of observables. Considered here open quantum systems are interacted
with environment that leads to modifications of its parameters and dynamical evolution of
observables. Therefore, we focus on the case when the sysatem is prepared in the stationary
state of noninteracted quantum wells with following turning on of interactions.
The Hamiltonian for considered model system can be represented in the form:

Ĥ = Ĥ1 + Ĥ2 + Ĥint, (4)

here: Ĥ1 is Hamiltonian for the first quantum well, Ĥ2 is Hamiltonian for the second quantum
well and Ĥint describes the interaction between quantum wells.

Acting by the unity operator from left and right sides on the Hamiltonian, one gets:

Ĥ = 1̂ · Ĥ · 1̂ = ∑
k

(

ε1,k|1, k〉〈k, 1|+ ε2,k|2, k〉〈k, 2|
)

+ ∑
i �=j

∑
k

hij|i, k〉〈k, j|, (5)

where: hij is the coupling coefficient describing the intensity of interactions between quantum
wells.

As far as considered structure is the open quantum system, we use trusted instrument from
the quantum statistical physics that is the density operator:

www.intechopen.com



Semiconductor	Technologies256

0

3.0

1.0

2.0

2.5

1.5

0.5

0

0.05

0.1

0.15

0.2

0.25

Wave vector, (nm  )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n
0.70.60.50.40.30.1

(a)

0

3.0

1.0

2.0

2.5

1.5

0.5

0.70.60.50.40.30.1
0

0.05

0.1

0.15

0.2

0.25

Wave vector, (nm  )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

(b)

Fig. 2. Time-dependent electron distribution function for a) the left quantum well and b) right
quantum well having the same band structure

ρ̂ = |t〉〈t|. (6)

The density operator can be represented in the matrix form using defined system of basis
functions. As an example, we build matrix representation of the density operator using basis
|j, k〉 defined above:

ρk = 〈k, i|ρ̂|j, k〉 =

(

ρ11 ρ12

ρ21 ρ22

)

=

(

|〈k, 1|t〉|2 〈k, 1|t〉〈t|2, k〉
〈k, 2|t〉〈t|1, k〉 |〈k, 2|t〉|2

)

. (7)

Diagonal elements describe the probability of finding the electron at the time t in some de-
fined energy band. Nondiagonal elements corresponds to some kind of correlations which
give probability of the particle transition between states at the time t. The non-diagonal ma-
trix elements are related to microscopic polarization or currents. In turn, the polarization is
directly related to the electrical current according to classical electrodynamics as well as quan-
tum one.
Time evolution of the density operator is defined by the Liouville-von Neumann equation
[Meier (2007)]:

ih̄
∂ρ

∂t
= [H, ρ̂]+. (8)

In the Heisenberg representation, this equation is coincided with the Heisenberg equation
for time-dependent operators. Eq. 8 can be written related to each element of the density
matrix using quantum-mechanical averaging with the basis defined above . Resulting system
of equations reads:

ih̄
∂ρ11,k

∂t
= h12,k

(

ρ21,k − ρ12,k

)

, (9)

ih̄
∂ρ22,k

∂t
= −h12,k

(

ρ21,k − ρ12,k

)

, (10)

ih̄
∂ρ12,k

∂t
=

(

ε2,k − ε1,k

)

ρ21,k + h12,k.
(

ρ22,k − ρ11,k

)

(11)
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Fig. 3. Time-dependent electron distribution function for a) the left quantum well and b) right
quantum well having bands shifted on 30 meV relative to each other

These are ordinary differential equations also known as kinetic equations. The number of
equations is equal 3Nk, where Nk is the number of discretization points in k-space. Eqs. (9)-
(11) are written for some defined point k in the Brillouin zone. To analyze electron transport
in our simple model system, we should solve this system of equations analytically or numer-
ically. Here, we choose the second way to show general approach to such a mathematical
problem. The fourth order Runge-Kutta method is applied to solve the problem. This method
is stable and accurate enough to satisfy our requirements on CPU time and computational ac-
curacy. As far as we deal with first order ordinary differential equations, the initial condition
should be added. We assume that, at the initial time, all electrons are located in the 1st nonin-
teracting quantum well with some defined distribution function. Initial distribution is chosen
to be the Fermi-Dirac distribution with some defined temperature and Fermi level (T = 300
K and E f = ε1,0). Solutions of kinetic equations are time dependencies of microcurrents or
polarizations and electron distribution functions for each band and each value of the in-plane
wave vector k. At the initial time, interaction between quantum wells is turning on that is
reflected in the coupling coefficient:

h12,k =

{

0, t < 0;

const, t ≥ 0.
(12)

Let us consider first the effect of band structure on electron transport. Solving of the equa-
tions for two identical subbands, one obtains the result shown in Fig.2. Electrons oscillate
between quantum wells through the barrier. The frequency of oscillations is determined only
by the coupling coefficient. At some instant times, all electrons totaly depopulate the band in
a quantum well transiting to another one.
In the case, when bands have the same shape and are shifted relative to each other, the electron
distribution function is characterized by the time dependence shown in Fig. 3. The mismatch
of energy levels leads to decreasing of electrons amount passing through the barrier. Most
of particles do not leave the state occupied at the initial time moment. In particular case
represented in Fig. 3, band mismatch is equal 30 meV and the maximal fraction of passed
particles amounts 10 %.
Also, changes of the oscillation frequency is observed. Thus, the frequency of oscillations is
dependent on the band mismatch as well as coupling coefficient. Explicit dependence could be
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Fig. 4. Time-dependent electron distribution function for a) the left quantum well and b) right
quantum well having bands with different effective masses

derived from equations (9)-(11). This can be realized by Fourier transformation of equations
with following algebraic manipulations. The result reads:

ω =
1

2h̄

√

∆2 + 4h12,k, (13)

here ∆ is the band mismatch shown in Fig.1.

Another approach to obtaining this result is solving of the stationary Schrödinger equation for
coupled quantum wells. The oscillation frequency is proportional to splitting of energy levels
caused by resonant tunneling [Meier (2007)].
As far as each quantum well can be characterized by own width, depth and effective masses,
we will provide investigation of the coherent electron transport between bands with different
curvature of dispersion dependencies. As an example, let us consider two bands shown in
Fig. 1(b) having parameters E1 = 0.03, E2 = 0, m1 = 5m and m2 = m.
Band dispersion curves are crossed at the point k = 0.27nm−1. The most part of electrons are
propagated with this non-zero in-plane wave vector and oscillation frequency is dependent
on the electron in-plane wave vector (see Fig. 4(b)). The lowest frequency corresponds to
minimal gap between bands. That is in agreement with formula (13).

2.2 Incoherent transport

All cases of electron transport considered above are related to the coherent electron transport
due to any decoherence effect has not been included in the consideration yet. Decoherence
can be caused by scattering events leading to relaxation into the stationary equilibrium state.
Thus, one should include additional term in the Hamiltonian (4) describing scatterings.

Ĥ = Ĥ1 + Ĥ2 + Ĥint + Ĥscatt. (14)

It is necessary to note that the single-particle formalism used above is not applicable directly
to scattering processes, because such processes are essentially many-body effects. However,
some approximation can conserve the problem be single-particle. For example, one can apply
the mean-field approximation to the many-body problem. This approach is often used in

0

3.0

1.0

2.0

2.5

1.5

0.5

0

0.05

0.1

0.15

0.2

0.25

Wave vector, (nm  )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

0.70.60.50.40.30.1
0

1.0

3.0

0

0.1

0.2

Wave vector, (nm  )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

0.70.60.50.40.30.1

0.25

0.15

0.05

2.0

0

1.0

3.0

0

0.1

0.2

Wave vector, (nm )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

0.70.60.50.40.30.1

0.25

0.15

0.05

2.0

0.3

0.25

0.2

0.05

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.15

Time (ps)

Pr
ob

ab
ili

ty
 o

f e
le

ct
ro

n
   

   
 fi

nd
in

g 
(a

.u
.) }

}

1 QW

2 QW

www.intechopen.com



Electron	transport	effect	on	optical	response	of	quantum-cascade	structures 259

0

1.0

2.0

1.5

0.5

0

0.1

0.2

Wave vector, (nm  )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

0.70.60.50.40.30.1

0.25

0.15

0.05

0

1.0

2.0

1.5

0.5

0

0.1

0.2

Wave vector, (nm  )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

0.70.60.50.40.30.1

0.25

0.15

0.05

0

3.0

1.0

2.0

2.5

1.5

0.5

0

0.05

0.1

0.15

0.2

0.25

Wave vector, (nm  )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n
0.70.60.50.40.30.1

(a)

0

1.0

3.0

0

0.1

0.2

Wave vector, (nm  )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

0.70.60.50.40.30.1

0.25

0.15

0.05

2.0

(b)

0

1.0

3.0

0

0.1

0.2

Wave vector, (nm )-1

Ti
m

e 
(p

s)

Ca
rr

ie
rs

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n

0.70.60.50.40.30.1

0.25

0.15

0.05

2.0

(c)

0.3

0.25

0.2

0.05

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.15

Time (ps)

Pr
ob

ab
ili

ty
 o

f e
le

ct
ro

n
   

   
 fi

nd
in

g 
(a

.u
.) }

}

1 QW

2 QW

(d)

Fig. 5. Time evolution of the electron distribution function for a) γ = 10ps, b) γ = 1.5ps and
c) γ = 0.5ps and d) k = 0, band mismatch ∆ = 0.03eV and dephasing times taken from the
previous case.

connection with phenomenological relaxation and dephasing times describing influence of
many-body effects on single-particle equations.
Formally, effect of the scattering term in (14) can be represented in Eqs. (9)-(11) by additional
terms at the right side of kinetic equations.

ih̄
∂ρ11

∂t
= h12 (ρ21 − ρ12) +

∂ρ11

∂t

∣

∣

∣

∣

scatt

, (15)

ih̄
∂ρ22

∂t
= −h12 (ρ21 − ρ12) +

∂ρ22

∂t

∣

∣

∣

∣

scatt

, (16)

ih̄
∂ρ12

∂t
= (ε2 − ε1) ρ21 + h12 (ρ22 − ρ11) +

∂ρ12

∂t

∣

∣

∣

∣

scatt

, (17)

These additional terms can be computed ab initio using many-body theory and a set of ap-
proximations which will be represented in the next section. Here, we use phenomenological
relaxation and dephasing times to investigate many-body effects. In this case, Eqs. (15)-(17)
are modified as follows:
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Fig. 6. Microscopic currents for a) γ = 10ps, b) γ = 1.5ps and c) γ = 0.5ps

ih̄
∂ρ11

∂t
= h12 (ρ21 − ρ12)−

i(ρ11 − f1)

τ
, (18)

ih̄
∂ρ22

∂t
= −h12 (ρ21 − ρ12)−

i(ρ22 − f2)

τ
, (19)

ih̄
∂ρ12

∂t
= (ε2 − ε1) ρ21 + h12 (ρ22 − ρ11)−

iρ12

γ
. (20)

here γ is the dephasing time, τ is the relaxation time, f1 and f2 are stacionary electron distri-
butions in each quantum well.

Relaxation and dephasing times can be determined from experimental data (optical pump-
probe experiments [Vu (2006)]). If the total number of electrons is time-independent, the re-
laxation times tend to infinity and the last terms in Eq.(18) and (19) can be neglected. This
is the case considered in this section. Thus, we will investigate the effect of dephasing only.
Time dependencies of electron distribution function are shown in Fig. 5 for different dephas-
ing times. Corresponding microscopic currents are shown in Fig. 6.
Microscopic currents reflects the probability of electron transition from one quantum well to
another. Dephasing leads to decay of oscillations and becoming of the stationary distribution
of electrons. If dephasing is absent (dephasing time is very high), the electron transport is
pure coherent (see Fig. 5(a)). In Fig. 5(c), another limit case is shown when the dephasing
time is very small. In this case, the transient process require few time and stationary regime
becomes very fast. The transient process occurs because the quantum system is prepared in
non-stationary state at the initial time, and it tends to the stationary state. Scattering events
allow energy quanta exchange between particles leading to the relaxation into the stationary
state. As follows from Fig. 6(c), particle exchange between quantum wells occurs at short time
interval when the dephasing time is great.
The evolution of the electron distribution function for zero in-plane wave vector (k=0) is
shown in Fig. 5(d) for the case when bands are shifted relative each other by 30 meV. In
this case, dephasing times are the same as in previous examples. Dephasing leads to leveling
of electron concentration in each quantum well and becoming of the stationary state. Oscilla-
tions of the electron distribution function are decayed with increasing of the dephasing time.
The result of dephasing absence is endless oscillations of the electron distribution function
and asymmetrical population of subbands.
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3. Optical response

3.1 Model structure and its Hamiltonian

As we did in the previous section, we introduce here the new model structure that reflects
main effect in the QCS and is still simple enough for modeling and analysis. Effects of interest
are light-matter interactions together with transport processes in the structure.
In this section, we focus our attention on optical processes in the QCS with vertical transitions
[Faist (1995)]. Term "vertical transitions" means that photon assisted tunneling is excluded
from the consideration. The QCS have N optical-sensitive active regions which interact with
each other via exchanging of electrons through injectors. The Hamiltonian of the system reads:

H =

N

∑
j=1

Hj +

N−1

∑
j=1

Hj,j+1 + HL + HR + HL,1 + HN,R. (21)

The first sum in RS contains electron kinetic energy, electron scattering and light-matter in-
teraction terms for all active regions. The second sum describes electron transport through
injectors. The term HL and HR corresponds to the energy of regions terminated considered
planar structure at the both sides. Finally, terms HL,1 and HN,R describe exchanging of elec-
trons between the structure and terminal regions. Such expression of Hamiltonian is quite
natural if all optical transitions appear inside active regions. This is our case because the QCS
with vertical transitions is under consideration [Faist (1995)]. The terminal regions shown in
Fig. 7(c) as circles is implemented artificially. These regions include the whole rest space of the
system except some considered region been of interest. Necessity of such regions is caused
by influence of environment in the open quantum system. Modeling of all periods of QCSs
requires much computational resources. So, the second reason of terminal regions applica-
tion is the approximation allowing to consider dynamical behavior of electrons only in one or
several periods. In this case, whole rest structure is assumed to be in the quasi-equilibrium
state, and it is contained in the terminal regions. We use approximation that the terminal re-
gions are characterized by some kind of stationary distribution function. We call them bathes
in analogy to statistical mechanics. Alternative approach is application of periodic boundary
conditions [Lee et al (2002)].
In this section, we consider only one period of the QCS. Corresponding model structure is
shown in Fig. 7(c). It contains only one active region surrounded by two injectors and two
terminal regions. The Hamiltonian for the model structure consist of five terms in the simplest
case, when many-body effects are not considered:

H = HL + HR + Ha + HLa + HaR, (22)

where HL is the energy of the left reservoir, HR is the energy of the right reservoir, Ha is
the energy of the active region, HLa and HaR describe transitions between reservoirs and the
active region.

In the active regions, light-matter interactions proceed involving electron-phonon, electron-
electron and electron-impurity scatterings. Thus, we should include into consideration many-
body effects to simulate the optical response of the semiconductor media correctly. The ap-
proximations that all many-body effects appear in the active region is applied. In this case,
the Hamiltonian for the active region reads:

Ha = Hkin + HI + Hph−el + Hel−el + Hel−imp, (23)
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Fig. 7. Electron transitions (a), density matrix (b) and configuration (c) for the model structure

where: Hkin is the kinetic energy term; HI is the light-matter interactions term; Hph−el is the
photonelectron scatterings term; Hel−el is the electron-electron interactions term; Hel−imp is
the electron impurities scatterings term.

In this chapter, we consider electron-electron interactions at the Hartree-Fock level of approx-
imations. All other interactions are taken into account phenomenologically via the dephasing
time. In the frame of many body theory, each term in (22) and (23) is represented as a prod-
uct of field operators. They could be expanded in some set of single-particle basis functions.
Expansion coefficients are creation/annihilation operators. Thus, if the basis is known, the
problem can be formulated in terms of creation/anihilation operators:

Hkin = ∑
i,k

εi,ka†
i,kai,k , (24)

HL = ∑
κ1

εκ1 L†
κ1

Lκ1 , (25)

HR = ∑
κ2

εκ2 R†
κ2

Rκ2 , (26)

HLa = ∑
i,k,κ1

(

hi,k,κ1
L†

κ1
ai,k + h

κ1,i,ka†
i,k Lκ1

)

, (27)

HaR = ∑
i,k,κ2

(

hi,k,κ2
R†

κ2
ai,k + h

κ2,i,ka†
i,kRκ2

)

, (28)

HI = ∑
k

(

d12a†
1,ka2,k + d∗21a†

2,ka1,k

)

, (29)
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Hel−el = ∑
i, j, i′ , j′ ,

k, k′ , q �= 0

V
i,j,i′ ,j′

q a†
j′ ,k′+qa†

i′ ,k−qai,kaj,k′ . (30)

here:
a†

i,k is the creation operator for the in-plane wave vector k and subband i in the active

region
ai,k is the annihilation operator for the in-plane wave vector k and subband i in the active

region

L†
κ1

is the creation operator for the in-plane wave vector κ1 in the left bath
Lκ1 is the annihilation operator for the in-plane wave vector κ1 in the left bath

R†
κ2

is the creation operator for the in-plane wave vector κ2 in the right bath
Rκ2 is the annihilation operator for the in-plane wave vector κ2 in the right bath
d12 is the dipole matrix element
hi,k,κ1

is the coupling coefficient between the active region and left bath
hi,k,κ2

is the coupling coefficient between the active region and right bath

V
i,j,i′ ,j′

q is the Coulomb potential
k is the in-plane wave vector for the active region
κ1 is the in-plane wave vector for the left bath
κ2 is the in-plane wave vector for the right bath
q is the wave vector q = |k − k′|
i, j, i′, j′ are subband indexes for the active region, i, j, i′, j′ = 1, 2

In the active region, we assume presence of only two subbands while bathes are characterized
by single bands. Therefore, states in the active region have the quantum number, additional
to wave vector, which is subband index i = 1, 2. Coupling coefficients defines properties of
the transition regions between the active region and bathes. Such a transition region can be
single injection barrier separating the active region and injector. Also, the whole injector can
be considered as an effective barrier. The width for such a barrier is dependent on the en-
ergy and momentum of propagated particles. This approximation can be applied if electrons
propagate through the injector in the ballistic transport regime (without inelastic scattering).
The transmission dependence on the electron energy and momentum have been computed in
[Klymenko et al (2008)] for layered structures in the ballistic limit.
The density matrix elements can be represented using creation and annihilation operators:

ρij,k = 〈a†
i,kaj,k〉. (31)

The structure of the density matrix is represented in Fig. 7(a) and 7(b). Matrix elements at the
main diagonal are probabilities of electron finding at some defined state. In other words, these
elements are electron distribution functions for subbands in the active region and bathes. El-
ements at upper and lower subdiagonals describe transitions between subbands. The density
matrix has tridiagonal structure due to the chain configuration of the transitions. It means
that electron can not transit from one bath to another one avoiding the active region. That
is undoubtedly an approximation and the probability of such an even exists. However, the
approximation is good enough that is proved by computations of probabilities for these tran-
sitions. Squares in Fig. 7(b) indicate density matrix elements corresponding to the transitions
between the active region and bathes. Circles correspond to transitions between subbands
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within the active region. Hereafter, non-zero density matrix elements are expressed in terms
of creation/anihilation operators:

Pk = 〈a†
2,ka1,k〉, (32)

ni,k = 〈a†
i,kai,k〉, (33)

nL
κ1 = 〈L†

κ1Lκ1〉, (34)

nR
κ2 = 〈R†

κ2Rκ2〉, (35)

Jκ1,i,k = 〈L†
κ1ai,k〉, (36)

Jκ2,i,k = 〈R†
κ2ai,k〉. (37)

In consecutive order, these are the microscopic polarization, electron distribution function in
the active region, electron distribution function in the left and right bath respectively, and
microscopic polarizations caused by currents from the left bath to the active region and from
the active region to the right bath.
To obtain information about the time evolution of any operator product or density matrix
element, one should write and then solve the system of Heisenberg equations.

− ih̄
Pk

dt
= 〈

[

H, a†
2,ka1,k

]

〉, (38)

− ih̄
dni,k

dt
= 〈

[

H, a†
i,kai,k

]

〉, (39)

− ih̄
nL

κ1

dt
= 〈

[

H, L†
κ1Lκ1

]

〉, (40)

− ih̄
nR

κ1

dt
= 〈

[

H, R†
κ1Rκ1

]

〉, (41)

− ih̄
Jκ1,i,k

dt
= 〈

[

H, L†
κ1ai,k

]

〉, (42)

− ih̄
Jκ2,i,k

dt
= 〈

[

H, R†
κ2ai,k

]

〉. (43)

3.2 Kinetic equations

After evolution of commutators in (38)-(43), one gets following equations:

∂Pk

∂t
= −i

(

e2,k − e1,k

)

Pk − i
(

n2,k − n1,k

)

ωR,k +
∂Pk

∂t

∣

∣

∣

∣

scatt

, (44)

∂n2,k

∂t
= −2Im

(

ωR,kP∗
k

)

+ 2Im
(

hi,k,κ1 Jκ1,i,k

)

+
∂n2,k

∂t

∣

∣

∣

∣

scatt

, (45)

∂n1,k

∂t
= −2Im

(

ωR,kPk

)

+ 2Im
(

hi,k,κ2 Jκ2,i,k

)

+
∂n1,k

∂t

∣

∣

∣

∣

scatt

, (46)

Jκ1,i,k

dt
= −i

(

eL,k − e2,k

)

Jκ1,i,k −
ihi,k,κ1

h̄

(

nL
κ1 − n2,k

)

+
∂Jκ1,i,k

∂t

∣

∣

∣

∣

scatt

, (47)

Jκ2,i,k

dt
= −i

(

e1,k − eR,k

)

Jκ2,i,k −
ihi,k,κ2

h̄

(

n1,k − nR
κ2

)

+
∂Jκ2,i,k

∂t

∣

∣

∣

∣

scatt

, (48)
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nL
κ1 = f L, (49)

nR
κ2 = f R. (50)

ei,k =
εi,k

h̄
−

1

h̄ ∑
k′ �=k

Viiii
|k′−k|ni,k′ (51)

ωR,k =
d12E(z, t)

h̄
+

1

h̄ ∑
k′ �=k

Viiii
|k′−k|Pk′ (52)

here ei,k is the renormalized transition frequency; ωR,k is the renormalized Rabi frequency;
eR,k = εR,k/h̄ and eL,k = εL,k/h̄

Equations (49) and (50) reflect approximation of the stationary carrier distribution in bathes.
Thus, the kinetic equation is not necessary, and Fermi-Dirac distribution functions can be
uses for the approximation. The expressions (51) reflects the renormalization of the transi-
tion frequency due to exchange interactions. Also, electron-electron interactions lead to the
renormalization of the Rabi frequency represented by Eq. (52). Equations (44)-(46) have the
form similar to the semiconductor Bloch equations [Haug (2004)]. Dissimilarities lie in addi-
tional terms describing electron transport between the active region and bathes. Additional
equations are appeared to provide self-consistent treatment of the electron transport.
As in the previous section, we use the fourth order Runge-Kutta method to solve the problem
numericaly [Chow (1999)].

3.3 Band structure, single-particle optical response in quasi-equilibrium

Inclusion of the strain effects in the consideration leads to strong modification of the electron
dispersion as well.
Band structures of both interband and intersubband heterostructures are schematically shown
in Fig.8. The heterostructures of both kinds have additional subband structure inside the al-
lowed bands. In the interband structures the optical radiation is a result of electron transitions
from the conduction subband to the valence subband. As a result, the minimal quantum of
the energy is limited by the band gap of the quantum-well material. Curvatures of the bands
involved in the transition have very different magnitudes and, what is more important, dif-
ferent senses of curvature. It results in the joint density of states which is stepped one in this
case.
Optical transitions in the quantum-cascade heterostructures occur between subbands within
an allowed band (see Fig. 8(b)). In contrast to the interband heterostructures, the subband
structure is governed by the conduction band offset and width of the qauntum well layer.
Minimal transition energy is not limited by the fundamental band gap and can be tailored
by a material composition of the quantum well and the thickness of the quantum-well layer.
Therefore, quantum-cascade structures are widely used to achieve lasing in THz range. The
charge carriers inside the band are characterized by the effective mass The curvature of dis-
persion curves is almost the same, and their senses of curvature are coincided. It results in
the narrow joint density of states, Fig.8(b). Although difference in the curvature of the disper-
sion curves can be small, it has great influence on the optical characteristics of the quantum-
cascade structures. We have examined three cases when subbands with different curvatures
are involved in the optical transition. They are shown schematically on Fig.9, where E f 1 and
E f 2 are quasi-Fermi levels for corresponding subband.
Different relations between effective masses for subbands leads to different absorption spec-
tra. When m1 > m2 we have h̄ω|k=0 > h̄ω|k �=0. On the contrary, we have h̄ω|k=0 < h̄ω|k �=0
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Fig. 8. Sketches of the band diagrams, band structures and joint DOS for two cases of inter-
band and intersubband transitions.

when m1 < m2. And, in the case of equal effective masses, one gets h̄ω|k=0 = h̄ω|k �=0. Fig.
10 contains calculated single-particle absorption spectra. Vertical line indicates the energy of
intersubband transition E12 at the center of the Brillouin zone without renormalization , i.e.
E12 = E1|k=0 − E2|k=0. Two important features are observed. Depending on the relation
between the effective masses in the subbands, maximum of the absorption get red- or blue-
shifted relative to the case of the equal effective masses. The value of the shift is about 20 meV,
what is very important in the THz range. Difference of effective masses leads to additional
broadening of the absorption spectrum and decreasing of its maximum comparing with the
case when effective masses are equal. Thus, the band structure with energy-dependent effec-
tive mass affects strongly on optical response of QCS.

3.4 Many-body effects within the Hartree-Fock approximation

In this section, we take quick look at many-body effects in the QCS at the Hartree-Fock level
of approximations. At this level of approximations, electron-electron interaction effects are
described in the frame of the mean-field approximation when only exchange interactions and
Rabi frequency renormalization are taking into account. Fig. 11 contains computed absorption
spectra for the quasi-equilibrium regime. Three cases have been considered: single-particle
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Fig. 9. Sketches of the band structures for various combinations of the effective masses in two
subbands involved in radiation transitions: a) m1 > m2; b) m1 < m2; c) m1 = m2.
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Fig. 10. Single-particle absorption spectra for various combinations of the effective mass in
two subbands involved into radiation transitions.

Fig. 11. Many-body effects in the optical absorption spectrum
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Fig. 12. Optical signals in pump-probe experiments. Adapted from [Weber et al (2009)].

optical response, effect of transition energy renormalization due to the exchange contribu-
tion and all many-body effects at the Hartree-Fock level of approximation including Rabi
frequency renormalization. All these cases are attended by dephasing treated phenomeno-
logically. Presented results are evidence of high importance of many-body effects which lead
to dramatical changes in absorption spectra. In Fig. 11, the dashed line marks energy gap
between subbands at the center of Brillouin zone (k = 0).
The exchange energy term causes shifting of the absorption spectra into high energies. Con-
tribution of the exchange energy term leads to decreasing of energy for electrons populat-
ing subbands. Energy reduction for each subband is proportional to its electron population.
Therefore, transition energy is increased if a lower subband contains more carriers comparing
with higher one. In the opposite case, when higher subband is more populated, the transition
energy is decreased. Both cases have been reported in papers [Mi (2005)] for the first case
and [Pereira (2004)] for the second one). That is the distinguished feature of intersubband
transitions. Energy of interband transitions is always decreased if the exchange contribution
is taking into account. Energy of intersubband transitions can be shifted in any directions
depending on subbands populations.
Hartree-Fock approximation includes the Rabi frequency renormalization represented in the
polarization equation (44). Joint action of the exchange contribution and Rabi frequency renor-
malization on the spectrum are marked by the blue line in Fig. 11. As follows from results,
Rabi frequency renormalization (also known as depolarization) leads to the occurrence of a
narrow peak in the absorption spectrum. The frequency corresponding to this peak is the
frequency of optically excited coherent collective oscillations in the electron plasma. Such
plasma colective oscillations are called the intersubband plasmons [Mi (2005)]. Theory of cou-
pled photon and intersubband plasmon was developed in [Pereira (2007)], and this theory
gives rise of new quasiparticle titled antipolariton.

3.5 Electron transport effect

The effects of the coherent transport can be observed in pump-probe experiments at the fem-
tosecond and picosecond time intervals. The pump-probe experiment consists in propagation
through the investigated media of two optical pulses shifted in time relative each other. First
pump pulse is characterized by high intensity, and it excites optically-active media. The sec-
ond pulse reads changes in the media undergoing optical absorption or gain. More details
about pump-probe techniques can be found in [Weber et al (2009)]. Fig. 12 contains results of
pump-probe optical experiments reported in [Weber et al (2009)]. The pump pulse have the
shape of the Gaussian function.
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Each subfigure corresponds to defined parameters which are the temperature and width of the
injection barrier in the QCS. Oscillations of the optical response signal at low temperature and
barrier’s width is caused by coherent electron transport between active region and injector
through the injection barrier. The decay of oscillations with increasing of temperature is effect
of many-body interactions. Scatterings leads to destroying of the coherence via dephasing.
Represented data also reflects the effect of injection barrier width on electron transport. As
have been mentioned above, the coherent electron transport is strongly dependent on the
interaction between quantum wells defined by parameters of the potential barrier. As far as
the width of barrier is increased, the interaction between quantum wells is decreased and,
therefore, the frequency of oscillations is decreased.

4. Conclusions

In this chapter, we have considered influence of the electron transport on the optical prop-
erties of quantum-cascade structures. The electron transport can be treated as evolution of
the electron distribution function in time and space. On the one hand, optical processes are
strongly dependent on this function, and, on the other hand, they cause changes of the dis-
tribution function due to radiative transitions of charge carriers. Therefore, transport and
optical processes are strongly coupled via the electron distribution function. This situation is
common for all semiconductor structures. However, the case of QCS has many particulari-
ties connected with intersubband transitions and tunneling coupling of the active regions in
neighboring cascades. At very short time intervals, electrons coherently pass from one active
region to another through injector. Depending on injectors width and structure, carriers can
propagate through whole injector without inelastic scatterings. In the oposite case, electron
from the active region makes coherent transitions to some energy level in the injector. Thus, it
has been shown that the coherent transport influence optical chacteristics at the time interval
been of order up to one picosecond. This result is confirmed by experimental data.
Our consideration is based on the density matrix theory. This approach is appropriate for
equilibrium case as well as for non-equilibrium one and open quantum systems. We have de-
rived kinetic equations describing dynamics of the electron distribution function, polarization
and tunneling microcurrents.
The single-particle band structure influences strongly the shape of optical absorption spec-
tra. Consideration of the position- and energy-dependent effective mass increases acuracy of
obtained results.
Many-body effects are relevant for all operational regimes of QCS. They determine the inho-
mogeneous broadening of spectral characteristics and their peaks position at the energy scale.
The temperature dependence of optical characteristics is caused by many-body effects.
It is necessary to provide future investigations of the interference between electron transport
and optical processes including in the consideration many-body interactions in injectors and
correlations of electrons through several periods.
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