
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322389652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

Models and Control Strategies for Visual Servoing

Nils T Siebel, Dennis Peters and Gerald Sommer
Christian-Albrechts-University of Kiel

Germany

1. Introduction

Visual servoing is the process of steering a robot towards a goal using visual feedback in a
closed control loop as shown in Figure 1. The output un of the controller is a robot movement
which steers the robot towards the goal. The state xn of the system cannot be directly ob-
served. Instead a visual measurement process provides feedback data, the vector of current
image features yn. The input to the controller is usually the difference between desired (y⋆) and
actual values of this vector—the image error vector ∆yn.

y⋆ ✲ ✐+ ∆yn ✲ Controller

Model
✲un Robot

System

xn

✛Visual
Measurement

✻

yn

−

Fig. 1. Closed-loop image-based visual servoing control

In order for the controller to calculate the necessary robot movement it needs two main com-
ponents:

1. a model of the environment—that is, a model of how the robot/scene will change after
issuing a certain control commmand; and

2. a control law that governs how the next robot command is determined given current
image measurements and model.

In this chapter we will look in detail on the effects different models and control laws have
on the properties of a visual servoing controller. Theoretical considerations are combined
with experiments to demonstrate the effects of popular models and control strategies on the
behaviour of the controller, including convergence speed and robustness to measurement er-
rors.

2. Building Models for Visual Servoing

2.1 Task Description

The aim of a visual servoing controller is to move the end-effector of one or more robot arms
such that their configuration in relation to each other and/or to an object fulfils certain task-
specific conditions. The feedback used in the controller stems from visual data, usually taken

2

Source: Visual Servoing, Book edited by: Rong-Fong Fung,
 ISBN 978-953-307-095-7, pp. 234, April 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

Fig. 2. Robot Arm with Camera and Object

from one or more cameras mounted to the robot arm and/or placed in the environment. A
typical configuration is shown in Figure 2. Here a camera is mounted to the robot’s gripper
(“eye-in-hand” setup), looking towards a glass jar. The controller’s task in this case is to
move the robot arm such that the jar can be picked up using the gripper. This is the case
whenever the visual appearance of the object in the image has certain properties. In order to
detect whether these properties are currently fulfilled a camera image can be taken and image
processing techniques applied to extract the image positions of object markings. These image
positions make up the image feature vector.
Since the control loop uses visual data the goal configuration can also be defined in the image.
This can be achieved by moving the robot and/or the object in a suitable position and then
acquiring a camera image. The image features measured in this image can act as desired image
features, and a comparison of actual values at a later time to these desired values (“image
error”) can be used to determine the degree of agreement with the desired configuration. This
way of acquiring desired image features is sometimes called “teaching by showing”.
From a mathematical point of view, a successful visual servoing control process is equivalent
to solving an optimisation problem. In this case a measure of the image error is minimised
by moving the robot arm in the space of possible configurations. Visual servoing can also be
regarded as practical feedback stabilisation of a dynamical system.

2.2 Modelling the Camera-Robot System

2.2.1 Preliminaries

The pose of an object is defined as its position and orientation. The position in 3D Euclidean
space is given by the 3 Cartesian coordinates. The orientation is usually expressed by 3 angles,
i.e. the rotation around the 3 coordinate axes. Figure 3 shows the notation used in this chapter,
where yaw, pitch and roll angles are defined as the mathematically positive rotation around
the x, y and z axis. In this chapter we will use the {·}-notation for a coordinate system, for
example {W} will stand for the world coordinate system. A variable coordinate system—one
which changes its pose to over time—will sometimes be indexed by the time index n ∈ IN =

22 Visual Servoing

www.intechopen.com

z

yx

Yaw

Roll

Pitch

Fig. 3. Yaw, pitch and roll

y

x

z
{W}

y
x

{S}

y

zx

{C}

y

x

z

{F}

u

v

{I}

Camera Image

Sampling/Digitisation

Fig. 4. World, Flange, Camera, Sensor and Image coordinate systems

0, 1, 2, An example is the camera coordinate system {Cn}, which moves relative to {W}
as the robot moves since the camera is mounted to its hand.
Figure 4 lists the coordinate systems used for modelling the camera-robot system. The world
coordinate system {W} is fixed at the robot base, the flange coordinate system {F} (sometimes
called “tool coordinate system”, but this can be ambiguous) at the flange where the hand is
mounted. The camera coordinate system {C} (or {Cn} at a specific time n) is located at the
optical centre of the camera, the sensor coordinate system {S} in the corner of its CCD/CMOS
chip (sensor); their orientation and placement is shown in the figure. The image coordinate
system which is used to describe positions in the digital image is called {I}. It is the only
system to use pixel as its unit; all other systems use the same length unit, e.g. mm.
Variables that contain coordinates in a particular coordinate system will be marked by a su-
perscript left of the variable, e.g.

A
x for a vector x ∈ IRn in {A}-coordinates. The coordinate

transform which transforms a variable from a coordinate system {A} to another one, {B}, will
be written

B

A T. If
A
x and

B
x express the pose of the same object then

A
x =

A

B T
B
x, and always

A

B T =
(B

A T
)−1

. (1)

The robot’s pose is defined as the pose of {F} in {W}.

23Models and Control Strategies for Visual Servoing

www.intechopen.com

2.2.2 Cylindrical Coordinates

ρ

ϕ

p

x y

z

z

Fig. 5. A point p = (ρ, ϕ, z) in cylindrical coordinates.

An alternative way to describe point positions is by using a cylindrical coordinate system
as the one in Figure 5. Here the position of the point p is defined by the distance ρ from a
fixed axis (here aligned with the Cartesian z axis), an angle ϕ around the axis (here ϕ = 0 is
aligned with the Cartesian x axis) and a height z from a plane normal to the z axis (here the
plane spanned by x and y). Using the commonly used alignment with the Cartesian axes as
in Figure 5 converting to and from cylindrical coordinates is easy. Given a point p = (x, y, z)
in Cartesian coordinates, its cylindrical coordinates p = (ρ, ϕ, z) ∈ IR×]− π, π] × IR are as
follows:

ρ =
√

x2 + y2

ϕ = atan2 (y, x)

⋆
=

⎧

⎪⎨

⎪⎩

0 if x = 0 and y = 0

arcsin(
y
ρ) if x ≥ 0

arcsin(
y
ρ) + π if x < 0

z = z,

(2)

(⋆ up to multiples of 2π), and, given a point p = (ρ, ϕ, z) in cylindrical coordinates:

x = ρ cos ϕ

y = ρ sin ϕ

z = z.

(3)

2.2.3 Modelling the Camera

A simple and popular approximation to the way images are taken with a camera is the pinhole
camera model (from the pinhole camera/camera obscura models by Ibn al-Haytham “Alha-
cen”, 965–1039 and later by Gérard Desargues, 1591–1662), shown in Figure 6. A light ray
from an object point passes an aperture plate through a very small hole (“pinhole”) and ar-
rives at the sensor plane, where the camera’s CCD/CMOS chip (or a photo-sensitive film in
the 17th century) is placed. In the digital camera case the sensor elements correspond to pic-
ture elements (“pixels”), and are mapped to the image plane. Since pixel positions are stored
in the computer as unsigned integers the centre of the {I} coordinate system in the image
plane is shifted to the upper left corner (looking towards the object/monitor). Therefore the
centre

I
c �= (0, 0)T .

24 Visual Servoing

www.intechopen.com

y

x

z

u

v

u

v Camera image

{I}

y

x

f
{C}

Image plane
Sensor plane

Object point

Optical axis

{I}

{S}

c

Aperture plate

with pinhole

(CCD/CMOS)

Fig. 6. Pinhole camera model

Sometimes the sensor plane is positioned in front of the aperture plate in the literature (e.g.
in Hutchinson et al., 1996). This has the advantage that the x- and y-axis of {S} can be (direc-
tionally) aligned with the ones in {C} and {I} while giving identical coordinates. However,
since this alternative notation has also the disadvantage of being less intuitive, we use the one
defined above.
Due to the simple model of the way the light travels through the camera the object point’s
position in {C} and the coordinates of its projection in {S} and {I} are proportional, with a

shift towards the new centre in {I}. In particular, the sensor coordinates
S
p = (

S
x,

S
y)

T
of the

image of an object point
C
p = (

C
x,

C
y,

C
z)

T
are given as

S
x =

C
x · f

C
z

and
S
y =

C
y · f

C
z

, (4)

where f is the distance the aperture plate and the sensor plane, also called the “focal length”
of the camera/lens.
The pinhole camera model’s so-called “perspective projection” is not an exact model of the
projection taking place in a modern camera. In particular, lens distortion and irregularities in
the manufacturing (e.g. slightly tilted CCD chip or positioning of the lenses) introduce devi-
ations. These modelling errors may need to be considered (or, corrected by a lens distortion
model) by the visual servoing algorithm.

2.3 Defining the Camera-Robot System as a Dynamical System

As mentioned before, the camera-robot system can be regarded as a dynamical system. We
define the state xn of the robot system at a time step n ∈ IN as the current robot pose, i.e.
the pose of the flange coordinate system {F} in world coordinates {W}. xn ∈ IR6 will con-
tain the position and orientation in the x, y, z, yaw, pitch, roll notation defined above. The
set of possible robot poses is X ⊂ IR6. The output of the system is the image feature vec-
tor yn. It contains pairs of image coordinates of object markings viewed by the camera,
i.e. (

S
x1,

S
y1, . . . ,

S
xM,

S
yM)T for M = m

2 object markings (in our case M = 4, so yn ∈ IR8).

25Models and Control Strategies for Visual Servoing

www.intechopen.com

Let Y ⊂ IRm be the set of possible output values. The output (measurement) function is
η : X → Y , xn �→ yn. It contains the whole measurement process, including projection onto
the sensor, digitisation and image processing steps.
The input (control) variable un ∈ U ⊂ IR6 shall contain the desired pose change of the camera
coordinate system. This robot movement can be easily transformed to a new robot pose ũn in
{W}, which is given to the robot in a move command. Using this definition of un an input
of (0, 0, 0, 0, 0, 0)T corresponds to no robot movement, which has advantages, as we shall see
later. Let ϕ : X × U → X , (xn, un) �→ xn+1 be the corresponding state transition (next-state)
function.

With these definitions the camera-robot system can be defined as a time invariant, time dis-
crete input-output system:

xn+1 = ϕ (xn, un)

yn = η (xn).
(5)

When making some mild assumptions, e.g. that the camera does not move relative to {F}
during the whole time, the state transition function ϕ can be calculated as follows:

ϕ(xn, un) = xn+1 =
W
xn+1 =

W
ũn =̂

W

Fn+1
T

=
W

Fn
T

︸︷︷︸

=̂xn

◦
Fn

Cn
T

︸︷︷︸

⋆

◦
Cn

Cn+1
T

︸ ︷︷ ︸

=̂un

◦
Cn+1

Fn+1
T

︸ ︷︷ ︸

⋆

, (6)

where {Fn} is the flange coordinate system at time step n, etc., and the =̂ operator expresses
the equivalence of a pose with its corresponding coordinate transform.

⋆ = external (“extrinsic”) camera parameters ;
Tn

Cn
T =

Tn+1

Cn+1
T =

(Cn+1

Tn+1
T
)−1

∀n ∈ IN.

For m = 2 image features corresponding to coordinates (
S
x,

S
y) of a projected object point

W
p

the equation for η follows analogously:

η(x) = y =
S
y =

S

C T
C
p

=
S

C T ◦
C

T T ◦
T

W T
W
p,

(7)

where
S

C T is the mapping of the object point
C
p depending on the focal length f according to

the pinhole camera model / perspective projection defined in (4).

2.4 The Forward Model—Mapping Robot Movements to Image Changes

In order to calculate necessary movements for a given desired change in visual appearance
the relation between a robot movement and the resulting change in the image needs to be
modelled. In this section we will analytically derive a forward model, i.e. one that expresses
image changes as a function of robot movements, for the eye-in-hand setup described above.
This forward model can then be used to predict changes effected by controller outputs, or (as
it is usually done) simplified and then inverted. An inverse model can be directly used to
determine the controller output given actual image measurements.
Let Φ : X × U → Y the function that expresses the system output y depending on the state x
and the input u:

Φ(x, u) := η ◦ ϕ(x, u) = η(ϕ(x, u)). (8)

26 Visual Servoing

www.intechopen.com

For simplicity we also define the function which expresses the behaviour of Φ(xn, ·) at a time
index n, i.e. the dependence of image features on the camera movement u:

Φn(u) := Φ(xn, u) = η(ϕ(xn, u)). (9)

This is the forward model we wish to derive.
Φn depends on the camera movement u and the current system state, the robot pose xn. In
particular it depends on the position of all object markings in the current camera coordinate
system. In the following we need assume the knowledge of the camera’s focal length f and the
C
z component of the positions of image markings in {C}, which cannot be derived from their
image position (

S
x,

S
y). Then with the help of f and the image coordinates (

S
x,

S
y) the complete

position of the object markings in {C} can be derived with the pinhole camera model (4).
We will first construct the model Φn for the case of a single object marking, M = m

2 = 1.
According to equations (6) and (7) we have for an object point

W
p:

Φn(u) = η ◦ ϕ(xn, u)

=
S

Cn+1
T ◦

Cn+1

Cn
T ◦

Cn

T
T ◦

T

W
T

W
p

=
S

Cn+1
T ◦

Cn+1

Cn
T

Cnx,

(10)

where
Cnx are the coordinates of the object point in {Cn}.

In the system state xn the position of an object point
Cnx =: p = (p1, p2, p3)

T
can be derived

with (
S
x,

S
y)

T
, assuming the knowledge of f and

C
z, via (4). Then the camera changes its pose

by
C
u =: u = (u1, u2, u3, u4, u5, u6)

T
; we wish to know the new coordinates (

S
x̃,

S
ỹ)

T
of p in the

image. The new position p̃ of the point in new camera coordinates is given by a translation by
u1 through u3 and a rotation of the camera by u4 through u6. We have

p̃ = rotx(−u4) roty(−u5) rotz(−u6)

⎛

⎝

p1 − u1

p2 − u2

p3 − u3

⎞

⎠

=

⎛

⎝

c5c6 c5s6 −s5

s4s5c6 − c4s6 s4s5s6 + c4c6 s4c5

c4s5c6 + s4s6 c4s5s6 − s4c6 c4c5

⎞

⎠

⎛

⎝

p1 − u1

p2 − u2

p3 − u3

⎞

⎠

(11)

using the short notation

si := sin ui, ci := cos ui for i = 4, 5, 6. (12)

Again with the help of the pinhole camera model (4) we can calculate the {S} coordinates of
the projection of the new point, which finally yields the model Φn:

[S
x̃

S
ỹ

]

= Φ(xn, u)

= Φn(u)

= f ·

⎡

⎢
⎢
⎢
⎢
⎣

c5 c6 (p1 − u1) + c5 s6 (p2 − u2)− s5 (p3 − u3)

(c4 s5 c6 + s4 s6) (p1 − u1) + (c4 s5 s6 − s4 c6) (p2 − u2) + c4 c5 (p3 − u3)

(s4 s5 c6 − c4 s6) (p1 − u1) + (s4 s5 s6 + c4 c6) (p2 − u2) + s4 c5 (p3 − u3)

(c4 s5 c6 + s4 s6) (p1 − u1) + (c4 s5 s6 − s4 c6) (p2 − u2) + c4 c5 (p3 − u3)

⎤

⎥
⎥
⎥
⎥
⎦

.

(13)

27Models and Control Strategies for Visual Servoing

www.intechopen.com

2.5 Simplified and Inverse Models

As mentioned before, the controller needs to derive necessary movements from given desired
image changes, for which an inverse model is beneficial. However, Φn(u) is too complicated
to invert. Therefore in practice usually a linear approximation Φ̂n(u) of Φn(u) is calculated
and then inverted. This can be done in a number of ways.

2.5.1 The Standard Image Jacobian

The simplest and most common linear model is the Image Jacobian. It is obtained by Taylor
expansion of (13) around u = 0:

yn+1 = η(ϕ(xn, u))

= Φ(xn, u)

= Φn(u)

= Φn(0 + u)

= Φn(0) + JΦn
(0) u +O(‖u‖2).

(14)

With Φn(0) = yn and the definition Jn := JΦn
(0) the image change can be approximated

yn+1 − yn ≈ Jn u (15)

for sufficiently small ‖u‖2.
The Taylor expansion of the two components of (13) around u = 0 yields the Image Jacobian
Jn for one object marking (m = 2):

Jn =

⎛

⎜
⎜
⎜
⎜
⎝

−
f

C
z

0

S
x

C
z

S
x

S
y

f
−f −

S
x2

f
S
y

0 −
f

C
z

S
y

C
z

f+

S
y2

f
−

S
x

S
y

f
−

S
x

⎞

⎟
⎟
⎟
⎟
⎠

(16)

where again image positions where converted back to sensor coordinates.
The Image Jacobian for M object markings, M ∈ IN>1, can be derived analogously; the change
of the m = 2M image features can be approximated by

28 Visual Servoing

www.intechopen.com

yn+1 − yn ≈ Jn u

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
f

C
z1

0

S
x1

C
z1

S
x1

S
y1

f
−f −

S
x2

1

f
S
y1

0 −
f

C
z1

S
y1

C
z1

f+

S
y2

1

f
−

S
x1

S
y1

f
−

S
x1

...
...

...
...

...
...

−
f

C
zM

0

S
xM

C
zM

S
xM

S
yM

f
−f −

S
x2

M

f
S
yM

0 −
f

C
zM

S
yM

C
zM

f+

S
y2

M

f
−

S
xM

S
yM

f
−

S
xM

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

u1
...

u6

⎞

⎟
⎠ ,

(17)

for small ‖u‖2, where (
S
xi,

S
yi) are the sensor coordinates of the ith projected object marking

and
C
zi their distances from the camera, i = 1, . . . , M.

2.5.2 A Linear Model in the Cylindrical Coordinate System
Iwatsuki and Okiyama (2005) suggest a formulation of the problem in cylindrical coordinates.

This means that positions of markings on the sensor are given in polar coordinates, (ρ, ϕ)T

where ρ and ϕ are defined as in Figure 5 (z = 0). The Image Jacobian Jn for one image point is
given in this case by

Jn =

⎛

⎜
⎜
⎜
⎜
⎝

−
f cϕ
C
z

−
f sϕ
C
z

C
ysϕ +

C
xcϕ

C
z

(

f +

C
y2

f

)

sϕ +

C
x

C
ycϕ

f

(

− f −

C
x2

f

)

cϕ −

C
x

C
ysϕ

f
C
ycϕ −

C
xsϕ

f sϕ
C
z

−
f cϕ
C
z

C
ycϕ +

C
xsϕ

C
z

(

f +

C
y2

f

)

cϕ −

C
x

C
ysϕ

f

(

f +

C
x2

f

)

sϕ −

C
x

C
ycϕ

f
−

C
ysϕ −

C
xcϕ

⎞

⎟
⎟
⎟
⎟
⎠

(18)

with the short notation
sϕ := sin ϕ and cϕ := cos ϕ. (19)

and analogously for M > 1 object markings.

2.5.3 Quadratic Models

A quadratic model, e.g. a quadratic approximation of the system model (13), can be obtained
by a Taylor expansion; a resulting approximation for M = 1 marking is

yn+1 =

[S
x̃

S
ỹ

]

= Φn(0) + JΦn
(0) u +

1

2

[
uT HSx

u

uT HSy
u

]

+O(‖u‖3). (20)

29Models and Control Strategies for Visual Servoing

www.intechopen.com

where again Φn(0) = yn and JΦn
(0) = Jn from (16), and the Hessian matrices are

HSx
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0
− f
C
z2

−
S
y

C
z

2
S
x

C
z

0

0 0 0
−

S
x

C
z

0
− f
C
z

− f
C
z2

0
2

S
x

C
z2

2
S
x

S
y

f
C
z

− 2
S
x2

f
C
z

S
y

C
z

−
S
y

C
z

−
S
x

C
z

2
S
x

S
y

f
C
z

S
x

⎛

⎝1 + 2

(
S
y

f

)2
⎞

⎠ −
S
y

⎛

⎝1 + 2

(
S
x

f

)2
⎞

⎠

S
y2 −

S
x2

f

2
S
x

C
z

0
− 2

S
x2

f
C
z

−
S
y

⎛

⎝1 + 2

(
S
x

f

)2
⎞

⎠ 2
S
x

(

1 +

S
x2

f

)2

−2
S
x

S
y

f

0
− f
C
z

S
y

C
z

S
y2 −

S
x2

f

− 2
S
x

S
y

f
−

S
x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(21)

as well as

HSy
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

S
y

C
z

f
C
z

0 0
− f
C
z2

− 2
S
y

C
z

S
x

C
z

0

0
− f
C
z2

2
S
y

C
z2

2
S
y2

f
C
z

− 2
S
x

S
y

f
C
z

−
S
x

C
z

0
− 2

S
y

C
z

2
S
y2

f
C
z

2
S
y

(

1 +

S
y2

f

)2 (
S
y

f

)(

−2
S
x

S
y

f

)

− 2
S
x

S
y

f

S
y

C
z

S
x

C
z

− 2
S
x

S
y

f
C
z

(
S
y

f

)(

−2
S
x

S
y

f

)

S
y

⎛

⎝1 + 2

(
S
x

f

)2
⎞

⎠

S
x2 −

S
y2

f

f
C
z

0
−

S
x

C
z

− 2
S
x

S
y

f

S
x2 −

S
y2

f
−

S
y

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (22)

2.5.4 A Mixed Model

Malis (2004) proposes a way of constructing a mixed model which consists of different linear
approximations of the target function Φ. Let xn again be the current robot pose and x⋆ the
teach pose. For a given robot command u we set again Φn(u) := Φ(xn, u) and now also
Φ
⋆(u) := Φ(x⋆, u) such that Φn(0) = yn und Φ

⋆(0) = y⋆. Then Taylor expansions of Φn and
Φ
⋆ at u = 0 yield

yn+1 = yn + JΦn
(0)u +O(‖u‖2) (23)

and
yn+1 = yn + JΦ⋆ (0)u +O(‖u‖2). (24)

In other words, both Image Jacobians, Jn := JΦn
(0) and J⋆ := JΦ⋆ (0) can be used as linear

approximations of the behaviour of the robot system. One of these models has its best validity

30 Visual Servoing

www.intechopen.com

at the current pose, the other at the teach pose. Since we are moving the robot from one
towards the other it may be useful to consider both models. Malis proposes to use a mixture
of these two models, i.e.

yn+1 − yn ≈
1

2
(Jn + J⋆) u. (25)

In his control law (see Section 3 below) he calculates the pseudoinverse of the Jacobians, and
therefore calls this approach “Pseudo-inverse of the Mean of the Jacobians”, or short “PMJ”.
In a variation of this approach the computation of mean and pseudo-inverse is exchanged,
which results in the “MPJ” method. See Section 3 for details.

2.5.5 Estimating Models

Considering the fact that models can only ever approximate the real system behaviour it may
be beneficial to use measurements obtained during the visual servoing process to update the
model “online”. While even the standard models proposed above use current measurements
to estimate the distance

C
z from the object to use this estimate in the Image Jacobian, there

are also approaches that estimate more variables, or construct a complete model from scratch.
This is most useful when no certain data about the system state or setup are available. The
following aspects need to be considered when estimating the Image Jacobian—or other mod-
els:

• How precise are the measurements used for model estimation, and how large is the
sensitivity of the model to measurement errors?

• How many measurements are needed to construct the model? For example, some meth-
ods use 6 robot movements to measure the 6-dimensional data within the Image Jaco-
bian. In a static look-and-move visual servoing setup which may reach its goal in 10-
20 movements with a given Jacobian the resulting increase in necessary movements, as
well as possible mis-directed movements until the estimation process converges, need
to be weighed against the flexibility achieved by the automatic model tuning.

The most prominent approach to estimation methods of the whole Jacobian is the Broyden ap-
proach which has been used by Jägersand (1996). The Jacobian estimation uses the following
update formula for the current estimate Ĵn:

Ĵn :=
Cn

Cn−1
T

(

Ĵn−1 +
(yn − yn−1 − Ĵn−1 un) u

T

n

u
T

nun

)

, (26)

with an additional weighting of the correction term

Jn := γ Ĵn−1 + (1 − γ) Ĵn, 0 ≤ γ < 1 (27)

to reduce the sensitivity of the estimate to measurement noise.
In the case of Jägersand’s system using an estimation like this makes sense since he worked
with a dynamic visual servoing setup where many more measurements are made over time
compared to our setup (“static look-and-move”, see below).
In combination with a model-based measurement a non-linear model could also make sense.
A number of methods for the estimation of quadratic models are available in the optimisation
literature. More on this subject can be found e.g. in Fletcher (1987, chapter 3) and Sage and
White (1977, chapter 9).

31Models and Control Strategies for Visual Servoing

www.intechopen.com

y⋆✲ ❢+ ∆yn✲ Controller

Model
✲un {Cn}

→{W}
✲ũn

Robot (with inner control loop)

Inverse
Kinematics

✲ ❢+✲ Joint

Controller
✲
✎
✍

☞
✌

Robot
Dynamics

✲

joint angles
✻−

✎
✍

☞
✌

Robot
Kinematics

xn

✛
✎
✍

☞
✌Scene✛

✎
✍

☞
✌Camera✛Feature

Extraction

η

✻

(data for modelling)

✻

yn

−

Fig. 7. Typical closed-loop image-based visual servoing controller

3. Designing a Visual Servoing Controller

Using one of the models defined above we wish to design a controller which steers the robot
arm towards an object of unknown pose. This is to be realised in the visual feedback loop
depicted in Figure 7. Using the terminology defined by Weiss et al. (1987) the visual servo-
ing controller is of the type “Static Image-based Look-and-Move”. “Image-based” means that
goal and error are defined in image coordinates instead of using positions in normal space
(that would be “position-based”). “Static Look-and-Move” means that the controller is a sam-
pled data feedback controller and the robot does not move while a measurement is taken.
This traditionally implies that the robot is controlled by giving world coordinates to the con-
troller instead of directly manipulating robot joint angles (Chaumette and Hutchinson, 2008;
Hutchinson et al., 1996).
The object has 4 circular, identifiable markings. Its appearance in the image is described by the
image feature vector yn ∈ IR8 that contains the 4 pairs of image coordinates of these markings
in a fixed order. The desired pose relative to the object is defined by the object’s appearance
in that pose by measuring the corresponding desired image features y⋆ ∈ IR8 (“teaching by
showing”). Object and robot are then moved so that no Euclidean position of the object or
robot is known to the controller. The input to the controller is the image error ∆yn := y⋆ − yn.
The current image measurements yn are also given to the controller for adapting its internal
model to the current situation. The output of the controller is a relative movement of the robot
in the camera coordinate system, a 6-dimensional vector (x, y, z, yaw, pitch, roll) for a 6 DOF
movement.
Controllers can be classified into approaches where the control law (or its parameters) are
adapted over time, and approaches where they are fixed. Since these types of controllers can
exhibit very different controlling behaviour we will split our considerations of controllers into
these two parts, after some general considerations.

3.1 General Approach

Generally, in order to calculate the necessary camera movement un for a given desired image
change ∆ỹn := ỹn+1 − yn we again use an approximation Φ̂n of Φn, for example the image
Jacobian Jn. Then we select

un ∈ argmin
u∈U (xn)

∥
∥∆ỹn − Φ̂n(u)

∥
∥

2
2 . (28)

32 Visual Servoing

www.intechopen.com

where a given algorithm may or may not enforce a restriction u ∈ U (xn) on the admissible
movements when determining u. If this restriction is inactive and we are using a Jacobian,
Φ̂n = Jn, then the solution to (28) with minimum norm ‖un‖2 is given by

un = J+n ∆ỹn (29)

where J+n is the pseudo-inverse of Jn.
With 4 coplanar object markings m = 8 and thereby Jn ∈ IR8×6. One can show that Jn has
maximum rank1, so rk Jn = 6. Then the pseudo-inverse J+n ∈ IR6×8 of Jn is given by:

J+n = (J
T

n Jn)
−1 J

T

n (30)

(see e.g. Deuflhard and Hohmann, 2003, chapter 3).

When realising a control loop given such a controller one usually sets a fixed error threshold
ε > 0 and repeats the steps

Image Acquisition,

Feature Extraction
✲ Controller Calculates

Robot Command
✲ Robot Executes

Given Movement

until
‖∆yn‖2 = ‖y⋆ − yn‖2 < ε, (31)

or until
‖∆yn‖∞ = ‖y⋆ − yn‖∞ < ε (32)

if one wants to stop only when the maximum deviation in any component of the image feature
vector is below ε. Setting ε := 0 is not useful in practice since measurements even in the
same pose tend to vary a little due to small movements of the robot arm or object as well as
measurement errors and fluctuations.

3.2 Non-Adaptive Controllers

3.2.1 The Traditional Controller

The most simple controller, which we will call the “Traditional Controller” due to its heritage,
is a straightforward proportional controller as known in engineering, or a dampened Gauss-
Newton algorithm as it is known in mathematics.
Given an Image Jacobian Jn we first calculates the full Gauss-Newton step ∆un for a complete
movement to the goal in one step (desired image change ∆ỹn := ∆yn):

∆un := J+n ∆yn (33)

without enforcing a restriction u ∈ U (xn) for the admissibility of a control command.
In order to ensure a convergence of the controller the resulting vector is then scaled with a
dampening factor 0 < λn ≤ 1 to get the controller output un. In the traditional controller
the factor λn is constant over time and the most important parameter of this algorithm. A
typical value is λn = λ = 0.1; higher values may hinder convergence, while lower values also
significantly slow down convergence. The resulting controller output un is given by

1 One uses the fact that no 3 object markings are on a straight line,
C
zi > 0 for i = 1, . . . , 4 and all markings

are visible (in particular, neither all four
C
xi nor all four

C
yi are 0).

33Models and Control Strategies for Visual Servoing

www.intechopen.com

un := λ · J+n ∆yn. (34)

3.2.2 Dynamical and Constant Image Jacobians

As mentioned in the previous section there are different ways of defining the Image Jacobian.
It can be defined in the current pose, and is then calculated using the current distances to the
object,

C
zi for marking i, and the current image features. This is the Dynamical Image Jacobian

Jn. An alternative is to define the Jacobian in the teach (goal) pose x⋆, with the image data
y⋆ and distances at that pose. We call this the Constant Image Jacobian J⋆. Unlike Jn, J⋆ is
constant over time and does not require image measurements for its adaptation to the current
pose.
From a mathematical point of view the model Jn has a better validity in the current system
state and should therefore yield better results. We shall later see whether this is the case in
practice.

3.2.3 The Retreat-Advance Problem

Fig. 8. Camera view in the start pose with a pure rotation around the
C
z axis

When the robot’s necessary movement to the goal pose is a pure rotation around the optical
axis (

C
z, approach direction) there can be difficulties when using the standard Image Jacobian

approach (Chaumette, 1998). The reason is that the linear approximation Jn models the rele-
vant properties of Φn badly in these cases. This is also the case with J⋆ if this Jacobian is used.
The former will cause an unnecessary movement away from the object, the latter a movement
towards the goal. The larger the roll angle, the more pronounced is this phenomenon, an ex-
treme case being a roll error of ±π (all other pose elements already equal to the teach pose)
where the Jacobians suggest a pure movement along the

C
z axis. Corke and Hutchinson (2001)

call this the “Retreat-Advance Problem” or the “Chaumette Conundrum”.

3.2.4 Controllers using the PMJ and MPJ Models

In order to overcome the Retreat-Advance Problem the so-called “PMJ Controller” (Malis,
2004) uses the pseudo-inverse of the mean of the two Jacobians Jn and J⋆. Using again a
dampening factor 0 < λ ≤ 1 the controller output is given by

un = λ ·

(
1

2
(Jn + J⋆)

)+

∆yn. (35)

34 Visual Servoing

www.intechopen.com

Analogously, the “MPJ Controller” works with the mean of the pseudo-inverse of the Jaco-
bians:

un = λ ·

(
1

2

(
J+n + J⋆+

)
)

∆yn. (36)

Otherwise, these controllers work like the traditional approach, with a constant dampening
λ.

3.2.5 Defining the Controller in the Cylindrical Coordinate System

Using the linear model by Iwatsuki and Okiyama (2005) in the cylindrical coordinate system
as discussed in Section 2.5.2 a special controller can also be defined. The authors define the
image error for the ith object marking as follows:

ei :=

(
ρ⋆ − ρ

ρ(ϕ⋆ − ϕ)

)

(37)

where (ρ, ϕ)T is the current position and (ρ⋆, ϕ⋆) the teach position. The control command u
is then given by

u = λ J̃+ e, (38)

J̃+ being the pseudo-inverse of the Image Jacobian in cylindrical coordinates from equa-
tion (18). e is the vector of pairs of image errors in the markings, i.e. a concatenation of the ei

vectors.
It should be noted that even if e is given in cylindrical coordinates, the output u of the con-
troller is in Cartesian coordinates.
Due to the special properties of cylindrical coordinates, the calculation of the error and control
command is very much dependent on the definition of the origin of the coordinate system.
Iwatsuki and Okiyama (2005) therefore present a way to shift the origin of the coordinate
system such that numerical difficulties are avoided.

One approach to select the origin of the cylindrical coordinate system is such that the cur-
rent pose can be transformed to the desired (teach) pose with a pure rotation around the axis
normal to the sensor plane, through the origin. For example, the general method given by
Kanatani (1996) can be applied to this problem.
Let l = (lx, ly, lz)T be the unit vector which defines this rotation axis, and o = (ox, oy)T the

new origin, obtained by shifting the original origin (0, 0)T in {S} by (η, ξ)T .
If |lz| is very small then the rotation axis l is almost parallel to the sensor. Then η and ξ are very
large, which can create numerical difficulties. Since the resulting cylindrical coordinate sys-
tem approximates a Cartesian coordinate system as η, ξ → ∞, the standard Cartesian Image
Jacobian Jn from (17) can therefore used if |lz| < δ for a given lower limit δ.

3.3 Adaptive Controllers

Using adaptive controllers is a way to deal with errors in the model, or with problems result-
ing from the simplification of the model (e.g. linearisation, or the assumption that the camera
works like a pinhole camera). The goal is to ensure a fast convergence of the controller in spite
of these errors.

35Models and Control Strategies for Visual Servoing

www.intechopen.com

3.3.1 Trust Region-based Controllers

Trust Region methods are known from mathematics as globally convergent optimisation
methods (Fletcher, 1987). In order to optimise “difficult” functions one uses a model of its
properties, like we do here with the Image Jacobian. This model is adapted to the current
state/position in the solution space, and therefore only valid within some region around the
current state. The main idea in trust region methods is to keep track of the validity of the
current system model, and adapt a so-called “Trust Region”, or “Model Trust Region” around
the current state within which the model does not exhibit more than a certain pre-defined
“acceptable error”.
To our knowledge the first person to use trust region methods for a visual servoing controller
was Jägersand (1996). Since the method was adapted to a particular setup and cannot be
used here we have developed a different trust region-based controller for our visual servoing
scenario (Siebel et al., 1999). The main idea is to replace the constant dampening λ for ∆un

with a variable dampening λn:

un := λn · ∆un = λn · J+n ∆yn. (39)

The goal is to adapt λn before each step to balance the avoidance of model errors (by making
small steps) and the fast movement to the goal (by making large steps).
In order to achieve this balance we define an actual model error en which is set in relation to
a desired (maximum) model error edes

2 to adapt a bound αn for the movement of projected
object points on the sensor. Using this purely image-based formulation has advantages, e.g.
having a measure to avoid movements that lead to losing object markings from the camera’s
field of view.

Our algorithm is explained in Figure 9 for one object marking. We wish to calculate a robot
command to move such that the current point position on the sensor moves to its desired
position. In step ©1 , we calculate an undampened robot movement ∆un to move as close to
this goal as possible (∆ỹn := ∆yn) according to an Image Jacobian Jn:

∆un := J+n ∆yn. (40)

This gives us a predicted movement ℓn on the sensor, which we define as the maximum move-
ment on the sensor for all M markings:

ℓn := max
i=1,...,M

∥
∥
∥
∥

[
(Jn ∆un)2i−1

(Jn ∆un)2i

]∥
∥
∥
∥

2

, (41)

where the subscripts to the vector Jn ∆un signify a selection of its components.
Before executing the movement we restrict it in step ©2 such that the distance on the sensor is
less or equal to a current limit αn:

un := λn · ∆un

= min

{

1,
αn

ℓn

}

· J+n ∆yn.
(42)

2 While the name “desired error” may seem unintuitive the name is chosen intentionally since the α
adaptation process (see below) can be regarded as a control process to have the robot system reach
exactly this amount of error, by controlling the value of αn.

36 Visual Servoing

www.intechopen.com

un

n unun
n

edes

en+1

1

2

3

predicted blob position

predicted movement

desired max. model error

predicted movement

actual model error

by

by

model trust region

actual movement

CCD/CMOS sensor

new blob position

desired point position

point position
current

Fig. 9. Generation of a robot command by the trust region controller: view of the image sensor
with a projected object marking

After this restricted movement is executed by the robot we obtain new measurements yn+1

and thereby the actual movement and model (prediction) error en+1 ©3 , which we again define
as the maximum deviation on the sensor for M > 1 markings:

en+1 := max
i=1,...,M

∥
∥
∥
∥

[
(ŷn+1)2i−1

(ŷn+1)2i

]

−

[
(yn+1)2i−1

(yn+1)2i

]∥
∥
∥
∥

2

. (43)

where ŷn+1 is the vector of predicted positions on the sensor,

ŷn+1 := yn + Jn un. (44)

The next step is the adaptation of our restriction parameter αn. This is done by comparing the
model error en+1 with a given desired (maximum admissible) error edes:

rn+1 :=
en+1

edes
(45)

where rn is called the relative model error. A small value signifies a good agreement of model
and reality. In order to balance model agreement and a speedy control we adjust αn so as to
achieve rn = 1. Since we have a linear system model we can set

αn+1 := αn ·
edes

en+1
=

αn

rn+1
(46)

with an additional restriction on the change rate, αn+1
αn

≤ 2. In practice, it may make sense to
define minimum and maximum values αmin and αmax and set α0 := αmin.
In the example shown in Figure 9 the actual model error is smaller than edes, so αn+1 can be
larger than αn.

37Models and Control Strategies for Visual Servoing

www.intechopen.com

Let n := 0; α0 := αstart; y⋆ given

Measure current image features yn and calculate ∆yn := y⋆ − yn

WHILE ‖∆yn‖∞ ≥ ε

Calculate Jn

IF n > 0

Calculate relative model error rn via (43)

Adapt αn by (46)

END IF

Calculate usdn
:= JT

n ∆yn, λn :=
‖usdn

‖

ℓsdn

and ugnn
:= J+n ∆yn

Calculate udln
via (52)

Send control command udln
to the robot

Measure yn+1 and calculate ∆yn+1; let n := n + 1

END WHILE

Fig. 10. Algorithm: Image-based Visual Servoing with the Dogleg Algorithm

3.3.1.1 Remark:

By restricting the movement on the sensor we have implicitly defined the set U (xn) of admis-
sible control commands in the state xn as in equation (33). This U (xn) is the trust region of the
model Jn.

3.3.2 A Dogleg Trust Region Controller

Powell (1970) describes the so-called Dogleg Method (a term known from golf) which can be
regarded as a variant of the standard trust region method (Fletcher, 1987; Madsen et al., 1999).
Just like in the trust region method above, a current model error is defined and used to adapt
a trust region. Depending on the model error, the controller varies between a Gauss-Newton
and a gradient (steepest descent) type controller.

The undampened Gauss-Newton step ugnn
is calculated as before:

ugnn
= J+n ∆yn, (47)

and the steepest descent step usdn
is given by

usdn
= JT

n ∆yn. (48)

The dampening factor λn is set to

λn :=
‖usdn

‖2
2

ℓsdn

(49)

where again

ℓsdn
:= max

i=0,...,M

∥
∥
∥
∥

(
(∆ŷsdn

)2i−1

(∆ŷsdn
)2i

)∥
∥
∥
∥

2

2

(50)

38 Visual Servoing

www.intechopen.com

Fig. 11. Experimental setup with Thermo CRS F3 robot, camera and marked object

is the maximum predicted movement on the sensor, here the one caused by the steepest de-
scent step usdn

. Analogously, let

ℓgnn
:= max

i=0,...,M

∥
∥
∥
∥

(
(∆ŷgnn

)2i−1

(∆ŷgnn
)2i

)∥
∥
∥
∥

2

2

(51)

be the maximum predicted movement by the Gauss Newton step. With these variables the
dog leg step un = udln

is calculated as follows:

udln
:=

⎧

⎪⎪⎨

⎪⎪⎩

ugnn
if ℓgnn

≤ αn

αn
usdn

‖usdn ‖2

if ℓgnn
> αn and ℓsdn

≥ αn

λnusdn
+ βn(ugnn

− λnusdn
) else

(52)

where in the third case βn is chosen such that the maximum movement on the sensor has
length αn.

The complete dogleg algorithm for visual servoing is shown in Figure 10.

4. Experimental Evaluation

4.1 Experimental Setup and Test Methods

The robot setup used in the experimental validation of the presented controllers is shown
in Figure 11. Again a eye-in-hand configuration and an object with 4 identifiable markings
are used. Experiments were carried out both on a Thermo CRS F3 (pictured here) and on
a Unimation Stäubli RX-90 (Figure 2 at the beginning of the chapter). In the following only

39Models and Control Strategies for Visual Servoing

www.intechopen.com

Fig. 12. OpenGL Simulation of camera-robot system with simulated camera image (bottom
right), extracted features (centre right) and trace of objects markings on the sensor (top right)

the CRS F3 experiments are considered; the results with the Stäubli RX-90 were found to be
equivalent. The camera was a Sony DFW-X710 with IEEE1394 interface, 1024 × 768 pixel
resolution and an f = 6.5 mm lens.
In addition to the experiments with a real robot two types of simulations were used to study
the behaviour of controllers and models in detail. In our OpenGL Simulation3, see Figure 12,
the complete camera-robot system is modelled. This includes the complete robot arm with
inverse kinematics, rendering of the camera image in a realistic resolution and application of
the same image processing algorithms as in the real experiments to obtain the image features.
Arbitrary robots can be defined by their Denavit-Hartenberg parameters (cf. Spong et al., 2005)
and geometry in an XML file. The screenshot above shows an approximation of the Stäubli
RX-90.
The second simulation we use is the Multi-Pose Test. It is a system that uses the exact model as
derived in Section 2.2, without the image generation and digitisation steps as in the OpenGL
Simulation. Instead, image coordinates of objects points as seen by the camera are calculated
directly with the pinhole camera model. Noise can be added to these measurements in order to
examine how methods react to these errors. Due to the small computational complexity of the
Multi-Pose Test it can be, and has been applied to many start and teach pose combinations (in
our experiments, 69,463 start poses and 29 teach poses). For a given algorithm and parameter
set the convergence behaviour (success rate and speed) can thus be studied on a statistically
relevant amount of data.

3 The main parts of simulator were developed by Andreas Jordt and Falko Kellner when they were stu-
dents in the Cognitive Systems Group.

40 Visual Servoing

www.intechopen.com

4.2 List of Models and Controllers Tested

In order to test the advantages and disadvantages of the models and controllers presented
above we combine them in the following way:

Short Name Controller Model Parameters

Trad const Traditional ∆yn ≈ J⋆ u λ = 0.2
Trad dyn Traditional ∆yn ≈ Jn u λ = 0.1, sometimes λ = 0.07

Trad PMJ Traditional ∆yn ≈ 1
2 (Jn + J⋆) u λ = 0.25

Trad MPJ Traditional u ≈ 1
2 (J+n + J⋆+)∆yn λ = 0.15

Trad cyl Traditional ∆yn ≈ J̃n u (cylindrical) λ = 0.1
TR const Trust-Region ∆yn ≈ J⋆ u α0 = 0.09, edes = 0.18
TR dyn Trust-Region ∆yn ≈ Jn u α0 = 0.07, edes = 0.04

TR PMJ Trust-Region ∆yn ≈ 1
2 (Jn + J⋆) u α0 = 0.07, edes = 0.09

TR MPJ Trust-Region u ≈ 1
2 (J+n + J⋆+)∆yn α0 = 0.05, edes = 0.1

TR cyl Trust-Region ∆yn ≈ J̃n u (cylindrical) α0 = 0.04, edes = 0.1

Dogleg const Dogleg u ≈ J⋆+∆yn and u ≈ JT
n ∆yn α0 = 0.22, edes = 0.16, λ = 0.5

Dogleg dyn Dogleg u ≈ J+n ∆yn and u ≈ JT
n ∆yn α0 = 0.11, edes = 0.28, λ = 0.5

Dogleg PMJ Dogleg ∆yn ≈ 1
2 (Jn + J⋆) u and u ≈ JT

n ∆yn α0 = 0.29, edes = 0.03, λ = 0.5

Dogleg MPJ Dogleg u ≈ 1
2 (J+n + J⋆+)∆yn and u ≈ JT

n ∆yn α0 = 0.3, edes = 0.02, λ = 0.5

Here we use the definitions as before. In particular, Jn is the dynamical Image Jacobian as
defined in the current pose, calculated using the current distances to the object,

C
zi for marking

i, and the current image features in its entries. The distance to the object is estimated in the real
experiments using the known relative distances of the object markings, which yields a fairly
precise estimate in practice. J⋆ is the constant Image Jacobian, defined in the teach (goal) pose
x⋆, with the image data y⋆ and distances at that pose. ∆yn = yn+1 − yn is the change in the
image predicted by the model with the robot command u.
The values of the parameters detailed above were found to be useful parameters in the Multi-
Pose Test. They were therefore used in the experiments with the real robot and the OpenGL
Simulator. See below for details on how these values were obtained.
λ is the constant dampening factor applied as the last step of the controller output calcula-
tion. The Dogleg controller did not converge in our experiments without such an additional
dampening which we set to 0.5. The Trust-Region controller works without additional damp-
ening. α0 is the start and minimum value of αn. These, as well as the desired model error
edes are given in mm on the sensor. The sensor measures 4.8 × 3.6 mm which means that at its
1024 × 768 pixel resolution 0.1 mm ≈ 22 pixels after digitisation.

4.3 Experiments and Results

The Multi-Pose Test was run first in order to find out which values of parameters are useful for
which controller/model combination. 69,463 start poses and 29 teach poses were combined
randomly into 69,463 fixed pairs of tasks that make up the training data. We studied the
following two properties and their dependence on the algorithm parameters:

1. Speed: The number of iterations (steps/robot movements) needed for the algorithm to
reach its goal. The mean number of iterations over all successful trials is measured.

2. Success rate: The percentage of experiments that reached the goal. Those runs where
an object marking was lost from the camera view by a movement that was too large
and/or mis-directed were considered not successful, as were those that did not reach
the goal within 100 iterations.

41Models and Control Strategies for Visual Servoing

www.intechopen.com

(a) Teach pose (b) Pose 1 (0,0,-300,0°,0°,0°)

(c) Pose 2 (20,-50,-300,-10°,-10°,-10°) (d) Pose 3 (0,0,0,-5°,-3°,23°)

(e) Pose 4 (150,90,-200,10°,-15°,30°) (f) Pose 5 (0,0,0,0°,0°,45°)

Fig. 13. Teach and start poses used in the experiments; shown here are simulated camera
images in the OpenGL Simulator. Given for each pose is the relative movement in {C} from
the teach pose to the start pose. Start pose 4 is particularly difficult since it requires both a far
reach and a significant rotation by the robot. Effects of the linearisation of the model or errors
in its parameters are likely to cause a movement after which an object has been lost from the
camera’s field of view. Pose 5 is a pure rotation, chosen to test for the retreat-advance problem.

42 Visual Servoing

www.intechopen.com

,2 ,4 ,6 ,8 1

Reglerparameter k

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(a) Trad const, success rate

.2 .4 .6 .8 1
Reglerparameter k

2

4

6

8

1

It
e
ra

ti
o
n

s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(b) Trad const, speed

,2 ,4 ,6 ,8 1

Reglerparameter k

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(c) Trad dyn, success rate

,2 ,4 ,6 ,8 1

Reglerparameter k

2

4

6

8

1

It
e
ra

ti
o
n
s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(d) Trad dyn, speed

Fig. 14. Multi-Pose Test: Traditional Controller with const. and dyn. Jacobian. Success rate and
average speed (number of iterations) are plotted as a function of the dampening parameter λ.

Using the optimal parameters found by the Multi-Pose Test we ran experiments on the real
robot. Figure 13 shows the camera images (from the OpenGL simulation) in the teach pose and
five start poses chosen such that they cover the most important problems in visual servoing.
The OpenGL simulator served as an additional useful tool to analyse why some controllers
with some parameters would not perform well in a few cases.

4.4 Results with Non-Adaptive Controllers

Figures 14 and 15 show the results of the Multi-Pose Test with the Traditional Controller using
different models. For the success rates it can be seen that with λ-values below a certain value
≈ 0.06–0.07 the percentages are very low. On the other hand, raising λ above ≈ 0.08–0.1
also significantly decreases success rates. The reason is the proportionality of image error and
(length of the) robot movement inherent in the control law with its constant factor λ. During
the course of the servoing process the norm of the image error may vary by as much as a factor
of 400. The controller output varies proportionally. This means that at the beginning of the
control process very large movements are carried out, and very small movements at the end.

43Models and Control Strategies for Visual Servoing

www.intechopen.com

,2 ,4 ,6 ,8 1

Reglerparameter k

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(a) Trad PMJ, success rate

,2 ,4 ,6 ,8 1

Reglerparameter k

2

4

6

8

1

It
e
ra

ti
o
n

s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(b) Trad PMJ, speed

0,2 0,4 0,6 0,8 1
dampening λ

2

4

6

8

10

su
cc

es
s r

ate
 in

 %

without noise
with noise

0

0

0

0

0

0
0

(c) Trad MJP, success rate

,2 ,4 ,6 ,8 1

Reglerparameter k

2

4

6

8

1

It
e
ra

ti
o
n
s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(d) Trad MJP, speed

,2 ,4 ,6 ,8 1

Reglerparameter k

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(e) Trad cyl, success rate

,2 ,4 ,6 ,8 1

Reglerparameter k

2

4

6

8

1

It
e
ra

ti
o
n
s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
00000

(f) Trad cyl, speed

Fig. 15. Multi-Pose Test: Traditional Controller with PMJ, MPJ and cylindrical models. Shown
here are again the success rate and speed (average number of iterations of successful runs)
depending on the constant dampening factor λ. As before, runs that did not converge in the
first 100 steps were considered unsuccessful.

44 Visual Servoing

www.intechopen.com

Real Robot OpenGL Sim. Multi-Pose
Controller param. start pose start pose speed success

λ 1 2 3 4 5 1 2 3 4 5 (iter.) (%)

Trad const 0.2 49 55 21 46 31 44 44 23 44 23 32 91.53
Trad dyn 0.1 63 70 48 ∞ 58 46 52 45 ∞ 47 52 98.59

0.07 121 81 76 99.11
Trad MJP 0.15 41 51 33 46 37 35 39 31 41 32 37 99.27
Trad PMJ 0.25 29 29 17 ∞ 35 26 26 18 ∞ 32 38 94.52
Trad cyl 0.1 59 ∞ 50 70 38 46 49 49 58 49 52 91.18

Table 1. All results, Traditional Controller, optimal value of λ. “∞” means no convergence

The movements at the beginning need strong dampening (small λ) in order to avoid large mis-
directed movements (Jacobians usually do not have enough validity for 400 mm movements),
those at the end need little or no dampening (λ near 1) when only a few mm are left to move.
The version with the constant image Jacobian has a better behaviour for larger (≥ 0.3) values
of λ, although even the optimum value of λ = 0.1 only gives a success rate of 91.99 %. The
behaviour for large λ can be explained by J⋆’s smaller validity away from the teach pose;
when the robot is far away it suggests smaller movements than Jn would. In practise this acts
like an additional dampening factor that is stronger further away from the object.
The adaptive Jacobian gives the controller a significant advantage if λ is set well. For λ = 0.07
the success rate is 99.11 %, albeit with a speed penalty, at as many as 76 iterations. With λ = 0.1
this decreases to 52 at 98.59 % success rate.
The use of the PMJ and MJP models show again a more graceful degradation of performance
with increasing λ than Jn. The behaviour with PMJ is comparable to that with J⋆, with a
maximum of 94.65 % success at λ = 0.1; here the speed is 59 iterations. Faster larger λ, e.g. 0.15
which gives 38 iterations, the success rate is still at 94.52 %. With MJP a success rate of 99.53 %
can be achieved at λ = 0.08, however, the speed is slow at 72 iterations. At λ = 0.15 the
controller still holds up well with 99.27 % success and significantly less iterations: on average
37.
Using the cylindrical model the traditional controller’s success is very much dependant on
λ. The success rate peaks at λ = 0.07 with 93.94 % success and 76 iterations; a speed 52 can
be achieved at λ = 0.1 with 91.18 % success. Overall the cylindrical model does not show an
overall advantage in this test.
Table 1 shows all results for the traditional controller, including real robot and OpenGL results.
It can be seen that even the most simple pose takes at least 29 steps to solve. The Trad MJP
method is the clearly the winner in this comparison, with a 99.27 % success rate and on average
37 iterations. Pose 4 holds the most difficulties, both in the real world and in the OpenGL
simulation. In the first few steps a movement is calculated that makes the robot lose the
object from the camera’s field of view. The Traditional Controller with the dynamical Jacobian
achieves convergence only when λ is reduced from 0.1 to 0.07. Even then the object marking
comes close to the image border during the movement. This can be seen in Figure 16 where
the trace of the centre of the object markings on the sensor is plotted. With the cylindrical
model the controller moves the robot in a way which avoids this problem. Figure 16(b) shows
that there is no movement towards the edge of the image whatsoever.

45Models and Control Strategies for Visual Servoing

www.intechopen.com

(a) Trad dyn, λ = 0.07, 81 steps (b) Trad cyl, λ = 0.1, 58 steps

Fig. 16. Trad. Controller, dyn. and cyl. model, trace of markings on sensor, pose 4 (OpenGL).

4.5 Results with Adaptive Controllers

In this section we wish to find out whether the use of dynamical dampening by a limitation
of the movement on the sensor (image-based trust region methods) can speed up the slow
convergence of the traditional controller. We will examine the Trust-Region controller first,
then the Dogleg controller.
Figure 17 shows the behaviour for the constant and dynamical Jacobians as a function of the
main parameter, the desired maximum model error edes. The success rate for both variants is
only slightly dependent on edes, with rates over 91 % (Trust const) and 99 % (Trust dyn) for the
whole range of values from 0.01 to 0.13 mm when run without noise. The speed is significantly
faster than with the Traditional Controller at 13 iterations (edes = 0.18, 91.46 % success) and 8
iterations (edes = 0.04, 99.37 % success), respectively. By limiting the step size dynamically the
Trust Region methods calculate smaller movements than the Traditional Controller at the be-
ginning of the experiment but significantly larger movements near the end. This explains the
success rate (no problems at beginning) and speed advantage (no active dampening towards
the end). The use of the mathematically more meaningful dynamical model Jn helps here since
the Trust Region method avoids the large mis-directed movements far away from the target
without the need of the artificial dampening through J⋆. The Trust/dyn. combination shows
a strong sensitivity to noise; this is mainly due to the amplitude of the noise (standard devia-
tion 1 pixel) which exceeds the measurement errors in practice when the camera is close to the
object. This results in convergence problems and problems detecting convergence when the
robot is very close to its goal pose. In practise (see e.g. Table 2 below) the controller tends to
have fewer problems. In all five test poses, even the difficult pose 4 the controller converges
with both models without special adjustment (real world and OpenGL), with a significant
speed advantage of the dynamical model. In pose 5 both are delayed by the retreat-advance
problem but manage to reach the goal successfully.
The use of the MJP model helps the Trust-Region Controller to further improve its results.
Success rates (see Figure 18) are as high as 99.68 % at edes = 0.01 (on average 16 iterations),
with a slightly decreasing value when edes is increased: still 99.58 % at edes = 0.1 (7 iterations,
which makes it the fastest controller/model combination in our tests).
As with the Traditional Controller the use of the PMJ and cylindrical model do not show
overall improvements for visual servoing over the dynamical method. The results, are also

46 Visual Servoing

www.intechopen.com

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
000000000

(a) Trust-Region const, success rate

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

1

2

3

4

5

6

7

8

9

1

It
e
ra

ti
o
n

s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0

0

0

0

0

0
000000000

(b) Trust-Region const, speed

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
000000000

(c) Trust-Region dyn, success rate

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

1

2

3

4

5

6

7

8

9

1

It
e
ra

ti
o
n
s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0

0

0

0

0

0
000000000

(d) Trust-Region dyn, speed

Fig. 17. Multi-Pose Test: Trust-Region Controller with const. and dyn. Jacobian

shown also in Figure 18. Table 2 details the results for all three types of tests. It can be seen
that while both models have on average better results than with the constant Jacobian they do
have convergence problems that show in the real world. In pose 2 (real robot) the cylindrical
model causes the controller to calculate an unreachable pose for the robot at the beginning,
which is why the experiment was terminated and counted as unsuccessful.

The Dogleg Controller shows difficulties irrespective of the model used. Without an addi-
tional dampening with a constant λ = 0.5 no good convergence could be achieved. Even with
dampening its maximum success rate is only 85 %, with J⋆ (at an average of 10 iterations).
Details for this combination are shown in Figure 19 where we see that the results cannot be
improved by adjusting the parameter edes. With other models only less than one in three poses
can be solved, see results in Table 2.
A thorough analysis showed that the switching between gradient descent and Gauss-Newton
steps causes the problems for the Dogleg controller. This change in strategy can be seen in
Figure 20 where again the trace of projected object markings on the sensor is shown (from the
real robot system). The controller first tries to move the object markings towards the centre of
the image, by applying gradient descent steps. This is achieved by changing yaw and pitch
angles only. Then the Dogleg step, i.e. a combination of gradient descent and Gauss-Newton

47Models and Control Strategies for Visual Servoing

www.intechopen.com

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
000000000

(a) Trust-Region MJP, success rate

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

1

2

3

4

5

6

7

8

9

1

It
e
ra

ti
o
n

s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0

0

0

0

0

0
000000000

(b) Trust-Region MJP, speed

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
000000000

(c) Trust-Region PMJ, success rate

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

1

2

3

4

5

6

7

8

9

1

It
e
ra

ti
o
n
s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0

0

0

0

0

0
000000000

(d) Trust-Region PMJ, speed

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
000000000

(e) Trust-Region cyl, success rate

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

1

2

3

4

5

6

7

8

9

1

It
e
ra

ti
o
n
s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0

0

0

0

0

0
000000000

(f) Trust-Region cyl, speed

Fig. 18. Multi-Pose Test: Trust-Region Controller with PMJ, MPJ and cylindrical model. Plot-
ted are the success rate and the speed (average number of iterations of successful runs) de-
pending on the desired (maximum admissible) error, edes.

48 Visual Servoing

www.intechopen.com

Real Robot OpenGL Sim. Multi-Pose
Controller param. start pose start pose speed success

αstart edes 1 2 3 4 5 1 2 3 4 5 (iter.) (%)

Trust const 0.09 0.18 22 29 11 39 7 20 26 6 31 7 13 91.46
Trust dyn 0.07 0.04 10 15 9 17 17 9 12 7 14 6 8 99.37
Trust MJP 0.05 0.1 8 9 11 13 7 7 9 6 11 5 7 99.58
Trust PMJ 0.07 0.09 21 28 7 ∞ 13 20 25 6 ∞ 5 13 94.57
Trust cyl 0.04 0.1 10 ∞ 7 11 15 8 18 6 11 6 9 93.5

Dogleg const 0.22 0.16 19 24 8 ∞ 12 17 25 4 21 9 10 85.05
Dogleg dyn 0.11 0.28 13 ∞ ∞ ∞ 13 8 ∞ 6 ∞ 16 9 8.4
Dogleg MJP 0.3 0.02 ∞ ∞ 10 ∞ 13 ∞ ∞ 5 ∞ 7 8 26.65
Dogleg PMJ 0.29 0.03 14 13 5 ∞ 12 9 13 5 14 7 8 31.47

Table 2. All results, Trust-Region and Dogleg Controllers. “∞” means no success.

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

2

4

6

8

1

E
rf

o
lg

s
q
u
o
te

 [
%

]

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
000000000

(a) Dogleg const, success rate

. 5 .1 .15 .2 .25 .3 .35
erlaubter Modellfehler d

soll
 im Bild [mm]

2

4

6

8

1

It
e
ra

ti
o
n
s
s
c
h
ri
tt

e

ohne Rauschen
mit Rauschen

00

0

0

0

0

0
000000000

(b) Dogleg const, speed

Fig. 19. Multi-Pose Test: Dogleg Controller with constant Image Jacobian

step (with the respective Jacobian), is applied. This causes zigzag movements on the sensor.
These are stronger when the controller switches back and forth between the two approaches,
which is the case whenever the predicted and actual movements differ by a large amount.

5. Analysis and Conclusion

In this chapter we have described and analysed a number of visual servoing controllers and
models of the camera-robot system used by these controllers. The inherent problem of the
traditional types of controllers is the fact that these controllers do not adapt their controller
output to the current state in which the robot is: far away from the object, close to the object,
strongly rotated, weakly rotated etc. They also cannot adapt to the strengths and deficien-
cies of the model, which may also vary with the current system state. In order to guarantee
successful robot movements towards the object these controllers need to restrict the steps the
robot takes, and they do so by using a constant scale factor (“dampening”). The constancy
of this scale factor is a problem when the robot is close to the object as it slows down the
movements too much.

49Models and Control Strategies for Visual Servoing

www.intechopen.com

(a) Dogleg const, pose 2, 24 steps (b) Dogleg MJP, pose 3, 10 steps

Fig. 20. Dogleg, const and MJP model, trace of markings on sensor, poses 2 and 3 (real robot).

Trust-region based controllers successfully overcome this limitation by adapting the dampen-
ing factor in situations where this is necessary, but only in those cases. Therefore they achieve
both a better success rate and a significantly higher speed than traditional controllers.
The Dogleg controller which was also tested does work well with some poses, but on average
has much more convergence problems than the other two types of controllers.
Overall the Trust-Region controller has shown the best results in our tests, especially when
combined with the MJP model, and almost identical results when the dynamical image Jaco-
bian model is used. These models are more powerful than the constant image Jacobian which
almost always performs worse.
The use of the cylindrical and PMJ models did not prove to be helpful in most cases, and
in those few cases where they have improved the results (usually pure rotations, which is
unlikely in most applications) the dynamical and MJP models also achieved good results.
The results found in experiments with a real robot and those carried out in two types of sim-
ulation agree on these outcomes.

Acknowledgements

Part of the visual servoing algorithm using a trust region method presented in this chapter was
conceived in 1998–1999 while the first author was at the University of Bremen. The advice of
Oliver Lang and Fabian Wirth at that time is gratefully acknowledged.

6. References

François Chaumette. Potential problems of stability and convergence in image-based and
position-based visual servoing. In David J Kriegmann, Gregory D Hager, and
Stephen Morse, editors, The Confluence of Vision and Control, pages 66–78. Springer
Verlag, New York, USA, 1998.

François Chaumette and Seth Hutchinson. Visual servoing and visual tracking. In Bruno
Siciliano and Oussama Khatib, editors, Springer Handbook of Robotics, pages 563–583.
Springer Verlag, Berlin, Germany, 2008.

50 Visual Servoing

www.intechopen.com

Peter I. Corke and Seth A. Hutchinson. A new partioned approach to image-based visual
servo control. IEEE Transactions on Robotics and Automation, 237(4):507–515, August
2001.

Peter Deuflhard and Andreas Hohmann. Numerical Analysis in Modern Scientific Computing:
An Introduction. Springer Verlag, New York, USA, 2nd edition, 2003.

Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, Chichester,
2nd edition, 1987.

Seth Hutchinson, Gregory D Hager, and Peter Corke. A tutorial on visual servo control. Tu-
torial notes, Yale University, New Haven, USA, May 1996.

Masami Iwatsuki and Norimitsu Okiyama. A new formulation of visual servoing based on
cylindrical coordinate system. IEEE Transactions on Robotics, 21(2):266–273, April
2005.

Martin Jägersand. Visual servoing using trust region methods and estimation of the full cou-
pled visual-motor Jacobian. In Proceedings of the IASTED Applications of Control and
Robotics, Orlando, USA, pages 105–108, January 1996.

Kenichi Kanatani. Statistical Optimization for Geometric Computation: Theory and Practice. Else-
vier Science, Amsterdam, The Netherlands, 1996.

Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. Methods for non-linear least squares
problems. Lecture notes, Department of Informatics and Mathematical Modelling,
Technical University of Denmark, Lyngby, Denmark, 1999.

Ezio Malis. Improving vision-based control using efficient second-order minimization tech-
niques. In Proceedings of 2004 International Conference on Robotics and Automation (ICRA
2004), New Orleans, USA, pages 1843–1848, April 2004.

Michael J D Powell. A hybrid method for non-linear equations. In Philip Rabinowitz, edi-
tor, Numerical Methods for Non-linear Algebraic Equations, pages 87–114. Gordon and
Breach, London, 1970.

Andrew P Sage and Chelsea C White. Optimum Systems Control. Prentice-Hall, Englewood
Cliffs, USA, 2nd edition, 1977.

Nils T Siebel, Oliver Lang, Fabian Wirth, and Axel Gräser. Robuste Positionierung eines
Roboters mittels Visual Servoing unter Verwendung einer Trust-Region-Methode. In
Forschungsbericht Nr. 99-1 der Deutschen Forschungsvereinigung für Meß-, Regelungs-
und Systemtechnik (DFMRS) e.V., pages 23–39, Bremen, Germany, November 1999.

Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling and Control.
John Wiley & Sons, New York, Chichester, 2005.

Lee E Weiss, Arthur C Sanderson, and Charles P Neuman. Dynamic sensor-based control of
robots with visual feedback. IEEE Journal of Robotics and Automation, 3(5):404–417,
October 1987.

51Models and Control Strategies for Visual Servoing

www.intechopen.com

52 Visual Servoing

www.intechopen.com

Visual Servoing

Edited by Rong-Fong Fung

ISBN 978-953-307-095-7

Hard cover, 234 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The goal of this book is to introduce the visional application by excellent researchers in the world currently and

offer the knowledge that can also be applied to another field widely. This book collects the main studies about

machine vision currently in the world, and has a powerful persuasion in the applications employed in the

machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field.

For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and

researcher, they can study and learn the chapters, and then employ another application method.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nils T Siebel, Dennis Peters and Gerald Sommer (2010). Models and Control Strategies for Visual Servoing,

Visual Servoing, Rong-Fong Fung (Ed.), ISBN: 978-953-307-095-7, InTech, Available from:

http://www.intechopen.com/books/visual-servoing/models-and-control-strategies-for-visual-servoing

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

