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1. Introduction

It is well known that the convergence of the adaptive filtering algorithms becomes slow when
the number of coefficients is very large. However, in many applications, such as digital net-
work and acoustical echo cancelers, the system being modeled presents sparse impulse re-
sponse, that is, most of its coefficients have small magnitudes. The classical adaptation ap-
proaches, such as the least-mean square (LMS) and recursive least squares (RLS) algorithms,
do not take into account the sparseness characteristics of such systems.

In order to improve the convergence for these applications, several algorithms have been pro-
posed recently, which employ individual step-sizes for the updating of the different coeffi-
cients. The adaptation step-sizes are made larger for the coefficients with larger magnitudes,
resulting in a faster convergence for the most significant coefficients. Such idea was first in-
troduced in (Duttweiler, 2000) resulting in the so-called proportionate normalized least mean
square (PNLMS) algorithm. However, the performance of the PNLMS algorithm for the iden-
tification of non-sparse impulse response can be very poor, even slower than that of the con-
ventional LMS algorithm. An improved version of such algorithm, which employs an extra
parameter to control the amount of proportionality in the step-size normalization, was pro-
posed in (Benesty & Gay, 2002).

An observed characteristic of the PNLMS algorithm is a rapid initial convergence, due to the
fast adaptation speed of the large value coefficients, followed by an expressive performance
degradation, owing to the small adaptation speed of the small value coefficients. Such be-
havior is more significant in the modeling of not very sparse impulse responses. In order to
reduce this problem, the application of a non-linear function to the coefficients in the step-size
normalization was proposed in (Deng & Doroslovacki, 2006).

The well-known slow convergence of the gradient algorithms for colored input signals is
also observed in the proportionate-type NLMS algorithms. Implementations that combine
the ideas of the PNLMS and transform-domain adaptive algorithms were proposed in (Deng
& Doroslovacki, 2007) and (Petraglia & Barboza, 2008) for accelerating the convergence for
colored input signals.

In this chapter, we give an overview of the most important adaptive algorithms developed
for the fast identification of systems with sparse impulse responses. The convergence of the
proposed algorithms are compared through computer simulations for the identification of the
channel impulse responses in a digital network echo cancellation application.
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2. Sparse Impulse Response Systems

Sparse impulse responses are encountered in several applications, such as in acoustic and
digital network echo cancelers. The adaptive filters employed in the modeling of the unknown
system in such applications present a small number of coefficients with significant magnitude.
Figure 1 illustrates the modeling of an unknown system w

o , which is assumed to be linear,
time-invariant and of finite impulse response length (N), by an adaptive filter. The vector
containing the adaptive filter coefficients is denoted as w(n) = [w0(n) w1(n) · · · wN−1(n)]

T

and its input vector as x(n) = [x(n) x(n − 1) · · · x(n − N + 1)]T. The adaptive filter output is
denoted as y(n), the desired response as d(n) and the estimation error as e(n). One of the most
used adaptation techniques is the normalized least mean-square (NLMS) algorithm, shown in
Table 1, where β is a fixed step-size factor and δ is a small constant needed in order to avoid
division by zero.
As shown in Table 1 for the NLMS algorithm, typical initialization parameters are given for
all algorithms studied in this chapter.

v[n]

w
o

e[n]

d[n]

x[n]

w(n)
y[n]

Fig. 1. System identification through adaptive filtering.

Initialization (typical values)

δ = 0.01, β = 0.25

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

w(n + 1) = w(n) + β
x(n)e(n)

xT(n)x(n) + δ

End

Table 1. NLMS Algorithm

Described in the next sections, adaptive algorithms that take into account the sparseness of the
unknown system impulse response have been recently developed. The convergence behavior
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3. Proportionate-type NLMS Algorithms
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2. Sparse Impulse Response Systems of such algorithms depends on how sparse the modeled impulse response is. A sparseness
measure of an N-length impulse response w was proposed in (Hoyer, 2004) as

ξw =
N

N −
√

N

(

1 − ||w||1√
N||w||2

)

(1)

where ||w||l is the l-norm of the vector w. It should be observed that 0 ≤ ξw ≤ 1, and that
ξw = 0 when all elements of w are equal in magnitude (non-sparse impulse response) and
ξw = 1 when only one element of w is non-zero (the sparsest impulse response).
In the simulations presented throughout this chapter, the identification of the digital network
channels of ITU-T Recommendation G.168 (G.168, 2004), by an adaptive filter with N = 512
coefficients, will be considered. Figures 2(a) and 2(b) show the impulse responses of the most
and least sparse digital network channel models (gm1 and gm4, respectively) described in
(G.168, 2004). Figure 2(c) presents the gm4 channel impulse response with a white noise (uni-
formly distributed in [-0.05,0.05]) added to it, such as to simulate a non-sparse system. The
corresponding sparseness measures are ξw = 0.8970 for the gm1 channel, ξw = 0.7253 for the
gm4 channel and ξw = 0.2153 for the gm4 plus noise channel.
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Fig. 2. Channel impulse responses: (a) gm1, (b) gm4 and (c) gm4+noise.

3. Proportionate-type NLMS Algorithms

The proportionate-type NLMS algorithms employ a different step-size for each coefficient,
such that larger adjustments are applied to the larger coefficients (or active coefficients), re-
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sulting in faster convergence rate when modeling systems with sparse impulse responses. The
main algorithms of such family are described next.

3.1 PNLMS Algorithm
For an adaptive filter with coefficients wi(n), for 1 ≤ i ≤ N − 1, the proportionate normal-
ized least mean-square (PNLMS) algorithm is presented in Table 2. In this algorithm, a time-
varying step-size control matrix Γ(n), whose elements are roughly proportional to the abso-
lute values of the corresponding coefficients, is included in the update equation (Duttweiler,
2000). As a result, the large coefficients at a given iteration get significantly more update en-
ergy than the small ones. The parameter β is a fixed step-size factor, δ is a small constant
needed in order to avoid division by zero, and δp and ρ are small positive constants which
are important when all the coefficients are zero (such as in the beginning of the adaptation
process) or when a coefficient is much smaller than the largest one.

Initialization (typical values)

δp = δ = 0.01, β = 0.25, ρ = 0.01

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·

x(n) =
[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

γmin(n) = ρmax{δp, |w0(n)|, · · · , |wN−1(n)|}

For i = 0, 1, · · · , N − 1

γi(n) = max{γmin(n), |wi(n)|}

End

For i = 0, 1, · · · , N − 1

gi(n) =
γi(n)

1
N ∑

N−1
j=0 γj(n)

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n)+ β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n)+ δ

End

Table 2. PNLMS Algorithm

Figure 3 displays the experimental MSE evolutions of the PNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. In all experiments a white
Gaussian measurement noise of variance σ2

v = 10−6 was added to the desired signal. It can
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3.1 PNLMS Algorithm
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Fig. 3. MSE evolution for the PNLMS and NLMS algorithms for white noise input and chan-
nels (a) gm1, (b) gm4 and (c) gm4+noise.

be observed in Fig. 3 that the PNLMS algorithm converges much faster than the NLMS algo-
rithm for the sparse channel gm1. However, for the dispersive channel gm4+noise the PNLMS
behaves much worse than the NLMS. For channel gm4 the PNLMS algorithm presents a fast
initial convergence, which is significantly reduced after 2000 iterations, becoming slower than
that of the NLMS algorithm.

3.2 IPNLMS Algorithm
In the improved proportionate normalized least mean-square (IPNLMS) algorithm, the indi-
vidual step-sizes are a compromise between the NLMS and the PNLMS step-sizes, resulting
in a better convergence for different degrees of sparseness of the impulse response (Benesty
& Gay, 2002). The IPNLMS algorithm is listed in Table 3. It can be observed that for α = −1
the step-size control matrix Γ(n) reduces to 1

N I and hence the IPNLMS and NLMS algorithms
turn identical. For α = 1, the elements of Γ(n) become proportional to the absolute values of
the coefficients, in which case the IPNLMS and PNLMS algorithms show practically the same
behavior. A typical value for this parameter is α = −0.5.
Figure 4 presents the experimental MSE evolutions of the IPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. From this figure, it can be ob-
served that for the sparse channel gm1, the IPNLMS algorithm produces similar performance
as the PNLMS algorithm, that is, significantly better than the NLMS algorithm. For the disper-
sive channel gm4+noise, the IPNLMS performance is similar to that of the NLMS algorithm,
not presenting the severe convergence degradation of the PNLMS algorithm. For channel
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Initialization (typical values)

δ = 0.01, ǫ = 0.001, β = 0.25, α = −0.5

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·

x(n) =
[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

For i = 0, 1, · · · , N − 1

gi(n) =
1 − α

2N
+

(1 + α)|wi(n)|

2 ∑
N−1
j=0 |wj(n)|+ ǫ

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 3. IPNLMS Algorithm

gm4, the IPNLMS algorithm does not present the performance degradation (after the initial
convergence period) observed in the PNLMS algorithm; however, there is almost no gain in
the initial convergence speed when compared to the NLMS algorithm.

3.3 MPNLMS and SPNLMS Algorithms
In the µ-law improved proportionate normalized least mean-square (MPNLMS) algorithm,
the step-sizes are optimal in the sense of minimizing the convergence rate (considering white
noise input signal) (Deng & Doroslovacki, 2006). The resulting algorithm employs a non-
linear (logarithm) function of the coefficients in the step-size control. A simplified version
of the MPNLMS, referred to as the segmented PNLMS (SPNLMS) algorithm, also proposed
in (Deng & Doroslovacki, 2006), employs a segmented linear function in order to reduce its
computational complexity. These two algorithms are presented in Table 4, where the function
F(·) is defined as

F(x) = ln(1 + µx) (2)

for the MPNLMS algorithm and

F(x) =

{

600x, x < 0.005
3, x ≥ 0.005

(3)

for the SPNLMS algorithm (Deng & Doroslovacki, 2006).
Figure 5 shows the experimental MSE evolutions of the MPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. From this figure, it can be noticed
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3.3 MPNLMS and SPNLMS Algorithms
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Fig. 4. MSE evolution for the IPNLMS and NLMS algorithms for white noise input and chan-
nels (a) gm1, (b) gm4 and (c) gm4+noise.

that the MPNLMS algorithm presents significantly faster convergence, when compared to
the NLMS, PNLMS and IPNLMS algorithms, mainly for the sparse channels gm1 and gm4.
However, for the dispersive channel gm4+noise, its convergence is severely degraded, being
much slower than that of the NLMS algorithm.
Figure 6 presents the experimental MSE evolutions of the SPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. Comparing Figs. 5 and 6, it can
be verified that the use of the simplified non-linear function does not deteriorate meaningfully
the performance of the MPNLMS algorithm.

3.4 Variable-Parameter IMPNLMS Algorithm
The variable-parameter improved µ-law PNLMS (IMPNLMS) algorithm was proposed in
(L. Liu & Saiki, 2008). In this algorithm, the channel sparseness measure of Eq. (1) was in-
corporated into the µ-law PNLMS algorithm in order to improve the adaptation convergence
for dispersive channels. Since the real channel coefficients are not available, the correspond-
ing sparseness measure is estimated recursively using the current adaptive filter coefficients.
The resulting algorithm is summarized in Table 5, where the parameter α(n), which in the
improved PNLMS algorithm of Table 4 was a predetermined fixed factor, is made variable
and related to the estimated impulse response sparseness measure ξw(n). In addition, also
proposed in (L. Liu & Saiki, 2008), was the use of the line segment function

F(x) =

{

400x, x < 0.005
8.51|x|+ 1.96, x ≥ 0.005

(4)
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Initialization (typical values)

δp = δ = 0.01, β = 0.25, ρ = 1/N

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

γmin(n) = ρmax{δp, F (|w0(n)|) , · · · , F (|wN−1(n)|)}
For i = 0, 1, · · · , N − 1

γi(n) = max{γmin(n), F (|wi(n)|)}
End

For i = 0, 1, · · · , N − 1

gi(n) =
γi(n)

1
N ∑

N−1
j=0 |γj(n)|

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 4. MPNLMS and SPNLMS Algorithms

with which the steady-state misalignment is decreased in comparison to those of the
MPNLMS and SPNLMS algorithms (Eqs. (2) and (3)), which place too much emphasis on
small coefficients.
Figure 7 presents the experimental MSE evolutions of the IMPNLMS and NLMS algorithms
for the three channels of Fig. 2 with white Gaussian noise input. The good convergence
behavior of the IMPNLMS algorithm for the sparse and dispersive channels can be observed
in this figure.

4. Wavelet-based proportionate-type NLMS Algorithms

Although the proportionate-type NLMS algorithms produce better convergence than the
NLMS algorithm when modeling sparse impulse responses with white noise inputs, they suf-
fer from the same performance degradation as the NLMS when the excitation signal is colored.
Figure 8 illustrates the performance of the NLMS, MPNLMS and IMPNLMS algorithms for a
colored input signal, generated by passing a white Gaussian noise with zero-mean and unit
variance through the filter with transfer function

H(z) =
0.25

√
3

1 − 1.5z−1 − 0.25z−2
. (5)
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4.1 Wavelet-based MPNLMS algorithm (Transform-Domain)
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4. Wavelet-based proportionate-type NLMS Algorithms
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Fig. 5. MSE evolution for the MPNLMS and NLMS algorithms for white noise input and
channels (a) gm1, (b) gm4 and (c) gm4+noise.

Such input signal has power spectrum similar to speech signal (Ikeda & Sugiyama, 1994).
In order to improve the adaptation speed of these algorithms in dispersive channels with
colored input signals, the use of wavelet transform was proposed independently in (Deng &
Doroslovacki, 2007) and (Petraglia & Barboza, 2008). The resulting algorithms are described
next.

4.1 Wavelet-based MPNLMS algorithm (Transform-Domain)
The transform-domain proportionate technique presented in (Deng & Doroslovacki, 2007)
employs the µ-law PNLMS algorithm in the wavelet-domain. Besides improving the con-
vergence of the conventional algorithms owing to power normalization of the step-sizes, the
wavelet-domain approach may be advantageous in the modeling of non-sparse impulse re-
sponses, since they usually become more sparse in the transformed domain. The resulting
algorithm, termed as wavelet-based MPNLMS in the transform-domain (WMPNLMS-TD), is
described in Table 6. The transformation matrix T is formed by the coefficients of the wavelet
filters, as defined in (Attallah, 2000), the vector z(n) = [z0(n) · · · zN−1(n)]

T = Tx(n) is the
transformed input vector and pi(n) is the power estimate of zi(n). The matrix D(n) intro-
duced in the update equation assigns a different step-size normalization to each coefficient.

Figure 9 presents the experimental MSE evolutions of the WMPNLMS-TD algorithm for
the three channels of Fig. 2 and colored noise input with the following wavelet functions:
Haar, Daubechies 2 (Db2) and Daubechies 4 (Db4). Comparing the simulation results of the

www.intechopen.com
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Fig. 6. MSE evolution for the SPNLMS and NLMS algorithms for white noise input and chan-
nels (a) gm1, (b) gm4 and (c) gm4+noise.

WMPNLMS-TD algorithm with those of Fig. 8, it can be observed that, for colored input,
there is a significant improvement in the performance of the MPNLMS algorithm when it
is applied in the wavelet-domain. The more selective wavelet (Daubechies 4) produced the
fastest convergence, as expected.

4.2 Wavelet-based MPNLMS Algorithm (Sparse Filters)
The wavelet-based proportionate NLMS algorithm proposed in (Petraglia & Barboza, 2008)
employs a wavelet transform and sparse adaptive filters. Illustrated in Fig. 10, the wavelet
transform is represented by a non-uniform filter bank with analysis filters Hk(z), and sparse
adaptive subfilters Gk(z

Lk ) (Petraglia & Torres, 2002). For an octave-band wavelet, the equiv-
alent analysis filters of the M-channel filter bank are (Vaidyanathan, 1993)

H0(z) =
M−2

∏
j=0

H0(z2j
),

Hk(z) = H1(z2M−1−k
)

M−k−2

∏
j=0

H0(z2j
), k = 1, · · · , M − 1, (6)
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4.2 Wavelet-based MPNLMS Algorithm (Sparse Filters)

Initialization (typical values)

δ = 0.01, ǫ = 0.001, β = 0.25, λ = 0.1, ξ(−1) = 0.96

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·

x(n) =
[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

ξw(n) =
N

N −
√

N



1 −
∑

N−1
j=0 |wj(n)|

√

N ∑
N−1
j=0 |wj(n)|2





ξ(n) = (1 − λ)ξ(n − 1) + λξw(n)

α(n) = 2ξ(n)− 1

For i = 0, 1, · · · , N − 1

gi(n) =
1 − α(n)

2N
+

(1 + α(n))F(|wi(n)|)
2 ∑

N−1
j=0 F(|wj(n)|) + ǫ

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 5. Variable-Parameter IMPNLMS Algorithms

where H0(z) and H1(z) are, respectively, the lowpass and high-pass filters associated with the
wavelet functions (Vaidyanathan, 1993). The sparsity factors are

L0 = 2M−1, Lk = 2M−k, k = 1, · · · , M − 1, (7)

and the delays ∆k in Fig. 10, introduced for the purpose of matching the delays of the different
length analysis filters, are given by ∆k = NH0

− NHk
, where NHk

is the length of the kth
analysis filter. This structure yields an additional system delay (compared to a direct-form
FIR structure) equal to ∆D = NH0

. For the modeling of a length N FIR system, the number
of adaptive coefficients of the subfilters Gk(z) (non-zero coefficients of Gk(z

Lk )) should be at
least

Nk =

⌊

N + NFk

Lk

⌋

(8)

where NFk
are the lengths of the corresponding synthesis filters which, when associated to the

analysis filters Hk(z), lead to perfect reconstruction.
The resulting proportionate-type NLMS algorithm, referred here as wavelet-based MPNLMS
with sparse filters (WMPNLMS-SF), is presented in Table 7, where xk(n) is the input signal of
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Fig. 7. MSE evolution for the IMPNLMS and NLMS algorithms for white noise input and
channels (a) gm1, (b) gm4 and (c) gm4+noise.

the k-th subband (x(n) filtered by Hk(z)) and wk,i is the i-th coefficient of Gk(z). For colored in-
put signals, the WMPNLMS-SF algorithm presents faster convergence than the time-domain
MPNLMS algorithm, since its step-size normalization strategy uses the input power at the
different frequency bands. It should be observed that the step-size normalization takes into
account the absolute value of each coefficient in comparison to the values of the corresponding
subfilter coefficients (and not to all coefficients, as is done in the WMPNLMS-TD algorithm
(Deng & Doroslovacki, 2007)). As a result, the large coefficients of a given subfilter get sig-
nificantly more of the update energy assigned to the corresponding subband than the small
ones.
Figure 11 shows the experimental MSE evolution of the WMPNLMS-SF algorithm for a
two-level decomposition (M = 3 subbands) using the following wavelet functions: Haar,
Daubechies 2, Daubechies 4 and Biorthogonal 4.4 (Bior4.4). With such wavelets, the increase
in the complexity (compared to the MPNLMS algorithm) and the delay introduced by the de-
composition are not very large, owing to the reduced orders of the corresponding prototype
filters.
From Figs. 8 and 11 we conclude that, for the colored input signal employed in the simula-
tions, the use of the very simple Haar wavelet transform improves significantly the conver-
gence rate of the MPNLMS algorithm. The fastest convergence of the WMPNLMS-SF algo-
rithm was obtained with the more selective Daubechies 4 and Biorthogonal 4.4 wavelets.
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5. Conclusions
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Fig. 8. MSE evolution for the NLMS, MPNLMS and IMPNLMS algorithms for colored noise
input and channels (a) gm1, (b) gm4 and (c) gm4+noise.

Comparisons with Figs. 9 and 11 indicate that the step-size normalization strategy adopted by
the WMPNLMS-SF method is advantageous when compared to that of the WMPNLMS-TD
method.
The convergence performance of the WMPNLMS-SF algorithm for non-sparse channels can be
improved by using the IMPNLMS algorithm independently for each adaptive subfiter. Figure
12 shows the MSE evolution of the resulting algorithm, referred therein as WIMPNLMS-SF,
for different wavelets with colored input signal. The improvement in the convergence rate for
the dispersive channel gm4+noise can be observed by comparing Figs. 11(c) and 12(c).

5. Conclusions

In this chapter we presented a family of algorithms developed in the last years for improv-
ing the convergence of adaptive filters when modeling sparse impulse responses. The per-
formances of the described techniques, known as proportionate-type LMS algorithms, were
illustrated through computer simulations in the identification of the digital network channels
of ITU-T recommendation G.168. The first proposed approach, the PNLMS algorithm, was
shown to produce fast initial convergence for sparse impulse responses, followed by a sig-
nificant reduction after the fast initial period. Also, its performance was poor for non-sparse
impulse responses. Improved versions of the PNLMS algorithm were then described and
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Initialization (typical values)

T: wavelet transform matrix

δp = δ = 0.01, β = 0.25/N, ρ = 0.01, α = 0.9

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

z(n) = Tx(n)

y(n) = z
T(n)w(n)

e(n) = d(n)− y(n)

γmin(n) = ρmax{δp, F (|w0(n)|) , · · · , F (|wN−1(n)|)}
For i = 0, 1, · · · , N − 1

γi(n) = max{γmin(n), F (|wi(n)|)}
End

For i = 0, 1, · · · , N − 1

gi(n) =
γi(n)

1
N ∑

N−1
j=0 |γj(n)|

pi(n) = αpi(n − 1) + (1 − α) ∗ z2
i (n)

End

D(n) = diag{1/p0(n), · · · , 1/pN−1(n)}
Γ(n) = diag{g0(n), · · · , gN−1(n)}
w(n + 1) = w(n) + βD(n)Γ(n)z(n)e(n)

End

Table 6. WMPNLMS-TD Algorithm

their advantages were verified in the simulation results. Whereas the IPNLMS algorithm pro-
duced enhanced convergence performance when modeling dispersive impulse responses, the
MPNLMS employed a non-linear function of the coefficients in the step-size normalization
in order to obtain optimal convergence rate. The combination of these two techniques and
the use of a sparseness measure of the impulse response resulted in the variable-parameter
IMPNLMS algorithm. The fast convergence rate of the proportionate-type algorithms was
limited to white input signals. In order to extend their performance advantages to colored
input signals, wavelet-domain algorithms, whose step-size normalization takes into account
the value of each coefficient as well as the input signal power in the corresponding frequency
band, were described. Simulations showed that the wavelet-domain PNLMS methods present
significantly faster convergence rate than do the time-domain PNLMS ones for applications
in which the system has sparse impulse responses and is excited with colored input signal.
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Fig. 9. MSE evolution for the WMPNLMS-TD with Haar, Db2 and Db4 wavelets for colored
noise input and channels (a) gm1, (b) gm4 and (c) gm4+noise.
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Initialization

δp = δ = 0.01, β = 0.25, ρ = 0.01

For k = 0, 1, · · · , M − 1

wk(0) =
[

wk,0(0) wk,1(0) · · · wk,Nk−1(0)
]T

= 0

End

Processing and Adaptation

For n = 0, 1, 2, · · ·
For k = 0, 1, · · · , M − 1

xk(n) =

NHk
−1

∑
i=0

hk(i)x(n − i)

xk(n) =
[

xk(n) xk(n−Lk) · · · xk(n−(Nk−1)Lk)
]T

ŷk(n − ∆D) = x
T
k (n)wk(n)

End

y(n) =
M−1

∑
k=0

ŷk(n − ∆D)

e(n) = d(n − ∆D)− y(n)

For k = 0, 1, · · · , M − 1

γmin,k(n) = ρmax{δp, F
(

|wk,0(n)|
)

, · · · , F
(

|wk,Nk
(n)|

)

}
For i = 0, 1, · · · , Nk−1

γk,i(n) = max{γmin,k(n), F
(

|wk,i(n)|
)

}
End

For i = 0, 1, · · · , Nk−1

gk,i(n) =
γk,i(n)

1
Nk

∑
Nk−1

j=0 γk,j(n)

End

Γk(n) = diag{gk,0(n), · · · , gk,N(n)}

wk(n + 1) = wk(n) + β
Γk(n)xk(n)e(n)

xT
k (n)Γk(n)xk(n) + δ

End

End

Table 7. WMPNLMS-SF Algorithm
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Fig. 11. MSE evolution for the WMPNLMS-SF algorithm with Haar, Db2, Db4 and Bior4.4
wavelets and M = 3, for colored noise input and channels (a) gm1, (b) gm4 and (c) gm4+noise.
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Fig. 12. MSE evolution for the WIMPNLMS-SF algorithm with Haar, Db2, Db4 and Bior4.4
wavelets and M = 3, for colored noise input and channels (a) gm1, (b) gm4 and (c) gm4+noise.
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applications of signal processing algorithms in various domains as telecommunications, array processing,

biology, cryptography, image and speech processing. The methodologies illustrated in this book, such as

sparse signal recovery, are hot topics in the signal processing community at this moment. The editor would like

to thank all the authors for their excellent contributions in different areas of signal processing and hopes that

this book will be of valuable help to the readers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mariane R. Petraglia (2010). New Adaptive Algorithms for the Rapid Identification of Sparse Impulse

Responses, Signal Processing, Sebastian Miron (Ed.), ISBN: 978-953-7619-91-6, InTech, Available from:

http://www.intechopen.com/books/signal-processing/new-adaptive-algorithms-for-the-rapid-identification-of-

sparse-impulse-responses



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


