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1. Introduction    

Energy use rationalization and the substitution of fossil with renewable hydrocarbon 
sources can be considered as some of the most challenging objectives for the sustainable 
development of industrial activities. In this context, the environmental impact of recovered 
papers deinking is questioned (Byström & Lönnstedt, 2000) and the use of recovered 
cellulose fibres for the production of bio-fuel and carbohydrate-based chemicals (Hunter, 
2007; Sjoede et al., 2007) is becoming a possible alternative to papermaking. Though there is 
still room for making radical changes in deinking technology and/or in intensifying the 
number of unit operations (Julien Saint Amand, 1999; Kemper, 1999), the current state of the 
paper industry dictates that most effort be devoted to reduce cost by optimizing the design 
of flotation units (Chaiarrekij et al., 2000; Hernandez et al., 2003), multistage banks (Dreyer 
et al., 2008; Cho et al., 2009; Beneventi et al., 2009) and the use of deinking additives 
(Johansson & Strom, 1998; Theander & Pugh, 2004). Thereafter, the improvement of the 
flotation deinking operation towards lower energy consumption and higher separation 
selectivity appears to be necessary for a sustainable use of recovered fibres in papermaking.  
Nevertheless, over complex physical laws governing physico-chemical interactions and 

mass transport phenomena in aerated pulp slurries (Bloom & Heindel, 2003; Bloom, 2006), 

the variable composition and sorting difficulties of raw materials (Carré & Magnin, 2003; 

Tatzer et al., 2005) hinder the use of a mechanistic approach for the simulation of the 

flotation deinking process. At this time, the use of model mass transfer equations and the 

experimental determination of the corresponding transport coefficients is the most widely 

used method for the accurate simulation of flotation deinking mills (Labidi et al., 2007; 

Miranda et al., 2009; Cho et al., 2009). 

Solving the mass balance equations in flotation deinking and generally in papermaking 

systems with several recycling loops and constraints is not straightforward: this requires 

explicit treatment of the convergence by a robust algorithm and thus computer-aided 

process simulation appears as one of the most attractive tools for this purpose (Ruiz et al., 

2003; Blanco et al., 2006; Beneventi et al., 2009). Process simulation software are widely used 

in papermaking (Dahlquist, 2008) for process improvement and to define new control 

strategies. However, paper deinking mills have been involved in this process rationalization 
Source: Process Management, Book edited by: Mária Pomffyová,  
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effort only recently and the full potential of process simulation for the optimization and 

management of flotation deinking lines remains underexploited.  

This chapter describes the four stages that have been necessary for the development of a 
flotation deinking simulation module based on a semi-empirical approach, i.e.: 
- the identification of transport mechanisms and their corresponding mass transfer 

equations; 
- the validation of model equations on a laboratory-scale flotation cell; 
- the correlation of mass transfer coefficients with the addition of chemical additives in 

the pulp slurry;  
- the implementation of model equations on a commercial process simulation platform, 

the simulation of industrial flotation deinking banks and the comparison of simulation 
results with mill data. 

After the validation of the simulation methodology, deinking lines with different 
configurations are simulated in order to evaluate the impact of line design on process 
efficiency and specific energy consumption. As a step in this direction, single-stage with 
mixed tank/column cells, two-stage and three-stage configurations are evaluated and the 
total number of flotation units in each stage and their interconnection are used as main 
variables. Explicit correlations between ink removal efficiency, selectivity, energy 
consumption and line design are developed for each configuration showing that the 
performance of conventional flotation deinking banks can be improved by optimizing 
process design and by implementing mixed tank/column technologies in the same deinking 
line.     

2. Particle transport mechanisms 

Particle transport in flotation deinking cells can be modelled using semi-empirical equations 
accounting for four main transport phenomena, namely, hydrophobic particle flotation, 
entrainment and particle/water drainage in the froth (Beneventi et al., 2006).  

2.1 Flotation 

In flotation deinking system, the gas and the solid phases are finely dispersed in water as 

bubbles and particles with size ranging between ~0.2 – 2 mm and ~10 – 100 µm, 

respectively. The collision between bubbles and hydrophobic particles can induce the 

formation of stable bubble/particle aggregates which are conveyed towards the surface of 

the liquid by convective forces (Fig. 1a). Similarly, lipophilic molecules adsorbed at the 

air/water interface are removed from the pulp slurry by air bubbles (Fig. 1b). The rate of 

removal of hydrophobic materials by adsorption/adhesion at the surface of air bubbles, f

nr , 

can be described by the typical first order kinetic equation 

 f
n n nr k c= ⋅   (1) 

where cn is the concentration of a specific type of particle (namely, ink, ash, organic fine 
elements and cellulose fibres) and kn its corresponding flotation rate constant, 

 
n g

n

K Q
k

S

α⋅
=   (2) 
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Qg is the gas flow, α an empirical parameter, S is the cross sectional area of the flotation cell 

and Kn is an experimentally determined parameter including particle/bubble collision 

dynamics and physicochemical factors affecting particle adhesion to the bubble surface.  

2.2 Entrainment 

During the rising motion of an air bubble in water, a low pressure area forms in the wake of 

the bubble inducing the formation of eddies with size and stability depending on bubble 

size and rising velocity. Both hydrophobic and hydrophilic small particles can remain 

trapped in eddy streamlines (Fig. 1c) and they can be subsequently entrained by the rising 

motion of air bubbles. 

Particles and solutes entrainment is correlated to their concentration in the pulp slurry and 

to the water upward flow in the froth (Zheng et al., 2005).  
 

Rising bubble

Stream

lines

Ink particle

Remains

attached
Detaches

 

Rising bubble

Stream

lines

Lyphophilic

molecules

(surfactant)

 

(a) (b) 

 

 

Pulp slurry 

 

(c) (d) 

Fig. 1. Scheme of transport mechanisms acting during the flotation deinking process. (a) 
Particle attachment and flotation, (b) liphopilic molecules adsorption, (c) influence of size on 
the path of cellulose particle in the wake of an air bubble (Beneventi et al. 2007), (d) water 
and particle drainage in the froth. 
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The rate of removal due to entrainment, e
nr , can be modelled by the equation: 

 
0
fe

n n

Q
r c

V

φ ⋅
=   (3) 

where φ = c0f /cn is the entrainment coefficient, c0f is particle concentration at the pulp/froth 

interface, 0
fQ  is the water upward flow in the froth in the absence of drainage and V is the 

pulp volume in the flotation cell.  
The total rate of removal due to both flotation and entrainment is given by the sum of the 

two contributions, i.e. 
n

up f e
n nr r r= + . 

2.3 Water and particle drainage in the froth 

At the surface of the aerated pulp slurry, a froth phase is formed with water films dividing 
neighbouring bubbles and solid particles either dispersed in the liquid phase or attached to 
the surface of froth bubbles (Fig. 1d). Despite the complex dynamics of froth systems 
(Neethilng & Cilliers, 2002), water and particle drainage induced by gravitational forces can 
be considered as the two main phenomena governing mass transfers in the froth. 
The water drainage through the froth, described using the water hold-up in the froth (ε), 
and the froth retention time (FRT) in the flotation cell were taken as main parameters: 

 
f

f g

Q

Q Q
ε =

+
,  (4) 

 
g f

h
FRT

J J
=

+
  (5) 

where Qg and Qf are the gas and the froth reject flows, h is the froth thickness and Jg, Jf  are 
the gas and water superficial velocities in the froth. In flotation froths, the decrease of water 
hold-up versus time, is well described by an exponential decay (Gorain et al., 1998; Zheng et 
al., 2006)  

 
0

dL FRTe
ε

ε
− ⋅=   (6) 

where ε0 is the water volume fraction at the froth/pulp interface and Ld is the water 
drainage rate constant.  

By analogy with particle entrainment in the aerated pulp slurry, the rate of the entrainment 

of particles/solutes dispersed in the froth by the water drainage stream, down
nr , is given by 

the equation 

 /down
n nf dr c Q Vδ= ⋅ ⋅   (7) 

where δ = cd /cnf is the particle drainage coefficient, cnf and cd are particle concentrations in 
the froth and in the water drainage stream, respectively and Qd is the water drainage flow. 
In order to close-up Eqs. (1-7), perfect mixing is assumed in the lower part and two counter-
current piston flows in the upper part (upward flow for the froth and downward flow for 
water drainage).  
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3. Validation of model equations at the laboratory scale 

Mechanisms described by Eqs. (1-7) are extensively used in minerals flotation for the 

simulation of industrial processes. Nevertheless, due to the intrinsic difference between the 

composition and the rheological behaviour of minerals and recovered papers slurries, the 

use of Eqs. (1-7) for the simulation of industrial flotation deinking processes is not 

straightforward and model validation on a pilot flotation cell appears a necessary step.  

3.1 Flotation cell set-up and flotation conditions 

To run pilot tests, a 19 cm diameter and 130 cm height flotation column was assembled (Fig. 

2). The flotation column has two main regions: a collection region, where the pulp slurry is 

in contact with gas bubbles, and a ~15 cm height aeration region, where the pulp is re-

circulated in tangential Venturi aerators where the gas flow is regulated by using a mass 

flow meter. The froth generated at the top of the flotation column is removed by using an 

adjustable reverse funnel connected to a vacuum pump. The pulp level in the cell and the 

froth retention time before removal can be modified by adjusting the position of the 

overflow system and of the reverse funnel, respectively. 

The retention time distribution obtained in the absence and in the presence of cellulose 

fibres (Fig. 3) shows that, whatever the liquid volume in the cell and the feed flow, the 

flotation cell can be described as a continuous stirred tank reactor (CSTR).  

Flotation experiments were performed using a conventional fatty acid chemical system in 

order to test independently the contribution of air flow, pulp feed flow, pulp hydraulic 

retention time in the cell and froth retention time on the ink removal efficiency and the 

flotation yield. Experimental conditions are summarized in Table 1. 
 

 

Fig. 2. Schematic representation of the flotation column used in this study. α) Pulp storage 

chest. β) Volumetric pump. χ) Adjustable froth removal device. δ) Volumetric pump to 

supply gas injectors. ε) Venturi-type air injectors. φ) Flotation cell outlet with adjustable 

overflow system. γ) Froth collection vessel. η) Vacuum pump. ι) Mass flow meter. 
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                                              (a)                                                                               (b) 

Fig. 3. Mixing conditions in the flotation column. Reactor response to a step type increase in 
the tracer concentration. (a) Effect of the feed flow and cell volume in presence of water (b) 
Effect of cellulose fibres. Dotted lines represent the CSTR response. 
 

Cell Volume   
V 

(L) 

Pulp flow 
Qin          

(L/min) 

Air flow 
Qg 

(L/min) 

Froth removal 
thickness 

h (cm) 

HRT        
V/Qin 
(min) 

Air ratio 
Qg/Qin 

(%) 

14.5 2 4 3 - 1.5 - 4 - 8 7.2 200 

14.5 2 6 3 - 1.5 - 4 - 8 7.2 200 

14.5 2 8 3 - 1.5 - 4 - 8 7.2 200 

14.5 3.5 4 3 - 1.5 - 4 - 8 4.1 114 

14.5 4.5 4 3 - 1.5 - 4 - 8 3.2 89 

14.5 2.5 5 3 - 1.5 - 5 - 8 5.8 200 

19.5 2.5 5 3 - 1.5 - 5 - 8 7.8 200 

24 2.5 5 3 - 1.5 - 5 - 8 9.6 200 

Table 1. Experimental conditions used to run flotation trials. The cross sectional area of the 
flotation column had a constant value, S = 283 cm2. 

3.2 Interpretation of experimental results with model equations 
3.2.1 Water removal 

Froth flows measured during flotation experiments were fitted by using Eqs. (5, 6) and the 

water volume fraction in the top froth layer before removal was plotted as a function of the 

froth retention time in the cell. Fig. 4 shows that the water fraction in the froth had an 

exponential decay with increasing retention time and that Eq. (6) fitted with good accuracy 

experimental data. The absence of froth recovery when the retention time was higher than 

30 s indicates that, when the water fraction was lower than ~0.02, gas bubbles collapsed in 

the reverse funnel and froth recovery was no longer possible. The decrease of froth 

processability in the vacuum system was attributed to the destabilization of froth liquid film 

and to the typical increase in froth viscosity (Shi & Zheng, 2003) when increasing FRT.  
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Fig. 4. Water volume fraction in the froth removed by the vacuum device (all tested 
conditions) plotted as a function of the froth retention time in the cell. 

The frothing behaviour of the pulp slurry was therefore described by Eq. 6, with εο = 0.15 
and Ld = 4.44 min-1. 

3.2.2 Ink removal 

The variation of the ink concentration during the flotation transitory and steady states and 

with froth removal at different heights, were obtained by mass balance from Eqs. (2-7) and 

the models of reactors. In order to limit the number of free variables in the equation system, 

the entrainment coefficient of ink particles was assumed similar to that of silica particles 

with same size (Machaar & Dobby, 1992), namely ~0.2. As expected from Eq. (2), the 

increase in the gas flow gave a corresponding increase in the ink flotation rate constant 

which fairly deviated from a linear correlation, i.e. kink = 0.15 Qg0.73 (k in min-1, Qg in L/min). 

The ink drainage coefficient given by model equations was δink = 0.30, thus reflecting the 

limited drainage of ink particles through the froth and the low variation of ink concentration 

in the pulp when the froth removal height was increased (Fig. 5a). Flotation rate constants 

and ink drainage coefficient obtained by fitting experimental data were used to predict the 

contribution of cell volume and froth removal height on the residual ink concentration in the 

pulp. Calculated ink removal efficiencies matched with experimental values (Fig. 5b). 

3.3.3 Fibres removal 

This approach was repeated for fibres, fines and ashes. Since cellulose fibres are hydrophilic 

particles with large-un-floatable size (~1.5x0.1 mm), only entrainment and drainage were 

assumed to govern their transport during flotation.  

Fitting of experimental data gave an entrainment coefficient extremely high for this class of 

large particles: φfibres = 0.30, and a drainage coefficient of δfibres = 0.80. The relevant 

contribution of entrainment was associated with the natural tendency of cellulose fibres to 

generate large flocks with small gas bubbles trapped in.  
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3.3.4 Fines and ash removal 

Fines and ashes displayed an intermediate behaviour between ink and fibres. Fitting of 
experimental data gave low flotation rate constants proportional to the gas flow, kfines = 0.018 
Qg  for fines and kash = 0.021 Qg for ash (k in min-1, Qg in L/min).  
 

                                                           Time (s)    
                                          (a)                                                                              (b) 

Fig. 5. Variation of ink concentration plotted as a function of the flotation time and of the 
froth removal height. (a) Influence of gas flow on residual ink concentration, pulp flow Qin = 
2 L/min, cell volume V = 14.5 L. Dotted lines represent experimental data fitting with model 
equations. (b) Influence of cell volume on residual ink concentration, pulp flow Qin = 2.5 
L/min, gas flow Qg = 5 L/min. Dotted lines represent trends obtained from model 
calculations. 

Like ink particles, entrainment coefficients for fines and ash were assumed similar to that of 

silica particles with similar size, namely φfines = 0.25 and φash = 0.45 and, as expected for 

poorly floatable particles, drainage coefficients had high values, namely δfines = 0.85 and  

δash = 0.8.  
Present results show that model equations derived from the minerals flotation field allowed 
modelling the flotation deinking of recovered papers when using a conventional-fatty acid 
chemical system. The contribution of pulp flow, cell volume, viz. HRT, and froth removal 
height on ink removal and yield was predicted with good accuracy. However, chemical 
variables (such as the presence of surfactants), which can strongly affect the flotation 
deinking process, were not accounted in the model. As a step in this direction, the 
contribution of a model non-ionic surfactant on particle and water transport was 
investigated. 

4. Correlation of transport coefficients with surfactant addition 

Recovered papers may release in process waters a wide variety of dissolved and colloidal 
substances (Brun et al., 2003; Pirttinen & Stenius, 1998) which limit the use of conventional 
analytical techniques for the dosage of non-ionic surfactants. In order to avoid using over 
complex purification and analysis procedures, the surfactant concentration in the pulp 
slurry can be estimated using an indirect method based on the measurement of surface 
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tension by maximum bubble pressure (Pugh, 2001; Comley et al., 2002). Thereafter, in the 
presence of a reference surfactant (in this study, an alkyl phenol ethoxylate, NP 20EO, 
added at the inlet of the flotation cell) it becomes possible to quantify the effect of surfactant 
concentration on particle, water and surfactant molecules transport during the flotation 
process and to establish direct cross correlations between surfactant concentration and 
transport coefficients.  

4.1 Surfactant removal 

The removal of surfactant molecules from the pulp slurry during flotation is strongly 
affected by surfactant concentration and by the froth removal thickness (Fig. 6a). Indeed, the 
increase in NP 20EO concentration boosted surfactant removal and decreased the impact of 
the froth removal thickness on the residual surfactant in the floated pulp. Surfactant 
removal rates and drainage coefficients (Fig. 6b) obtained by fitting experimental data with 
Eqs. (1-7), show that the removal rate constant increased with the equivalent concentration, 
while the drainage coefficient decreased. This trend was interpreted as reflecting the 
contribution of the initial surfactant concentration on bubble size and on froth stability: a 
decrease in bubble coalescence/burst in the aerated pulp and in the froth leads to an 
increase in the surfactant removal rate and a decrease in the drainage rate, respectively. 
 

   
                                          (a)                                                                         (b) 

Fig. 6. Surfactant removal from the pulp slurry during flotation. (a) Decrease in the 
surfactant equivalent concentration in the pulp slurry during flotation plotted as a function 
of the froth removal thickness and of NP 20EO concentration (dotted lines represent data 
fitting with Eqs. (1-7). (b) Surfactant removal rate constant and drainage coefficient obtained 
from the interpolation of experimental data with model equations. 

4.2 Gas and water hold-up     

Fig. 7 shows that the rise in the surfactant flotation rate constant (Fig. 6b) can be ascribed to 
an increase in the gas hold-up with the surfactant concentration. This trend is due to the 
bubble stabilization induced by the adsorption of surfactant molecules on the bubble surface 
and the ensuing stabilization of liquid films formed between colliding bubbles (Danov et al., 
1999; Valkovska et al., 2000). The water hold-up in the froth calculated from water recovery 
data and Eqs. (5, 6) shows an exponential decay (Fig. 8a) and the water hold-up at the 

www.intechopen.com



 Process Management 

 

130 

pulp/froth interface, ε0, increases with the surfactant concentration, whereas the water 
drainage coefficient, Ld, decreases (Fig. 8b). This trend reflects the NP 20EO contribution in i) 
decreasing bubble size in the aerated pulp, ii) stabilizing liquid films between froth bubbles 
and iii) preventing bubble burst in the froth.  
 

   

Fig. 7. Effect of the model non-ionic surfactant (NP 20EO) on gas hold-up. Air flow 2 L/min. 
 

  
                                          (a)                                                                      (b) 

Fig. 8. Frothing behaviour of the pulp slurry in the flotation cell. (a) Water hold-up in the 
froth plotted as a function of the froth retention time and of the added non-ionic surfactant 
concentration. Dotted lines represent data fitting with Eq. 7. (b) Water hold-up at the 
froth/pulp slurry interface and water drainage rate constant. 

4.3 Ink removal 

In the absence of surfactant, ink particles are efficiently removed during flotation (Fig. 9a). 
However, ink removal is strongly affected by the low frothing behaviour of the pulp slurry 
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                                        (a)                                                                           (b) 

Fig. 9. Effect of surfactant concentration on ink removal. (a) Variation of ink concentration in 
the pulp after flotation. (b) Ink flotation rate constant and drainage coefficient. 

(Fig. 8) and the increase in the froth removal thickness is responsible for a strong increase in 
the residual ink concentration in the floated pulp. The addition of surfactant (NP 20EO) in 
the pulp slurry reduces the ink flotation rate constant (Fig. 9.b) and ink removal sensitivity 
to the FRT. For the highest surfactant concentration, 16 µM, the ink concentration is not 
affected by the froth removal thickness thus reflecting the stabilization of froth bubbles. The 
decrease of the ink flotation rate constant for increasing NP 20EO concentration is due to 
non-ionic surfactant adsorption at both the bubble/ and ink/water interface which induces 
a decrease in both bubble surface tension and ink/water interfacial energy (Epple et al, 
1994). In the froth phase, the non-ionic surfactant improves bubble stability and water hold-
up reducing ink particles detachment due to bubble burst and their drainage from the froth 
into the aerated pulp slurry (Fig. 9b). 

4.4 Fibre removal 

The transfer of hydrophilic cellulose fibres in the froth decreases when increasing the surfactant 
concentration (Fig. 10a). As obtained for surfactant and ink, the froth stabilization due to NP 
20EO addition progressively suppresses the contribution of the froth removal thickness on fibre 
concentration and at the highest surfactant dosage the froth has a constant fibre concentration. 
The decrease in the fibre entrainment coefficient shown in Fig. 10b is associated with the 
suppression of fibre flocculation by calcium soap and with a decrease of bubble entrapment in 
fibre flocs and of the convective motion of fibre/bubble flocs towards the froth.  
The constant fibre drainage coefficient (Fig. 10b) indicates that fibre drainage is mainly 
governed by the intensity of the water drainage flow. Fillers and fine elements have a 
behaviour similar to that of ink particles, i.e. the increase in surfactant dosage depressed 
fillers/fines flotation and drainage. 

5. Simulation of conventional flotation deinking banks 

5.1 Implementation of model equations in a process simulation software 

Within the current industrial context (environmental and safety constraints, globalization of 
the economy, need to shorten the “time to market” of products), computer science is more 
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                                      (a)                                                                               (b) 

Fig. 10. Fibre removal in the froth. (a) Influence of froth removal height and surfactant 
concentration on the fibre concentration in the froth during flotation. (b) Fibre entrainment 
and drainage coefficients plotted as a function of surfactant concentration. 

and more often used to design, analyse and optimize industrial processes. This specific area, 

called “Computer Aided Process Engineering” (CAPE), knows a big success in industries 

such as oil and gas, chemical and pharmaceutical. Process simulation software are used by 

chemical engineers in order to provide them with material and energy balances of the 

process, physical properties of the streams and elements required for equipment design, 

such as heat duty of exchangers or columns hydraulics. Moreover, process simulation 

software can also be used for cost estimates (capital expenditure, CAPEX and operational 

expense, OPEX), to evaluate environmental or security impact, to optimize flowsheets or 

operating conditions, for debottlenecking of an existing plant, for operator training… At a 

conceptual level, two kinds of process simulation software exist, the “module oriented” and 

the “equation oriented” approaches. Software based on this last approach are mainly 

dedicated to process dynamic simulation (Aspen Dynamics, gPROMS) and they can be 

compared to solvers for systems of algebraic and differential equations, directly written by 

users. The “module oriented” approach is adopted by most of the commercial process 

simulation software (Aspen Plus, Chemcad, Pro/II, ProSimPlus) and correspond to the 

natural conception of a process, which is constituted by unit operations dedicated to a 

specific task (heat transfer, reaction, separation). A general view of the structure of these 

software is provided on Fig. 11.  

These software provide unit operation library, including most common units such as 
chemical reactors, heat exchangers, distillation or absorption columns, pumps, turbines, 
compressors and, sometimes, some more specific equipments such as brazed plate fin heat 
exchangers, belt filters. 
User supplies operating and sizing parameters of each unit operations (also called modules) 
and linked them with streams, which represent material, energy or information flux 
circulating between the equipments of the real process. Other important parts of a process 
simulation software are the databases and the physical properties server, on which rely unit 
operations models to give consistent results, and solvers, which are numerical tools required 
to access convergence of the full flow sheet. 
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Fig. 11. Structure of a process simulation software. 

Pure component databases include fixed-value properties (molar weight, critical point 
characteristics, normal boiling point…) and correlation coefficients for temperature-
dependent properties (liquid and vapour heat capacity, vapour pressure, liquid and vapour 
viscosity…). The main reference for thermophysical properties of pure components is 
DIPPR (Design Institute for Physical Property Data, http://dippr.byu.edu/) which includes, 
in its 2008 version, 49 thermophysical properties (34 constant properties and 15 
temperature-dependent properties) for 1973 compounds. This number of compounds is to 
compare with the number of chemical substances referenced by the Chemical Abstracts 
(http://www.cas.org/), which was greater than 33 millions in 2008. The difference between 
these two figures shows the importance to have models to predict pure physical properties. 
These models can be based on chemical structure or intrinsic properties of the molecule 
(molar weight, normal boiling point, critical temperature…), but they are then mainly 
reliable for a given chemical family. The use of molecular simulation becomes more and 
more frequent to compute missing data. 
Modelling of a physical system rests on the knowledge of pure component and binary 
properties. Thus, binary interaction parameters between compounds are generally required 
by thermodynamic models to obtain the mixture behaviour. These parameters are obtained 
by fitting experimental data to thermodynamics model, the main sources of these data being 
the DECHEMA (http://www.dechema.de/en/start_en.html) and the NIST 
(http://www.nist.gov/index.html). Two kinds of methods exist in order to compute fluid 
phase equilibria. The first way to solve the problem consists in applying a different model to 
each phase: fugacities in liquid phase are calculated from a reference state which is 
characterized by the pure component in the same conditions of physical state, temperature 
and pressure, ideal laws being corrected by using a Gibbs free energy model or an activity 
coefficients model (NRTL, UNIQUAC, UNIFAC…). Fugacities in vapor phase are calculated 
by using an Equation of State (ideal gases, SRK, PR…). These methods are used in order to 
represent the heterogeneity of the system and are classically called heterogeneous methods. 
Their use covers the low pressure field and it should be noted that they do not satisfy the 

www.intechopen.com



 Process Management 

 

134 

continuity in the critical zone between vapour phase and liquid phase. The second way to 
solve the fluid phase equilibria calculation consists in homogeneous methods, which apply 
the same model, usually an Equation of State, to the two phases, allowing thus to ensure 
continuity at the critical point. Equations of State with their classical mixing rules (SRK, PR, 
LKP…) are included in this second category. However, the field of application of these 
model is limited to non polar or few polar systems. By integrating Gibbs free energy models 
in the mixing rules for Cubic Equations of State, some authors succeeded in merging both 
approaches. These models are often called combined approach. It has to be noted that some 
specific models have been developed for some particular fields of application, like 
electrolyte solutions, strong acids… 
User interface helps users to transcribe its problem in the process simulation software 
language. Providers now propose graphical tools which allows user to build his flowsheet 
by “drag-and-drop”. Numerous tools are also available to ensure fast access to information 
and convenient learning: information layers, colour management, right click, double click... 
New communication standard, called CAPE-OPEN (http://www.colan.org/), is developed 
to permit the interoperability and integration of software components in process simulation 
software. Thanks to this standard, a commercial process simulation software can now use a 
unit operation or a thermodynamic model developed by an expert. With this approach, a 
process simulation software becomes a blend of software components focused on the real 
needs expressed by the user. 
Within this context, correlations shown in Figs. 6-10 and Eqs. (1-7) were coded in FORTRAN 

in order to obtain a module for the flotation deinking unit operation. The effect of non-ionic 

surfactant concentration and distribution on ink removal selectivity was then simulated for 

the conventional multistage flotation system shown in Fig. 12.  
 

 
                                               (a)                                                                          (b) 

Fig. 12. Scheme of the conventional multistage deinking line simulated in this study (a) and 
of relevant pulp stream, flotation process and particle transport variables used to simulate 
each flotation unit (b). 

In the simulated system (Fig. 12), a pulp stream of 32000 L/min is processed in a first stage 
composed by six flotation cells in series. The outlet pulp of the sixth cell is considered as the 
outlet of the entire system, whereas, froths generated in the first stage are mixed and further 
processed in a second stage made of a series of two flotation cells. The froth of the second 
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stage is the reject of the entire system. In order to insure a froth flow sufficient to feed the 
second stage and to avoid ink drainage, the froth is removed from the first stage with no 
retention and 75% of the pulp stream processed in the second stage is circulated at the inlet 
of the second stage. The remaining 25% is cascaded back at the inlet of the first stage. The 
froth retention time in the second stage ranges between 10 s and 4 min to stabilize the water 
reject to 5% (i.e. 1600 L/min). Main characteristics of the flotation line used to run 
simulations are given in Table 2.  
Overall mass balance calculations involving multi stage systems were resolved using a 
process simulation software (ProSimPlus). Transport coefficients in each flotation cell 
composing the multistage system were calculated from the surfactant concentration at the 
inlet of each unit.  
 

Volume 
(L) 

Feed flow 
(L/min) 

Aeration rate 
per cell (%) 

Cross section   
(m2) 

Feed consistency 
(g/L) 

Line capacity     
(T/day) 

20000 40000 50 12 10 580 

Table 2. Characteristics of each flotation cell in the simulated de-inking line. 

5.2 Surfactant removal 

As shown in Fig. 13a, for a constant surfactant concentration in the pulp feed flow, the 

surfactant load progressively decreases when the pulp is processed all along the first and 

the second stage. However, within the range of simulated conditions, the surfactant 

concentration in the second stage is ~1.5 times higher than in the first stage indicating the 

low capacity of the first line to concentrate surfactants in the froth phase. Surfactant removal 

efficiencies illustrated in Fig. 13b show that flotation units in the first stage have similar 

yield which asymptotically increases from ~6% to ~15%. This trend can be associated to the 

influence of surfactant concentration on the flotation rate and on pulp frothing. With a low  
 

 
(a) (b) 

Fig. 13. Effect of surfactant concentration in the pulp feed flow on surfactant distribution 
and removal. Surfactant concentration (a) and removal (b) in each flotation unit composing 
the multistage system. 

www.intechopen.com



 Process Management 

 

136 

surfactant concentration in the feed flow, surfactant removal in flotation cells of the second 
stage is lower than in the first stage. Similar yields are obtained with extremely high 
surfactant concentrations, i.e. >15 µmol/L. The different froth retention time in the first and 
in the second stage is at the origin of this trend. Indeed, in the first stage the froth is 
removed with no retention and surfactant molecules are subjected only to flotation and 
entrainment. Whereas, in the second stage the froth retention time ranges between 10 s and 
4 min in order to promote water drainage and to stabilise the froth flow at 1600 L/min. 

5.3 Ink removal 

For all simulated concentrations, mixing the feed pulp with the pulp flow cascaded back 

from the second stage gives an increase in the ink concentration at the inlet of the first stage 

(Fig. 14a). In general, the ink concentration progressively decreases all along the first and the 

second stage, however, the ink distribution in the deinking line is strongly affected by the 

surfactant concentration. Fig. 14a shows that, at high surfactant load, the ink concentration 

along the deinking line progressively converges to the ink concentration in the feed flow. In 

this condition, the collision and the attachment of ink particles to air bubbles is disfavoured, 

flotation is depressed and ink removal is due to the hydraulic partitioning of the pulp flow 

into the reject and the floated pulp streams.  

Ink removal versus surfactant concentration plots illustrated in Fig. 14b show that in all 

flotation cells of the first stage ink removal monotonically decreases, while in the second 

stage a peak in ink removal appears at 3 µmol/L. For all simulated conditions, ink removal 

in the second stage is lower than in the first stage. This behaviour is associated to different 

froth retention time and surfactant concentration in the two stages (Fig. 13a).  

The peak in ink removal in the second stage reflected the progressive depression of ink 
upward transfer from the pulp to the froth by flotation and of ink drop back from the froth 
to the pulp by drainage. At low surfactant concentration, < 3 µmol/L, ink removal is 
governed by particle transport in the froth. The froth is unstable and bubble burst and water 
drainage induce ink to drop back into the pulp with an ensuing decrease in ink removal. At  
      

 
                                            (a)                                                                          (b) 

Fig. 14. Ink distribution and removal in the flotation line at increasing surfactant 
concentration in the pulp feed flow. (a) Ink concentration, (b) ink removal. 
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high surfactant concentration, > 3 µmol/L, froth bubbles are progressively stabilized and 
ink drainage is reduced. The presence of a maximum in the ink removal vs. surfactant 
concentration curve corresponds to the best compromise between froth stabilization and ink 
floatability depression. 

5.4 Process yield 

Simulation results show that both the variation of surfactant load in the pulp feed flow and 
its distribution in the two flotation stages affect the yield of the deinking line. Except for a 
peak in ink removal in the second stage at 3 µmol/L, Fig. 15a shows that the ink removal 
efficiency of the entire deinking line progressively decreases when increasing surfactant 
concentration. 
 

 
                                             (a)                                                                          (b) 

Fig. 15. Total ink and surfactant removal (a) and fibres, fines, ash loss (b) plotted as a 
function of surfactant concentration in the pulp feed flow. 

Similar trends are obtained for fibre, fines and ash (Fig. 15b) and only surfactant removal 

increases when increasing the surfactant load in the pulp feed flow. Fig. 15 shows that with 

a surfactant load in the pulp flow comparable with the amount released by a standard pulp 

stock composition of  50% old newspaper and 50% old magazines, i.e. ~4 µmol/L, ink is 

efficiently removed (~70%), fibre, fines and ash loss have realistic values for a deinking line, 

i.e. 5, 19 and 65% respectively, and surfactant removal does not exceed 17%. The high 

sensitivity of the process yield to the surfactant load in the pulp stream and the low 

surfactant removal efficiency lead to assume that a conventional deinking line weakly 

attenuates fluctuations in the amount of surface active agents released by recovered papers 

with a direct effect on the stability of the process yield and on surfactant accumulation in 

process waters. 

5.5 Comparison of simulation results with mill data  

Fig. 16a shows that the residual ink content obtained by simulation with a surfactant load of 
4 µmol/L is in good agreement with data collected during mill trial. In the first stage, 
residual ink obtained from simulation displays higher values than experimental data. This 
mismatch can be ascribed to the different ink load in the pulp feed flow.  
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The residual ink content in the floated pulp (ERIC) is lower than that of the model pulp used 
in laboratory experiments and to run simulations (i.e. 830 ppm). When using the industrial 
pulp composition to run simulations this discrepancy is strongly attenuated. 
The variation of the surfactant concentration in the deinking mill is in good agreement with 

simulation results. Fig. 16b shows that surfactant concentration in the first stage is nearly 

constant and the decrease predicted by process simulation can not be observed since it is 

within the experimental error. As predicted by the simulation, the surfactant concentration 

in the second stage is 1.4-1.5 times higher than in the first stage and it progressively 

decreases all along the line. Ink and surfactant removal determined for the industrial 

deinking line in the first and second stages matches with quite good accuracy with the yield 

predicted by process simulation (Fig. 17) thus indicating that particle and water transport 

mechanisms used for the simulation of the industrial line describe with reasonable accuracy 

the deinking process.    

 

 
(a) 

 
(b) 

Fig. 16. Comparison of residual ink concentration (a) and surfactant relative concentration 
(b) obtained from process simulation with mill data. 
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                                             (a)                                                                          (b) 

Fig. 17. Comparison of ink (a) and surfactant removal (b) obtained at the industrial scale 
with simulation results. 

6. Optimization of deinking lines by process simulation 

6.1 Deinking line layout 

In order to clarify the contribution of multistage deinking lines design on ink removal and 
process yield, six bank configurations of increasing complexity are modelled. As 
summarized in Table 3, flotation banks are assembled using flotation cells with two different 
aspect ratios, 0.7 for the tank cell, 2 for the column cell, and with a constant pulp capacity of 
20 m3. With both cell geometries, pulp aeration is assumed to take place in Venturi aerators 
with an aeration rate Qg/Qpulp = 0.5 and a pressure drop of 1.2 bar (Kemper, 1999). To run 
simulations under realistic conditions, the superficial gas velocity in a single column cell is 
set at 2.4 cm/s, which corresponds to an air flow rate of 10 m3/min or half that in the tank 
cell. Similarly, the pulp flow processed in flotation columns is limited to a maximal value of 
10 m3/min. Fig. 18a-d illustrates the four single-stage lines simulated in this study. The first 
case (Fig. 18a), consists in a simple series of flotation tanks, with common launder collecting 
flotation froths from each cell to produce the line reject. The number of tanks is varied from 
6 to 9. In order to limit fibre loss, rejects of flotation cells at the end of the line are cascaded 
back at the line inlet (Fig. 18b) while the froth rejected from the first few cells is rejected. 
Using this configuration, the simulation is carried out with the number of tanks in the line 
and cascaded reject flows being used as main variables. In the third configuration (Fig. 18c), 
the pulp retention time at the head of the line is doubled by placing two tanks in parallel 
followed by a series of 7 tanks whose rejects are returned at the line inlet. The last single-
stage configuration (Fig. 18d) consists in a stack of 4 to 6 flotation columns in parallel, 
followed by a series of 3 to 5 tanks whose rejects are sent back to the line inlet. The aim of 
this configuration is to increase ink concentration and pulp retention time at the head of the 
line and to assess the potential of column flotation for ink removal efficiency.  
As depicted in Fig. 18, two- and three-stage deinking lines were also simulated. As 
previously mentioned, the two-stage line  shown in Fig. 18e is the most widely used one in 
flotation deinking. In this classical configuration, reject of the first stage, are generated in 5 
to 9 primary cells in series. To recover valuable fibres in these combined reject stream, rejects 
of the primary line are processed in a second stage with 1 to 4 tanks. The number of flotation 
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tanks in the first and in the second stage is here used as main variable to optimize the line 
design. The three-stage line shown in Fig. 18f is made of a first stage with 7 to 8 flotation tanks, 
a second stage with 2 tanks and a third stage with 1 tank. The pulp processed in the third stage 
is partitioned between the inlets of the third and of the second stage. 
 

Pulp 

volume 

(m3) 

Cross 

section 

(m2) 

Aspect 

ratio      

h/d 

Pulp feed 

flow 

(m3/min) 

Air     

flow 

(m3/min) 

Superficial 

gas velocity 

(cm/s) 

Gas   

hold-up+  

(%) 

Ink flotation 

rate constant 

(1/min) 

Ink 

removal 

(%) 

20 12 ~0.7 40 20 2.8 10-20 ~0.45 20-35 

20 7 ~2 40/m* 10 2.4 30-40 ~0.52 50-65 
 

Table 3. Relevant characteristics of flotation units used to assembly the flotation lines 
simulated in this study. + Estimated assuming a bubble slip velocity relative to the pulp 
downstream flow of ~7 cm/s. 
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Fig. 18. Flotation lines simulated in this study. (a) Simple line made of a series of n flotation 
cells. (b) Line with n flotation cells with the reject of the last n-m cells cascaded back at the 
line inlet. (c) Line composed by n flotation cells with the first two cells in parallel and the 
remaining cells in series. The reject of the last n-2 cells is cascaded back at the inlet of the 
line. (d) Line composed by a stack of m flotation columns in parallel and a series of n cells. 
The reject of flotation cells is cascaded back at the inlet of the line. (e) Conventional two-
stage line with n cells in the primary stage and m cells in the secondary stage. (f) Three-stage 
line with n = 8, m = 2. 
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The pulp processed in the second stage is partitioned between the inlets of the second stage 

itself and of the first stage. In order to limit the number of variables, all simulations are run 

with zero froth retention time. Under this condition, ink removal and fibre/fillers loss are 

maximized because particle and water drainage phenomena from the froth to the pulp are 

suppressed but this is obtained at the expense of ink removal selectivity. Simulation results 

are therefore representative of deinking lines operated at their maximal ink removal 

capacity.  

6.2 Ink removal selectivity and specific energy consumption 

Flotation lines assembled here for simulation purposes are characterized by a fixed (tank 

cells) and an adjustable (column cells) feed flow. Since the introduction of recirculation 

loops modifies the processing capacity and the pulp retention time in the whole line, 

predicting particle removal efficiencies is not sufficient to establish a performance scale 

between different configurations. Consequently, the specific energy consumption, which is 

given by the equation  

 
inj gn

out out

P Q
SE

Q cρ

⋅
=

⋅ ⋅

∑
 (8) 

 

where Qg is the gas flow injected in each flotation cell (n) in the multistage system, Pinj the 

pressure feed of each static aerator (1.2 bar), ρ the aeration rate Qg/Qpulp (0.5 in the simulated 

conditions), Qout and cout are the pulp volumetric flow and consistency at the outlet of the 

deinking line, the ink removal efficiency and the ink removal selectivity (Z factor) (Zhu et 

al., 2005), have to be taken into account to establish a correlation between process efficiency 

and line design.  

Fig. 19a illustrates that when the cascade ratio is raised in single-stage lines, the deinking 

selectivity increases by 4-5 times, whereas the specific energy consumption slightly 

decreases. Reduced energy is caused by a net increase in pulp production capacity. 

However, these gains are generally associated with a decrease in ink removal. Hence, the 

reference target of 80 % ink removal with selectivity factor Z = 8 could only be obtained with 

a line made of 9 tanks with a cascade ratio of 0.6 and a specific energy consumption of 60 

kWh/t. Because target ink removal and selectivity can be achieved only by increasing 

energy consumption, this configuration does not represent a real gain in terms of process 

performance. The addition of a high ink removal efficiency stage comprising a stack of 

flotation columns in parallel at the line head, Fig. 19b, reduces specific energy consumption 

by 25-50 %. Nevertheless, the efficient removal of floatable mineral fillers and the absence of 

hydrophilic particle drainage in the froth limits the selectivity factor to ~7.5. According to 

experimental studies (Robertson et al. 1998; Zhu & Tan, 2005), the increase of the froth 

retention time and the implementation of a froth washing stage would improve the 

selectivity factor with a minimum loss in ink removal. Under these conditions, a flotation 

columns stack equipped with optimized froth retention/washing systems would markedly 

decrease specific energy consumption. Similarly to the results obtained for single-stage lines, 

Fig. 20a shows that improved ink removal selectivity in two-stage lines is coupled with a 

decrease ink removal. 
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                                             (a)                                                                          (b) 

Fig. 19. Ink removal efficiency and selectivity obtained for tested configurations plotted as a 
function of the specific energy consumption. (a) Flotation line composed by 6 to 9 flotation 
cells and with the reject of the last n-m cells cascaded back at the line inlet (Fig. 18a-b). (b) 
Flotation line composed by a stack of flotation cells or columns in parallel followed by a 
series of flotation cells (Fig. 18c-d). 
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                                             (a)                                                                          (b) 

Fig. 20. Ink removal efficiency and selectivity obtained for tested configurations plotted as a 
function of the specific energy consumption. (a) Deinking line composed by a 1ry and a 2ry 
stage with different number of flotation cells in the two stages (Fig. 18e). The legend in the 
pictures indicates the number of cells in the 1ry stage. b) Line of 3 stages (Fig. 18f). 

The selectivity factor appears to be directly correlated to the number of flotation tanks in the 

secondary line as it progressively decreases from ~17.5 to 5 when increasing the number of 

tanks in the second stage. Selectivity drops when the reject flow increases which, for two- 

and single-stage lines, is induced by the increase of the number of tanks in the second stage 

and the decrease of the cascade ratio, respectively.  

In turn, ink removal efficiency is found here to be governed by the number of cells in the 

first stage. Fig. 20a shows that, with a constant number of tanks in the second stage, ink 

removal increases by 10 % for each additional cell in the first stage, while selectivity slightly 
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increases. Seven tanks in the first stage and two tanks in the second stage are needed to 

reach the target of 80 % ink removal and a selectivity factor of 9. With this configuration, the 

specific energy consumption of the two-stage line (52 kWh/t) is lower than the energy 

required by a single stage line with the same deinking efficiency/selectivity (60 kWh/t). 

Overall, the best energetic efficiency is given by the single line with a stack of six flotation 

columns at the line head (Fig. 19b).  

If we consider the two-stage line with ink removal and selectivity targets as reference 

system, the addition of a third stage with a single tank boosts up selectivity, slightly 

decreases ink removal from 81 to 78% and does not affect specific energy consumption (Fig. 

20b). The selectivity index of the three-stage line can be further increased from 21.5 to 41 by 

setting at 16 s froth residence time in the third stage cell. However, the selectivity gain is 

coupled to a decrease in ink removal from 78 to 72 % and the need for an additional tank in 

the first stage to attain the ink removal target of 80 %. With this last configuration of 8 tanks 

in the first stage, 2 tanks in the second stage and 1 tank in the third stage, 80 % ink removal 

is attained along the highest selectivity factor of all tested configurations. However, the gain 

in separation efficiency results in a sizeable increase in the specific energy consumption. As 

for the other tested configurations, the effective benefit provided by this configuration 

should be thoroughly evaluated in the light of recovered papers, rejects disposal and energy 

costs.     

7. Conclusions 

This chapter summarizes the four steps that have been necessary to develop and validate a 
process simulation module that can be used for the management of multistage flotation 
deinking lines, namely, i) the identification of mass transfer equations, ii) their validation on 
a laboratory-scale flotation cell, iii) the correlation of mass transfer coefficients with the 
addition of chemical additives and iv) the simulation of industrial flotation deinking banks. 
Due to the variability of raw materials and the complexity of physical laws governing 

flotation phenomena in fibre slurries, general mass transport equations were derived from 

minerals flotation and validated on a laboratory flotation column when processing a 

recovered papers pulp slurry in the presence of increasing concentration of a model non-

ionic surfactant.  

Cross correlations between particle transport coefficients and surfactant concentration 

obtained from laboratory tests were used to simulate an industrial two-stage flotation 

deinking line and a good agreement between simulation and mill data was obtained thus 

validating the use of the present approach for process simulation.  

Thereafter, the contribution of flotation deinking banks design on ink removal efficiency, 

selectivity and specific energy consumption was simulated in order to establish direct 

correlations between the line design and its performance. The simulation of a progressive 

increase of the line complexity from a one to a three-stage configuration and the use of 

tank/column cells showed that: 

- In single-stage banks, ink removal selectivity and specific energy consumption can be 

improved by increasing the cascade ratio (i.e. the ratio between the number of cascaded 

cells and the total number of cells in the line) with a minimum decrease in the ink 

removal efficiency. Above a cascade ratio of 0.6, the ink removal efficiency drops.  
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- The addition of a stack of flotation columns in the head of a single stage line gives an 
increase in ink removal selectivity and a decrease in specific energy consumption.   

- In two-stage banks, the ink removal efficiency is mainly affected by the number of 
flotation tanks in the first stage, whereas, the number of cells in the second stage affects 
the fibre removal, which linearly increases with the number of cells.  

- The addition of a third stage allows increasing ink removal selectivity with a negligible 
effect on the ink removal efficiency and on the specific energy consumption.  

- Overall, the best deinking performance is obtained with a stack of flotation columns at 
the line head and the three-stage bankg.  
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