
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322389546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5

Supervisory Control of Industrial Processes

Alexander A. Ambartsumyan
Institute of Control Sciences RAS,

Russia

1. Introduction

Modern production is complex, integrated and is constantly being adapted to the market
requirements by means of the reconfiguration of equipment structure and process alteration.
The development of such production is performed based on evolutionary strategy by
successively engaging (eliminating) stand-alone technological systems.
Evolutionary developed technical systems and facilities presently make up a considerable
share of technical systems. It is typical both for high-tech industries, namely: aviation, space
exploration, military equipment, machine-building (Sujeet, 2005), and for applications based
on large-scale interconnected production complexes (e.g. oil- and gas-producing industry,
oil and gas transportation, city economy engineering etc) (Gilard, 1999; Van Brussel et al.,
1999; Jo, 1999; Ambartsumyan, Prangishvili, Poletykin, 2003; Ambartsumyan, Kazansky,
2008; Ambartsumyan, Potehin, 2003; Ambartsumyan, Branishtov, 2006).
Evolutionary developed technical systems and facilities are featured by complex control
system availability. The latter integrates into a single whole different, as to the purposes,
automatic control loops (automatic control and regulation of physical process parameters,
automatic shielding and blocking, logical configuration control) as well as the functions of
supervisory control mainly aimed at coordination of different processes in a technical system.
Supervisory control (SC) is intrinsically logical and is to provide the required operational
sequence and exclude mutual blocking and deadlocks for stand-alone components
(operating according to their internal rules time scale). SC is discrete and asynchronous by
its nature and most commonly reveals itself as the change of event flow as required by
certain application (technical system functionality).
 It is important to consider two "event" aspects: first, everything happens as the result of a
certain event; second, the change of states is regulated by events – there is no physical time
though the system is dynamic.
Though control systems are widely spread in the technical systems of such kind
(Sujeet, 2005; Gilard, 1999; Van Brussel et al., 1999; Jo, 1999; Ambartsumyan, Prangishvili,
Poletykin, 2003; Ambartsumyan, Kazansky, 2008; Ambartsumyan, Potehin, 2003;
Ambartsumyan, Branishtov, 2006), presently there is no appropriate theoretical base to solve
such supervisory control tasks as local control loops coordination, configuration of material
flows structure and interaction with operations staff.
Most spread concept of practical engineering of such systems is based on the model of

interacting ″black boxes″: a ″black box–control object″ and symmetrically connected with it

as to inputs and outputs a ″black box–control system (device)″. (Fig. 1).
Source: Process Management, Book edited by: Mária Pomffyová,

 ISBN 978-953-307-085-8, pp. 338, April 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Process Management

68

Fig. 1. The scheme of transfer from the object data base and control requirements to the
mathematical description of the control

The first ″black box–control object″ is formed as a data base on the control object and
technique at the stage of the object examination and includes the requirements of this object
appropriate behaviour. The task of the required control search is tackled by the defining of a

″black box–control system″ able to monitor the behaviour – the event flow and, with the
control purpose taken into account, to affect the object inputs in such a way that an
appropriate behaviour of the object is achieved.

The question is how to search for a ″black box–control system″ with information on the first
black box available. Common engineering practice shows that information on control object
behaviour is only used indirectly.

What is the problem? We may speak about precise correspondence between a ″black box–

control object″ and a ″black box–control system″ only as far as inputs and outputs are
concerned, while behaviour is an approximate result of the designer’s informal, speculative
experiment with the initial data and limitations – the information the designer acquires
considering the process physics peculiarities and the object structure properties. At that,

there is not any confidence that a ″black box–control system″ can limit the behaviour of a

″black box–control object″ and provide its meeting the requirements since they, as a rule, are
specified as models of another (not "event") nature and the extent they are taken into
account depends on the designer’s skills. The above leads to serious problems: designer’s
uncertainty in the fact that the designed system complies with the control tasks set; the
necessity to make laborious verification of such compliance by computer simulation and the
refinement of the designed system at facilities.
For the last 10–15, a sophisticated interaction among computer-driven actuating devices
necessitates, when engineering, to analyze the design solutions safety and correctness, to
validate technical systems implementation techniques, to take other approaches actually
based on testing. It is a common knowledge that such approaches only can reveal a part of
errors but cannot guarantee the system as a whole is error-free.
Different engineering approach than that based on two black boxes concept is declared in
the theory of discrete event dynamic systems and supervisory control paradigm. The
abbreviation is often simplified to DES. The distinctive features of supervisory control
theory (all basic concepts and notions of this paper are borrowed from (Cassandras,
Lafortune, 2008)) are as follows:

• The controlled object is represented in DES model by three components: generator G of
L(G) language – proper control object, specification language К – limitations and G
functionality required, supervisor S – control component in DES;

• Setting and solving the task of formal synthesis of S on L(G) and K.
The above, in its turn, creates a theoretical basis for machine control engineering
fundamentally different from the deciphering of "black boxes" approximately fitting each

www.intechopen.com

Supervisory Control of Industrial Processes

69

other. What does it give as compared with the classic procedure of discrete process control
system synthesis according to two-black-boxes model?
First, the description of the object as L(G)-language generator G, limited by nothing, is more
simple than the object description with all the admissible behaviour limitations taken into
account. This work is performed as a separate stage – primary object examination and
constructing a model "as it is".
Second, to form the required functionality (К specifications) basing on a generator G model
already available is also easier than to consider all limitations and requirements in yet non-
existing control system.
Third, control task is solved formally: a supervisor (provided the initial data is correct) is
synthesized and does not require verification while the object and its behaviour are
specified by object and know-how specialist and he is responsible for the data correctness,
its verification and validation.
The present paper formulates the purpose of DES theory development, with the structural
properties of technical systems taken into account, thus creating effective methods to
synthesize a supervisor as an instrument to solve the task of consistency and co-ordination
control of stand-alone components in a technical system.
 Here below is given a brief survey of basic concepts and major noted results, as to DES and
supervisory control, followed by the description of the present paper tasks and the results
obtained.

2. Basic concepts and definitions

DES behaviour is considered generally as behaviour of a certain generator (source) of strings

(sequences) of the events from a finite set of events E. The event e E∈ is an abstraction for a

multitude of facts associated with DES "life". Events are instantaneous, occur spontaneously
in unpredictable moments, therefore the only thing that can be observed is their sequences
that are represented by strings. Event examples are: the facts of change in position and state
of separate object components; commands to which the object reacts by the change of its
state (position); characteristics of normal and abnormal states etc.
The main operation of strings forming is concatenation (we would like to remind that
concatenation is the appending of separate events or entire strings of events on the right to

the string, including ┝ – a space character). For the string, an integral function ()s nµ = is

defined, where n is the number of characters in string s. If n = 0, s = ┝. A set of all string of
any finite length is designated by E* (it is endless but countable). Let a string s consist of

three parts: r, u, t ∈ E* connected by concatenation in such a way that s = rut, where r – a

prefix, t – a suffix, and u – a substring of string s. Any subset of strings L⊆E* is called a
language over E. If L includes ┝ and, jointly with any string s, contains all its prefixes, L is a
prefix–closed language. As usual, conventional language operations are defined, namely:
concatenation, prefix-closure and Kleene-closure.
In many constructions of DES theory, a couple of very important operations over languages

are used: a projection P and a back projection P-1. Let E1, E2⊂E be such that E1∪E2 = E

(possibly E1∩E2 ≠ Ø). Projection Pi of any string from Е* on Ei is defined in three steps:

 1. Pi(┝) = ┝; 2. Pi(e) = ┝ if e ∉ Ei, otherwise Pi(e) = e; 3. Pi(se) = Pi(s) Pi(e) for s ∈ E* and e ∈ E.

Conceptually, a projection of strings from larger alphabet E on smaller one Ei deletes from

the string all characters from E \ Ei (all characters outside Ei). Inverse function Pi-1(s) = {t ∈

www.intechopen.com

 Process Management

70

E*: Pi(t) = s}. Pi-1(s) correlates every string s ∈ Ei with some subset of strings E* the projects of

which on Ei equal s. Both operations are in natural manner extended to the languages L ⊆ E*

and Li ⊆ Ei*. Pi(L)={t ∈ Li: (∃s ∈ L) [Pi(s) = t]}; Pi−1(Li) := {s ∈ E*: (∃t ∈ Li) [Pi(s) = t]}.

In projection operation definition, instead of set indexes, for the sets, the events of which are

excluded from the result of this operation, we shall use the designation of the set itself:

iEP or 1

iEP− .

Languages are a good instrument to observe DES behaviour but in order to perform

analytical study and to set the task of providing the required dynamics (off-line behaviour),

it is necessary to present a countable string set as a mathematical operator. There are many

ways to present languages in the form of mathematical operators that generate or recognise

the language. In DES theory, for these purposes, as a rule, finite state machines are used. A

finite state machine is defined as 0(, , , , ,)mG Q E Q qδ= Γ , where Q – a set of states; E – a set of

events; ├ – a transition function Q E Q× → ; : 2EQΓ → – a function of admissible events in

each state; Qm – a set of marked states; q0 – an initial state. We would like to note that in this

definition the function of outputs is missing. For every state qi the function of transitions is

specified for the events admissible in this state (e.g. for iq Q∈ and ie∈Γ the function

(,) :i jq e qδ =). This definition can be naturally extended also for the following event strings:

(,) :i iq qδ ε = , (,) : ((,),)i iq se q s eδ δ δ= for s ∈ E* and e ∈ E. Let’s denote by (,)!iq sδ the fact that

the function (,)iq sδ is defined.

The function : 2EQΓ → is excessive in a model definition but it simplifies many

examination schemes and algorithms development when analysing the languages presented

by finite state machines, e.g. consistency definition. mQ Q⊂ is a subset of marked states –

the states corresponding to a certain functionality of G, with one of them necessarily being

initiated in a specific variant of G use.

The language generated by G machine is designated as 0() : { : (,)!}L G s E q sδ∗= ∈ . This is a set

of all strings from E* admissible in the initial state q0. It is evident that ()L G E∗⊆ . If the

machine is completely defined, L(G) = E*. It G is represented by a weighed graph of

transitions, L(G) is presented as a set of strings of the events weighing the edges of all the

paths originated from the initial state q0.
When a sophisticated DES is defined via components, two more operations on machines are

often applied: Cartesian product and parallel composition. Product definition

G1×G2 = (Q1×Q2, E1∩ E2, ├1,2, Γ1×2, Qm1×Qm2, (q0 := q01, 02))

is conventional but there is one nuance: a function of transitions is defined on common

events for every pair of states. Isolated pairs and those unattainable from the initial state are

discarded together with their associated transitions. From the definition it follows that the

language L(G1×G2) of the Cartesian product of two machines is equal to L(G1) ∩ L(G2) – the

intersection of these machines languages.

Parallel composition (or just composition, let it be designated as ⊕) is defined on the union

of events of both machines G1⊕G2 = (Q1×Q2, E1∪ E2, ├1,2, Γ1⊕2, Qm1⊕Qm2, (q01,q02)). At this, it

is possible that E1∩ E2 ≠ Ø, then on common events, transition synchronization takes place

in both components. If the event is individual, transition takes place in one component

(provided for this pair this event belongs to the value area of the corresponding function Г).

www.intechopen.com

Supervisory Control of Industrial Processes

71

Formally:

├((q1, q2), e) = {(├1(q1, e), ├2(q2, e)) if e ∈ Г1(q1) ∩ Г2(q2) │ (├1(q1, e), q2) if e ∈ Г1(q1) \ E2 │ (q1, ├2

(q2, e)) if e ∈ Г2(q2) \ E1 │ and indeterminate in other cases}.

It is obvious that both operations are associative and, provided parentheses are places

accordingly, may be easily generalized for n machines: a product –

G = 11
...

n

i nG G G= × ×× ; a composition – G =
1

...
n i i nG G G= ⊕ ⊕⊕ .

The initial stage of object study (modelling) is dedicated to prognostication of possible
physical behaviour of the entire object or its subsystems, i.e. consideration of possible
actions and possible variants of behaviour in the absence of any control and restrictive
actions. At this stage, DES is represented by machine G as a language L(G) generator. Thus,
G generates event sequences of any kind reflecting control-free DES behaviour. In order to
specify and provide control in DES, a set of events E is subdivided into two disjoint subsets:
Ec – a subset of controllable events corresponding to the commands and Euc – a subset of
uncontrollable events for which the moments they occur are unpredictable.
The present-day view on DES was first worded in (Ramadge, Wonham, 1987) though then
the term "discrete event systems" was not used but a new technique of discrete process
modelling and control was stated. The term "discrete event systems (DES)" appears already
in (Ramadge, Wonham, 1989), where DES is represented by generator G of different
sequences of events from E. G is limited by nothing and therefore the sequences reflect the

behaviour *()L G E⊆ unbounded by control. Any DES has some functionality to implement

which are required not all possible sequences but only those providing this functionality
and meeting the limitations specified. In order only to provide the required event sequences,
G is term "supplemented" by supervisor S, built-in a "feedback" manner (Fig. 2).

G S

eu1, eu-1,…,euk

en, en-1,…,e1

Fig. 2. The scheme of object – supervisor interaction

The scheme in Fig. 2 is no different from the conventional structure "control object – control
system" but the behaviour is absolutely different. First, a generator event sequence covers all
events in the system; second, a supervisor sequence includes only controlled events and
third, controlled event ek is incorporated into G output sequence conditioned to its presence
also in S sequence. This allowed to define S transparently enough as a function of strings

from the set ()L G : : () 2ES L G → .

Supervisor S is equipped with a mechanism of G sequences blocking provided they do not
meet limitations. For this purposes, S structure comprises one more component allowing for
G "free" behavior restriction – a specification K. For the real object, a certain functionality
(depending on G destination) must consider a multitude of all types of requirements and
limitations R = {ri | i=1,..,n}. As a rule, R is formed reasoning from physical, process and

www.intechopen.com

 Process Management

72

design limitations imposed on joint behaviour of separate G components. The allowance for

all restrictions R gives rise to K ⊆ L(G) – a language of specifications – a subset of sequences
dictated by G functionality. Actual control scheme stated in (Van Brussel et al., 1987) is
presented in Fig. 3. It took the name of "Supervisory control theory" or RW approach
(named after its authors J. Ramadge J. and W. Wonham W).

Fig. 3. Interrelationship of supervisory control components in DES

The functioning of G in the presence of S is denoted by S/G and a corresponding language –
L(S/G). The scheme symbolically shows that specification K is involved in S forming and in
providing blocking. Supervisor is designed, with K taken into account, in such a way that, in
accordance with L(G) observation results, S blocking mechanism provide the language
L(S/G) = K at DES output. We would like briefly to dwell upon the way L(S/G) generation is
realized. G is supposed to have its own controller that generates control events while a
supervisor blocks the events the occurrence of which runs counter to the specification
(Fig.4).

actuators

Process

controller

supervizor

∩

∩

TCO

Ec

S/Ec

E’c

E’’c

E=Ec�Euc

E=Ec�Euc

E=Ec�EucEc

Fig. 4. Control scheme proposed in the paper (Ramadge, Wonham 1987)

Supervisor S monitors G output events and permits all Euc events, while as to Ec events, it is
"entitled" to permit or not permit them (to block by imposing limits on transition function

(,) :i с jq e qδ =). For every string s ∈ L(G) generated by G under S control, a supervisor only

permits a set {S(s) ∩ Γ(├(q0, s))} – a set of events admissible in G current state ├(q0, s) and not
conflicting with K. Hereinafter, ├(q0, s) will mean a state G transfers to from q0 as affected by
s. In other words, G cannot realize the event from its current active event subset Γ(├(q0, s))
unless this event is contained also in S(s). However, making allowance for the fact that E is
subdivided into controllable and uncontrollable subsets and the appearance of the latter is

limited by nothing, supervisor S is called admissible if for all s ∈ L(G), always Euc ∩ Γ(├(x0,

s)) ⊆ S(s), i.e. S is specified in such a way that in all states it is impossible to block an

www.intechopen.com

Supervisory Control of Industrial Processes

73

uncontrollable event and vice versa: S blocks the events not meeting limitations (irrelevant
to K). Further on, only admissible supervisors will be considered.
For the modelling of DES with passive actuators in paper (Chalmers, Golaszewski,
Ramadge, 1987) it is suggested that the model should be expanded with forced controllable
events and a new control scheme (Fig. 5), with controllable events generated by supervisor,
is developed. For such model, the terms of controllability for specification language are also
defined.

actuators

supervizor

∩

TCO

E’c

E’’c

E=Ec Euc
Ec

E=Ec Euc

Fig. 5. Control scheme for DES with forced controllable events

For both models were developed the methods of supervisor synthesis as a finite state
machine (FSM) with output converters regulating blocking (or generation) of Ec events.
However, for the methods proposed the number of supervisor S states is less or equal to the
product of the number of states for G and K (Cassandras, Lafortune, 2008).
DES dynamics is interpreted in the sense that the system (a pair of G and S), once set to the
initial state, operates off-line, reacting to internal and external events, and provides a
resulting flow relevant to G structure and S control.
Since 1987, there have been a lot of publications on DES subject-matter. At three last world
IFAC Congresses, three sections on DES theory were working; IFAC Committee on DES
theory was established; symposiums on this subject-matter are held. The paper scope
limitation does not allow to survey the results on DES theory so we shall confine ourselves
to listing the basic research trends. They are as follows:

• Study of DES as a dynamic system with a certain range of states and a structure of event
transitions; the study of properties of the languages generating DES from the position of
general control theory and the definition, in terms of language properties, of
controllability, observability, attainability, safety (avoiding blocking situation) and
some others;

• Study of different models of G and K specification (finite state machines, Petry nets etc)
and the development of synthesis (engineering) methods for supervisor S on G and K;

• Assessment of supervisor complexity at synthesis with FSM models of G and K
involved;

• Study of different modular presentations of supervisor S in the form of parallel
generators of sub-languages with their subsequent combining via product operation
(conjunctive scheme), via parallel composition operation (disjunctive scheme) and others;

• Development of programming methods for logical controllers in industrial systems
with supervisor control theory applied;

• Creation of program verification methods for industrial systems with DES, as
simulation instrument, applied;

• Development of the methods of industrial system state diagnostics using DES as a
modelling instrument.

www.intechopen.com

 Process Management

74

A detailed survey of the results obtained on DES can be found in (Cassandras, Lafortune,
2008); herein the major results on controllability from (Ramadge, Wonham, 1987; Ramadge,
Wonham, 1989) are set forth:

• Is formulated the condition of controllability for the language: ()K L G⊆ is controllable

if ()ucKE L G K∩ ⊆

• It is proved that if K is controllable, there exists a non-blocked S such that L(S/G) = K

• Are developed the methods to design supervisor S as a function of strings (Ramadge,
Wonham, 1987; Cassandras, Lafortune, 2008).

However, the direct practical application of the proposed models and methods is confined
to lab examples of dynamic DES engineering and supervisor synthesis. Such constraint is
explained by high dimensionality of the object states set. To analyze for controllability, a
complete DES specification of generator G is required. Even in the simple example given
here below (a machine with four mechanisms) the number of states equals 4356. (The
number can be considerably reduced with DES structural features taken into account).
Main direction of works focused on overcoming supervisor synthesis complexity is based on
different kind of modularity. Methods of modular supervisor synthesis for G, as a single
entity, are elaborated. At this, different control schemes are explored (disjunctive,
conjunctive, hierarchical, generalized). Pioneer work (Ramadge, Wonham, 1989) that
initiated the development of modularity, as applied to DES theory, was evolved and
generalized in (Yoo, Lafortune, 2002). Later, different authors (De Queiroz, Cury, 2000;
Gaudin, Marchand, 2003) developed the methods of modular supervisor synthesis on
modular description G=<G1, G2, …, Gn> and modular specification K=<K1, K2, …, Kn> of
modular S. However, the complexity of such synthesis and weak correspondence of the
initial specification structure to the resulting supervisor make the methods proposed
scantily attractive for practical implementation. Besides, controllability properties are
verified on language models K and L(G) defined for the object (Plant) as a whole, which
makes it difficult to apply these results to real industrial facilities.
The present paper sets the task to develop a prototype of structured dynamic DES by
structuring the object components according to their functionality. To operate the model, the
paper proposes the methods that will allow to raise the dimension of supervisor control
tasks and form a theoretical basis for a new supervisor control engineering technique.
Structured are all three DES components but mainly object model and specification.

3. Structured Discrete Event Systems (SDES)

3.1 Base concept – the structuring of events and specifications

The author considers it promising to develop a supervisory control theory in the direction of
structuring the events according to their role in production operations and in the required
object behaviour specification. This research is based on two specific machinery features
from DES-modelling point of view. The first feature relates to the fact that for discrete
machinery a set of events is usually subdivided into three sets. These are sets of controllable
and uncontrollable events Ec and Euc (typical for DES theory) and Ew is a set of expected
events. The events from Ew simulate states (positions) of actuator(s) or object components.
Supervisor cannot block Ew events as those controllable from Ec and thus Ew events are
traditionally referred to uncontrollable events as per Wonham's classification (Ramadge and
Wonham, 1987). However, Ew events are expected to occur as a response to Ec events – a

www.intechopen.com

Supervisory Control of Industrial Processes

75

confirmation of the fact that the commands sent to actuators were executed. So, the
foregoing gives the ground to mark out Ew events as a separate set. The second specific

feature is as follows: the behaviour of every actuator Gi is simulated by the language L(Gi) of

words over { }i i i
w cE E E= ∪ and the specification of desired behaviour is formulated as a

language K over events Ed = Ec∪Euc, a totality of commands and conditions of their use.
Making the allowance for these specifics, makes it possible to get numerous advantages both
in defining DES and formulating controllability conditions and supervisor synthesis.

3.2 SDES definition

Definition 1: If the structure of DES is defined by: a collection of components

G=<G1,G2,…,Gn>; sets of Ei events, each being structured on { }i i i
w cE E E= ∪ , and a set Euc of

general uncontrolled events; the behaviour of each DES component being defined by FSM

0, , , , ,i i i i i i
i mG Q E Q qδ= Γ and ()iL G language, then the DES with the above structure is

called well structured.

A set of common events for G=<G1,G2,…,Gn> is defined through the union of subsets

{ }w c ucE E E E= ∪ ∪ , where Ew and Ec each are the unions of appropriate component subsets.
Note 1: Sets Ew and Ec for various mechanisms do not intersect, since various mechanisms
have their own actuators and their states are individual.

Note 2: Components of Gi define the behaviour of G that is not limited (controllable) by

anything, e.g. from the successive operation of <G1,G2,…,Gn> in any order up to their
independent work in parallel.
According to the theory of supervisory control, a parallel composition of all object
components is implemented, and, as the result, a model of uncontrollable object behaviour
is created (Ramadge & Wonham, 1987). The narrowing of free behaviour is carried out with
the constraints of purposeful joint behaviour considered. This, in essence, is the procedure
of adapting the initial unlimited behaviour i.e specifying the behaviour as required by
application. We would like to remind that the implementation of all restrictions generates a

language ()K L G⊆ called a language of specifications. Establishing the restrictions is a

creative process that requires an experimental approach to achieve a reliable result. Such
experiment is quite difficult to carry out as the number of states is increasing in the course of
composing. There is a collision.
On the one hand, a system analyst needs to get a general picture of all the transitions to
analyze their admissibility.
On the other hand, it is unreal to do it for complete composition, since the number of states

in it is too high (for practical applications this number is about n·103). Sequent revealing of

restrictions in the process of pair-wise composing, gives a ground to doubt of such

restrictions completeness or, on the contrary, of their extreme strictness. At the same time,

there is no possibility to consider the joint action of components with those absent in the

composition.

At the same time, it is known from the practice of discrete process engineering that the
efficient behaviour of discrete systems is achieved by solving two control tasks, namely:
operation control and control of operation sequence. Operation control is provided by the
execution of a certain command and monitoring the corresponding object response.
Commands and their reactions once defined, are iterated in various places of the sequence
of operations. In process modelling, it is important to set up the sequence of commands and

www.intechopen.com

 Process Management

76

to evaluate the completeness and correctness of conditions. With the above in view, herein is

proposed to create a specification of a well-structured DES with the events Ed = {Ec∪Euc}, i.e.
combination of commands and conditions for their execution in sequence.

Definition 2: The language K⊆Ed* defined by FSM 0(, , , , ,)h h h
d h mQ E Q qδΗ = Γ as a set of

strings defining the required specifications, is called a directive specification language (a

process specification tapes language).
It is assumed that FSM H has no deadlocks (Fig. 6) and livelocks (liveloops, within which H
fails to go out of a certain state subset and does not reach Qm and then q0), i.e. H is non-
blocking.

It is worthy to be noted that if a graph is strongly connected and 0 mq Q∉ , then 0q

transitions only as shown in Fig. 6 are possible.

qo

deadlock

livelock

Qm –
marked

out states

Fig. 6. Types of fragments in the machine Н

The fact of non-blocking is easily verified. Contrary to the general DES theory (Cassandras,
Lafortune, 2008), where deadlocks and livelocks result from the excessive general
description via the product and composition, in SDES, there should be no hurry in cutting
down "bad" states and transitions but, vice versa, it is necessary to check if any transition is
missed to avoid deadlock or livelock situations.
Let’s define a supervisor for G and K. It is conceptually evident, that supervisor is an
operator that defins, for every string s, which of possible events, admissible for G, are
suitable as the next event not conflicting with K. At this, supervisor remains admissible in
terms of (Van Brussel et al., 1998) since it in no way limits Euc occurrence and affects only Ec.

Definition 3. Supervisor S is a converter of strings admissible for the system
1 2, ,..., nG G G G= initial state to the events () { { }}uc cS s E eε= ∪ ∪ such that: first, these are

any of uncontrollable events ucE (i.e. S is admissible for G); second, these are controllable

events ce admissible for the current G state; third, these events do not cause blocking of S

and 1 2, ,..., nG G G G= composition.
Let’s denote, as agreed, by L(S/G) the language generating G under S control. It is evident

that L(S/G) ⊆ L(G). Let’s also give a definition of L(S/G) language generating S/G, that is
consistent to the conventional definition of language generating G under S control.

Definition 4. The language L(G/S) generating 1 2, ,..., nG G G G= under S control contains

the following strings:

1. ┝ ∈ L(S/G);

2. , ((/) ()) : () (/)s e s L S G e S s se L G se L S G∀ ∈ ∧ ∈ ∈ ⇔ ∈

In other words, any string se belongs to L(S/G) provided it also belongs to L(G) being at the

same time the extension of string s which also enters L(S/G) by event e such that ()e S s∈ .

Possibly, s ε= .

www.intechopen.com

Supervisory Control of Industrial Processes

77

Definition 5. A well-structured DES, for which the uncontrollable part is set up by

definition 1, the desired behaviour is set by specification language K ⊆ Ed* (K ≠ Ø), and

which is supplied with a supervisor S such that K is fulfilled, is called a structured dynamic

discrete event system (SDES).

K fulfilment means that ((/))
dEP L S G K= , i.e. that K will be equivalent to the projection on

Ed of L(S/G) language that is generated by S/G.

3.3 Technical object modelling by structured DES

The events associated with real industrial objects, as a rule, are easily divided into groups

(types) as proposed herein. Such event grouping is typical for process systems of many

industrial spheres. Here below is the example which refers to the field of mechanical metal-

working. We consider this example most interesting since it is close to illustrative examples

frequently used in publications on DES (Ramadge, Wonham, 1987; Ramadge, Wonham,

1989; Chalmers, Golaszewski, Ramadge, 1987; Ambartsumyan, 2009).

The structuring of technical object (the first phase of study) includes as follows:

• enumerating actuators;

• defining for each of them the set of events necessary and sufficient for the outer
supervisor to identify actuators behaviour;

• defining the classification of marked out events;

• defining the components and object behaviour in the compact-form languages, e.g.
finite machine models.

In Fig. 7 a kinematical scheme of a small milling machine is presented. The machine consists

of 4 mechanisms: "workpiece clutch" - G1, "turntable" – G2, "spindle" – G3 and "cutter" – G4

Clutch is open

Clutch is closed

Open clutch

Close clutch

Detail is on the table

Detail is ready to be send Rotate on 1/4

Table is fixed

Table is rotating

Table has closed full circle

To the left

To the right
Working (smooth)

Parked (--+)

Ready to work (-+-)

End of the operation (+--)

Turn on cutter

Cutter is working

Fig. 7. Kinematical model of the machine

Let’s enumerate the events and their semantics in the liveloop (behaviour) of each

mechanism.

www.intechopen.com

 Process Management

78

"Workpiece clutch" mechanism: e1-1 – to clamp, e1-2 – clutch closed, e1-3 – to unclamp, e1-4 –
clutch closed, e1-5 – clutch is moving.
"Turntable" mechanism: e2-1 – to lock the table, e2-2 – table locked, e2-3 – to unlock the table,
e2-4 – table unlocked, e2-5 – locker is moving, e2-6 – to make a ¼ turn, e2-7 – table is moving,
e2-8 – table is turned, e2-9 – to switch off turning gear, e2-10 – table stopped.
"Spindle" mechanism: e3-1 – to move spindle fast to the left, e3-2 – feed zone, e3-3 – working

position, e3-4 – to move spindle to the left, e3-5 – working zone, e3-6 – operation finished, e3-7 –

to move spindle to the right, e3-8 – to move spindle fast to the right, e3-9 – parked.

"Cutter" mechanism: e4-1 – to turn on cutter, e4-2 – cutter working, e4-3 – to turn off cutter, e4-4 –

cutter stopped, e4-6 – cutter unstable spinning.

Mechanisms behaviour, as agreed here above, will be considered as sequences (strings) of

possible events. These sequences will be defined as finite state machines (Fig. 8–11).

Hereinafter they are called component finite machines (CFM). It is easily seen that CFM

transition graphs and graph edges weighed by events, specify operation of each mechanism

quite transparently.

e1-1

1

e1-4

2

e1-1

3

e1-5

e1-5

4

e1-2
e1-2

5

e1-3

e1-3

6

e1-5

e1-5

e1-4

Clutch is

opened

clamp

moving

clutched

unclamp

moving

Fig. 8. G1 CFM – a model of "Workpiece clutch" mechanism

e2-1
1

Start(Stopped and fixed)

Locker moving fixed
e2-10

Ready to

turn

turning

2

e2-1

3

e2-5

e2-5 4

e2-2

e2-2

5

e2-3

6

e2-5

e2-5

7

e2-4
8

e2-6

e2-6
9

e2-7

e2-7

e2-3

e2-4

Locker

moving

unfix

turn

10

e2-8

Rotated

on 1/4

e2-8

11

e2-9

e2-9

e2-10
Stop turnable

mechanism

Fig. 9. G2 CFM – a model of "Turntable" mechanism

www.intechopen.com

Supervisory Control of Industrial Processes

79

e3-1
1

Start

(Parked)

e3-9

2

e3-1

e3-5

3

e3-2

e3-2

4

e3-3

e3-3

5

e3-4

67

e3-6

e3-6

8

e3-7

e3-4

e3-7

9

e3-5

e3-5

e3-3

10

e3-8

e3-8

11

e3-2

e3-2

e3-9

e3-5

<<
Feed

zone

<

Working

zone
End

Back >

Back >>

Fig. 10. G3 CFM – a model of "Spindle" mechanism

e4-1

1

e4-4

2

e4-1

3

e4-6

e4-6

4

e4-2
e4-2

5

e4-3

e4-3

6

e4-6

e4-6

e4-4

Fig. 11. G4 CFM – a model of "Cutter" mechanism

It is easy to make natural event grouping in all the CFM, namely:

G1 – 1
1 1 1 3{ , }cE e e− −= , 1

1 2 1 4 1 5{ , , }wE e e e− − −= ; G2 – 2
2 1 2 3 2 6 2 9{ , , , }cE e e e e− − − −= ,

2
2 2 2 4 2 5 2 7 2 8 2 10{ , , , , }wE e e e e e e− − − − − −= ; G3 – 3

3 1 3 4 3 7 3 8{ , , , }cE e e e e− − − −= ,
3

3 2 3 3 3 5 3 6 3 9{ , , , , }wE e e e e e− − − − −= ; G4 – 4
4 1 4-3{ , }cE e e−= , 4

4 2 4 4 4 6{ , , }wE e e e− − −= and to see the events

1 2 3 4 ex-s{ , , , , , }uc ex ex ex ex ex wE e e e e e e− − − − −= common for all components (respectively: a

workpiece is on the table; a workpiece is removed from the table; processing is over, clutch

of s type , clutch of w type).

Note 3. Sets wE and cE for different mechanisms do not intersect.
It is evident, since different mechanisms have their own drivers and their positions for each
mechanism are individual.
The next stage of a technical system SDES-modelling is the defining of the system behaviour
specification based on the requirements to the system functionality and limitations. It is

www.intechopen.com

 Process Management

80

done by forming the behaviour of G as an uncontrollable system, as a whole, followed by
putting in limitations, thus "narrowing" G behaviour up to that required.
The traditional approach being applied, uncontrollable G behaviour is defined by
component machines combination. Let’s use two mechanisms of the above milling machine
(Turntable and workpiece Clutch) to illustrate this.

clutch

t

a

b

l

e

21 3 4 5 6

2

3

4

5

6

7

8

9

10

11

clutch

t

a

b

l

e

21 3 4 5 6

2

3

4

5

6

7

8

9

10

11

clutch

t

a

b

l

e

2

6

7

8

9

10

11

1

2

3

4

5

3 4 5 6

Fig. 12. CFM composition for G1 and G2: а) complete; b) with allowance for limitations r1
and r2; c) with allowance for limitations r1, r2, r3

Pursuant to SC theory, we should make a composition of all machines to achieve
"uncontrollable" G behaviour. DES, modelling "uncontrollable" behaviour of the first two

mechanisms, is represented by G1 ⊕ G2 composition, with relevant transition graph structure

illustrated in Fig. 12-а. Here a structure of initial components transitions is shown: across - G1

structure, down - G2 structure, and relevant pairs are represented by nodes at arrows
intersection. Edges weighing corresponds to weighing of transitions in the initial components.

Machine ⊗1 2G represents unlimited by anything, parallel operation of mechanisms G1 and

G2 originating L(⊗1 2G) language.
In our example, the following restrictions as to joint behaviour of the mechanisms take

place: r1: "turning of G2 "Turntable" mechanism is possible if a workpiece is clutched"; r2: "if
in the course of the table turning a workpiece unclasping begins , "Turntable" will only
terminate turning".
The implementation of these technological restrictions are formally realized by banning the
following state compositions: 1, 2, 3 of G1 CFM and 2-9 of G2 CFM. With these limitations
applied, all pairs of states under verticals 1, 2, 3 and a number of pairs under verticals 5, 6
are excluded (Fig. 12-b). The same refers to their incident transitions. As the result, we get
the machine K1 as shown in Fig. 12-b. More detailed analysis of admissible transitions
results in the necessity of one more limitation: r3 – "at table turning, а workpiece unclasping
is inadmissible", which makes specification more strict (K2) as shown in Fig. 12-c.

www.intechopen.com

Supervisory Control of Industrial Processes

81

Thus, we have DES of ⊗1 2G and it’s necessary to provide its operation within the

framework of language K. In what way is it possible to regulate a path choice in ⊗1 2G

graph? In our example, for ⊗1 2G 1 2
1 1 1-3 2 1 2-3 2 6 2 9{ ,e , ,e , , }cE e e e e⊗
− − − −= ,

1 2
1 2 1-4 1 5 2 2 2-4 2 5 2 7 2 8 2 10{ ,e , , ,e , , , }wE e e e e e e e⊗
− − − − − − −= .

Graph transition trajectory can be regulated by a function of transitions 1 2G ⊗ by blocking or

accepting the events from Ec set with the help of supervisor S (outer to G) which

dynamically interacts with G in a feedback manner. The way it can be realized is illustrated

by our example. In state, 1,4q in cycles 1, 2 and 3 of the table operation, a supervisor each

time enables e2-1 and disables e1-4, and, after the table returns to its initial position for the 4-th

time, it is e1-4 that is admitted and e2-1 that is banned.
So, CFM sequential merging and the detection of limitations for CFM joint operation are

quite a complicated procedure even in our case. We have already noted that the detection of

limitations in the course of pairwise component combination, gives the ground to doubt

about the completeness of such limitations or vice versa in their excessive strictness. Besides,

there is no possibility to predict the consequences of joint operation with the components

still absent in the composition. For example, should we start CFM merging with "Spindle"

and "Turntable" mechanisms, it will in no way possible to make allowance for the fact that

between their "activities" a locker actuation will take place.

At the same time, for technical objects, their required behaviour is always defined by their

functionality that is specified, for example, by text description. The required machine

behaviour is presented by informal specification in table 1.

1) on arrival, the piece is locked by clutch;
2) after clenching, the spindle moves from
park position to work position (to the left);
3) the cutter is switched on;
4) smooth feed to the left utmost position
(operation is over);
5) the spindle moves to the right back to
work position;

6) positioner makes a ¼ table rotation;
7) after the table is fixed, the next operation
is carried;
8) after the table makes a turnover, the
spindle is parked, the clutch is unclamped,
the signal of the piece readiness is sent;
9) prior to parking, to switch off the cutter
and wait for a stop.

Table 1. Text description of initial specification

At SDES-modelling, at this stage, a specification of joint behaviour in K language is applied.

A specification, compliant with the text specification, is presented by machine

0(, , , , ,)h h h
d h mH Q E Q qδ= Γ shown in Fig. 13.

Since the verbal behaviour description, as a rule, is inaccurate, the resulting specifications

may vary. The example of another interpretation of verbal description is presented in Fig.

14. The specification is described in conformity with verbal description. Basing on the

information from table 1, it is possible to assume that at the beginning of operation, the table

is fixed, since otherwise is not specified and thus, the operation relevant to the transition

graph node 3 is omitted. However, should the order of operations as shown in Fig. 14 be

accepted, already the processing of the second workpiece will start with the table unfixed

since in the beginning of the large loop locker is not considered. The necessary operation is

missing.

www.intechopen.com

 Process Management

82

2 11

eex-1

eex-1

4

Piece is

put on

table

e1-1

5
e3-1

Work state 6
e4-1

Feed
7

e3-4
Turn on

cutter

8
e3-7

Smoothly

to back

9

e4-3

Stop table

10

14

eex-4
Work is

finished

eex-3
11

e2-3
12 e2-6

e2-1

15
e3-8

16
e1-3eex-2

3

e2-1

Lock

table

13

e2-9

Lock

piece

Work not

finished

Park spidleUlock

piece

Piece is

out of table

Unlock

table

Rotate

table

on 1/4

Stop cutter

Lock

table

Fig. 13. The required machine behaviour in terms of directive specifications. The semantics
is as follows: eex-1 – a workpiece is on the table, eex-2 – a workpiece is removed from the table,
eex-3 – processing is not over, eex-4 – processing is over (other events semantics was given here
above in the mechanisms description).

2 11

eex-1

eex-1

4

Piece is

put on

table

e1-1

5
e3-1

Work state 6
e4-1

Feed
7e3-4

Turn on

cutter

8
e3-7

Smoothly

to back

9

e4-3

Stop table

10

14

eex-4
Work is

finished

eex-3
11 e2-3

12 e2-6

e2-1

15 e3-8
16

e1-3eex-2

13

e2-9
Lock

piece
Work not

finished

Park spidleUlock

piece
Piece is

out of table

Unlock

table

Rotate

table

on 1/4

Stop cutter

Lock

table

Fig. 14. H specification with erroneous missing of "Table locking" operation

Operation omission is far from being the only inconsistency in the required behaviour

specification. Here below (Fig. 15) another text description interpretation is given. The

specification is elaborated in accordance with the text but a "cutter halt" operation (node 8 of

Fig. 15) is performed prior to cutter parking in the "large" loop, which follows from item 9 of

the text description from Table 1. Cutter halt is performed in the "large" loop but on the

processing termination, therefore, while processing the second piece position, the attempt

will be made to switch on a working cutter.

Note3. The composition of modular hierarchic DES description of solely unblocked modules

may result in DES blocked operation.

This stage of SDES-modelling reveals a principle difference of discrete control engineering

with supervisor S on G and K given, as compared with a "black box" technique.

www.intechopen.com

Supervisory Control of Industrial Processes

83

2

11

eex-1

eex-1

4

Piece

removed

from the

table

Piece is

placed on

the table

e1-1 5e3-1

Clamp the

piece

Working

state
6

e4-1

Feed 7

e3-4Turn on

cutter

e3-7
Smothly to

the back

9

e4-3

10

14 eex-4

Processing

is over

eex-3

Processing

is NOT over

11 e2-3

Unlock the

table

12 e2-6

Rotate on 1/4

e2-1

Lock

the table

15
e3-8

Park
the spindle17

e2-3

Unclamp

the piece

eex-2

3

e2-1

Lock the

table

13 e2-9

Stop the table

8

Stop the

cutter

16e1-3 Unlock the

table

Fig. 15. Machine behaviour as described in the language of directive specifications, with a
"Cutter halt" operation moved to the large loop

Indeed, if we make quite a transparent substitution of CFM operations in the transition

graph of H specification and properly apply the functions of outputs (to be shown here

below), we shall get a controlling finite state machine. This machine, provided inputs are

independent (this being an indispensable condition for conventional logical control

according to the "black box" scheme), will precisely perform the operation sequences

specified. Note that substitutions can be made for each of three specifications and, thus,

three different controlling machines will be obtained. Later on, it will be possible to carry

out arbitrarily profound optimization applying all the methods used in the finite machine

theory and logical synthesis. However, at the attempt to unite a control object and
1 2, ,..., nG G G G= machines, obtained as per specifications presented in Fig. 15, 16, the

errors, mentioned here before, will reveal themselves in blocking (non-fulfilment) of some

commands and a "hanging" – an unforeseen cyclic operation interruption will occur. At the

same time, with DES theory analytic methods applied, possible blocking situation will be

revealed analytically. It is evident that once DES theory methods are applied, a "dimension

damnation" will manifest itself: CFM parallel composition of the example in question

already gives a machine with the number of states equal to 4356 and its composition with H

machine results in the machine with dozens of thousands states.
So, we face the following problem: how to predict blocking situation without composition of
Gi in G followed by general composition with K. To tackle this problem, let’s continue
considering the theory of SDES-modelling.

4. Features of the models of G components and H specification

We would like to point out a number of important features of the models of
1 2, ,..., nG G G G= components and specifications of industrial objects. Model components,

as a rule, simulate the behaviour of different actuators able to "perceive" events-commands,

www.intechopen.com

 Process Management

84

react to them by the change in the position (location, speed, pressure, level, temperature,

flow rate etc), with a set of space co-ordinates being split up into a number of intervals and

presented by events. Since space, though presented by a set of events remains physical, the

events in it may "happen" in a certain order.

Feature of expected events (F1). For the events i
we E∈ of one component, there exists

ordering based on consecution of ei1,ei2,…,ein such that in any chain of these events on graph,

the events are arranged in direct or reverse order (this also refers to ei1 and ein).

Furthermore, this relation is also valid for neighbouring graph chains.

Feature of operations (F2). The events e ∈ Ewi weigh on Gi graph the chains of transactions –

transitions (edges and states), with one edge and state, weighed by i
ce E∈ (event-command),

adjoining to this chain on the left side, and on the right side, either an edge and state, also

weighed by another command i
ce E∈ , or a fork with events i

uce E∈ . This feature allows to

unambiguously mark out process operations - the substrings relevant to the command and

the reaction expected, on Gi graph (i.e. to "colour" graph). Then, uncoloured will be left only

the edges corresponding to i
uce E∈ .

Example 1. G1 operations (Fig. 8) are as follows: To clench piece: states 1→4, chain –

1 1 1 5 1 2, ,e e e− − − ; to unclench piece: states 4→1, chain – 1 4 1 5 1 6, ,e e e− − − .

Example 2. G3 operations (Fig. 9): Quick feed to the left: states: 1→4, chain - 3 1 3-2 3 3, ,e e e− − ;

operational feed to the left: states: 4→7, chain - 3 4 3-5 3 6, ,e e e− − ; slow retraction to the right:

states: 7→4, chain - 3 7 3-5 3 3, ,e e e− − ; spindle parking: states: 4→1, chain - 3 8 3-2 3 9, ,e e e− − .

Feature of forks separability in G and H (F3). Any fork in the transition graph (both for Gi

and H) is weighed by the events from {Eic ∪Eiuc} in a separate way, i.e., branching is always

either on i
uce E∈ or on i

ce E∈ : : [2] [: |]i i i i
j j uc cj e e E e E∀ Γ ≥ ⇒ ∀ ∈Γ ∈ ∈ .

Forks in transition graphs are limited, as a rule, to provide one-to-one description and

implementation. For example, mixed branching (Fig. 16) is difficult to interpret. Since a

transition, particularly in object, has some delay, then, when analysing qi state (Fig. 16), it is

expedient to introduce a new fact – an event uce
&

, negating the initial event uce , and to

transform the initial specification in corresponding transitions as shown in Fig. 16.

Fig. 16. Transformation of mixed branching

Feature (F4) of marked states h
j mq Q∈ for H. All edges leading to h

j mq Q∈ are weighed by

l ce E∈ . This is a feature of terminated fragments: specific action is performed last.

Feature of uniqueness in use of operations in H (F5). Every edge of H graph can be

associated with one chain from Gi graph. Should in the description be any ambiguity, it can

be easily eliminated by duplicating the corresponding fragment of H graph. For actuators,

all operations of which are associated with different commands, this feature is always valid.

If there are still same commands executed at different "path" sections (a fragment of

sequence from wE), they can be always described in different fragments of Н graph by

duplicating the initial paths.

www.intechopen.com

Supervisory Control of Industrial Processes

85

The features presented are applied to choose the principle of role structuring, as a basis of

two-level SDES, and are used in ()sℜ algorithm of carrying out the experiment (refer to i.

5.1), actually, replacing the operation of component machine composition.

5. SDES study

It is natural to inquire, what properties the behaviour specification in language K should
possess to provide a supervisor which ensures behaviour G=<G1,G2,…,Gn> according to the
specification, and at the same time is admissible for G. The answer to the question is
associated with controllability study (in terms of Ramadge and Wonham, 1987)) of the
language K which is a specification of the required behaviour of G defined by a set of
components <G1,G2,…,Gn>. As the basic method to study joint G and H behaviour, it is

proposed to experiment with <G1,G2,…,Gn> by strings s∈K (such, that ├h(q0, s)!, i.e.
admissible for the initial state q0). The experiment point is to simulate operation of

component machines driven by events-commands from strings s∈K. The algorithm of such
experiment is given here below.

5.1 Algorithm ()sℜ of the experiment with SDES of 1 2, ,..., nG G G G= by string s

The assignments and functions used in ()sℜ algorithm are as follows: ┤(s) – length of string

s; s(i) – current event in string s, with i being the symbol number in string s; θ(e)={c | uc | w}

– function of event type; () {0,1,..., }N e n∈ – number of component Gk in set

G=<G1, G2,…, Gn> such that e∈Ek. If N(e)=0, then e∈Euc refers to common uncontrollable

events of G. 1 2
,1 ,2 ,, ,..., n

r r r nVIS q q q= is called a n-dimension vector of initiated states of each

of G=<G1,G2,…,Gn> components.
As you see, the algorithm executes the experiment on <G1, G2,…, Gn> collection which is set

componentwise to the initial states by strings s∈K.
The algorithm has two kind of results:

1. Logical. ()sℜ = True|False. If, under the consecutive influence of symbols s, all

components fulfil their transitions successfully, ()sℜ = True. If in the course of the

experiment for a certain symbol s(i) a component k (k= v(s(i))) fails to fulfil its

transitions, i.e. s(i) ∉ k
jΓ , then ()sℜ = False (refer to step 2, table 1). The latter means that

H is inconsistent with G=<G1,G2,…,Gn>.

2. Constructive. If ()sℜ =True, () : ; () : ; () : ; () : ;O s v r s r g s k b s jℜ = ℜ = ℜ = ℜ = () :e s lℜ = ,

where (if k≠0) k is a component number of Gk, j and l are numbers of its states at which

the experiment ends successfully by string s, with j being the beginning and l - the end

of a substring v corresponding to the last operation of component Gk as a reaction to

string s, and r is a resulting string. If k=0, then the experiment is successful, but v, j and l

point to the operation of the last component involved in the experiment. In any case,

()r L G∈ is a string admissible in G and is one of s prototypes, i.e. 1()
dEr P s−∈ . (It should

be reminded that 1()
dEr P s−∈ is a string r, with its projection upon events Ew being equal

to s).
The examples of experiments on specifications:
1. For the experiment, let’s choose a string s1 covering the beginning and a small loop:

states 1, 2, …, 13, 5 (Fig. 10). Here is the string:

www.intechopen.com

 Process Management

86

Step Operation Comment

1 Set i=1; r:=┝; 1 2
0 0 0, ,..., nVIS q q q= Initial setting

2 k=N(s(i)); If k=0, then r:=rs(i); go to item 5,

else choose from VIS the state of

component k – k
jq ;

steps 2-5: moving along string s

If s(i)∉ k

jΓ , then ()sℜ =False, go to item 6;
Current event of string is not
admissible for Gk; the experiment
failed

Let (,)k k

jq s(i)δ = k
lq ; If (())s i ucθ = , then

r:=rs(i), go to step 4, otherwise : ()v s i= ;

Uncontrollable event injected into
output string. set command from s(i)
to operation

3 Choose k
r le ∈Γ such that { r(,e)k k k

l pq qδ =

and l ≠ p}; If ()re wθ = , then v:=ver, l:=p
go to step 3

Scrolling by we – the expected

events of operation performed as the

reaction to command in Gk

4 place k
lq in VIS k-position; r:=rv; v:= ┝; Current operation is over

5 i=i+1; if ()i sµ≤ , then go to step 2; ()sℜ :=

True;
() : ; () : ; () : ;

() : ; () : ;

O s v r s r g s k

b s j e s l

ℜ = ℜ = ℜ =

ℜ = ℜ =

Checking for the string end and
assigning of output experiment
results

6 The end

Table 2. Algorithm ()sℜ

1 2 1 1 1 3 1 4 1 3 4 3 7 4 3 3 2 3 2 6 2 9 2 1, , , , , , , , , , ,exs e e e e e e e e e e e e− − − − − − − − − − − −= . It is easy to trace that all

transitions in component models will operate since the commands are given correctly. The

experiment result is ℜ (s1) = True. We shell not adduce the resulting string but the last

string operation is offered in full: 2 1 2 5 2 2 1 1() : , , ; () 2; () 1; () 4O s e e e g s b s e s− − −ℜ = ℜ = ℜ = ℜ = .

String r will include similar extensions for all the events of sting s1.
For the experiment on erroneous graph (Fig. 13), let’s choose string

s2 = 1 1 3 1 4 1 3 4 3 7 4 3 3 2 3, , , , , , ,exe e e e e e e e− − − − − − − − . It is easy to notice that G2 is addressed first at the

last event but this attempt fails since the transition from state 1 of G2 component is not

specified for the event 2 3e − (Fig. 5). Therefore, ℜ (s2)= False.

5.2 Main SDES result

It is natural to ask, what properties a specification of behaviour in language K should

possess to provide a supervisor making 1 2, ,.., nG G G G= behave in conformity with

specification and not blocking G.
The answer as to the supervisor existence can be obtained using the following theorem.

Theorem of SDES controllability. Let a well-structured G=<G1,G2,…,Gn> be given, where

{ }w c ucE E E E= ∪ ∪ , Ed= Ec∪Euc, and *
dK E⊆ (K≠Ø). Non-blocking supervisor S, such that

((/))
dEP L S G K= , exists if and only if for any s∈K (such that ├k(q0, s)!) ℜ (s)=True with

respect to G=<G1,G2,…,Gn>.
In other words, the theorem asserts, that for a well-structured G=<G1,G2,…,Gn> and a given
specification K, there exists a non-blocking supervisor S such, that the projection on Ed of the

www.intechopen.com

Supervisory Control of Industrial Processes

87

language, generated by G under S control, coincides with K provided that for any line s,
specified for the initial state of H, which defines the language of specification K, the

experiment on ℜ (s) algorithm is positive.

Proof The necessity is proved by contradiction: the theorem terms are satisfied, unblocking

supervisor S such that ((/))
dEP L S G K= exists but for a certain string s ∈ K (such that ├h (q0,

s)!) the experiment ℜ (s) = False with respect to 1 2, ,.., nG G G G= . There can be a lot of such

strings, but let s be the shortest of them. Let ()sω = e and s := ue. It is evident that for all

prefixes of string u and string u itself, the experiment is positive, i.e. ℜ (u) = True, but, in

case u is extended, ℜ (ue) = False and ()eθ = c (e – control event). It is revealed at 2.2 (Table

1). At this, Gk is in state k
jq and e∉ k

jΓ (e is inadmissible for Gk in its current state k
jq).

On the other hand, as u, ue ∈ K and supervisor S, such that ((/))
dEP L S G K= , exists, let’s

choose from (/)L S G strings u', u'e for which ()
dEP u u′ = and ()

dEP u e ue′ = . Since the sets of

CFM events do not intersect (refer to note 1), ()N e k= , from u' admissibility for Gk it follows

that at u' generation Gk will be transferred to state k
jq , and then from u'e admissibility for Gk

it immediately follows that e∈ k
jΓ (i.e. e is admissible for Gk in its current state k

jq). This

comes into conflict with the assumption that ℜ (s) = False. The necessity is proved.

Sufficiency. Let’s ≠K Ø be a language such that for any s ∈ K ℜ (s) = True with respect to
n

GGGG ,..,, 21= . We shall show that in such case there exists a supervisor unblocking for

G and providing KGSLP
d
E

=))/((.
Let’s define language M on K in the following way:

 ()
s K

M r sε
∈

⎧ ⎫
= ∪ ℜ⎨ ⎬
⎩ ⎭

∪ (1)

For any u M∈ let’s define:

(() (())),

(() (())),
() :

(() (())),

other not included in codomain for

Ed

Ed

Ed

e uc P u e True

e w e O P u e
S u e

e c P u e True

e S u

θ

θ

θ

⎧ = ∧ℜ =⎧
⎫⎪ ⎪ = ∧ ∈ℜ⎪ ⎪ ⎪

= ⎨ ⎨ ⎬
= ∧ℜ =⎪ ⎪ ⎪

⎭⎪ ⎪⎩⎩

 (2)

The designed converter admits as follows:
- all Euc possible (as to transition function for G) after u (string 1 from (2));

- all wE if they fall into the definition area of corresponding transition in a certain kG

component (string 2 from (2));

- all controlled events Ec for which the experiment on ()
dEP u e is positive (string 3 from (2)).

Thus, the converter is a non-blocking supervisor such that (/)L S G M= and

((/))
dEP L S G K= (this follows from M definition (1) and option 3, step 2 of ℜ (s) algorithm

on which ()r sℜ is formed). Since finite state machine H (generating К) does not contain

deadlocks and liveloops, then S by construction also cannot contain deadlocks and

liveloops, thus, S is non-blocking. The theorem is proved.
Comments to the theorem. A natural question may arise: how this result is correlated with
the controllability condition by Wonham? First of all, it is quite correlated. If for any s ∈ K
ℜ (s) = True then the language M, built as per the algorithm (refer to (1)), will be
controllable, i.e. for it, a controllability condition by Wonham is satisfied.

www.intechopen.com

 Process Management

88

The controllability condition derived in the paper is formed with respect to specification

language K outside L(S\G) . Therefore, K is controllable with respect to <G1, G2,…,Gn > if it is

prefix-closed and ℜ experiment is positive on all s ∈ K. This requirement is more strict then

Wonham’s but it relates to the language К that is more expressive then L(S\G). The example
in section 4 illustrates SDES blocking by supervisor (in case the experiment is false). At the
same time, this result and, which is most important, the procedure of its verification

(algorithm ℜ (s)) are pragmatic, i.e. the number of checks cannot exceed the number of

simple paths to every edge of graph H) and the result is given in terms of conditions and
transitions of all the components involved in the experiment.
Our example is illustrated in Table 3, with supervisor S designed as a function of strings as
per the algorithm defined above in the theorem proof.

Table 3. Specifying ()S s as a function of strings

6. Method of direct supervisor synthesis on the basis of SDES model for real-
time automation systems (RTAS)

The investigations set forth in sections 4, 5 were carried out for SDES with off-line
components that were controlled via blocking mechanism as pee the scheme shown in Fig.

www.intechopen.com

Supervisory Control of Industrial Processes

89

4. At the same time, RTAS has a number of features that are useful to apply for control
modelling and engineering.

• First, RTAS is featured by control subdivision into two sublevels of control: the level of
actuators that executes operations control and a process control level that provides
operation sequences.

• Second, actuators are passive but can receive operative commands, execute them
autonomously and provide feedback.

• Third, while RTAS engineering, a technologist defines specifications (the required
operation sequences), and it is advisable that in a synthesized supervisor, the structure
of sequences was preserved and the synthesis result, as to its complexity, was linearly
dependent on initial specification.

The papers on the synthesis of logical devices (Kuznetsov, 1975; Ambartsumyan, Potekhin
1977) contained similar requirements and synthesis methods were called standard
realization. According to the papers on standard realization methods, such approach has the
following advantages:

• The obtained result is always "recognizable" by the author of initial specifications;

• The result complexity is proportional to the scope of initial data;

• The number of operations in the synthesis procedures is also linearly dependent on
initial data.

Basic paradigm of standard realization is the synthesis of object control system (device) by
syntactic transformation of this object behaviour specification. Therefore, standard
realization is the engineering method that guarantees the engineering result of acceptable
complexity and for acceptable time, provided there is the initial description of the object
behaviour
With the above mentioned RTAS features and standard realization idea taken into account,
the present section pursues the objective to develop a supervisor synthesis method
providing dependability – acceptable complexity of the result (supervisor) achieved for
acceptable time (the number of operations).
This section is dedicated to the study of SDES with passive actuators. In such SDES, all
controlled events are forced from the point of view of operation (Chalmers, Golaszewski,
Ramadge, 1987) and the control is performed as per the scheme similar to that shown in Fig.
17.

Definition 6. A well-structured DES, for which the composition of uncontrollable part is

defined as per Definition 1, all are forced, the required behaviour is defined by the

specification language * ,(0)dK E K⊆ ≠ , and which is provided by supervisor S generating

unambiguously controlled events Ec in such a way that K is fulfilled, will be called a

structured discrete event system with forced controlled events (SDESf).
Comments to the definition. SDESf should meet the condition of determinacy, i.e. for any
string s admissible for the initial state, if its extension by a controlled event is possible, such
extension for this string is unique. It is suggested that a structured DES with forced events
should be realized according to the scheme (Fig. 17) in which supervisor "perceives" all the
events generated by G but initiates only controlled events.
Based on introduced notions, let’s specify the tasks of this section.
For SDESf specified by G component set and K specification, they are as follows:

• Define a condition of K specification controllability.

• Examine the matter of a supervisor existence.

www.intechopen.com

 Process Management

90

E=Ec�Ew� EucSupervisor

G
1

G
2

Gn

...

Ec �

Ew

Ew

Ew

1

2

3

Ec

Euc

Ec Ew Euc E

Plant - Generator

Fig. 17. The scheme of supervisory control for SDES with forced controlled events

• Elaborate the method of specification realizability analysis that will indicate if G and K
are consistent.

• Develop the method of synthesis of supervisor S (if K specification is realizable)
providing control in G in such a way that К is fulfilled, with the method synthesising S
for acceptable time and S complexity having linear dependence on K complexity.

6.1 Study of SDES with forced events

In order to unambiguously define the behaviour of SDES represented by 1 2, ,... nG G G G=

collection, it is necessary to specify all the system states and their admissible transitions

(structure and weighing functions). A traditional tool used for such tasks in discrete systems

is the building of attainability tree. In section 5 of the present paper, as a basic instrument to

study SDES behaviour, it is proposed to use the algorithm ℜ that actually is a procedure of

H graph traversal. At this walk, for any reached state of H, is formed 1 2
,1 ,2 ,, ,..., n

r r r nVIS q q q= -

a vector of initiated states of each of G=<G1,G2,…,Gn> components, which appears sufficient

to build a tree of attainability. It would be logical to use intermediate results of algorithm ℜ

at supervisor synthesis. The way to this is set forth below. Important is the fact that the

synthesis task can be divided into two main subtasks: the analysis of H graph structure and

the analysis of complete states.
Structure analysis For further study, we shall need to examine states qi in which the
selection (fork) in the transition graph, defining machine H, takes place. Without the loss of
generality, we assume that there are no mixed forks in the transition graph of H. In other
words, if more than one edge originates from qi, these edges are always weighed either only
by uncontrollable events or, on the contrary, only by those controllable (feature F4 – forks
separability feature worded in section 4).

The last condition in the defining set definition () ()i ks q qω τ⎡ ⎤= →⎣ ⎦ states the fact of string s

termination on ()i kq q→ transition.

Definition 7. Let ()i kq qτ → be a function with its value equal to the event weighing the

transition ()i kq q→ , and ()sω – the last event in string s. Then

()0{ [(,)!] [()]}i h
k i ks q s s q qδ ω τΦ = ∧ = → will be called a defining set of strings of k direction

in fork qi .

www.intechopen.com

Supervisory Control of Industrial Processes

91

The last condition in the above definition ()() i ks q qω τ= → states the fact of the string s end

on ()i kq q→ transition.

Definition 8. Let Oi be a set of subscripts of states qj to which there is a direct transition from

qi ; let () { }e c uc wθ = be a function of event type; let H
iq Q∈ ; 2iO ≥⎢ ⎥⎣ ⎦ . Then qi is called a

correct selection (fork), if only one of the following conditions is fulfilled:

• For all the transitions incidental to qi, ()()i kq q ucθ τ → = is fulfilled (the selection on

uncontrollable events);

• For all the transitions incidental to qi ()()i kq q cθ τ → = is fulfilled (the selection on

controllable events), with the defining sets on any pair of directions not intersecting, i.e.

, : [,]m i
i i nm n m n O∀ ∈ ⇒Φ ∩Φ =∅ .

The answer to the question, as to the existence of supervisor for SDES with forced controlled
events, is given by the following theorem.

Theorem of SDESf controllability. Let a well-structured 1 2, ,.., nG G G G= be given, for

which { }w c ucE E E E= ∪ ∪ , all Ec are forced { }d c ucE E E= ∪ and * ,()dK E K⊆ ≠ ∅ . Non-

blocking supervisor S such that ((/)) }
ucEP L s G K= exists then and only then when for any

s K∈ (such that 0(,)!h q sδ) ℜ(s) = True as respects 1 2, ,.., nG G G G= and all selections in

the transition graph of H are correct.

Theorem proof Necessity. The first part of condition: ℜ(s) = True is valid as shown in the

proof of the theorem of controllability in section 5. Let’s prove the necessity and sufficiency

of the second condition: branching correctness. Proof is made by contradiction. Let there

exist an unblocking supervisor S but for H the condition of branching correctness is not met.

Then two options are possible, namely:

• Branching is mixed, i.e. for the transitions incident to qi ()[] []i kq q c ucθ τ → = ∧ is

fulfilled. It is impossible as conflicting branching limitation.

• For qi branching, the condition of empty intersection of defining sets is not fulfilled. Let

si transfer H to qi state, than there exists at least one event 1i
ce + that simultaneously

weighs two different edges originating from qi. On the other hand, since a supervisor

exists, it is determinate and is defined as a function of strings, thus, for this option, two

different values 1i
ce + and 1[]i

ce + , weighing the next pair of edges, must fit the same

argument si. We have arrived at a violation.
The necessity is proved.

Sufficiency is proved constructively. Let K ≠ ∅ be a language such that for any s ∈ K

ℜ(s) = True with respect to 1 2, ,.., nG G G G= . We shall show that in such case there exists a

supervisor unblocking for G and providing ((/))
dEP L S G K= .

Let’s define language M on K in the following way:

 ()
s K

M r sε
∈

⎧ ⎫
= ∪ ℜ⎨ ⎬
⎩ ⎭

∪ (3)

Any string u M∈ is admissible for ()L G as per construction in ℜ . For this reason,

()M L G⊆ .

For any Mu∈ let’s define:

www.intechopen.com

 Process Management

92

: () (())

() : () (())

other not included in codomain for

d

d

E

E

e e c P u e True

S u e e c P u e True

e S u

θ

θ

= ∧ℜ =⎧
⎪

= ≠ ∧ℜ =⎨
⎪
⎩

 (4)

The designed converter admits the following:

• all Ec possible (as to transition function for G) after u (string 1 from (4));

• ┝ instead of any event of { }w uce E E∈ ∪ , if this event enters the definition area of

corresponding transition in H or a certain component of kG (string 2 from (4)).

Since machine H (generating K) does not contain deadlocks and liveloops, 1(/) ()
dEL S G P K−=

by designing, and all 1()
lEs P K−∈ are admissible for G (as ℜ=True), than S by construction also

cannot contain deadlocks and liveloops, thus, S is non-blocking. The theorem is proved.
Comments to the theorem.
1. The proposed condition of controllability is formulated with respect to specification

language К that is more expressive and compact then L(S\G), at least, because it is a
projection of L(S/G) on Ed.

2. For controllability, besides the requirement of positive experiment, it is necessary that

all forks in the transition graph of H should be correct, which is effectively verified by

the graph nodes review.

3. The condition of controllability for SDESf is worded as a limitation imposed only on

specification language K but does not restrict language L(S/G). Nevertheless, K is

controllable as relates 1 2, ,.., nG G G G= , provided it is prefix-closed, algorithm ℜ=True

for all s K∈ , and all forks are correct. This condition is more strict than that in paper

(Chalmers, Golaszewski, Ramadge, 1987) as it admits branching on controllable events,

in case the selection is correct.

Let’s consider possible branching variants on ce E∈ - controlled events. Practically, the

following situations are possible:

• Logical substantiation for choosing the continuation is in the pre-history.

• There is no logical substantiation in the past (the defining sets for both directions
intersect but, at this, sequences are admissible for both branches.

This situation will be illustrated by the structure of transition graph shown in Fig. 18.
Semantics of events, states and sequences will be described later in section 6.4. Herein we
shall discuss a few peculiarities of forks in the transition graph. The edges of forks
originating in states q1,q4 and q22, in Fig. 18, are outlined by firm ellipses. The events: eex-1 – a
round piece or eex-2 – a hexahedral piece, took place in the first outlined fragment, but in the
situation of the following firm ellipses, there are no longer such events and a clamp choice
should be made from memory of those events.

Another branching variant is referred to in the description of cutter-type choice – in Fig. 18,

corresponding forks are marked by dashed ellipses. From the point of view of event

sequence, both variants are admissible for 1 2, ,.., nG G G G= and there is no data to choose

the variant of the process continuation. In principle, the second situation, in conformity with

the theorem condition, testifies that K is not coordinated with 1 2, ,.., nG G G G= and SDES

is not controllable with К. However, for practical tasks, such situation is settled by the

addressing of algorithm to the external, as relates to given SDES, system (e.g. to operator).
Thus, when analysing forks (selection) of H graph on controllable events, two aspects,
important for supervisor S engineering, were revealed. First, for every branching on

www.intechopen.com

Supervisory Control of Industrial Processes

93

controllable events

'

...

'

i

i

i

q

q

q

→⎧
⎪
→⎨
⎪→⎩

, it is a unique extension ' '()
i nq qs s≠ that corresponds to string

'

iqs , and this provides determinacy of S. Second, the events defining the condition of

selection (direction) either happened in the past or lie outside SDES structure.

e2-3

e2-1

e3-7

2

161

eex-2

eex-1

eex-1
5

e1-1

e1-1

7

e3-1

e3-1

9

e4-1

e4-1

10

e3-4

e3-4

11

e3-7

13

e4-3

e4-3

14

eex-3

20

eex-4

eex-4

eex-3

15

e2-3

18

e2-6

e2-6

e2-1

21

e3-8

e3-8

23

e1-3

e1-3

eex-2

4

e2-1

19

e2-9

e2-9

eex-5

6

e5-1

e5-1 e3-1

24

e5-3

e5-3

8

e6-1

e6-1

e3-4

12

e6-3

e6-3

eex-4

eex-3

e2-1

eex-2

3

eex-5

16

e2-11

e2-1

17

e2-1

e4-1

e6-1

e2-11

22

e3-8

e2-3

Fig. 18. Graph of H specifications

In any case, as of the moment of the analysis of situation with branching, the events,
conditioning it, either happened, and the selection should be requested as a new event, or
the selection is impossible to define by prehistory and then it should be requested from
external sources. For providing such request, let’s design machines of special kind: selection
agents. For all states of branching origin qi, an individual agent – a machine of

Aqi=〈Qa,Ec,δa,Γia,λja,q0〉 kind is built on controllable variables. A transition graph
iqA is shown

in Fig.19.

qI qj

Ф
i
kqk qI qj

eCSi

Фi
j

eCSiλa(qk)=k λa(qj)=j

Fig. 19. Machine-agent of selection

The discipline of interconnection of supervisor S with branching machine-agent is as

follows: on S reaching state qi, after which it is necessary to make choice (arrive at a

decision), S, through its special output, sends a request to
iqA . In accordance with the

discipline accepted,
iqA replies issuing a direction index { }

iqa k j= , (not necessarily 1 of 2,

possibly 1 of many). At this, ai will be used as index. Fig. 20 illustrates a control scheme.
Analysis of complete states To answer the question about the consistency of supervisor S
and object G, SDES state analysis is required. The state of the set of primary components

1 2
1 1, ,..., r

j j jnVIS q q q= reflects the state of control object 1 2, ,.., nG G G G= . The current state

www.intechopen.com

 Process Management

94

 S

G
1

G
n

H

A
q

G
...

G
2

External

feedback eexeex

External

query

Fig. 20. Control scheme with selection agent

of H machine - h
rq reflects the intentions to control (to limit free behaviour of G) for the

purpose of solving some technological tasks. Thus, a complete SDES state is
1
1, ,...,h r

FS r j jmV q q q= . A conventional technique of listing the complete attainable states in

similar situations is evident: it is necessary to build a tree of attainability and, guided by the

tree, to carry out the experiment on H machine and a set of 1 2, ,.., nG G G component

machines. In the paper, it is proposed to analyze complete states by their "projection" on Н

transition graph, in parallel with the experiment on controllability.

For this purpose, let’s set H and all the component machines to their initial states. We shall

get a vector of initial states. Let’s weigh H initial state by this vector. Then we shall make an

experiment with a string composed of events Ed (let it be i
ce), weighing H graph edges, and

of the events corresponding to the reaction from one of the components 1 2, ,.., nG G G of a

definite component machine Gi. At this, H will transit to another state h
rq , with the

following states adjoined: first, all the states of component machines 1 2, ,.., nG G G that are

unchanged at this transition; second, by turns, all Gi component machine states

corresponding to its reaction to i
ce . These vectors form a block of states that weighs h

rq

states. The experiment fragment is shown in Table 4. From the fragment of the table of

complete states, it is clear that one H node is associated with blocks of complete states and

this results not only from including states and components "put into action" but also from

the availability of multiversion attainment of the given state. For example, in state 10, there

are 4 blocks corresponding to different state combinations for components G1 and G2. It is

important that all the states inside blocks should successfully operate on subsets of events

admissible in this state.
Reasoning from the above, the requirements to the method of complete states design and
analysis are set forth as follows:
1. Complete states are formed as they are required in H and operations are processed in G;
2. The method should provide for the structure of data on H complete states and

transitions. This structure should provide easy access to complete states at H transition
graph traversal; the advancement and distribution of complete states along H must be
accompanied by H and G consistency analysis.

The major novelty of this idea is that a set of complete states FSV moves and spreads along

H graph structure in compliance with the flow of possible events. It is important to note the

following:

www.intechopen.com

Supervisory Control of Industrial Processes

95

qh G1 G2 G3 G4 G5 G6

1 1 1 1 1 1 1

1 1-4 1 1 1 1
4

1 1-4 1 1 1 1

4 4 4-7 1 1 4

4 4 4-7 4 1 1

1 4 4-7 1 4 4
10

1 4 4-7 4 4 1

Table 4. Full states (fragment)

1. If, first, the experiment was made for every complete state in every node and it, at least
once, was positive, and, second, all H edges were walked through, than the set of all
attainable complete states was obtained. This is equivalent to the building of the tree of
attainability.

2. If all transitions came into action, than the specification defined by H is controllable and
the data acquired is sufficient to form S basis.

It is suggested that a supervisor should be synthesised via weighing H graph edges by new

operations and output functions ,(,) { , }s i i j cq t eλ ε= defined on pairs of states and transitions.

Output functions will "return" either controllable event ce or empty symbol ε and they

must keep their value over the whole transition i jq q→ .

6.2 Synthesis of supervisor for SDESf

Supervisor engineering will be made based on FSM of special type.

Definition 9. A machine active at transitions (TAM) is a finite machine

, 0(, , , , , , , ,)s s
s s s sS Q E Q qτδ ρ λ= Γ Γ in which the set of states sQ , set of events E, transition

functions sδ , functions of admissible events sΓ a set of necessarily attainable states s
mQ and

the initial state 0q are defined conventionally. Control functions , ,s s
τ ρ λΓ of TAM are

defined in the following manner:

• ,: { { : (,)} }t s
i i j s i i iQ t j q qδΓ → Γ = is a function of possible transactions (transitions). This

function associates every edge originating from iq with string *
,i jt E∈ which, when

performed, initiates in S a transition i jq q→ ; thus, at S operation, both states and

transitions are active.

• ()
is i qq eρ = Moor-type function of outputs defined only at forks on controllable events

(2; ()i iO q cθ≥ =); for the rest of iq , ()s iqρ ε= .

• ,(,) { }s i i j cq t eλ ε= - a machine output function, defined on a pair [state– string of

transition], equal either to controlling event or to empty symbol and keeps its acquired

value over the whole transition i jq q→
Apparently, a machine, active at transitions (TAM), has a number of destinations:

• "Language generator" L(S). Let’s present any path incident to the initial state q0 in S, as

iteration of concatenations of pairs [state–outgoing edge] expressed as 0, 0 ,[]l
l i i i jr q r== • ,

than 0 , ,() { : [: (,)]}l s
i i i i j i jL S s s q q r tλ== = • = • is a set of strings obtained from the set of

paths by substitutions of corresponding events and strings.

www.intechopen.com

 Process Management

96

• "Direction pointer" – Milly-type output function successfully relevant to the definition
of operator able to admit or turn down controllable events. However, it is very

important that the function is defined on states and substrings
0

0,
,

()
(,)

l s
i i l

for q
S s

q t

ε

λ

⎧⎪
= ⎨
⎪⎩

.

• "Internal interconnections". Provides interconnection with selection machines-agents
that interface SDESf with external media - a supplier of incontrollable events of euc type.

From the point of view of the theory of finite machines, S is a machine of mixed– type: it has

output ()
is i qq eρ = depending only on states, which is typical for Moor machine, as well as

output ,(,) { }s i i j cq t eλ ε= typical for Milly machines; furthermore, the latter is defined at

transition.

Supervisor S is designed, basing on specification H, by the special algorithm of syntactical

transformation (,)G H Sℑ → . Machines-agents are supposed already defined, so, the

transformation is made according to the following scheme:

0

0

(, , , , ,)

(, , , , , , ,)

h h h
d h m

s s t s
s s s m

H Q E Q q

S Q E Q q

δ

δ ρ λ

= Γ

↓ ↓ ↓ ↓ ↓ ↓

= Γ Γ

Thus, supervisor synthesis method must solve the following tasks:

• form the vectors of complete states for every state Qh;

• put in action all the transitions (edges) of H;

• should the experiment be positive, to build for S main missing constructions , ,s s
τρ λ Γ .

Command from specification is sent to CFM

Putting in action its internal states, the CFM issues the
events of uc type

After performing the command, CFM current states
form a vector of states

Words weigh specification edges

Every new vector of states is "pushed" through the rest
part of specification

1

2

3

4

5

c

c

c
c

c

c

c

c

c

K

q0

q1

q2
G

3

q4

q3

e1e2e3

......en

q0

q1

q2

G2

q4

q3

q0

q1

q2

G1

q4

q3

q1

q4

q3

VIS

1

1

1

2
2

2

3 3
3

4

5

5

Fig. 21. Data scheme of algorithm ℑ

www.intechopen.com

Supervisory Control of Industrial Processes

97

The proposed algorithm ℑ which fulfils the method of direct supervisor engineering, for the
purpose of clearness, will be depicted graphically as data structure and the algorithm

diagram (Fig. 21). Algorithm ℑ processes specification K, defined by a transition graph,
carries out the simulation of control command operation (arrows 1 in Fig. 21) in component
machines Gi. The component machines "put into action" the transitions, in conformity with

the command. As the result, algorithm ℑ forms:

• word 1...
nc w we e e representing operation fulfilled (arrows 2 in Fig. 21);

• next complete state 1 2
1 1: , ,..., r

j j jmVIS q q q= (arrows 3 in Fig. 21).

Specification graph is processed as shown in Fig. 22. Block inscriptions correspond to
algorithm steps. We would like to draw your attention to the fact that the algorithm is
constructed as the traversal (block 4) of graph with unprocessed complete states (the first
unprocessed complete state ‹qh0,q10,q20…qn0› is created at initialization – block 1). For every

To initiate components,
vector of states,

specification

To send a command to
corresponding CFM

To get a feedback (word)

To renew vector of states

Is there the same vector in the
set of vectors of parent-node?

To weigh a descendant-node by the
vector of complete states

To take e from the edge

To mark the edge as passed
To weigh a node by the last word
and λ

To process next nodeAre all nodes
passed through?

To process the next edge

Have all vertexes

been processed ?

no

yes

no

Are there nodes with
unprocessed complete

states?

Х

no

Was there at least one
cursal edge?

yes

no

Х

yes

1

2

3

To weigh a parent-node by ρ

yes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 22. Block-diagram of algorithm ℑ

www.intechopen.com

 Process Management

98

state, a loop on outgoing edges (block 5) is formed. For every edge, the weighing by

functions ρ, ┣ and operation 1...
nc w we e e takes place (blocks 14, 15) once. On termination of

the traversal of all H nodes and edges, we get the set of all admissible states. If all the

transitions took place, than H is controllable (ticked-off output) and the acquired data define

the weighing of machine - supervisor S. If graph traversal is terminated ahead of schedule

(the output marked with "!" symbol) than specification K and object G=<G1, G2, …, Gn> are

incompatible.

6.3 Study of algorithm ℑ

The purpose of the method study is to assess its complexity and time characteristics. The
main question is whether the main features of standard realisation methods, are preserved,
namely: linear dependence of the result complexity and spent time on the initial data scope.
Partially, the answer to this question may be given by the following theorem:

Theorem on standard realization. Given: 1 2, ,.., nG G G G= , language K specified by

machine 0(, , , , ,)h h h
h d mH Q E Q qδ= Γ for which the set of transition graph edges is designated

by R. Than algorithm ℑ, based on 1 2, ,.., nG G G G= and 0(, , , , ,)h h h
h d mH Q E Q qδ= Γ

specification, constructs (as per the scheme of transition-active machine) supervisor S such

that project ((/))EdP L S G K= and, at this, S complexity on the data scope

((,))hO MAX Q R≤ , and the number of operations to design ()S O R≤

Proof. The fact that the first theorem part is true follows from the method, though the proof

by induction on string length, can be easily developed. The validity of the second part – the

complexity of S presentation (specification), namely: ((,))hO MAX Q R≤ 1 follows from the

fact that all S constructions are obtained by redefining H constructions and by including

new constructions (block 6 of the algorithm) associated with states and edges of H graph

transitions and limited by the data sets from G and H. From the above, it follows that the

complexity of S ((,))hO MAX Q R≤ . The validity of the last theorem statement on the

number of operations follows from the fact that the total number of the executed algorithm

blocks from 2 to 6 on all states
1

n

iO∑ equals the number of H edges - |R|. Which required.
Thus, for the case, when the complete states one by one take their places in H states, the
linearity of dependence of the number of operations on the number of edges, is maintained
but in more complicated cases, the occurrence of "additional" complete states in H weighing
structure results in the iteration of transitions analysis.

6.4 Example 2

The proposed method will be illustrated by the example of supervisor synthesis for a

milling machine with 6 mechanisms: a clamp for round pieces (1), turntable (2), spindle (3),

rectangular cutter (4), angle clamp (5), round cutter (6). Kinematics of this machine is similar

to that of the machine from section 3.3 (Fig. 4) but in the considered machine, the processing

of 2 types of pieces with different fastening and by different tools (mechanisms G5 and G6)

are foreseen. Each mechanism is simulated by corresponding CFM {Gn}. The nodes

1 The formula runs as follows: S has the order of magnitude maximal of two values: the

cardinal number of the set of states or the cardinal number of the set of edges.

www.intechopen.com

Supervisory Control of Industrial Processes

99

correspond to the space position and edges – to events. Event semantics is presented in

Appendix 1.

Respective CFM is shown in Fig. 23, by colour, in transitions, are marked the events of ec
type, ticked-off is the initial state q0.

1 2e 1 -1 3e1-5 4e1-2 5e1-3 6e 1 -5

e1-4

G1- round clutch

G2- turntable

1

2

e 2 -1

3e2-5 4e2-2 5e 2 -3 6e2-5

7e 2 -6 8e2-7 9e2-8 10e 2 -9

11e 2 -1 1 12e2-12

e2-13

e2-4

e2-10

1 2e 3 -1 3e3-2 4e3-3

5

e 3 -4

6e3-5 7e3-6

8

e 3 -7

9 e3-5

10

e 3 -8

11 e3-2

e3-9

e3-3

G3- spindle

1 2e 4 -1 3e4-5 4e4-2 5e 4 -3 6e4-5

e4-4

G4- cutter

1 2e 5 -1 3e5-5 4e5-2 5e 5 -3 6e5-5

e5-4

G5 – corner clutch

1 2e 6 -1 3e6-6 4e6-2 5e 6 -3 6e6-6

e6-4

G6 – round cutter

Fig. 23. Component finite machines G1, G2, …, G6

www.intechopen.com

 Process Management

100

The required machine behaviour is informally presented by text specification in Appendix 2.

This behaviour is formalized by finite machine 0(, , , , ,)h h h
h d mH Q E Q qδ= Γ , with a graph of

transitions shown in Fig. 18, section 6.1. The states of machine 1 23{ ,..., }hQ q q= correspond to

the steps of processing and the edges – to the operations of component machines.
The proposed method was applied to analyse G=<G1, G2, …, Gn> object and H specification.

The experiment ℜ showed the consistency of H and G. Then, the graph of supervisor (Fig.

24) was obtained. Entering a node, the edges relevant to the same operation have common

marking (e.g. the edges entering node 7). In the supervisor graph, every edge is weighed by

Gi CFM component operation and supplemented by the events of relevant reaction. Events

eex are incontrollable, the edges with these nodes do not change. The comparison of two

graphs reveals their structure identity. This illustrates that the complexity of supervisor

designed by the proposed method, linearly depends on the complexity of initial

specification.

19-17

7-9

7-8

e2-3

e2-5

4-2e

3-4

2

161

eex-1
5

e1-1

e1-5

2-1e

7
6-7

9

e4-1

e4-5

2-4e

10
8-10

11

13

e4-3

e4-5

4-4e

14

20
12-20

12-14

15

18

e2-6

e2-7

8-2e

e2-1

e2-5

2-2e

21

e3-8

e3-2

9-3e

23

e1-3

e1-5

4-1e

24-1

4

19

e2-9

10-2e

eex-5

6e5-1

e5-5

2-5e

e3-1

e3-2

3-3e

24

e5-3

e5-5

4-5e

8
e6-1

e6-6

2-6e e3-4

e3-5

6-3e

12
e6-3

e6-6

4-6e

eex-4

eex-3

e2-1

e2-5

2-2e

eex-2

3

16

17

e2-11

e2-12

31-2e

22
e2-3

e2-5

4-2e

e3-7

e3-5

3-3e

Fig. 24. Supervisor graph

7. Conclusions

SDES model proposed herein, does not use component composition in the explicit form but

operates 1 2, ,..., nG G G set and K⊆Ed* specification language specified by

0(, , , , ,)h h h
d h mH Q E Q qδ= Γ machine (recall that Ed = Ec ∪ Euc is a language over a set of

commands and conditions). Such approach to the description model is more economical,

than that in L(G) language and is much more expressive than the one based on parallel

composition
1

...
n i i nG G G= ⊕ ⊕⊕ and K⊆L(G).

Thus, the proposed SDES model and the procedure of its operation take maximum account

of the SDES (real-time automation system) peculiarities mentioned in the introductory part.

There is a ground to believe that thereby it will be possible to avoid the «explosion of states»

at supervisor synthesis. The proved theorem of controllability for SDES builds a theoretical

www.intechopen.com

Supervisory Control of Industrial Processes

101

basis for further studies and a base for programming and experiments on the stream of real

tasks.

Thus, (turning back to the problem stated in Introduction) it can be declared that herein is
developed a theoretical basis for a new technique of machine control engineering that
excludes ambiguity and mistakes in the initial specification of a control object as a "black
box".
As the result of research pursued, the conditions of SDES and SDESf controllability were
formulated, the matter of supervisor existence was studied, the method of specification
realizability verification was shown.
The condition of controllability was worded with respect to specification language K that is
more expressive and compact (being a project of L(S/G)) than language L(S/G) traditionally
used in the models with parallel composition.
The paper suggests the structure of supervisory control, contains the study of the method of
supervisor S synthesis based on the object model and specification (G and K). It also
illustrates a linear dependence of supervisor S complexity on the number of edges of H
machine.

At the same time, the number of synthesis operations (time complexity) remains linear only

for the specification in which complete states, one at a time, are disposed on H, i.e. the

number of operations for the designing of ()S O R≤ . Generally, the appearance of "second"

complete states in the structure of H weighing, results in the repeated analysis of transitions

and the linearity is violated. However, practically, for real tasks, this phenomena, reflecting

a designer’s aspiration to specify commands sent to aggregates (actuators) more

economically, does not lead to a considerable growth of the number of operations.

8. References

Ambartsumyan A.A. (2009) Supervisory Control of Dynamic Discrete-Event Systems.
Automation and Remote Control, No.8 (August 2009), pp. 156-166

Ambartsumyan, A.A., Kazansky, D.L. (2008). Complex automation of technological
processes with the event model involved. Procedings of 17th IFAC World Congress

Ambartsumyan A.A., Bronishtov S.A. (2006) Event models of process control directed at the
protection against personnel’s erroneous actions. «Greenwich LTD », Moscow

Ambartsumyan A.A., Potehin A.I. (2003) Development of control mechanisms of objects
with continuous technology on base of channel event models. Automation and
Remote Control, No 4 (April 2003)

Ambartsumyan, A.A., Prangishvili, I.V., Poletykin, A.G. (2003). Power plants: the analysis of
state and the proposal of enhance automation. Problems of control, No.2 (March
2003)

Ambartsumyan A.A., Potekhin A.I. (1977) Standard realization of asynchronous machine
Automation and Remote Control; No.5, (May 1977) pp.67-83

Cassandras C.G., Lafortune S. (2008) Introduction to discrete event systems « Springer
Science+Business Media, LLC ». USA.

Chalmers Golaszewski C. H., Ramadge P. J. (1987) Control of discrete-event processes with
forced events. Proc. 28th Conf. Decision Control. p. 247-251, Los Angeles

www.intechopen.com

 Process Management

102

De Queiroz, M.H., Cury, J.E.R. (2000) Modular supervisory control of large scale discrete-
event systems. Discrete Event Systems: Analysis and Control. Proc. WODES'00, pp.
103-110.

Gaudin, B., Marchand, H. (2003) Modular supervisory control of asynchronous and
hierarchical finite state machines. Proc. ECC, pp. 13-25

Gilard Langer. HoMuCS (1999) A methodology and architecture for Holonic Multicell Control
Systems Preface. KPB -2-99; ISBN 87-90855-00.

Jo Wyns. (1999) Reference architecture for Holonic Manufacturing Systems - the key to support
evolution and reconfiguration. ISBN 90-5682-164-4, K.U.Leuven

Kuznetsov O.P. (1975) Logical machine graphs and their transformations Automation and
Remote Control, No. 9, (September 1975) pp.149-158

Ramadge J. G., Wonham W. M. (1989) The control of discrete-event systems IEEE Trans.
Automat. Control.. 77(1). p. 81-98.

Ramadge J. G., Wonham W. M. (1987) Supervisory control of a class of discrete event
processes SIAM J. Control Optimization. 25(1). p. 206-230.

Sujeet Chand. (2005) From electric motors to flexible manufacturing: control technology
drives industrial automation. IFAC

Van Brussel H., Valckenaers P., Bongaerts L.,Peeters P. (1998) Reference Architecture for
Holonic Manufacturing Systems: PROSA. Computers in Industry. p.37- 47.

Yoo, T.-S., Lafortune, S A (2002) General architecture for decentralized supervisory control
of discrete-event systems. Discrete Event Dynamic Systems: Theory & Applications –
No. 12(3), pp. 335-377

www.intechopen.com

Supervisory Control of Industrial Processes

103

Appendices

Appendix 1

event operation event operation

e1-1 To clench e3-8 Feed ->>

e1-2 Clamp is closed e3-9 Parked

e1-3 To unclench e4-1 To switch on

e1-4 Clamp is open e4-2 Working

e1-5 clamp is moving e4-3 To switch off

e2-1 To fix e4-4 Stopped

e2-2 Table is fixed e4-5 Unstable rotation

e2-3 To unfix e5-1 To clench

e2-4 Table is unfixed e5-2 clamp is closed

e2-5 Locker is moving e5-3 To unclench

e2-6 To make a ¼ turn e5-4 Clamp is open

e2-7 Table is moving e5-5 Clamp is moving

e2-8 Table is turned through
¼

e6-1 To switch on

e2-9 To switch off turning
mechanism

e6-2 Working

e2-10 Table is stopped e6-3 To switch off

e2-11 To tilt plane e6-4 Stopped

e2-12 Is tilting e6-5 Unstable rotation

e2-13 Angle is achieved eex-1 Piece is on the table (round)

e3-1 <<- to feed eex-2 Piece is removed from the table

e3-2 Feed zone eex-3 Processing is not finished

e3-3 Operating position eex-4 Processing is over

e3-4 <- to feed eex-5 Piece is on the table (hexahedral)

e3-5 Operational zone eex-6 To choose usual cutter

e3-6 Operation is over eex-7 To choose round cutter

e3-7 Feed ->

Table of system events

www.intechopen.com

 Process Management

104

Appendix 2

1 On arrival, a piece is clenched by a clamp

2
After clamp operated, spindle is transferred from parking to working position
(to the left)

3 After spindle shifted to working position, cutter is turned on

4
After cutter is turned on, a smooth feed to the left utmost position takes place
(end of operation)

5 After operation is over, spindle is fed back to the right up to working position

6 After spindle occupied working position, a positioner turns the table through ¼.

7
After the table is fixed, the next operation is executed until the processing is
over

8
After the round is made, a spindle parks, a clamp is unclenched, a signal of
piece readiness is sent

9 Before parking, to switch off cutter, to wait until it stops

10 Operator chooses a cutter type and a cutting angle

Table of text specifications

www.intechopen.com

Process Management

Edited by Maria Pomffyova

ISBN 978-953-307-085-8

Hard cover, 338 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The content of the book has been structured into four technical research sections with total of 18 chapters

written by well recognized researchers worldwide. These sections are: 1. process and performance

management and their measurement methods, 2. management of manufacturing processes with the aim to be

quickly adaptable after real situation demands and their control, 3. quality management information and

communication systems, their integration and risk management, 4. management processes of healthcare and

water, construction and demolition waste problems and integration of environmental processes into

management decisions.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alexander A. Ambartsumyan (2010). Supervisory Control of Industrial Processes, Process Management, Maria

Pomffyova (Ed.), ISBN: 978-953-307-085-8, InTech, Available from:

http://www.intechopen.com/books/process-management/supervisory-control-of-industrial-processes

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

