
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322389508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Memory management in smart home gateway 159

Memory management in smart home gateway

Beizhong Chen, Ibrahim Kamel and Ivan Marsic

X

Memory management in smart home gateway

Beizhong Chen
Rutgers, the State University of New Jersey

USA

Ibrahim Kamel
University of Sharjah

UAE

Ivan Marsic
Rutgers, the State University of New Jersey

USA

1. Introduction

With the trend of making house-hold appliances network-enabled and the widespread use
of the broadband connections to homes, Internet services are increasingly finding their way
to home applications and gradually changing the traditional lifestyles. As opposed to
connecting traditional computing devices such as PCs, laptops, and PDAs, the Internet is
increasingly used for home appliances such as television sets, refrigerators, air conditioners
and washers (Ishihara et al. 2006; Ryu 2006; King et al. 2006), and other remote services,
such as remote patient monitoring. Remote medical diagnosis, and remote configuration
and control of home appliances are some of the most attractive applications. In the
entertainment field, there are several interesting applications, such as downloading movies
on demand and an Electronic Programming Guide (EPG). Electric power companies are also
keeping an eye on home networking because it will allow them to provide value-added
services, such as energy management, telemetry (remote measurement), and better power
balance that reduces the likelihood of blackouts. Consumer electronics companies have
started to design Internet-enabled products. Merloni Elettrodomestici, an Italy-based
company announced their Internet washer Margherita2000 (Jansen et al. 2006), that can be
connected to the Internet through which it can be configured, operated, or even diagnosed
for malfunction (Ishihara 2006). LG presented the GR-D267DTU Internet refrigerator, which
contains a server that controls the communication to three other appliances and has full
Internet capabilities. Matsushita Electric showed during a recent Consumer Electronic
exhibition an Internet-enabled microwave oven, which can download cooking recipes and
heating instructions from the Internet. All of these effort lead towards the so-called “Internet
of Things,” which is forecast to grow vastly larger than the current Internet.

9

www.intechopen.com

Smart Home Systems160

Figure 1 illustrates a typical smart home network environment. Generally, there are several
types of services in a digital smart home:

 Basic services (not shown in Figure 1):

 Internet Access, Firewall, Personalized UI, Network Security, etc.

 Information services and health care:
 Personalized e-Commerce services will automatically generate an order to a

grocery shop when items in the refrigerator fall below a given threshold.
This service can also support a more sophisticated shopping model that can
bring improvements for the user, such as selecting a retail shop with the
cheapest prices.

 Remote Patient Monitoring will help reduce the cost of medical care. It
mainly focuses on chronic diseases and monitors patient’s physiological
variables such as blood pressure, heart rate, blood sugar level, which will be
recorded and transferred to a hospital for a timely professional consultation.

 More information service models can be developed by service providers.

 Communication:
 Unified Messaging services will allow users to have all the services that are

expected in modern organizations, such as telephone call transfer,
individual mail boxes, video sharing, etc. Voice over Internet Protocol
(VoIP) can be part of this service, helping reduce the user’s monthly
telephone charges.

 Other potential services include calendar, to-do list, e-mail, etc.

HD TV
PC

Home gateway

Intrusion
detector

Fire
alarm

User remote
control (via

mobile phone)

Refrigerator Rice cooker

Airconditioner

Utility meter

Ethernet LAN

Entertainment
services provider

Police
station

Hospital

Landscaping
sprinkler

Fig. 1. A typical smart home network environment. See text for details.

 Entertainment:
 The Audio-on-Demand, Video-on-Demand, and Interactive TV bring to the

home the newest popular music and movies. The users can select their
favorites from a directory without leaving their couch. They can start, stop,
or pause at will, just as they do for the discs or tapes at home.

 Other potential services include updating electronic toys remotely, video
games, virtual worlds, etc.

 Control:

 Device Remote Diagnostics Service can test the appliances and system to
ensure they are working properly. When a functional problem is detected,
an alert can be sent. In the case when the problem cannot be solved
remotely, the information will be sent to the service company and the
service team can contact the user for proper parts. Device Integration
Services allow the devices to communicate together and synchronize their
work.

 Energy Management can turn on the landscaping sprinkler when the power
price is suitable, based on the weather. The user can use their mobile phone
to send control signals to the air-conditioner at home to have it turned on
before they arrive home.

 More control services can be developed by appliances manufactures and
service providers.

 Home security:

 The home security systems, such as fire alarm system or intrusion detector,
can be connected to a police station or security company to send alarm when
unusual situation is detected for a quick response.

In this rapidly developing smart-home area, numerous companies compete to develop new
technologies and products. Currently, there are several initiatives to define the specifications
for network protocols and APIs suitable for home applications, such as Zigbee Alliance
(2004), Sommers (2006), Jini by Sun Microsystems (2007), UPnP by Microsoft Corporation
(2008), to name a few. It is expected that multiple home network protocols will coexist in the
home and interoperate through the home gateway (Watanabe et al. 2007). Using a home
gateway, previously isolated home devices such as digital camera, air conditioner,
monitoring system, etc., can be integrated into a smart home system. The gateway also acts
as a single point of connection between the home and outside world. Open Service Gateway
initiative (OSGi) (The OSGi Service Platform Release 4 Core Specification version 4.2 2009;
Binstock 2006) is a consortium of companies that are working to define common
specifications for the home gateway. According to the OSGi model, the gateway can host
services to control and operate home appliances. In the OSGi model, services are
implemented in software bundles (or modules) that can be downloaded from the Internet and
executed in the gateway (Maples & Kriends 2001). For example, HTTP service is
implemented in one bundle, while security application could be implemented in another
bundle. Bundles communicate and collaborate with each other through OSGi middleware
and, therefore, some bundles may depend on other bundles. For example, a home security
bundle uses an HTTP bundle to provide external connectivity (Lee et al. 2003).

www.intechopen.com

Memory management in smart home gateway 161

Figure 1 illustrates a typical smart home network environment. Generally, there are several
types of services in a digital smart home:

 Basic services (not shown in Figure 1):

 Internet Access, Firewall, Personalized UI, Network Security, etc.

 Information services and health care:
 Personalized e-Commerce services will automatically generate an order to a

grocery shop when items in the refrigerator fall below a given threshold.
This service can also support a more sophisticated shopping model that can
bring improvements for the user, such as selecting a retail shop with the
cheapest prices.

 Remote Patient Monitoring will help reduce the cost of medical care. It
mainly focuses on chronic diseases and monitors patient’s physiological
variables such as blood pressure, heart rate, blood sugar level, which will be
recorded and transferred to a hospital for a timely professional consultation.

 More information service models can be developed by service providers.

 Communication:
 Unified Messaging services will allow users to have all the services that are

expected in modern organizations, such as telephone call transfer,
individual mail boxes, video sharing, etc. Voice over Internet Protocol
(VoIP) can be part of this service, helping reduce the user’s monthly
telephone charges.

 Other potential services include calendar, to-do list, e-mail, etc.

HD TV
PC

Home gateway

Intrusion
detector

Fire
alarm

User remote
control (via

mobile phone)

Refrigerator Rice cooker

Airconditioner

Utility meter

Ethernet LAN

Entertainment
services provider

Police
station

Hospital

Landscaping
sprinkler

Fig. 1. A typical smart home network environment. See text for details.

 Entertainment:
 The Audio-on-Demand, Video-on-Demand, and Interactive TV bring to the

home the newest popular music and movies. The users can select their
favorites from a directory without leaving their couch. They can start, stop,
or pause at will, just as they do for the discs or tapes at home.

 Other potential services include updating electronic toys remotely, video
games, virtual worlds, etc.

 Control:

 Device Remote Diagnostics Service can test the appliances and system to
ensure they are working properly. When a functional problem is detected,
an alert can be sent. In the case when the problem cannot be solved
remotely, the information will be sent to the service company and the
service team can contact the user for proper parts. Device Integration
Services allow the devices to communicate together and synchronize their
work.

 Energy Management can turn on the landscaping sprinkler when the power
price is suitable, based on the weather. The user can use their mobile phone
to send control signals to the air-conditioner at home to have it turned on
before they arrive home.

 More control services can be developed by appliances manufactures and
service providers.

 Home security:

 The home security systems, such as fire alarm system or intrusion detector,
can be connected to a police station or security company to send alarm when
unusual situation is detected for a quick response.

In this rapidly developing smart-home area, numerous companies compete to develop new
technologies and products. Currently, there are several initiatives to define the specifications
for network protocols and APIs suitable for home applications, such as Zigbee Alliance
(2004), Sommers (2006), Jini by Sun Microsystems (2007), UPnP by Microsoft Corporation
(2008), to name a few. It is expected that multiple home network protocols will coexist in the
home and interoperate through the home gateway (Watanabe et al. 2007). Using a home
gateway, previously isolated home devices such as digital camera, air conditioner,
monitoring system, etc., can be integrated into a smart home system. The gateway also acts
as a single point of connection between the home and outside world. Open Service Gateway
initiative (OSGi) (The OSGi Service Platform Release 4 Core Specification version 4.2 2009;
Binstock 2006) is a consortium of companies that are working to define common
specifications for the home gateway. According to the OSGi model, the gateway can host
services to control and operate home appliances. In the OSGi model, services are
implemented in software bundles (or modules) that can be downloaded from the Internet and
executed in the gateway (Maples & Kriends 2001). For example, HTTP service is
implemented in one bundle, while security application could be implemented in another
bundle. Bundles communicate and collaborate with each other through OSGi middleware
and, therefore, some bundles may depend on other bundles. For example, a home security
bundle uses an HTTP bundle to provide external connectivity (Lee et al. 2003).

www.intechopen.com

Smart Home Systems162

To be deployed in customers’ home, the price of the gateway is a main concern. Consumers
might not be willing to pay for an extra box (home gateway). Also adding gateway
functionality to an existing appliance, e.g., TV or set-top box (STB) would increase the
appliance prices or shrink an already slim profit margin in this market. There is no
consensus among consumer electronic industry on whether the gateway will be a separate
box or it will be integrated in home appliances like digital TV or STB, or whether the
gateway functionality will be centralized in one device or distributed among several
appliances. However, the gateway will be, in general, limited in computational resources,
especially main memory and CPU. The main memory in a home gateway will be used by
various service bundles and home applications.

This chapter discusses the memory management in gateways and prioritizing the memory
use to maximize the number of services running simultaneously in the home gateway. We
propose new algorithms for efficient management of service bundles. Memory management
has been studied extensively in the traditional operating systems field (Silberschatz &
Peterson 1989). Due to different architecture, memory management for software bundles
executed in home gateways differs from traditional memory management techniques in the
following aspects:

 Traditional memory management techniques generally assume that memory
regions used by different applications are independent of each other while some
bundles may depend on other bundles in a gateway, as explained in Section 2.

 Due to the cost reason, many of the commercial gateways do not come with
storage disks, which make the cost of stopping applications or services relatively
high because restarting a service might require downloading the service bundle
from the service provider through the Internet.

 Some home applications are real-time; therefore, removing a bundle from the
memory may result in aborting the application or the service, while in traditional
memory management model, removing a page from the memory costs only one
disk I/O operation.

In a home gateway, generally, terminating a service might result in aborting one or more
applications. However, in some applications it is possible to remove one service in the
application and keep the application running. For example, audio-on-demand might still
work without the equalizer service. However, if the application considers the terminated
service critical to its operation, it might terminate all other services in the service tree as
well. In this chapter, although the proposed model and algorithms work for the two cases
mentioned above, we assume that terminating a node or a sub-tree from the service tree
would terminate the whole application.

The main contributions of this work are:

 Identifying the difference between memory management in home gateway and
traditional memory management problem in a general computing environment
(addressed in operating systems literature).

 Introducing a model for the service replacement in home gateways using a
directed dependency graph.

 Introducing SD (service dependency) Optimal algorithm which can work as a
benchmark to compare different algorithms.

 Introducing SD Heuristic algorithm that performs significantly better than
traditional memory management algorithms and close to the optimal solution
based on Knapsack problem.

This chapter is organized as follows. The next section describes prior work, and introduces
OSGi and the corresponding memory model. Section 3 presents an application scenario with
counter example and a formal definition of the memory management problem. In Section 4
we first present the simple algorithms that are based on traditional methods and then
propose our SD Heuristic algorithm and an analytical solution (SD Optimal) based on
Knapsack problem. Evaluation results and discussion are presented in Section 5. Finally,
conclusions and outlook are summarized in Section 6.

2. Prior work

Memory management has been discussed extensively in the operating systems literature.
For the sake of comparison, we adopted two well-know memory management techniques,
namely, best-fit, worst-fit and compared them with our proposed protocols in Section 4. Due
to the different architectures, one of the main differences between memory management for
smart home applications and general computer applications is that the former takes into
account the dependencies among different services or bundles, as explained later. To our
best knowledge, there is no study related to the memory management in the context of
smart home applications. Vidal et al. (2006) addressed QoS in home gateway. They
proposed a flexible architecture for managing bandwidth inside the home. However, they
have not addressed memory management in home gateways. Aliet al. (2005) proposed
architecture based on OSGi for wireless sensor networks, where data is processed in
distributed fashion. They showed how to execute simple database queries like selection and
join in a distributed fashion. Bottaro et al. (2007) addressed protocol heterogeneity and
interface fragmentation when connecting several devices to OSGi-based gateway at home.
The paper describes different scenarios and challenges for providing pervasive services in
home applications.

2.1 OSGi framework introduction
Due to the different characteristics from traditional computer architecture, Ericsson, IBM,
Motorola, Sun Microsystems found OSGi Alliance, which is an open standards organization
in March 1999. Developed by this alliance, OSGi is a Java-based framework and (Helal et al.
2005; Lee et al. 2003) and wireless networks (Helal et al. 2005). The OSGi framework is
completely based on Java technology. In fact, the specification itself is just a collection of
standardized Java APIs plus manifest data. The use of Java technology has several
important advantages. First, Java runtimes are available on almost all OS platforms,
allowing the OSGi framework and services to be deployed to a large variety of devices
across many different manufacturers. Java also offers superb support for secure mobile code
provisioning, which allow developers to package and digitally sign a Java applications and
send them over the network for remote execution. If the execution host cannot verify the
digital signature or determines that the application does not have sufficient permission, it

www.intechopen.com

Memory management in smart home gateway 163

To be deployed in customers’ home, the price of the gateway is a main concern. Consumers
might not be willing to pay for an extra box (home gateway). Also adding gateway
functionality to an existing appliance, e.g., TV or set-top box (STB) would increase the
appliance prices or shrink an already slim profit margin in this market. There is no
consensus among consumer electronic industry on whether the gateway will be a separate
box or it will be integrated in home appliances like digital TV or STB, or whether the
gateway functionality will be centralized in one device or distributed among several
appliances. However, the gateway will be, in general, limited in computational resources,
especially main memory and CPU. The main memory in a home gateway will be used by
various service bundles and home applications.

This chapter discusses the memory management in gateways and prioritizing the memory
use to maximize the number of services running simultaneously in the home gateway. We
propose new algorithms for efficient management of service bundles. Memory management
has been studied extensively in the traditional operating systems field (Silberschatz &
Peterson 1989). Due to different architecture, memory management for software bundles
executed in home gateways differs from traditional memory management techniques in the
following aspects:

 Traditional memory management techniques generally assume that memory
regions used by different applications are independent of each other while some
bundles may depend on other bundles in a gateway, as explained in Section 2.

 Due to the cost reason, many of the commercial gateways do not come with
storage disks, which make the cost of stopping applications or services relatively
high because restarting a service might require downloading the service bundle
from the service provider through the Internet.

 Some home applications are real-time; therefore, removing a bundle from the
memory may result in aborting the application or the service, while in traditional
memory management model, removing a page from the memory costs only one
disk I/O operation.

In a home gateway, generally, terminating a service might result in aborting one or more
applications. However, in some applications it is possible to remove one service in the
application and keep the application running. For example, audio-on-demand might still
work without the equalizer service. However, if the application considers the terminated
service critical to its operation, it might terminate all other services in the service tree as
well. In this chapter, although the proposed model and algorithms work for the two cases
mentioned above, we assume that terminating a node or a sub-tree from the service tree
would terminate the whole application.

The main contributions of this work are:

 Identifying the difference between memory management in home gateway and
traditional memory management problem in a general computing environment
(addressed in operating systems literature).

 Introducing a model for the service replacement in home gateways using a
directed dependency graph.

 Introducing SD (service dependency) Optimal algorithm which can work as a
benchmark to compare different algorithms.

 Introducing SD Heuristic algorithm that performs significantly better than
traditional memory management algorithms and close to the optimal solution
based on Knapsack problem.

This chapter is organized as follows. The next section describes prior work, and introduces
OSGi and the corresponding memory model. Section 3 presents an application scenario with
counter example and a formal definition of the memory management problem. In Section 4
we first present the simple algorithms that are based on traditional methods and then
propose our SD Heuristic algorithm and an analytical solution (SD Optimal) based on
Knapsack problem. Evaluation results and discussion are presented in Section 5. Finally,
conclusions and outlook are summarized in Section 6.

2. Prior work

Memory management has been discussed extensively in the operating systems literature.
For the sake of comparison, we adopted two well-know memory management techniques,
namely, best-fit, worst-fit and compared them with our proposed protocols in Section 4. Due
to the different architectures, one of the main differences between memory management for
smart home applications and general computer applications is that the former takes into
account the dependencies among different services or bundles, as explained later. To our
best knowledge, there is no study related to the memory management in the context of
smart home applications. Vidal et al. (2006) addressed QoS in home gateway. They
proposed a flexible architecture for managing bandwidth inside the home. However, they
have not addressed memory management in home gateways. Aliet al. (2005) proposed
architecture based on OSGi for wireless sensor networks, where data is processed in
distributed fashion. They showed how to execute simple database queries like selection and
join in a distributed fashion. Bottaro et al. (2007) addressed protocol heterogeneity and
interface fragmentation when connecting several devices to OSGi-based gateway at home.
The paper describes different scenarios and challenges for providing pervasive services in
home applications.

2.1 OSGi framework introduction
Due to the different characteristics from traditional computer architecture, Ericsson, IBM,
Motorola, Sun Microsystems found OSGi Alliance, which is an open standards organization
in March 1999. Developed by this alliance, OSGi is a Java-based framework and (Helal et al.
2005; Lee et al. 2003) and wireless networks (Helal et al. 2005). The OSGi framework is
completely based on Java technology. In fact, the specification itself is just a collection of
standardized Java APIs plus manifest data. The use of Java technology has several
important advantages. First, Java runtimes are available on almost all OS platforms,
allowing the OSGi framework and services to be deployed to a large variety of devices
across many different manufacturers. Java also offers superb support for secure mobile code
provisioning, which allow developers to package and digitally sign a Java applications and
send them over the network for remote execution. If the execution host cannot verify the
digital signature or determines that the application does not have sufficient permission, it

www.intechopen.com

Smart Home Systems164

could reject the application or put it in a sandbox with limited access to local resources.
Furthermore, Java has an extensive set of network libraries. It supports not only HTTP and
TCP/IP networking, but also advanced peer-to-peer protocols such as Jini, JXTA and
BlueTooth. Services are implemented as plug-ins modules called bundles. (We will use the
terms “bundle” and “service” interchangeably in the rest of this chapter). These bundles can
be downloaded from the application service providers through the Internet when they are
requested. Examples for services that are used for application development are Java
development tools, J2EE monitor, crypto services, bundles that provide access to various
relational database management systems (e.g., DB2, Oracle, etc.), HTML creation, SQL,
Apache, Internet browser, XML plug-ins, communication with Windows CE, etc. Other
system administration bundles like core boot, web application engine, event handling, OSGi
monitor, file system services, etc. Bundles for various Internet and network protocols, like,
HTTP service, Web services, SMS, TCP/IP, Bluetooth, X10, Jini, UPnP, , etc. There are many
bundles that are already implemented by OSGi partners (Binstock 2006).

2.2 Service dependency graph
Figure 2 shows the software architecture of a gateway according to the OSGi model. Some of
the basic bundles, which implement essential services, are already loaded in the gateway
framework. The framework handles the basic bundle management functionality, e.g., install,
uninstall, start, stop, communication, etc. Other service bundles, developed by the third
party like device manufacturers and services providers, can be downloaded in real-time by
the OSGi framework as needed.

Our proposed algorithm is implemented as a part of the framework to provide memory
management. The gateway can download the corresponding bundles (that correspond to
specific services) when it becomes necessary. In order to share its services with others, a
bundle registers any number of services to the framework.

A bundle may import services provided by other bundles and therefore, its running may
depends on other bundles. For example, a file downloading bundle needs services provided
by an UDP service bundle or TCP service bundle, therefore, it is dependent on UDP service
bundle or TCP service bundle. To model the relationship among services, we use a
dependency graph. Formally, given a set of service instances S = { s1, ..., sn } which currently
reside in main memory, let G (S,E) be a directed acyclic graph with vertex set S and edge set
E, describing the dependence among these instances. There is a directed edge from sij,
(si,sj) E if and only if si depends on sj. Since it is natural to assume that each application
instantiates its own copy of a given service, the dependency graph will consist of a forest of
rooted trees, where each tree represents the service instances instantiated by a given
application as shown in Figure 3.

Fig. 3. Dependence graph for two currently running applications (numbers indicate memory
requirements).

3. Problem definition

The gateway might need to free memory space to accommodate new services that are
triggered by connecting a new device to the network or upon explicit local or remote
requests. Although the amount of memory required to execute a service might change with
time, the application service provider (or the author who provides the bundle) can give
approximate statistical estimates of the amount of memory required to execute the services
such as average, median, or maximum. Moreover, extra memory space might be requested
by any one of the service instances (inside the home gateway) to continue its service. If such
memory is not available, the gateway has to pick a victim service instance (or instances) to
terminate to allow the new application to start. Note that because many of the smart home

Audio-on-demand (30)

Audio Player (50) Equalizer (105)

UDP Service (25)

Internet Game (65)

HTTP Service (45)

OSGi Framework

H
ttp

 S
er

vi
ce

Lo
g

Se
rv

ic
e

D
ev

ic
e

A
cc

es
s

 U
ni

fie
d

M
es

sa
gi

ng

 Se
cu

ri
ty

 M
on

ito
r

…
…

…
…

…
…

Basic Bundles Application Bundles

OSGi Platform

Java Virtual Machine(pJava, J2ME, etc.)

Operating System/RTOS

Hardware

Fig. 2. Software architecture of a gateway in the OSGi model.

……………..

www.intechopen.com

Memory management in smart home gateway 165

could reject the application or put it in a sandbox with limited access to local resources.
Furthermore, Java has an extensive set of network libraries. It supports not only HTTP and
TCP/IP networking, but also advanced peer-to-peer protocols such as Jini, JXTA and
BlueTooth. Services are implemented as plug-ins modules called bundles. (We will use the
terms “bundle” and “service” interchangeably in the rest of this chapter). These bundles can
be downloaded from the application service providers through the Internet when they are
requested. Examples for services that are used for application development are Java
development tools, J2EE monitor, crypto services, bundles that provide access to various
relational database management systems (e.g., DB2, Oracle, etc.), HTML creation, SQL,
Apache, Internet browser, XML plug-ins, communication with Windows CE, etc. Other
system administration bundles like core boot, web application engine, event handling, OSGi
monitor, file system services, etc. Bundles for various Internet and network protocols, like,
HTTP service, Web services, SMS, TCP/IP, Bluetooth, X10, Jini, UPnP, , etc. There are many
bundles that are already implemented by OSGi partners (Binstock 2006).

2.2 Service dependency graph
Figure 2 shows the software architecture of a gateway according to the OSGi model. Some of
the basic bundles, which implement essential services, are already loaded in the gateway
framework. The framework handles the basic bundle management functionality, e.g., install,
uninstall, start, stop, communication, etc. Other service bundles, developed by the third
party like device manufacturers and services providers, can be downloaded in real-time by
the OSGi framework as needed.

Our proposed algorithm is implemented as a part of the framework to provide memory
management. The gateway can download the corresponding bundles (that correspond to
specific services) when it becomes necessary. In order to share its services with others, a
bundle registers any number of services to the framework.

A bundle may import services provided by other bundles and therefore, its running may
depends on other bundles. For example, a file downloading bundle needs services provided
by an UDP service bundle or TCP service bundle, therefore, it is dependent on UDP service
bundle or TCP service bundle. To model the relationship among services, we use a
dependency graph. Formally, given a set of service instances S = { s1, ..., sn } which currently
reside in main memory, let G (S,E) be a directed acyclic graph with vertex set S and edge set
E, describing the dependence among these instances. There is a directed edge from sij,
(si,sj) E if and only if si depends on sj. Since it is natural to assume that each application
instantiates its own copy of a given service, the dependency graph will consist of a forest of
rooted trees, where each tree represents the service instances instantiated by a given
application as shown in Figure 3.

Fig. 3. Dependence graph for two currently running applications (numbers indicate memory
requirements).

3. Problem definition

The gateway might need to free memory space to accommodate new services that are
triggered by connecting a new device to the network or upon explicit local or remote
requests. Although the amount of memory required to execute a service might change with
time, the application service provider (or the author who provides the bundle) can give
approximate statistical estimates of the amount of memory required to execute the services
such as average, median, or maximum. Moreover, extra memory space might be requested
by any one of the service instances (inside the home gateway) to continue its service. If such
memory is not available, the gateway has to pick a victim service instance (or instances) to
terminate to allow the new application to start. Note that because many of the smart home

Audio-on-demand (30)

Audio Player (50) Equalizer (105)

UDP Service (25)

Internet Game (65)

HTTP Service (45)

OSGi Framework

H
ttp

 S
er

vi
ce

Lo
g

Se
rv

ic
e

D
ev

ic
e

A
cc

es
s

 U
ni

fie
d

M
es

sa
gi

ng

 Se
cu

ri
ty

 M
on

ito
r

…
…

…
…

…
…

Basic Bundles Application Bundles

OSGi Platform

Java Virtual Machine(pJava, J2ME, etc.)

Operating System/RTOS

Hardware

Fig. 2. Software architecture of a gateway in the OSGi model.

……………..

www.intechopen.com

Smart Home Systems166

applications are real-time in nature, thus, the gateway tends to terminate the victim service
rather than suspending it. Ideally, the gateway memory management algorithm needs to
meet the following desirable properties:

 The total amount of reclaimed memory is enough to fulfill the requested memory.
 The number of victim service instances should be minimal.
 Since the algorithm will be executed in real-time, it should be fast and does not

require much memory itself.

3.1 Application scenario
The problem addressed in this chapter can be better described by the following motivating
example. Suppose that there are two applications that are running on the gateway. The first
application uses audio-on-demand service that depends on the audio player service, which
in turn, depends on the UDP service. The service dependency graph for the audio-on-
demand is shown in Figure 3. The second application is an Internet game, which consists of
two services; a game service that depends on HTTP service. Now we would like to start one
more application, for example, home security. Let us assume that there is no more free
memory in the gateway and the total memory required by the home security application is
100 (memory units).

Apparently, home security application is more important than Audio-on-demand
application and Internet-game. Thus, it is reasonable to kick out at least one of these services
to start the home security application. As shown in Figure 3, the equalizer service uses 105
memory units. A wise decision would be to kick the equalizer service that belongs to the
audio-on-demand application because it results in killing less number of service instances
and fulfills the memory demand.

The challenge is to select those services to kick out from memory such that the number of
services and applications affected is minimal and that the total memory reclaimed equal or
greater than the memory requested. In Section 4, we propose new algorithms for service
replacement for memory management in gateways.

3.2 Formal description of the problem
More formally, our problem can be described as follows. Let S={ s1, ..., sn } be the set of
service instances currently resident in gateway memory (Table 1). Service instance si
occupies M(si) storage. Let G (S,E) be the forest of trees describing the dependency among
the set of instances S. For a vertex v in G, let us denote by T(v) the set of vertices of the sub-
tree of G rooted at v (including v itself), and for a subset of vertices V S, let T(V) := U vV

T(v).

Given that a new service instance s, with memory requirement M(s) has to be created, it
might be required to remove some currently existing instances in order to free room for the
new instance. Assume that the extra required memory for this operation is Mt units, that is
Mt =M(s) Mf, where Mf is the current amount of available memory. Here we assume that,
when a service instance is terminated, all instances depending on it will be terminated and

removed as well. Our goal is to reduce the number of removed (stopped) services. More
precisely, it is desired to find a subset VS of minimal number of service instances, whose
ejection, together with all its dependents, will make available a total memory of at least Mt
units. Letting M(S’) := ΣsS’ M(s) for any S’S, our problem can be formulated as finding

min {|T(V) |: V S, M(T(V)) ≥ Mt } (1)

This last problem is closely related to the well-known Knapsack problem, which is NP-hard
in general (Garey & Johnson 1979). However, the Knapsack problem admits a pseudo
polynomial algorithm which runs in O(n2) (see, for example, Jain & Vazirani 2001). This
solution is discussed in detail in Section 4.3.

Term Description
Service A self-contained component that performs certain functionality
Bundle The functional and deployment unit for shipping services
Service instance The execution thread of a bundle in the framework
Applications Consists of one or more services

Table 1. Description of the terminology used in the chapter.

4. Service replacement algorithms

In this section we present several algorithms for solving service replacement problem in
home gateway. The first three algorithms are direct adaptation of the well-known first-fit,
best-fit and worst-fit algorithms which select the service(s) to be replaced based on the
amount of memory that might become available. The other two algorithms take into account
not only the memory size but also the service dependencies. SD (Size-Dependency) heuristic
is a simple heuristic that runs in O(nh) time and requires linear space, where h is the height
of the forest. Finally SD Optimal algorithm computes an optimal solution in O(n2) time and
O(nh) space.

As explained in the previous two sections each application is modeled as a tree of service
nodes that are used by this application. The algorithm showed in Figure 4 selects a victim
node (root) X. Note that X can be either an application (a root of a tree) or a sub-tree that
belongs to an application. If X is the root node then the gateway will stop the corresponding
application. But if X was a sub-tree under an application, then deleting X might stop some
functionalities of the application without terminating the whole application. Our proposed
model and solution work equally for both cases.

In some special cases, the application might still run with reduced functionality as a result of
stopping the sub-tree rooted at X. However, it is highly possible that the deletion of the sub-
tree X seriously affect the execution of the application and consequently the whole
application stops. Even though our algorithms work for both cases, in our experiments we
count on the general case that deleting any sub-tree stops the whole application. Thus,
without loss of generality, the following discussions and algorithms check only root nodes
(application node) and not a sub-tree. In general service replacement algorithm is shown in

www.intechopen.com

Memory management in smart home gateway 167

applications are real-time in nature, thus, the gateway tends to terminate the victim service
rather than suspending it. Ideally, the gateway memory management algorithm needs to
meet the following desirable properties:

 The total amount of reclaimed memory is enough to fulfill the requested memory.
 The number of victim service instances should be minimal.
 Since the algorithm will be executed in real-time, it should be fast and does not

require much memory itself.

3.1 Application scenario
The problem addressed in this chapter can be better described by the following motivating
example. Suppose that there are two applications that are running on the gateway. The first
application uses audio-on-demand service that depends on the audio player service, which
in turn, depends on the UDP service. The service dependency graph for the audio-on-
demand is shown in Figure 3. The second application is an Internet game, which consists of
two services; a game service that depends on HTTP service. Now we would like to start one
more application, for example, home security. Let us assume that there is no more free
memory in the gateway and the total memory required by the home security application is
100 (memory units).

Apparently, home security application is more important than Audio-on-demand
application and Internet-game. Thus, it is reasonable to kick out at least one of these services
to start the home security application. As shown in Figure 3, the equalizer service uses 105
memory units. A wise decision would be to kick the equalizer service that belongs to the
audio-on-demand application because it results in killing less number of service instances
and fulfills the memory demand.

The challenge is to select those services to kick out from memory such that the number of
services and applications affected is minimal and that the total memory reclaimed equal or
greater than the memory requested. In Section 4, we propose new algorithms for service
replacement for memory management in gateways.

3.2 Formal description of the problem
More formally, our problem can be described as follows. Let S={ s1, ..., sn } be the set of
service instances currently resident in gateway memory (Table 1). Service instance si
occupies M(si) storage. Let G (S,E) be the forest of trees describing the dependency among
the set of instances S. For a vertex v in G, let us denote by T(v) the set of vertices of the sub-
tree of G rooted at v (including v itself), and for a subset of vertices V S, let T(V) := U vV

T(v).

Given that a new service instance s, with memory requirement M(s) has to be created, it
might be required to remove some currently existing instances in order to free room for the
new instance. Assume that the extra required memory for this operation is Mt units, that is
Mt =M(s) Mf, where Mf is the current amount of available memory. Here we assume that,
when a service instance is terminated, all instances depending on it will be terminated and

removed as well. Our goal is to reduce the number of removed (stopped) services. More
precisely, it is desired to find a subset VS of minimal number of service instances, whose
ejection, together with all its dependents, will make available a total memory of at least Mt
units. Letting M(S’) := ΣsS’ M(s) for any S’S, our problem can be formulated as finding

min {|T(V) |: V S, M(T(V)) ≥ Mt } (1)

This last problem is closely related to the well-known Knapsack problem, which is NP-hard
in general (Garey & Johnson 1979). However, the Knapsack problem admits a pseudo
polynomial algorithm which runs in O(n2) (see, for example, Jain & Vazirani 2001). This
solution is discussed in detail in Section 4.3.

Term Description
Service A self-contained component that performs certain functionality
Bundle The functional and deployment unit for shipping services
Service instance The execution thread of a bundle in the framework
Applications Consists of one or more services

Table 1. Description of the terminology used in the chapter.

4. Service replacement algorithms

In this section we present several algorithms for solving service replacement problem in
home gateway. The first three algorithms are direct adaptation of the well-known first-fit,
best-fit and worst-fit algorithms which select the service(s) to be replaced based on the
amount of memory that might become available. The other two algorithms take into account
not only the memory size but also the service dependencies. SD (Size-Dependency) heuristic
is a simple heuristic that runs in O(nh) time and requires linear space, where h is the height
of the forest. Finally SD Optimal algorithm computes an optimal solution in O(n2) time and
O(nh) space.

As explained in the previous two sections each application is modeled as a tree of service
nodes that are used by this application. The algorithm showed in Figure 4 selects a victim
node (root) X. Note that X can be either an application (a root of a tree) or a sub-tree that
belongs to an application. If X is the root node then the gateway will stop the corresponding
application. But if X was a sub-tree under an application, then deleting X might stop some
functionalities of the application without terminating the whole application. Our proposed
model and solution work equally for both cases.

In some special cases, the application might still run with reduced functionality as a result of
stopping the sub-tree rooted at X. However, it is highly possible that the deletion of the sub-
tree X seriously affect the execution of the application and consequently the whole
application stops. Even though our algorithms work for both cases, in our experiments we
count on the general case that deleting any sub-tree stops the whole application. Thus,
without loss of generality, the following discussions and algorithms check only root nodes
(application node) and not a sub-tree. In general service replacement algorithm is shown in

www.intechopen.com

Smart Home Systems168

Figure 4. The differences between the different techniques are materialized in the way the
algorithm selects the next victim for deletion in Step 2.1 in Figure 4. It is easy to see that the
above heuristic can be implemented in O(nh) time and O(n) space. In the next two sections
we discuss several alternatives for picking the victim bundle.

Fig. 4. General service replacement algorithm.

4.1 The simple algorithm
This algorithm is similar to the traditional algorithms used in operating system literature for
memory management in general purpose computers. These traditional techniques make
selection based on the amount of memory used and ignore the dependencies. We modify
these techniques to take into consideration the total accumulative memory of each service
(bundle) resulting from stopping one service. We consider the following three algorithms:

First Fit: choose the first service s in the list S={ s1, ..., sn } such that total memory
M(T(s)) occupied by its sub-tree is at least the requested amount Mt:

k min { 1 ≤ j ≤ n | M(T(sj)) ≥ Mt }; s sk

If no such node exists (k=∞), pick the node with largest M(T(s)):

s argmax{ M(T(s)) : s S}
where argmax{ ... } denotes a maximum of a given function.

Best Fit: choose the service sS with the smallest total memory that is ≥ Mt:

s argmax { M(T(s)) : s S, M(T(s)) ≥ Mt }

where argmax{ ... } denotes a maximum of a given function.
If no such node exists (k=∞), pick the node with largest M(T(s).

Generic (G, S, Mt)
Input: The current set of service instances S, the dependence forest G, and the memory
requirement Mt.
Output: A new dependent forest G, describing the dependency among the bundles
remaining after deleting a set of bundles whose total memory is at least Mt .

1. For each node s S, compute the accumulative size and memory:

c (s) |T(s)| and m(s) M (T(s)) using breadth first search on the dependency
forest G

2. While Mt >0
2.1 Pick a victim node s, according to the selection strategy to be described later.
2.2 Delete s and all its dependents
2.3 For every node u on the path from s to the root of the tree containing s, set

c (u) c (u) – c (s) and m(u) m(u) – m(s)
2.4 Update Mt Mt – m(s)

Worst Fit: choose the service sS with the largest total memory:

s argmax{ M(T(s)) : s S}

If no such node exists (k=∞), pick the node with largest M(T(s).

4.2 SD heuristic
Different from the simple algorithms discussed above, our proposed heuristic greedily tries
to pick, as a victim for deletion, the service instance whose removal will free the minimum
amount of memory larger than Mt and, at the same time, it has the smallest number of
dependents. Towards this end, the heuristic will pick for deletion the service instance s
which maximizes the ratio of the total memory to the number of dependents:

s argmax{ M(T(s))/|T(s)| : s S}

This selection tends to decrease the number of deleted instances. Looking back at the
example in Figure 3, we can see that the ratios M(s*)/|s*| for the different service instances
are as follows: Audio-on-demand (52.5 = (30 + 50 + 25 + 105)/4), Audio-player
(37.5=(50+25)/2), UDP Service (25), Equalizer (105), Internet game (55=(65+45)/2), and
HTTP Service (45). Thus, the service instance with maximum ratio is the Equalizer whose
removal will give enough memory to start the new service (requiring 100 memory units).
Should we have used the First Fit strategy, on the other hand, we might have selected to
remove the Audio-on-demand instance, which results in removing four instances instead of
only one. Note also that, for this particular example, the Best Fit algorithm would also
remove the same instance (the Equalizer) selected by the SD Heuristic.

4.3 SD optimal
It is well known that the Knapsack problem admits a pseudo polynomial algorithm. In this
section, we extend this solution to problem 1 using dynamic programming (Johnson &
Niemi 1983). Specifically, let S = Sn= {s1,...,sn} be the current set of service instances listed
in post-order traversal (that is, we recursively traverse the children from left to right then we
traverse the root). We shall consider incrementally the sets S1 = {s1}, S2 = {s1, s2}, S3 = {s1, s2,
s3}, ... , computing for each set the maximum amount of memory that can be achieved by
deleting a subset of nodes. In order to compute these maxima, we will need to compute for
each node si, the largest index k {1,..., i−1} such that sk is not a descendant of si. Let L(si)
denotes such an index. The following procedure gives the post-order traversal of a given
forest and computes the required indices L(si) for each i=1,...,n.

If the connected components of the forest G are C1, C2, ..., Cr, then in order to compute the
post-order traversal for G, the above procedure is called r times.

www.intechopen.com

Memory management in smart home gateway 169

Figure 4. The differences between the different techniques are materialized in the way the
algorithm selects the next victim for deletion in Step 2.1 in Figure 4. It is easy to see that the
above heuristic can be implemented in O(nh) time and O(n) space. In the next two sections
we discuss several alternatives for picking the victim bundle.

Fig. 4. General service replacement algorithm.

4.1 The simple algorithm
This algorithm is similar to the traditional algorithms used in operating system literature for
memory management in general purpose computers. These traditional techniques make
selection based on the amount of memory used and ignore the dependencies. We modify
these techniques to take into consideration the total accumulative memory of each service
(bundle) resulting from stopping one service. We consider the following three algorithms:

First Fit: choose the first service s in the list S={ s1, ..., sn } such that total memory
M(T(s)) occupied by its sub-tree is at least the requested amount Mt:

k min { 1 ≤ j ≤ n | M(T(sj)) ≥ Mt }; s sk

If no such node exists (k=∞), pick the node with largest M(T(s)):

s argmax{ M(T(s)) : s S}
where argmax{ ... } denotes a maximum of a given function.

Best Fit: choose the service sS with the smallest total memory that is ≥ Mt:

s argmax { M(T(s)) : s S, M(T(s)) ≥ Mt }

where argmax{ ... } denotes a maximum of a given function.
If no such node exists (k=∞), pick the node with largest M(T(s).

Generic (G, S, Mt)
Input: The current set of service instances S, the dependence forest G, and the memory
requirement Mt.
Output: A new dependent forest G, describing the dependency among the bundles
remaining after deleting a set of bundles whose total memory is at least Mt .

1. For each node s S, compute the accumulative size and memory:

c (s) |T(s)| and m(s) M (T(s)) using breadth first search on the dependency
forest G

2. While Mt >0
2.1 Pick a victim node s, according to the selection strategy to be described later.
2.2 Delete s and all its dependents
2.3 For every node u on the path from s to the root of the tree containing s, set

c (u) c (u) – c (s) and m(u) m(u) – m(s)
2.4 Update Mt Mt – m(s)

Worst Fit: choose the service sS with the largest total memory:

s argmax{ M(T(s)) : s S}

If no such node exists (k=∞), pick the node with largest M(T(s).

4.2 SD heuristic
Different from the simple algorithms discussed above, our proposed heuristic greedily tries
to pick, as a victim for deletion, the service instance whose removal will free the minimum
amount of memory larger than Mt and, at the same time, it has the smallest number of
dependents. Towards this end, the heuristic will pick for deletion the service instance s
which maximizes the ratio of the total memory to the number of dependents:

s argmax{ M(T(s))/|T(s)| : s S}

This selection tends to decrease the number of deleted instances. Looking back at the
example in Figure 3, we can see that the ratios M(s*)/|s*| for the different service instances
are as follows: Audio-on-demand (52.5 = (30 + 50 + 25 + 105)/4), Audio-player
(37.5=(50+25)/2), UDP Service (25), Equalizer (105), Internet game (55=(65+45)/2), and
HTTP Service (45). Thus, the service instance with maximum ratio is the Equalizer whose
removal will give enough memory to start the new service (requiring 100 memory units).
Should we have used the First Fit strategy, on the other hand, we might have selected to
remove the Audio-on-demand instance, which results in removing four instances instead of
only one. Note also that, for this particular example, the Best Fit algorithm would also
remove the same instance (the Equalizer) selected by the SD Heuristic.

4.3 SD optimal
It is well known that the Knapsack problem admits a pseudo polynomial algorithm. In this
section, we extend this solution to problem 1 using dynamic programming (Johnson &
Niemi 1983). Specifically, let S = Sn= {s1,...,sn} be the current set of service instances listed
in post-order traversal (that is, we recursively traverse the children from left to right then we
traverse the root). We shall consider incrementally the sets S1 = {s1}, S2 = {s1, s2}, S3 = {s1, s2,
s3}, ... , computing for each set the maximum amount of memory that can be achieved by
deleting a subset of nodes. In order to compute these maxima, we will need to compute for
each node si, the largest index k {1,..., i−1} such that sk is not a descendant of si. Let L(si)
denotes such an index. The following procedure gives the post-order traversal of a given
forest and computes the required indices L(si) for each i=1,...,n.

If the connected components of the forest G are C1, C2, ..., Cr, then in order to compute the
post-order traversal for G, the above procedure is called r times.

www.intechopen.com

Smart Home Systems170

In what follows, nodes u, v V(G), are considered to be incomparable if neither is a
descendant of the other, i.e., v T(u) and u T(v). Note that n is a trivial upper bound on the
total number of instances (or weight) that can be achieved by any solutions.

For each i {1,...,n} and each w {1,...,n}, let Si, w denote a subset of incomparable elements
of Si = {s1,..., si}, whose total weight is exactly w, and whose total memory is maximized. Let
A(i,w)=M(T(Si,w)) if the set Si,w exists, and A(i,w) = otherwise.

Clearly A(1,w) is known for every w {1,...,n}. The other values of A(i,w) can be computed
incrementally using the following recurrence:

A(i+1, w) = max{A(i,w), M(si+1) + A(L(s i+1), w |T(s i+1)|)} (2)

if |T(si+1)|≤w and A(i+1,w)=A(i,w) otherwise.

Proof of Eq. 2: Let S’ Si+1 be a subset of incomparable elements that achieves
A(i+1,w)=max{M(T(S)) | S Si+1, |T(S)|=w}. There are two possible cases:

Traverse (v, G, k)
Input: a sub-tree of the dependence forest G rooted at v and an integer k.
Output: the post-order traversal { sk, sk+1,…, s|T(v)|+k+1 }of T(v), and the set of indices
{L(s) | s ∈ T(v)}

1. If |T(v)|=0 // tree is empty
return

2. If |T(v)|=1 // v is a leaf node
L(v) k

3. else for each child u of v:
Traverse(u,G,k);
L(v) L(leftmost(v))

4. kk+1
5. sk v

Traverse-Forest (G)
Input: the dependence forest G
Output: the post-order traversal {s1,...,sn} of G, and the set of indices {L(s) | sV(G)}

1. Find the connected components C1, C2, ..., Cr of G
2. k 0
3. For i =1 to r

Traverse (root (Ci), G, k)

 |T(S)|=w, A(i,w) =
 if the set Si,w does not exist

0, if i =0 or w = 0

Case 1: si+1 S’. Then S’Si achieves A(i,w) = max{M(T (S))|SSi ,|T(S)|=w}.
Case 2: si+1 S’. Let S’’=S’\{si+1}. Since the elements of S’ are incomparable and the
dependence graph is a forest, we have T(S’) ∩ T(si+1) = Ø, and therefore,

|T(S’’)|= |T(S’)| -|T(Si+1)| and M(T(S’’)) = M(T(S’)) – M(T(si+1)).

By the definition of L(si+1), we know that for L(si+1)+1≤ j ≤ i, sj is a descendant of si+1, i.e.,
T(sj)∩T(si+1)≠Ø, implying that S’’ must be a subset of Sk, where k=L(si+1). Thus S’’Sk is a
subset that achieves A(i,L(si+1))=max{M(T(S))|SSk,|T(S)|=w−|T(si+1)|}, which when
combined with si+1 gives M (T(S’))=M(T(S’’))+M(T(si+1))=A(i,L(si+1))+M(T(si+1)).

Equation 2 then follows by taking the maximum achievable memory over cases 1 and 2. □

Now we state the optimal algorithm.

Optimal (G, S, Mt) The current set of service instances S, the dependence forest G, and the
memory requirement Mt.

Output: A new dependence forest G, describing the dependence among the bundles
remaining after deleting a set of bundles whose total memory is at least Mt.

1. For each node s S, compute the accumulative size and memory:
c(s) |T(s)| and m(s)M(T(s))

2. Call Traverse-forest(G) to get the post-order traversal { s1, ..., sn} of G, and the set of
indices { L(s)|s V(G)}.

3. Initialize:
A(i,0)=0 for all i=1,...,n,
A(0,w)=0 for all w=1,...,n,
A(1,1)=m(s1), and A(1,w)= for all w=2,...,n.
// Build a dynamic programming table

4. For i=1 to n
5. For w=1 to n

if c(si+1) ≤ w
if A(i,w) ≥ m(si+1) + A(L(si+1),w − c(si+1))

A(i+1,w) A(i,w), B(i+1,w) 0
else

A(i+1,w)m(si+1)+A(L(si+1),w − c(si+1)), B(i+1,w) 0
else

A(i+1,w) A(i,w), B(i+1,w) 0.
// now compute optimal solution

6. S Ø; i n; k min{w [n]: A(i,w)≥ Mt}.
7. while i > 0

if B (i,k) = 1
S SU{ si }; iL(si); k k − c(si).

else
i i−1.

8. For each s S, delete T(s).

www.intechopen.com

Memory management in smart home gateway 171

In what follows, nodes u, v V(G), are considered to be incomparable if neither is a
descendant of the other, i.e., v T(u) and u T(v). Note that n is a trivial upper bound on the
total number of instances (or weight) that can be achieved by any solutions.

For each i {1,...,n} and each w {1,...,n}, let Si, w denote a subset of incomparable elements
of Si = {s1,..., si}, whose total weight is exactly w, and whose total memory is maximized. Let
A(i,w)=M(T(Si,w)) if the set Si,w exists, and A(i,w) = otherwise.

Clearly A(1,w) is known for every w {1,...,n}. The other values of A(i,w) can be computed
incrementally using the following recurrence:

A(i+1, w) = max{A(i,w), M(si+1) + A(L(s i+1), w |T(s i+1)|)} (2)

if |T(si+1)|≤w and A(i+1,w)=A(i,w) otherwise.

Proof of Eq. 2: Let S’ Si+1 be a subset of incomparable elements that achieves
A(i+1,w)=max{M(T(S)) | S Si+1, |T(S)|=w}. There are two possible cases:

Traverse (v, G, k)
Input: a sub-tree of the dependence forest G rooted at v and an integer k.
Output: the post-order traversal { sk, sk+1,…, s|T(v)|+k+1 }of T(v), and the set of indices
{L(s) | s ∈ T(v)}

1. If |T(v)|=0 // tree is empty
return

2. If |T(v)|=1 // v is a leaf node
L(v) k

3. else for each child u of v:
Traverse(u,G,k);
L(v) L(leftmost(v))

4. kk+1
5. sk v

Traverse-Forest (G)
Input: the dependence forest G
Output: the post-order traversal {s1,...,sn} of G, and the set of indices {L(s) | sV(G)}

1. Find the connected components C1, C2, ..., Cr of G
2. k 0
3. For i =1 to r

Traverse (root (Ci), G, k)

 |T(S)|=w, A(i,w) =
 if the set Si,w does not exist

0, if i =0 or w = 0

Case 1: si+1 S’. Then S’Si achieves A(i,w) = max{M(T (S))|SSi ,|T(S)|=w}.
Case 2: si+1 S’. Let S’’=S’\{si+1}. Since the elements of S’ are incomparable and the
dependence graph is a forest, we have T(S’) ∩ T(si+1) = Ø, and therefore,

|T(S’’)|= |T(S’)| -|T(Si+1)| and M(T(S’’)) = M(T(S’)) – M(T(si+1)).

By the definition of L(si+1), we know that for L(si+1)+1≤ j ≤ i, sj is a descendant of si+1, i.e.,
T(sj)∩T(si+1)≠Ø, implying that S’’ must be a subset of Sk, where k=L(si+1). Thus S’’Sk is a
subset that achieves A(i,L(si+1))=max{M(T(S))|SSk,|T(S)|=w−|T(si+1)|}, which when
combined with si+1 gives M (T(S’))=M(T(S’’))+M(T(si+1))=A(i,L(si+1))+M(T(si+1)).

Equation 2 then follows by taking the maximum achievable memory over cases 1 and 2. □

Now we state the optimal algorithm.

Optimal (G, S, Mt) The current set of service instances S, the dependence forest G, and the
memory requirement Mt.

Output: A new dependence forest G, describing the dependence among the bundles
remaining after deleting a set of bundles whose total memory is at least Mt.

1. For each node s S, compute the accumulative size and memory:
c(s) |T(s)| and m(s)M(T(s))

2. Call Traverse-forest(G) to get the post-order traversal { s1, ..., sn} of G, and the set of
indices { L(s)|s V(G)}.

3. Initialize:
A(i,0)=0 for all i=1,...,n,
A(0,w)=0 for all w=1,...,n,
A(1,1)=m(s1), and A(1,w)= for all w=2,...,n.
// Build a dynamic programming table

4. For i=1 to n
5. For w=1 to n

if c(si+1) ≤ w
if A(i,w) ≥ m(si+1) + A(L(si+1),w − c(si+1))

A(i+1,w) A(i,w), B(i+1,w) 0
else

A(i+1,w)m(si+1)+A(L(si+1),w − c(si+1)), B(i+1,w) 0
else

A(i+1,w) A(i,w), B(i+1,w) 0.
// now compute optimal solution

6. S Ø; i n; k min{w [n]: A(i,w)≥ Mt}.
7. while i > 0

if B (i,k) = 1
S SU{ si }; iL(si); k k − c(si).

else
i i−1.

8. For each s S, delete T(s).

www.intechopen.com

Smart Home Systems172

Thus we get an O(n2) time, O(nh) space algorithm for solving problem 1.

5. Performance evaluations

We carried extensive studies to evaluate the proposed algorithms. First, we compared the
performance of the different algorithms in terms of the number of removed services to
verify our new proposed algorithms. And then evaluate the algorithm execution time to
show that the SD heuristic is practical in a home gateway. We considered different scenarios
e.g., different distributions of bundle (or service) sizes, different number of existing bundles,
etc. First we describe how the experimental data is generated, and then we present our
results.

5.1 Experiment setup
Initially, services are generated with random sizes and loaded into the gateway memory,
until the memory becomes almost full. Each service can depend on a number of randomly
selected services with probability varying from 0 to 1. Service sizes are selected randomly in
the range from 100 Kb to 50 Mb according to different probability distributions: uniform
distribution in the given range, exponential distribution with a mean 5M, and a normal
distribution with a mean of 5M.

Because home gateways are new, it was difficult to find real data (traces) of the service
arrival. In our experiments, we used statistical service arrival model. We used both uniform
distribution and exponential distributions for new service arrival to the home gateway. We
conducted experiments to compare the performance of the following algorithms:

 Traditional algorithms: Best-fit and Worst-fit
 SD heuristic
 SD Optimal algorithm

A new service, with memory requirement varying uniformly 100K–50M, is created. We find
out which services (bundles) should be kicked out to make enough room for the incoming
bundle. Two performance measures were considered:

1. The number of services need to be stopped (or kicked out) to free enough space for the
new service

2. The cost of each algorithm, in terms of execution time, required to determine the
victim services (bundles).

Each performance measure was averaged over 1,000 experiments.

5.2 Experimental results
In our first experiment, we fixed the number of existing bundles in the home gateway and
then compared how the different algorithms behave in terms of the number of kicked out
services, as the size of the new coming service (snew) is increased from 100K to 50M. In all
our experiments, we assumed uniform and exponential service arrival. However, service

arrival distribution does not affect the number of victim services. In Figures 5, 6 and 8,
service arrival is assumed to be uniform. Exponential distribution gives similar results and
thus not shown. Figure 5 shows our results when the number of services currently running
in the gateway=100. Just as we have expected, it can be seen from Figure 5, the SD heuristic
and the SD Optimal perform much better than the traditional techniques. This result verifies
that our proposed algorithms perform much better than the traditional techniques, after
taking the dependency between different bundles into account. We also note that the SD
heuristic performs very close to the SD Optimal for various size of the new service snew.

Fig. 5. Performance of the different algorithms as function of Snew for uniform distribution.

Fig. 6. Performance of the different algorithms as function of n for uniform distribution.

In the second experiment, we compare the performance of the different algorithms as the
number of existing bundles n is increased. The result is shown in Figure 6. As we can see
from the result, the performance of SD optimal and SD heuristic remain almost invariant
under the change of number of bundles. The performance of the traditional techniques, on
the other hand, degrades as the number of services running in the gateway increases. This
can be explained as follows. With a large number of existing bundles, the chances that the
memory requirement will be fulfilled with a few number of bundles from the lower levels
(i.e., having a few levels of descendants) is higher. Since SD heuristics and SD optimal take
dependencies into consideration, the likelihood to find better solution increases with the
increasing of the number of existing services. Their performance will improve with the
increase in chances of finding bundles which have less dependent bundles, and therefore,
fewer services are terminated. On the other hand, the traditional techniques do not consider

www.intechopen.com

Memory management in smart home gateway 173

Thus we get an O(n2) time, O(nh) space algorithm for solving problem 1.

5. Performance evaluations

We carried extensive studies to evaluate the proposed algorithms. First, we compared the
performance of the different algorithms in terms of the number of removed services to
verify our new proposed algorithms. And then evaluate the algorithm execution time to
show that the SD heuristic is practical in a home gateway. We considered different scenarios
e.g., different distributions of bundle (or service) sizes, different number of existing bundles,
etc. First we describe how the experimental data is generated, and then we present our
results.

5.1 Experiment setup
Initially, services are generated with random sizes and loaded into the gateway memory,
until the memory becomes almost full. Each service can depend on a number of randomly
selected services with probability varying from 0 to 1. Service sizes are selected randomly in
the range from 100 Kb to 50 Mb according to different probability distributions: uniform
distribution in the given range, exponential distribution with a mean 5M, and a normal
distribution with a mean of 5M.

Because home gateways are new, it was difficult to find real data (traces) of the service
arrival. In our experiments, we used statistical service arrival model. We used both uniform
distribution and exponential distributions for new service arrival to the home gateway. We
conducted experiments to compare the performance of the following algorithms:

 Traditional algorithms: Best-fit and Worst-fit
 SD heuristic
 SD Optimal algorithm

A new service, with memory requirement varying uniformly 100K–50M, is created. We find
out which services (bundles) should be kicked out to make enough room for the incoming
bundle. Two performance measures were considered:

1. The number of services need to be stopped (or kicked out) to free enough space for the
new service

2. The cost of each algorithm, in terms of execution time, required to determine the
victim services (bundles).

Each performance measure was averaged over 1,000 experiments.

5.2 Experimental results
In our first experiment, we fixed the number of existing bundles in the home gateway and
then compared how the different algorithms behave in terms of the number of kicked out
services, as the size of the new coming service (snew) is increased from 100K to 50M. In all
our experiments, we assumed uniform and exponential service arrival. However, service

arrival distribution does not affect the number of victim services. In Figures 5, 6 and 8,
service arrival is assumed to be uniform. Exponential distribution gives similar results and
thus not shown. Figure 5 shows our results when the number of services currently running
in the gateway=100. Just as we have expected, it can be seen from Figure 5, the SD heuristic
and the SD Optimal perform much better than the traditional techniques. This result verifies
that our proposed algorithms perform much better than the traditional techniques, after
taking the dependency between different bundles into account. We also note that the SD
heuristic performs very close to the SD Optimal for various size of the new service snew.

Fig. 5. Performance of the different algorithms as function of Snew for uniform distribution.

Fig. 6. Performance of the different algorithms as function of n for uniform distribution.

In the second experiment, we compare the performance of the different algorithms as the
number of existing bundles n is increased. The result is shown in Figure 6. As we can see
from the result, the performance of SD optimal and SD heuristic remain almost invariant
under the change of number of bundles. The performance of the traditional techniques, on
the other hand, degrades as the number of services running in the gateway increases. This
can be explained as follows. With a large number of existing bundles, the chances that the
memory requirement will be fulfilled with a few number of bundles from the lower levels
(i.e., having a few levels of descendants) is higher. Since SD heuristics and SD optimal take
dependencies into consideration, the likelihood to find better solution increases with the
increasing of the number of existing services. Their performance will improve with the
increase in chances of finding bundles which have less dependent bundles, and therefore,
fewer services are terminated. On the other hand, the traditional techniques do not consider

www.intechopen.com

Smart Home Systems174

the dependencies between different services in the OSGi platform and provide no
optimization, and therefore, might have to delete a few bundles from the top levels,
resulting in a much higher number of kicked out bundles.

Fig. 7. Performance of the different algorithms as function of snew for exponential
distribution.

In the next experiment, we examined the effect of using a non-uniform distribution on the
performance of the algorithms. We used an exponential distribution with mean 5M for the
size of the existing bundles. Figure 7 presents our results for this experiment. Clearly, the
number of kicked out bundles has decreased relative to the uniform case, since in this case it
is easier to satisfy the memory requirement with a smaller number of bundles. However, we
notice that the relative performance of the different algorithms remains invariant.

Fig. 8. Running time of the different algorithms as function of snew for uniform distribution.

From the above experiment results, we can see that the SD heuristic gives satisfactory results
in terms of the number of kicked bundles, as compared with the SD optimal algorithm. At
the same time, SD heuristic significantly outperforms the traditional techniques, e.g., best fit
and worst fit. This naturally raises the question of whether SD heuristic is practical in terms
of running time, as compared to the traditional techniques. To answer this question, we
carried experiments that compare the execution time of the different algorithms. The results
are shown in Figure 8. The y-axis shows the response time of each algorithm in milliseconds;
the x-axis shows the number of services running in the gateway. As we see from this figure,

while the optimal algorithm is significantly slower than the others, SD heuristics performs
very well compared to the traditional techniques in terms of their running time. It is just
what we have expected.

6. Conclusions

In this chapter, we have considered the problem of managing services and bundles in home
gateways with limited amount of main memory. Because of the different architecture of
home gateway using OSGi from the traditional computer architecture, a key difference
between our problem and the traditional memory management is that the dependencies
among different services have to be taken into consideration for a higher customers’
satisfaction.

We use a dependency graph to model the relationship among services. This chapter
proposes two algorithms. The first one is an extension of Knapsack problem which finds the
optimal solution in a polynomial time. The second one is a heuristic that spans the
dependency graph and tries to free the required amount of memory while minimizing the
number of terminated services. We compared the proposed techniques with the traditional
memory management algorithms such as the best fit and worst fit. Our experimental results
indicate that SD (service dependency) heuristic is a good candidate for use in practical
environments, as its performance is close to the optimal solution in terms of the number of
stopped services. SD heuristic performs much better than the traditional memory
management techniques. From the execution time point of view, SD heuristic is almost as
fast as the traditional memory management techniques.

In this chapter, we have not taken into account of the priorities of different services. Our
future work will focus on extending the proposed model to include the service priority.
Different services may have different priority which determined by their specific
characteristics or set by users. For example, an Internet game should not force out from the
gateway a home security service (which is much more important than the internet game).
Each service defines a priority value that reflects the importance of this service relative to
other services. We will introduce the priority as a new factor in both the heuristic and the
optimal solution.

7. References

Ali, M., Aref, W., Bose, R., Elmagarmid, A., Helal, A., Kamel, I., &Mokbel, M. (2005). NILE-
PDT: A phenomenon detection and tracking framework for data stream
management systems. In Proceedings of the Very Large Data Bases Conference,
August.

Binstock, A. (2006). OSGi: Out of the gates. Dr. Dobb Portal, January.
Bottaro, A., Gérodolle, A., & Lalanda, P. (2007). Pervasive service composition in the home

network. In Proceedings of the 21st International IEEE Conference on Advanced
Information Networking and Applications, Niagara Falls, Canada, May.

Garey, M., & Johnson, D. (1979). Computers and intractability. New York: Freeman.

www.intechopen.com

Memory management in smart home gateway 175

the dependencies between different services in the OSGi platform and provide no
optimization, and therefore, might have to delete a few bundles from the top levels,
resulting in a much higher number of kicked out bundles.

Fig. 7. Performance of the different algorithms as function of snew for exponential
distribution.

In the next experiment, we examined the effect of using a non-uniform distribution on the
performance of the algorithms. We used an exponential distribution with mean 5M for the
size of the existing bundles. Figure 7 presents our results for this experiment. Clearly, the
number of kicked out bundles has decreased relative to the uniform case, since in this case it
is easier to satisfy the memory requirement with a smaller number of bundles. However, we
notice that the relative performance of the different algorithms remains invariant.

Fig. 8. Running time of the different algorithms as function of snew for uniform distribution.

From the above experiment results, we can see that the SD heuristic gives satisfactory results
in terms of the number of kicked bundles, as compared with the SD optimal algorithm. At
the same time, SD heuristic significantly outperforms the traditional techniques, e.g., best fit
and worst fit. This naturally raises the question of whether SD heuristic is practical in terms
of running time, as compared to the traditional techniques. To answer this question, we
carried experiments that compare the execution time of the different algorithms. The results
are shown in Figure 8. The y-axis shows the response time of each algorithm in milliseconds;
the x-axis shows the number of services running in the gateway. As we see from this figure,

while the optimal algorithm is significantly slower than the others, SD heuristics performs
very well compared to the traditional techniques in terms of their running time. It is just
what we have expected.

6. Conclusions

In this chapter, we have considered the problem of managing services and bundles in home
gateways with limited amount of main memory. Because of the different architecture of
home gateway using OSGi from the traditional computer architecture, a key difference
between our problem and the traditional memory management is that the dependencies
among different services have to be taken into consideration for a higher customers’
satisfaction.

We use a dependency graph to model the relationship among services. This chapter
proposes two algorithms. The first one is an extension of Knapsack problem which finds the
optimal solution in a polynomial time. The second one is a heuristic that spans the
dependency graph and tries to free the required amount of memory while minimizing the
number of terminated services. We compared the proposed techniques with the traditional
memory management algorithms such as the best fit and worst fit. Our experimental results
indicate that SD (service dependency) heuristic is a good candidate for use in practical
environments, as its performance is close to the optimal solution in terms of the number of
stopped services. SD heuristic performs much better than the traditional memory
management techniques. From the execution time point of view, SD heuristic is almost as
fast as the traditional memory management techniques.

In this chapter, we have not taken into account of the priorities of different services. Our
future work will focus on extending the proposed model to include the service priority.
Different services may have different priority which determined by their specific
characteristics or set by users. For example, an Internet game should not force out from the
gateway a home security service (which is much more important than the internet game).
Each service defines a priority value that reflects the importance of this service relative to
other services. We will introduce the priority as a new factor in both the heuristic and the
optimal solution.

7. References

Ali, M., Aref, W., Bose, R., Elmagarmid, A., Helal, A., Kamel, I., &Mokbel, M. (2005). NILE-
PDT: A phenomenon detection and tracking framework for data stream
management systems. In Proceedings of the Very Large Data Bases Conference,
August.

Binstock, A. (2006). OSGi: Out of the gates. Dr. Dobb Portal, January.
Bottaro, A., Gérodolle, A., & Lalanda, P. (2007). Pervasive service composition in the home

network. In Proceedings of the 21st International IEEE Conference on Advanced
Information Networking and Applications, Niagara Falls, Canada, May.

Garey, M., & Johnson, D. (1979). Computers and intractability. New York: Freeman.

www.intechopen.com

Smart Home Systems176

Helal, A., Mann, W., El-zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005). Gator Tech
Smart House: A programmable pervasive space. IEEE Computer, 38(3), 50–60.

Ishihara, T. (2006). Home Gateway architecture enabling secure appliance control service. In
Proceedings of the 10th International Conference on Intelligence in Network
(ICIN’06).

Ishihara, T., Sukegawa, K., & Shimada, H. (2006). Home Gateway enabling evolution of
network services. Fujitsu Science Technical Journal, 24(4), 446–453.

Jain, K., & Vazirani, V. V. (2001). Approximation algorithms for metric facility location and
k-Median problems using the primaldual schema and Lagrangian relaxation.
Journal of the ACM, 48 (2), 274–296.

Jansen, E., Yang, H., King, J., Abdul Razak, B., & Helal, A. (2006). Acontext driven
programming model for pervasive spaces. In 4thInternational Conference on
Pervasive Computing, May.

Johnson, D. S., & Niemi, K. A. (1983). On Knapsacks, partitions, and a new dynamic
programming technique for trees. Mathematics ofOperations Research, 8(1), 1–14.

King, J., Bose, R., Pickles, S., Helal, A., Vander Ploeg, S., & Russo, J.(2006). Atlas: A service-
oriented sensor platform, the 4th ACMConference on Embedded Networked
Sensor Systems (Sensys), Boulder, CO, USA.

Lee, C., Nordstedt, D., & Helal, A. (2003). OSGi for pervasive computing. the Standards,
Tools and Best Practice Department, IEEE Pervasive Computing, A. Helal, Dept.
Editor, Volume 2, Number 3, September.

Maples, D., & Kriends, P. (2001). The open services gateway initiative: An introductory
overview. IEEE Communication Magazine, 39(12), 110–114.

Margherita2000, The first washing machine on the Internet.
 http://www.margherita2000.com/sito-uk/it/home.htm.
Microsoft Corporation, (2008). Universal plug and play device architecture reference

specification, version 2.0. http://www.upnp.org/.
Ryu, I. (2006) Home network: Road to ubiquitous world. In Proceedings of the International

Conference on Very LargeDatabases (VLDB).
Silberschatz, A., & Peterson, J. (1989). Operating system concepts. Boston, MA: Addison

Wesley.
Sommers,F.(2006). Dynamic clustering with Jini Technology.
 www.artima.com/lejava/articles/dynamic_clustering.html, January.
Sun Microsystems Inc. (2007) Jini architectural overview. http://www.jini.org/.
The OSGi Alliance. (2009). The OSGi Service Platform release 4 core specification Ver 4.2.

http://bundles.osgi.org/browse.php, September.
Vidal, I., García, J., Valera, F., Soto, I., & Azcorra, A. (2006). Adaptive quality of service

management for next generation residential gateways. In Proceedings of the 9th
International conference on Management of Multimedia and Mobile Networks and
Services, Ireland, Dublin.

Watanabe, K., Ise, M., Onoye, T., Niwamoto, H., & Keshi, I. (2007). An energy-efficient
architecture of wireless home network basedon MAC broadcast and transmission
power control. IEEETransaction on Consumer Electronics, 53(1), 124–130.

Zigbee Alliance, (2004). Zigbee specification: Zigbee document 053474r06 Version 1.0, 14
Dec.

www.intechopen.com

Smart Home Systems

Edited by Mahmoud A. Al-Qutayri

ISBN 978-953-307-050-6

Hard cover, 194 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Smart homes are intelligent environments that interact dynamically and respond readily in an adaptive manner

to the needs of the occupants and changes in the ambient conditions. The realization of systems that support

the smart homes concept requires integration of technologies from different fields. Among the challenges that

the designers face is to make all the components of the system interact in a seamless, reliable and secure

manner. Another major challenge is to design the smart home in a way that takes into account the way

humans live and interact. This later aspect requires input from the humanities and social sciences fields. The

need for input from diverse fields of knowledge reflects the multidisciplinary nature of the research and

development effort required to realize smart homes that are acceptable to the general public. The applications

that can be supported by a smart home are very wide and their degree of sophistication depends on the

underlying technology used. Some of the application areas include monitoring and control of appliances,

security, telemedicine, entertainment, location based services, care for children and the elderly… etc. This

book consists of eleven chapters that cover various aspects of smart home systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Beizhong Chen, Ibrahim Kamel and Ivan Marsic (2010). Memory Management in Smart Home Gateway,

Smart Home Systems, Mahmoud A. Al-Qutayri (Ed.), ISBN: 978-953-307-050-6, InTech, Available from:

http://www.intechopen.com/books/smart-home-systems/memory-management-in-smart-home-gateway

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

