
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Document Compression Improvements Based on Data Clustering 133

Document Compression Improvements Based on Data Clustering

Jiří Dvorský, Jan Martinovič, Jan Platoš and Václav Snášel

0

Document Compression Improvements

Based on Data Clustering

Jiří Dvorský, Jan Martinovič, Jan Platoš and Václav Snášel
VŠB – Technical University of Ostrava

Czech Republic

1. Introduction

The modern information society produces immense quantities of textual information. Storing
text effectively and searching necessary information in stored texts are the tasks for Informa-
tion Retrieval Systems (IRS). The size of an IRS increases with the increasing size of available
external memories of computers. Therefore, it is now possible to have a several gigabyte IRS
on one DVD. Similarly, with the growth of Internet it is possible to have an easy remote ac-
cess to an extensive IRS, which is stored in an even bigger disk array that operates on an Web
server. We can only expect even faster growth of memory capacity requirements in future.
The information explosion can be avoided basically in two ways:

1. Extensively - by purchasing higher capacity memories, or

2. Intensively - by storing data in memories in a better way.

The first solution is not interesting in terms of research. The key to the second solution is data
compression. The database of a typical IRS is a textual database, which stores all information
that is necessary for the function of the IRS. Textual databases typically consist of the three
following parts:

• Document full-texts that form a document collection

• Data structures for searching documents

• List of document identifiers and of their attributes and other auxiliary structures

Haskin claims in (Haskin, 1981) that the size of textual database auxiliary structures (i.e. ex-
cept actual document texts) makes up 50% to 300% of the size of original documents. This
implies that a textual database is a suitable material for compression. You only have to use
one of lossless compression methods to save more or less space.
However, the problem of compression in IRS is not as simple as it seems at first sight. On
the one hand, compression saves space for data, however, on the other hand, it may entail
a certain operation overhead i.e. adding certain amount of time to the cost of accessing the
data. Also, the space saving must be significant to be useful. Therefore, the objective is not
to compress the textual database as a whole. This usually does not lead to good results since
individual parts of an IRS contain redundancies of different types; different data structure
types are based on a different model, according to which it is possible to determine the best
compression method.

7

www.intechopen.com

Web Intelligence and Intelligent Agents134

Experiences show that it is useful to consider, analyze and design the best compression
method when storing extensive textual databases. It also proves to be desirable to study
highly specialized compression methods that are convenient only for a certain data type in
an IRS. Even saving e.g. one bit in data structures for searching and the improvement of text
compression ratio in an IRS by one percent result in savings of tens of megabytes.

2. Information Retrieval Systems

Information retrieval systems (Baeza-Yates & Ribeiro-Neto, 1999) constitute a class of program
tools for processing, storing and selecting data that are texts. An IRS is accessed by a user who
needs to obtain certain information from this system to solve a problem. Such information is
called relevant. Various documents can naturally satisfy users to various extents. Therefore we
also speak of a document relevancy ratio.
When searching information in an IRS, a system user submits his or her requirement, a query,
and awaits a result in the form of a set of documents selected by the system as documents
matching the user requirement, i.e. matching the user’s query. Users submit queries using
a query language. Not only the logical structure of the query is important but also terms
that users use in their formulations of the query. Under term we understand a certain text
sample, mostly one word. It is generally required that the IRS provides system users with
relevant documents (i.e. documents that are of interest to the user), namely all documents
(presently available in the system), if possible, and only those documents (that are relevant).
The algorithm, which implements the selection of relevant documents, presupposes a suitable
preprocessing of input information about documents and storing to suitable data structures.

2.1 IRS architecture

The possibility of separating individual system components gave rise to the modular system
architecture and lead to the separate development of these components in terms of optimizing
the performance. The IRS therefore consists of several cooperating subsystems – modules. Ar-
chitectures of individual systems differ from case to case but the architecture that is presented
here can be considered typical. The architecture of a typical IRS is illustrated in Figures 1(a)
and 1(b).
bsubsectionQuery Processing Diagram 1(a) shows the typical solution of a search problem,
i.e. finding necessary information stored in a textual database. Especially the modules that
are connected with the creating and debugging of queries are useful in this phase. These are
the user interface that communicates with the user and the search algorithm that implements
the actual search. In the search algorithm, it is then possible to specify modules of query lexical
analysis, a stemmer for the creation of lemmas, a query evaluation module – data for query
evaluation are obtained from a textual database. The sorting module sorts selected documents
according to their relevancy to the query. The last operation carried out by this part of the IRS
is presenting the selected documents to the user. When displaying document full-texts, they
are retrieved from textual database structures and then decompressed and presented to the
user.

2.2 Documents indexing

The second important part of the IRS is the indexing algorithm (see Figure 1(b)). The task of
this module is to incorporate input documents into the textual database. The module assigns
a unique internal identification to each document, then determines terms that characterize the
document, and saves full text of the document to internal textual database structure.

www.intechopen.com

Document Compression Improvements Based on Data Clustering 135

User Interface

Stemmer

Document
Ranking

Query
Evaluation

Textual

Database

Queries
List of Relevant

DocumentsDocuments

Lexical
Analysis

Decompression

(a) Query Processing

Documents

Textual

Database

Stoplist

Stemmer

Lexical
Analysis

Compression

Documents’
Identification

Storage
of documents

(b) Documents Indexing

Fig. 1. Architecture of IRS

The task of determining terms that appropriately characterize a document is called document
indexing. The automatic indexing consists of selecting the terms to be included in the index
and determining (mostly statistical) properties of the document, such as frequency of the oc-
currence of terms in one document, in the whole textual database, the length of documents
etc. In the course of term evaluation, the relationship term – document is evaluated on the
basis of these statistics and is rated with a certain weight. Similar mechanisms are also used
to determine the term weight in the query. The relevancy ratio of the query and of individual
documents is then determined on the basis of this weight1.
The process of automatic indexing can be divided in the following phases:

• Lexical analyzer read input document character by character and extracts terms from
the document.

• Stemming algorithm converts all terms from the document to their basic forms, lemmas.
For English language standard stemming algorithm can be found in (Porter, 1980).

• All indexing methods define a certain set of words that will not be used for indexing.
These words have only grammatical meaning in texts and do not form the content iden-
tity of documents. The set of these words is often called a non-word vocabulary or a
stoplist.

• The last operation carried out by the indexing algorithm is saving the full text of the
document to the textual database internal structures. Data compression algorithms spe-
cialized in text, that will be the subject of this chapter, will be used just in this phase.

1 In 1988, Salton and Buckley (Salton & Buckley, 1988) presented a summary of twenty years of experi-
ments during which they tested 287 different possibilities of assigning weights to terms in documents
and to terms in queries.

www.intechopen.com

Web Intelligence and Intelligent Agents136

3. Word-based Compression

The compression algorithm transforms input data that contain a certain redundancy to out-
put data, in which redundancy is reduced to a minimum. The input and the output of data
compression algorithms are generally strings of characters over a certain alphabet. There are
no requirements concerning the alphabet. The selection of the alphabet is therefore a ques-
tion of choice, which is influenced by various perspectives. Apart from a character alphabet,
a word-based alphabet (Dvorský, Pokorný & Snášel, 1999; Dvorský, Snášel & Pokorný, 1999;
Horspool & Cormack, 1992; Witten et al., 1999) is mostly chosen for the compression of texts.
This alphabet is independent on used character encoding (ASCII/UNICODE), it has minimal
cardinality2 and it describes characteristic letter clusters in the text.
A compression method based on an alphabet of words, which will be called the word-based
compression method, regards text as a sequence of words in a certain language. Sequences of
white space characters between words are called nonwords. The application of irregular dis-
tribution of individual word occurrence probabilities is then assumed during compression in
statistical compression methods or the clustering of words into language syntactical structures
is assumed in dictionary methods. It is namely assumed that the language structure controls
not only characters but also words. It is also assumed that these constructions are repeated
and that it is possible to achieve a certain compression on the basis of this repetition. It is not
assumed that the text consist only of hapax legomena3 – even though this assumption can be
used as well.

3.1 Compression and Decompression Algorithms

Word alphabets for text compression use several compression algorithms. One option is the
HuffWord (Witten et al., 1999). Compression is based on the Huffman Canonic code. The
Huffman canonic code differs from the standard Huffman code in the method in which it
produces code words.
Methods tested in this chapter are: WLZW, WBW, and WLZ77. The WLZW (Dvorský, 2004)
method is based on the LZW algorithm (Welch, 1984), while the WBW (Dvorský, 2004) method
is based on the Burrows-Wheeler transformation (Burrows & Wheeler, 1994). And the WLZ77
(Platoš & Dvorský, 2007; Platoš et al., 2008) method is based on the LZ77 method (Ziv &
Lempel, 1977).
Among common features of these methods belong:

• Usage of word-based alphabet

• Token alternation – if some conditions hold words and nonwords take turns – alternate.
This alternation makes it possible to predict the type of the following token and thus
reduce the entropy of the following token.

• The victim elimination makes it possible to eliminate a chosen nonword on the basis
of token alternation. A shortening of the input token sequence and an improvement of
compression effectiveness will thus be achieved.

• Substitution of hapax legomena – it is useless to compress tokens with only one occur-
rence. The tokens are therefore replaced with a single substitute, which indicates the
occurrence of the token of this class.

2 The alphabet contains only used symbols, not all potentially possible symbols.
3 Hapax legomenon – a word with only one occurrence in the examined text.

Docs

Alphabet

Aux
data

Compressed
Docs

Front end

Back end

Compression algorithm

Tokens

Tokens

Tokens’
ID’s

Lexical
Analyzer

Preprocessor

Token table

LZW
compressor

BW
compressor

Tokens
ID’s

Tokens
ID’s

LZ77
compressor

Decompression algorithm

Front end

Back end

TokensToken IDs

Alphabet

Aux
data

Compressed
Docs

LZW
decompressor

BW
decompressor

LZ77
decompressor

Postprocessor

Token table

Tokens

Decompressed
document

DocID

IRS searching
algorithm

www.intechopen.com

Document Compression Improvements Based on Data Clustering 137

• Two-pass compression method – all designed methods are intended for IRS that are
used for archiving. Documents are compressed once and decompressed many times.
The semi adaptive approach is no complication in this case.

• Integration with full-text search in IRS – searching and compression can benefit from
shared data structures e.g. full-text indices, clustering etc.

Docs

Alphabet

Aux
data

Compressed
Docs

Front end

Back end

Compression algorithm

Tokens

Tokens

Tokens’
ID’s

Lexical
Analyzer

Preprocessor

Token table

LZW
compressor

BW
compressor

Tokens
ID’s

Tokens
ID’s

LZ77
compressor

(a) compressor schema

Decompression algorithm

Front end

Back end

TokensToken IDs

Alphabet

Aux
data

Compressed
Docs

LZW
decompressor

BW
decompressor

LZ77
decompressor

Postprocessor

Token table

Tokens

Decompressed
document

DocID

IRS searching
algorithm

(b) decompressor schema

Fig. 2. Compression and decompression algorithms

In the diagram in Figure 2(a), the schematic structures compression algorithms are illustrated.
As seen in the illustration, all compression algorithms are separable into approximately two
parts, identified as front end and back end. Both compression algorithms process text docu-
ments in two passes. Separation of the compression methods into two parts corresponds with
these passes. We can distinguish the following two phases in all algorithms:

First phase – corresponds to the first pass compression algorithm. In this phase, a word alpha-
bet is created. Individual tokens are extracted from documents by performing a lexical
partition, which is performed in the front end part. This phase is shared with document
indexing in a textual database.

Second phase – corresponds to the second pass compression algorithm. Upon completion of
the first phase, we have a complete word alphabet at our disposal and we can begin the
actual document compression. Again, a lexical partition is performed and the emergent
token sequence is compressed with the chosen algorithm. In this phase, both the front
end and back end of the compression algorithm are working.

Separation of the compression algorithm into two relatively independent parts enabled the
separation of two different phases of the compression algorithm or, in other words, the cre-
ation of a word alphabet and its actual compression was enabled. Understandably, this sepa-
ration simplified the algorithm’s design, clarified implementation, etc.
In diagram in Figure 2(b) the structure of decompression algorithms is illustrated. As seen in
the illustration, all decompression algorithms can be separated into two parts, as in compres-
sion. – front end a back end.

www.intechopen.com

Web Intelligence and Intelligent Agents138

The proposed methods are designed asymmetrically, resulting in the following:

• Decompression is easier than compression. All activities able to be performed by com-
pression algorithms are transposed to the algorithm in a way that ensures that only the
most necessary decompression algorithms are performed.

• Decompression has only one phase. Only one pass through compressed text is needed
to decompress a document. All objects illustrated in schema in Figure 2(b) are con-
sequently active during decompression and the decompression process maintains a
through-flow character.

4. Cluster Analysis

Cluster analysis is the process of separating documents, with the same or similar properties,
into groups that are created based on specific issues. We will call these groups of documents
clusters (Jain & Dubes, 1988). Clustering may be applied to terms or documents when working
with documents in IR systems. Term clustering can be used for creating a thesaurus. Joining
similar documents to a cluster may be done by increasing the speed level for searching in
search engines. The reason for carrying out a cluster partitioning is explained in hypothesis
about clusters (Jain et al., 1999):

When documents are in close proximity, they are relevant to the same information.

We are going to focus on clustering documents and our work can be summarized by the
following two steps: creating a cluster and searching for relevant clusters (Faloutsos, 1995).
The process within which the ideal cluster partitioning for sets of document is searched, and
within which there are mutually similar documents, is called clustering. The cluster is then
formed mutually by a set with similar documents.
In an ideal situation, the clustering procedure should accomplish two goals: correctness and
effectiveness (Faloutsos, 1995). The criteria for correctness follow:

• methods should remain stable while collections grow or, in other words, distribution
into clusters should not drastically change the addition of new documents,

• small errors in document descriptions should be carried over as small changes in cluster
distributions into clusters,

• a method should not be dependent on its initial document ordering.

Conventional cluster distribution methods (Berkhin, 2006; Gan et al., 2007; Jain et al., 1999) are
split into two categories:

Partitional methods – the goal is to employ a partition that best maintains clustering criteria4.

Hierarchal methods – These methods are based on matrix similarities in documents. The
goal of this method is to create a cluster hierarchy (tree cluster).

Sets of clustering algorithms being used and developed today are too large. A similar view
can be found in publications such as (Gan et al., 2007; Jain et al., 1999).
Due to the fact that most clustering methods work with mutual similarities between clusters,
it is necessary to convey this similarity by using cluster similarity partitioning coefficient.

4 In following text we study hierarchal methods only.

www.intechopen.com

Document Compression Improvements Based on Data Clustering 139

Let us have a twin cluster ci a cj ∈ {c1, c2, . . . cl}, where l is the amount of all calculated
clusters. Then, similarity coefficient sim(ci, cj) fulfills these conditions:

sim(ci, cj) ≥ 0 (1)

sim(ci, cj) = sim(cj, ci) (2)

sim(ci, ci) = maxsim (3)

where maxsim is the maximum value of similarity coefficient. Similarity between clusters is
defined the same as the similarity between two documents or between a document and a
query, e.g. cosine measure can be used and some kind of term weighting (Berry, 2003).

4.1 Hierarchical Methods

These methods utilize the matrix similarity C, which can be described as follows for the doc-
ument collection n :

C =











sim11 sim12 . . . sim1n

sim21 sim22 . . . sim2n
...

...
. . .

...
simn1 simn2 . . . simnn











where i-th row answers the i-th document and j-th column answers the j-th document.
A hierarchy of partitions for requisite documents is formed with these clustering methods.
During calculations, a cluster surface is formed. Points are joined to the cluster on this surface.
Hierarchal methods can be split into two groups:

Agglomerative – At the start of this method each document is understood as one cluster.
These documents are gradually joined together (clustering). The calculation is over the
moment all joined documents form one cluster.

Divisive – This method works exactly opposite to agglomerative methods. At the start of this
method, all documents form one cluster. These clusters gradually break down, until the
moment each point becomes an individual cluster.

4.1.1 Aglomerative Clustering

Aglomerative hierarchal clustering methods mainly belong to the SAHN (sequential agglom-
erative hierarchical no-overlapping) method. It holds true that two clusters formed with this
method do not contain the same object (Downs & Barnard, 2003). These methods differ in
the way in which their similarity matrix is initially calculated (point 4 following Algorithm
4.1). These methods usually have O(n2) for memory space complexity and O(n3) for time
complexity, where n is the number of data points. This conversion is derived from Lance-
Williams’ formula for matrix conversions (Downs & Barnard, 2003):

prox[t, (p, q)] = αp prox[t, p] + αq prox[t, q] + β prox[p, q] + γ |prox[t, p]− prox[t, q]| (4)

where prox[t, (p, q)] determines cluster similarity ct and cluster c(pq) is formed by clusters cp

joined with cluster cq. Value parameters αp, αq, β a γ define various cluster SAHN methods.
We list some of these methods in the Table 1. The Algorithm 4.1 describe calculations for
hierarchal agglomerative clustering. In the following paragraphs Ni is amount of documents
in a cluster ci.
The results of the aforementioned algorithm differ in accordance with the similarity matrix
conversion method used. Now we will present some of these methods:

www.intechopen.com

Web Intelligence and Intelligent Agents140

SAHN method αp αq β γ

Single link 1
2

1
2 0 − 1

2

Complete link 1
2

1
2 0 1

2

Centroid method
Np

Np+Nq

Nq

Np+Nq

−Np Nq

(Np+Nq)2 0

Ward’s method
Np+Nt

Np+Nq+Nt

Nq+Nt

Np+Nq+Nt

−Nt
Np+Nq+Nt

0

Median method 1
2

1
2 − 1

4 0

Table 1. SAHN matrix similarity conversion methods

Algorithm 4.1 Hierarchal agglomerative clustering

1. Form a document similarity matrix.

2. When clustering begins, each document represents one cluster. In other words, we have
as many clusters as we have documents. Gradually, as each individual cluster is joined,
clusters dwindle away until we are left with one cluster.

3. Locate the two most similar clusters p a q and identify this similarity as proxs[p, q].

4. Reduce the amount of joined clusters p and q. We identify the new cluster as t (replaces
row and column q) and recalculates the similarity (proxs[t, r]) of the newly formed clus-
ter t to other clusters r. Further, we identify proxl [p, q] as the similarity to which p a q
clusters have been joined. This similarity is equal to proxs[p, q] in most methods. Then
we delete the row and column corresponding to cluster p from the similarity matrix.

5. Repeat the previous two steps until only one cluster remains.

Single linkage – We calculate the similarity of all documents in a single cluster with all the
documents in another cluster, whose greatest value is searched for with a similarity
cluster. Recalculation proxs[t, r] with:

proxs[t, r] = max(proxs[p, r], proxs[q, r]) (5)

Complete linkage – We calculate the similarity of all documents in a single cluster with all
the documents in another cluster, whose smallest value is searched for with a similarity
cluster. Recalculation proxs[t, r] with:

proxs[t, r] = min(proxs[p, r], proxs[q, r]) (6)

Centroid method – This method leads to clusters where each document in a cluster has a
larger similarity average with remaining documents in the cluster than all the docu-
ments in any other cluster. Recalculate proxs[t, r] with:

proxs[t, r] =
Np proxs[p, r] + Nq proxs[q, r]

Np + Nq
(7)

www.intechopen.com

Document Compression Improvements Based on Data Clustering 141

Today, other specialized hierarchical clustering methods exist. Thanks to these new meth-
ods, we can reduce time and memory complexity and work with large documents collections
more effectively. Some of these new methods include (Gan et al., 2007): SLINK, Single-link
algorithm based on minimum spanning tree, CLINK, BIRCH, CURE, etc.

5. Topical Development

There are many systems used for searching collections of textual documents. These systems
are based on the vector model, probability models and other models for document repre-
sentation, queries, rules and procedures. All of these systems contain a number of limitations.
Incomplete lists of relevant documents obtained in search results ranks among one of the most
basic of these limitations.
An important service for systems providing access to information is the organization of re-
turned search results. Conventional IRS evaluate obtained documents based on their similar-
ity to given query (Chalmers & Chitson, 1992). Other systems present graphic illustrations
based on mutually similar documents (Jacobs et al., 2000; Salton, 1989; Thompson & Croft,
1989), specific attribute relations (Korfhage, 1991; Spoerri, 1993) and samples of terms dis-
tributed in the query (Hearst, 1995).
Vector model search results may be represented by a sphere in an n-dimensional space. A
query represents the center of this sphere whose size is determined by its radius (range query)
or by the amount of documents it contains (NN–query). The goal of searching is to have all
documents relevant to a query present within this sphere. It is known that not all relevant
documents are present in this sphere and that is why various methods for improving search
results, which can be implemented on the basis of expanding the original question, have been
developed.
Our goal is to utilize knowledge of document similarity contained in textual databases to
obtain a larger amount of relevant documents while minimizing those canceled due to their
irrelevance (Martinovič, 2004; Martinovič & Gajdoš, 2005; Martinovič et al., 2008). In this
section, we focus on metric issues and follow this focus up with defining of the concept of
topical development, as a method for eliminating this problem.

5.1 Issues with Metric Searching

The distance between the two documents x and y is the function δ(x, y) : X × X → R (where
X is a set of all documents), for which the following conditions hold:

δ(x, x) = 0 (8)

δ(x, y) ≥ 0 (9)

δ(x, y) = δ(y, x) (10)

Distance further requires the validity of triangle inequality. Triangle inequality is only valid
when triad x, y and z abide by the following conditions:

δ(x, z) ≤ δ(x, y) + δ(y, z) (11)

Set X and function δ create the metric space (Armstrong, 1997), which we identify as (X, δ).

www.intechopen.com

Web Intelligence and Intelligent Agents142

5.1.1 ǫ-ball and ǫ-k-ball

For given x ∈ X and ǫ ∈ R
+ (where R

+ = {x ∈ R|x ≥ 0}), the set B(x, ǫ) = {y ∈ X; δ(x, y) ≤
ǫ} is called the ball with the radius ǫ, or ǫ-ball centered at the point x.
The ǫ-k-ball is an equivalent of ǫ-ball in a metric space. For given x ∈ X, ǫ ∈ R

+ and k ∈ N
+,

the set Bk(x, ǫ) = {y ∈ X; x1, . . . , xk ∈ X, x = x1, y = xk, ∑
k−1
l=1 δ(xl , xl+1) ≤ ǫ} is called the

k-ball with the radius ǫ, or ǫ-k-ball centered at the point x.
It is easy to show that:

B(x, ǫ) = Bk(x, ǫ) (12)

Formally, this means that any k-step path of length ǫ belong to ǫ-ball.

(a) ǫ-ball (b) ǫ-k-ball

Fig. 3. Balls in metric space

The Figure 3(a) represents ǫ-ball well known in the vector model. The extension ǫ-k-ball is
shown in Figure 3(b). The Figure 4 illustrates the back-transformation from ǫ-k-ball to ǫ-ball.
We are able to construct a triangle between two different points. The hypotenuse can replace
two legs of such triangle. The condition of a triangle inequality is satisfied.

5.1.2 ǫ-k-ball and Similarity

A similarity s(x, y) between document x and y is function s(x, y) : X × X → R which satisfied
the following conditions:

s(x, x) = 1 (13)

s(x, y) ≥ 0 (14)

s(x, y) = s(y, x) (15)

If a non-metric is used, the triangle inequality is disturbed and the identity generally does not
hold. We performed some experiments with non-metric, which satisfies the condition of ǫ-k-
ball. This is shown in an illustrative example below. In this way, we were able to find some
documents which could be not found in a metric space.
The Table 1(a) creates the input vectors which represent documents. A dissimilarity matrix
computed for this input is shown in Table 1(c). Cosine similarity is used for computing the
similarity matrix (see Table 1(b)) and the similarity matrix is then converted to a dissimilarity

www.intechopen.com

Document Compression Improvements Based on Data Clustering 143

Fig. 4. ǫ-k-ball to ǫ-ball transformation

(a) incidence matrix

t0 t1 t2 t3 t4

d0 1 1 0 0 0
d1 1 1 1 1 0
d2 0 1 1 1 0
d3 0 0 1 0 1

(b) similarity matrix

d0 d1 d2 d3

d0 1.00 0.71 0.14 0.00
d1 0.71 1.00 0.76 0.06
d2 0.14 0.76 1.00 0.07
d3 0.00 0.06 0.07 1.00

(c) dissimilarity matrix

d0 d1 d2 d3

d0 0.00 0.29 0.86 1.00
d1 0.29 0.00 0.24 0.94
d2 0.86 0.24 0.00 0.93
d3 1.00 0.94 0.93 0.00

Table 2. Sample document collection

matrix. The ǫ-ball is centered in the document d0. Only the document d1 could be reached
using a conventional vector model for ǫ-ball = 0.6.
Then, there are two ǫ-k-ball in Figure 5. The first one consists of documents d0, d1 and d2. The
second one contains the documents d0, d1 and d3.

5.2 Topical Development of a Given Document

In the preceding paragraphs, we defined ǫ-k-ball and its behavior in a space that does not
maintain the rules of triangle inequality. Now, we define the concept k-path, for which the
term "topical development" will be used.
The definition of k-path: for the given x ∈ X and k ∈ N

+, the set Bk(x) = {y ∈ X; x1, . . . , xk ∈
X, x = x1, y = xk} is called the k-path centered at the point x.
We can present topical development as a path leading away from the initial document,
through similar documents and towards other documents pertaining to this document.

www.intechopen.com

Web Intelligence and Intelligent Agents144

Fig. 5. The result in sphere dissimilarity distances

We can illustrate this path in a vector space, where our document forms nodes. The edges
between these nodes evaluate their similarity. If this path satisfies the conditions for k-path
we can say that it is a proper representation of topical development.
Thematic similarity between documents in text collections is influenced by terms that occur
in the document. Let us take a document, which describes a given topic, from a collection
of documents. There may be other documents in our collection of documents that either en-
tirely, or partially, shares the same topic (problematic). These documents, however, may use a
part of another word to describe the given topic. The difference in this word may be caused
by various reasons. The first document may direct a set of words toward the topic and the
second document may include a synonym or it may be more focused on other circumstances
influenced by the chosen topic (a new fact, a political situation, a new problem trend and so
on).
We can create many other methods based on IRS theories for topical development. In our
work, we have subsequently defined several of these methods:

TOPIC-NN2 – topical development with NN-query - variant 2.

TOPIC-CA – topical development using a cluster analysis.

5.2.1 Topical Development with NN-query

The principle of the TOPIC-NN2 follows: we start with document di, for which we search
for topical development. For this document, we find the most similar dk document and add
it to the resulting topical development. Then, we repeat this process, but instead of using
the original di document, we use document dk. The expansion is completed either when the
necessary amount of documents in the development has been reached, or if the next closest
document we are searching for does not exist. An example of this method is illustrated in
Figure 6.

5.2.2 Topical Development using a Cluster Analysis

Now we face the question of how to effectively search for topical development. One possible
approach to carrying out a search for topical development is to use a cluster partitioning (see

d0
d1

d2
d3

www.intechopen.com

Document Compression Improvements Based on Data Clustering 145

d0
d1

d2
d3

Fig. 6. Example of TOPIC-NN2

Section 4). The method which we now present carries out the main part of the calculation
during the document indexing phase. This enables fast searching.
The reason we chose cluster partitioning for determining topical development is its ability
to create groups of similar documents. We chose hierarchal aglomerative clustering from the
available clustering method options. We can present the results of this type of clustering using
a dendrogram (see Section 4.1.1).
Steps for the automation of topical development are as follows:

1. Index text collections into the IRS.

2. Create a similarity matrix for the document C.

3. Hierarchal aglomerative clustering in the similarity matrix C.

4. Topical development query - algorithm acquired in topical development.

5.2.2.1 Algorithm Acquired of Topical Development

For acquiring topical development from hierarchal clustering, we will define the algorithm
TOPIC-CA, which uses the amount of documents in the development as a hindrance.

Definition 5.1. The TOPIC-CA algorithm (see Algorithm 5.1) for acquiring topical development is
defined with the aid of a dendrogram DTree as list ST = TOPIC_CA(dq). Where dq is a node in the
dendrogram for which we want to generate a topical development.

The advantage of using this algorithm for acquiring topical development is low time and
space requirement during querying. For searching topical development, we need a dendro-
gram with pre-calculated similarity for each individual node of the dendrogram. The disad-
vantage is the time required to create the dendrogram. A calculation of the hierarchal cluster
is performed during the creation of a textual database, so users entering queries into the IRSs
are not influenced by this factor.
The following functions are used in the algorithm:

TOPIC_CA – main function for calculating topical development (see Algorithm 5.1),

Sub – function for recursive dendrogram outlet (see Algorithm 5.2),

www.intechopen.com

Web Intelligence and Intelligent Agents146

Algorithm 5.1 Algorithm TOPIC-CA – function TOPIC_CA

function TOPIC_CA(node ∈ DTree ∪ null)
L ← Empty list
if node �= null then

AddNodeToEnd(L, node)
while node �= null do

sibling ← SIBLING(node)
L ← SUB(sibling, L)
node ← PARENT(node)

end while
end if
return L

end function

Sim – calculation for similarity of a given cluster in a dendrogram DTree to a neighbor’s de-
scendant cluster (see Algorithm 5.3),

Sibling – acquired neighboring nodes,

Parent – acquired parent nodes,

Le f tChild – acquired left descendant,

RightChild – acquired right descendant,

AddNodeToEnd – addition of a document to resulting topical development. If the calcula-
tion of documents in a topic is equal to the required amount of documents, algorithm
TOPIC_CA ends (to simplify the process, it is left out of algorithm TOPIC_CA).

6. Using Topical Development for Improved Text Document Compression

Input document ordering has not yet been taken into consideration within the general de-
scription of word-base compression methods. The compression method works properly for
any type of document ordering. Time ordering is probably the simplest of input documents
ordering options, i.e. documents are compressed in the same order as they are added to a
textual database. Seeing that compression methods are based on searching repeated parts of
texts, it is easy to surmise that this ordering option is not necessarily the best solution. Im-
provement of compression performance can be achieved by reordering input documents. We
improve the ordering of input documents by moving similar documents nearer to one another.
This improved ordering can be achieved using a cluster analysis. Of course, a cluster analysis
is very time consuming so that it is counterproductive to perform the analysis in order to en-
hance compression performance alone. However, when compression methods for IR system
are developed, results from a cluster analysis can be used in query processing (Dvorský et al.,
2004; Martinovič & Gajdoš, 2005) and vice versa. Cluster analysis originally performed solely
for query processing can be incorporated to compression.
Incorporating a cluster analysis to improve a compression is common in methods that com-
press inverted indexes (includes a list of documents for every indexed term). These methods,
using hierarchical clustering (Blandford & Blelloc, 2002) or clustering algorithms, resemble
the k-means (Orlando et al., 2004).

www.intechopen.com

Document Compression Improvements Based on Data Clustering 147

Algorithm 5.2 Algorithm TOPIC-CA – function Sub

function SUB(node ∈ DTree ∪ null, list L)
if node = null then

return L
end if
sibling ← SIBLING(node)
if node ∈ leaf nodes of DTree then

AddNodeToEnd(L, node)
else if sibling �= null then

siblingLe f t ← LEFTCHILD(sibling)
siblingRight ← RIGHTCHILD(sibling)
simLe f t ← SIM(node, siblingLe f t)
simRight ← SIM(node, siblingRight)
if SimRight ≤ SimLe f t then

L ← SUB(siblingLe f t, L)
L ← SUB(siblingRight, L)

else
L ← SUB(siblingRight, L)
L ← SUB(siblingLe f t, L)

end if
end if
return L

end function

However, the question of how to convert a hierarchical tree structure of clusters to a linear list
of documents still remains. The answer is to use topical development (Dvorský & Martinovič,
2007; Martinovič et al., 2007; Platoš et al., 2008). The topical development commands one
document that specifies a topic the as starting point of a topic development searching process.
This starting document can be chosen arbitrarily – there is no topic defined by a document
retrieved during the user query searching process.
Two strategies were used to reorder document collections entering the compression process:

Most Similar Left (MSL) – k-path (k equal to amount of all documents in the collection) by
TOPIC-CA algorithm for the leftmost document in the dendrogram created during clus-
tering.

Most Similar Right (MSR) – k-path (k equal to amount of all documents in the collection)
TOPIC-CA algorithm for the rightmost document in the dendrogram created during
clustering.

7. Experimental Results

Several experiments have been carried out to test impact clustering on word-based compres-
sion methods. Both compression methods were used in our tests. Two large text files were
used for our tests: latimes.txt coming from TREC corpus (Harman, 1997), and enron.txt, which
consists of emails from Enron email corpus 5. In the file latimes.txt, individual documents are

5 Duplicate emails were deleted before processing.

www.intechopen.com

Web Intelligence and Intelligent Agents148

Algorithm 5.3 Algorithm TOPIC-CA – function Sim. Calculated proximity of cluster n1 to a
descendant of a neighboring cluster n2 in the hierarchy

function SIM(n1 ∈ DTree ∪ null, n2 ∈ DTree ∪ null)
if node1 = null ∨ node2 = null then

return 0
end if
cn1 ← centroid created from all leafs nodes in n1

cn2 ← centroid created from all leafs nodes in n2

sim ← similarity between cn1 and cn2

return sim

end function

represented by each newspaper article and ordering is determined by date of publication.
Each individual email represents a document in the enron.txt file, and ordering is defined
as alphabetical ordering of users in Enron corpus. Results for this type of ordering without
ordering is provided in the Table 4.
A notation used to describe results of experiments can be seen in Table 3. The value ∆ rep-
resents the difference between a given value and a corresponding value in a compression
without clustering. A positive ∆ value means that the given value is worse than the original
value. A negative value means that the new value is better than the original one.
The first experiment was focused on comparison among three types of word-based compres-
sion methods and two commonly-used programs - GZip and BZip. Results of this experiment
are depicted in Table 4. As can be seen, the best result was achieved by algorithms WBW for
latimes.txt file and WLZ77 for enron.txt file. Other algorithms were much worse than WLZ77.
The second experiment was focused on compression of clustered files. Both files are relatively
large. The size of these documents (newspapers articles, emails) varies from hundreds of bytes
to eight kilobytes. Compression with clustering and five random permutations were tested.
It is easy to see from Table 5, that clustering brings positive results in terms of compression
ratio. The size of the compressed text for latimes.txt file is about 4% less than the original
size in the WLZW methods, about 5% smaller than the original one in the WBW method
and about 3.5% smaller than the original size in the WLZ77 method. The compression ratio
improves to cca 1.2% with respect to original values in all cases. Better results were achieved
for file enron.txt, see Table 5. The improvement of compression ratio is more than 2 % with
respect to the original compressed size in the WLZW and WLZ77 methods, and cca 4 % in the
WBW method.
Random permutations deteriorate compressions in all cases (see Table 6, and Table 7). These
negative results mean that clustering has a measurable impact on compression performance,
and the positive results of considering cluster supported compressions are not coincidental.
The results of standard GZip and BZip2 compression utilities provide data for comparison
with our proposed word-based compression methods. As can be seen from tables, charac-
ter of these results is very close to our methods; therefore clustering has serious impact on
compression regardless of selected compression method.

www.intechopen.com

Document Compression Improvements Based on Data Clustering 149

Symbol Meaning Units

S0 size of original file bytes
CSα size of compressed file using α method bytes
CRα compression ratio using α method percents

CRα = CSα
S0

× 100%

CS size of compressed file with clustering bytes
and using particular compression method

∆CS relative improvement of compression percents

∆CS = CSα−CS

CSα
× 100%

CR compression ratio for given CS percents

CR = CS

S0
× 100%

∆CR improvement of compression ratio for given CR percents
∆CR = CRα − CR

where α ∈ {WLZW, WBW, WLZ77, GZIP, BZIP2}

Table 3. Notation used in compression experiments

latimes.txt enron.txt

Original size S0 498,360,166 886,993,953

WLZW method
Compressed size CSWLZW 158,017,940 207,908,560
Compression ratio CRWLZW 31.708 23.440

WBW method
Compressed size CSWBW 110,246,524 167,099,129
Compression ratio CRWBW 22.122 18.839

WLZ77 method
Compressed size [bytes] CSWLZ77 113,185,477 113,394,015
Compression ratio [%] CRWLZ77 22.712 12.784

Gzip
Compressed size CSGZIP 175,864,812 228,953,895
Compression ratio CRGZIP 35.289 25.812

BZip2
Compressed size CSBZIP2 131,371,338 164,720,382
Compression ratio CRBZIP2 26.361 18.571

Table 4. Compression without clustering

www.intechopen.com

W
eb

 In
te

lli
ge

nc
e

an
d

In
te

lli
ge

nt
 A

ge
nt

s
15

0

(a) WLZW method

Cluster strategy on file CS CSWLZW − CS ∆CS CR ∆CR

MSL latimes.txt 151,869,588 -6,148,352 -3.891 30.474 -1.234
MSR latimes.txt 151,973,800 -6,044,140 -3.825 30.495 -1.213

MSL enron.txt 187,951,820 -19,956,740 -9.599 21.190 -2.250

(b) WBW method

Cluster strategy on file CS CSWBW − CS ∆CS CR ∆CR

MSL latimes.txt 104,701,332 -5,545,192 -5.030 21.009 -1.113
MSR latimes.txt 104,706,446 -5,540,078 -5.025 21.010 -1.112

MSL enron.txt 132,707,295 -34,391,834 -20.582 14.961 -3.877

(c) WLZ77 method

Cluster strategy on file CS CSWLZ77 − CS ∆CS CR ∆CR

MSL latimes.txt 109,102,809 -4,082,668 -3.741 21.892 -0.814
MSR latimes.txt 109,127,221 -4,058,256 -3.502 21.897 -0.819

MSL enron.txt 92,094,979 -21,299,036 -18.783 10.383 -2.401

(d) GZip method

Cluster strategy on file CS CSGZIP − CS ∆CS CR ∆CR

MSL latimes.txt 164,298,043 -11,566,769 -6.577 32.968 -2.321
MSR latimes.txt 164,322,641 -11,542,171 -6.563 32.973 -2.316

MSL enron.txt 153,765,189 -75,188,706 -32.84 17.336 -8.477

(e) Bzip2 method

Cluster strategy on file CS CSBZIP2 − CS ∆CS CR ∆CR

MSL latimes.txt 120,149,683 -11,221,655 -8.542 24.109 -2.252
MSR latimes.txt 120,154,853 -11,216,485 -8.538 24.110 -2.251

MSL enron.txt 122,024,594 -42,695,788 -25.920 13.757 -4.814

Table 5. Impact of clustering on compression

w
w

w
.i
n
te

c
h
o
p
e
n
.c

o
m

Document Compression Improvements Based on Data Clustering 151

(a) WLZW method

Permutation CS CSWLZW − CS ∆CS CR ∆CR

1 160,417,812 2,399,872 1.519 32.189 0.481
2 160,456,620 2,438,680 1.543 32.197 0.489
3 160,448,056 2,430,116 1.538 32.195 0.487
4 160,456,564 2,438,624 1.543 32.197 0.489
5 160,475,324 2,457,384 1.555 32.201 0.493

Average 160,450,875 2,432,935 1.540 32.196 0.488

(b) WBW method

Permutation CS CSWBW − CS ∆CS CR ∆CR

1 111,686,104 1,439,580 1.306 22.411 0.289
2 111,713,942 1,467,418 1.331 22.416 0.294
3 111,718,068 1,471,544 1.335 22.417 0.295
4 111,717,879 1,471,355 1.335 22.417 0.295
5 111,712,566 1,466,042 1.330 22.416 0.294

Average 111,709,712 1,463,188 1.327 22.415 0.293

(c) WLZ77 method

Permutation CS CSWLZ77 − CS ∆CS CR ∆CR

1 115,818,360 2,632,883 2.326 23.240 0.528
2 115,864,040 2,678,563 2.367 23.249 0.537
3 115,874,546 2,689,069 2.376 23.251 0.540
4 115,886,055 2,700,578 2.386 23.253 0.542
5 115,880,575 2,695,098 2.381 23.252 0.541

Average 115,864,715 2,679,238 2,367 23,249 0,538

(d) GZip method

Permutation CS CSGZIP − CS ∆CS CR ∆CR

1 182,350,555 6,485,743 3.688 36.590 1.301
2 182,612,870 6,748,058 3.837 36.643 1.354
3 182,626,115 6,761,303 3.845 36.645 1.357
4 182,616,966 6,752,154 3.839 36.644 1.355
5 182,616,986 6,752,174 3.839 36.644 1.355

Average 182,564,698 6,699,886 3.810 36.633 1.344

(e) BZip2 method

Permutation CS CSBZIP2 − CS ∆CS CR ∆CR

1 133,747,217 2,375,879 1.809 26.837 0.477
2 133,859,533 2,488,195 1.894 26.860 0.499
3 133,848,650 2,477,312 1.886 26.858 0.497
4 133,864,200 2,492,862 1.898 26.861 0.500
5 133,854,622 2,483,284 1.890 26.859 0.498

Average 133,834,844 2,463,506 1.875 26.855 0.494

Table 6. File latimes.txt: random permutations

www.intechopen.com

Web Intelligence and Intelligent Agents152

Permutation CS CSWLZW − CS ∆CS CR ∆CR

1 242,459,136 34,550,576 16.618 27.335 3.895
2 249,122,668 41,214,108 19.823 28.086 4.646
3 250,203,876 42,295,316 20.343 28.208 4.768
4 250,342,664 42,434,104 20.410 28.224 4.784
5 250,511,920 42,603,360 20.491 28.243 4.803

Average 248,528,052 40,619,492 19.537 28.019 4.579

Table 7. File enron.txt: random permutations

The results of standard GZip and BZip2 compression utilities provide data for comparison
with our proposed word-based compression methods. As can be seen in tables, the character
of these results is very close to our methods; therefore clustering has a serious impact on
compression regardless of the selected compression method.

8. Conclusion

The present information society creates huge quantities of textual information. This informa-
tion explosion is being handled using Information Retrieval Systems. Their tasks are effective
storage and searching in the text collections. The amount of text stored in IRS and auxiliary
data structures constitute a suitable material for data compression. However, the data that
form the textual database of every IRS are very mixed and it is therefore useful to study spe-
cial data compression methods.
This chapter focuses on high compression ratio algorithms specialized in text compression in
IRS that enable a fast decompression of individual documents, fully integrated with the IRS,
and work with an adequate compression speed. These methods uses word-based compres-
sion methods combined with topical development of input documents. Experimental results
prove that clustering has a positive impact on the compression ratio. The advantage of imple-
menting this approach is that it is not necessary to change the existing compression algorithm.
The only thing that changes is the ordering in which compressed documents are input. De-
compression algorithms are not influenced at all and knowledge of topical development is not
necessary.

9. References

Armstrong, M. A. (1997). Basic Topology (Undergraduate Texts in Mathematics), Springer.
Baeza-Yates, R. & Ribeiro-Neto, B. (1999). Modern Information Retrieval, Addison-Wesley, Har-

low.
Berkhin, P. (2006). A survey of clustering data mining techniques, Grouping Multidimensional

Data pp. 25–71.
URL: http://dx.doi.org/10.1007/3-540-28349-8_2

Berry, M. (2003). Survey of Text Mining : Clustering, Classification, and Retrieval, Springer.
Blandford, D. & Blelloc, G. (2002). Index compression through document reordering, Data

Compression Conf., UT, USA, pp. 342–351.
Burrows, M. & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm,

Technical report, Digital Systems Research Center Research Report 124.
Chalmers, M. & Chitson, P. (1992). Bead: explorations in information visualization, SIGIR

’92: Proceedings of the 15th annual international ACM SIGIR conference on Research and
development in information retrieval, ACM, New York, NY, USA, pp. 330–337.

www.intechopen.com

Document Compression Improvements Based on Data Clustering 153

Downs, G. M. & Barnard, J. M. (2003). Reviews in Computational Chemistry, Vol. 18, Wiley-VCH.
Dvorský, J. (2004). Word-based Compression Methods for Information Retrieval Systems, Phd thesis,

Charles University Prague.
Dvorský, J. & Martinovič, J. (2007). Improvement of text compression parameters using clus-

ter analysis, in V. Snášel, J. Pokorný & K. Richta (eds), DATESO, Vol. 235 of CEUR
Workshop Proceedings, CEUR-WS.org.

Dvorský, J., Martinovič, J. & Snášel, V. (2004). Query expansion and evolution of topic in
information retrieval systems, in V. Snášel, J. Pokorný & K. Richta (eds), DATESO,
Vol. 98 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 117–127.

Dvorský, J., Pokorný, J. & Snášel, V. (1999). Word-based compression methods and indexing
for text retrieval systems, in J. Eder, I. Rozman & T. Welzer (eds), Proceedings of ADBIS
99, number 1691 in Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 75–
84.

Dvorský, J., Snášel, V. & Pokorný, J. (1999). Word-based compression methods for large text
documents, Data Compression Conference - DCC ’99, Snowbird, Utah, USA, p. 523.

Faloutsos, C. (1995). Fast searching by content in multimedia databases, IEEE Data Eng. Bull.
18(4): 31–40.

Gan, G., Ma, C. & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications, ASA-
SIAM Series on Statistics and Applied Probability, SIAM.

Harman, D. (ed.) (1997). The Forth REtrieval Conference (TREC-4), NIST.
Haskin, R. L. (1981). Special-purpose processors for text retrieval, Database Engineering

4(1): 16–29.
Hearst, M. A. (1995). Tilebars: Visualization of term distribution information in full text in-

formation access, Proceedings of the Conference on Human Factors in Computing Systems,
CHI’95.

Horspool, N. R. & Cormack, G. V. (1992). Constructing word-based text compression algo-
rithms, Data Compression Conference, pp. 62–71.
URL: http://citeseer.ist.psu.edu/horspool92constructing.html

Jacobs, D. W., Weinshall, D. & Gdalyahu, Y. (2000). Classification with nonmetric distances:
image retrieval and class representation, Pattern Analysis and Machine Intelligence,
IEEE Transactions on 22(6): 583–600.

Jain, A. K. & Dubes, R. C. (1988). Algorithms for Clustering Data, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

Jain, A. K., Murty, M. N. & Flynn, P. J. (1999). Data clustering: a review, ACM Computing
Surveys 31(3): 264–323.
URL: citeseer.ist.psu.edu/jain99data.html

Korfhage, R. R. (1991). To see, or not to see - is that the query?, SIGIR ’91: Proceedings of the 14th
annual international ACM SIGIR conference on Research and development in information
retrieval, ACM Press, New York, NY, USA, pp. 134–141.

Martinovič, J. (2004). Evolution of topic in information retrieval systems, WOFEX, Ostrava,
Czech Republic.

Martinovič, J. & Gajdoš, P. (2005). Vector model improvement by fca and topic evolution, in
K. Richta, V. Snášel & J. Pokorný (eds), DATESO, Vol. 129 of CEUR Workshop Proceed-
ings, CEUR-WS.org, pp. 46–57.

Martinovič, J., Gajdoš, P. & Snášel, V. (2008). Similarity in information retrieval, Computer In-
formation Systems and Industrial Management Applications, 2008. CISIM ’08. 7th pp. 145–
150. IEEE.

www.intechopen.com

Web Intelligence and Intelligent Agents154

Martinovič, J., Novosad, T. & Snášel, V. (2007). Vector model improvement using suffix trees,
ICDIM, IEEE, pp. 180–187.

Orlando, S., Perego, R. & Silvestri, F. (2004). Assigning document identifiers to enhance com-
pressibility of fulltext indices, In SAC’04: Proceedings of the 2004 ACM symposium on
Applied computing, ACM Press, pp. 222–229.

Platoš, J. & Dvorský, J. (2007). Word-based text compression, DCCA 2007, p. 7.
Platoš, J., Dvorský, J. & Martinovič, J. (2008). Using clustering to improve WLZ77 compres-

sion, ICADIWT 2008. First International Conference on Applications of Digital Information
and Web Technologies,, IEEE Computer Society, pp. 308 – 313.

Porter, M. F. (1980). An algorithm for suffix stripping, Program 14: 130–137.
Salton, G. (1989). Automatic Text Processing, Addison-Wesley.
Salton, G. & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval, Infor-

mation Processing and Management 24(5): 513–523.
Spoerri, A. (1993). Infocrystal: a visual tool for information retrieval & management, CIKM

’93: Proceedings of the second international conference on Information and knowledge man-
agement, ACM, New York, NY, USA, pp. 11–20.

Thompson, R. H. & Croft, W. B. (1989). Support for browsing in an intelligent text retrieval
system, Int. J. Man-Mach. Stud. 30(6): 639–668.

Welch, T. A. (1984). A technique for high-performance data compression, IEEE Computer
17(6): 8–19.

Witten, I. H., Moffat, A. & Bell, T. C. (1999). Managing Gigabytes: Compressing and Indexing
Documents and Images, Morgan Kaufmann.

Ziv, J. & Lempel, A. (1977). A universal algorithm for sequential data compression, IEEE
Transactions on Information Theory IT-23(3): 337–343.

www.intechopen.com

Web Intelligence and Intelligent Agents

Edited by Zeeshan-Ul-Hassan Usmani

ISBN 978-953-7619-85-5

Hard cover, 486 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presents a unique and diversified collection of research work ranging from controlling the activities in

virtual world to optimization of productivity in games, from collaborative recommendations to populate an open

computational environment with autonomous hypothetical reasoning, and from dynamic health portal to

measuring information quality, correctness, and readability from the web.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jiri Dvorsky, Jan Martinovic, Jan Platos and Vaclav Snasel (2010). Document Compression Improvements

Based on Data Clustering, Web Intelligence and Intelligent Agents, Zeeshan-Ul-Hassan Usmani (Ed.), ISBN:

978-953-7619-85-5, InTech, Available from: http://www.intechopen.com/books/web-intelligence-and-intelligent-

agents/document-compression-improvements-based-on-data-clustering

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

