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1. Introduction

Wetlands provide habitat and food sources for wildlife, protect waterways, act as natural
filtration systems, and serve major ecological roles in the overall health of our local, regional
and global ecosystems. While wetlands serve such vital ecological functions, due to their
limited capacity for adaptation wetland ecosystems are highly vulnerable to change, from
both climatic (IPCC 2008) and anthropogenic sources. In the past, wetlands have been
drained and converted to uplands at an alarming rate and the remaining wetlands are
subject to a number of threats including eutrophication, climate change, invasive plant
species, and the interaction between these stressors. Due to these vulnerabilities, there exists
a need for policy and resource managers to have an operational strategy for monitoring the
extent, composition, and vigor of wetlands at a synoptic scale. For regional areas, such as the
coastal Great Lakes, Boreal Canada, or vast wetland complexes such as the Pantanal,
Mesopotamian marshlands, or the Greater Everglades, cost-effective implementable
methods are necessary. For fine scale studies, cost is generally less of an issue and the
highest resolution data with the highest cost may be justified. In this chapter, we focus on
methods for regional scale mapping and monitoring where the minimum mapping unit of
interest is 5 acres, and thus use moderate resolution satellite imagery (20-30 m). The focus is
on multi-sensor data fusion between SAR single channel and/or multi-channel data and
Optical/IR sensor data. Case studies in the Great Lakes and Boreal peatlands demonstrate
the advantages and widespread utilty of a hybrid SAR-Optical /IR approach.

While many definitions of wetlands exist, both scientific and legal, in essence wetlands are

defined by: (1) the presence of water at, above, or near the ground surface; (2) hydric soils;
and (3) vegetation species adapted to or tolerant of wet soil conditions. Remote sensing can
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680 Advances in Geoscience and Remote Sensing

be used to map and monitor two of the defining wetland features; vegetation type and
surface water/wet soils.

Wetlands have historically been one of the most difficult ecosystems to classify using
remotely sensed data. This difficulty is partially due to the high variability in wetland
morphology. Wetlands can exist in many shapes and sizes, from open wet areas with sparse
vegetative cover to densely forested areas with seasonal flooding. Vegetative cover ranges
from low herbaceous, to shrubby, to forest.

Traditionally, optical data have been used to map wetlands along with other land cover and
land use. However, due to the complexity of wetland ecosystems it would be beneficial to
include a fusion of sensors, operating in different frequencies (thermal, optical, lidar, radar,
infrared) that measure various aspects of wetlands for improved mapping accuracy. Optical
and infrared data are well suited to mapping vegetation ecosystem types and condition.
Complementary to Optical/IR, Synthetic Aperture Radar (SAR) data are capable of
detecting flooding beneath a vegetation canopy, monitoring water levels and soil moisture,
and also for distinguishing other biophysical vegetation characteristics such as level of
biomass.

2. Optical/IR Wetland Mapping Background

Multispectral data that includes near infrared and shortwave infrared bands allow
improved wetland detection and mapping over visible sensors alone. The near-infrared
portion of the electromagnetic spectrum has been used to identify plant and hydrologic
wetland conditions using both color infrared (CIR) aerial photography and satellite remote
sensing systems (Ozesmi and Bauer, 2002). The most broadly used wetlands map in the
United States, the National Wetlands Inventory (NWI), uses aerial CIR photography and
photo interpretation techniques to provide fine scale maps of wetland distribution (Peters,
1994). However, this labor-intensive methodology requires a 10-year repeat interval for new
map production (Wilen and Frayer, 1990).

To effectively monitor changes to wetlands, data collection must be timely (1-5 year
minimum) and cost effective. The National Oceanic and Atmospheric Administration’s
Coastal Change and Analysis Program (C-CAP) uses the Landsat Thematic Mapper (TM)
sensor to provide a more timely and cost effective national system of coastal wetland maps
(Klemas et al., 1993) on a 5 year repeat interval. However, both NWI and NOAA C-CAP
maps offer only broad classes of wetland, such as estuarine emergent or palustrine forested.
Finer classes of actual species or ecosystem types are not mapped.

Since various targets reflect and absorb solar radiation differently, they can often be
distinguished by their spectral reflectance signatures (Jensen, 2007). Spectral reflectance
studies have been useful for determining regions of the electromagnetic spectrum which
provide greatest discrimination between two or more wetland species (Schmidt & Skidmore
2003, Becker et al 2005). However, many studies have concluded that it is difficult to
accurately classify wetland species types based solely on Optical/IR spectral characteristics
(Ozesmi and Bauer, 2002).
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3. Satellite SAR Wetland Mapping

SAR data have unique capabilities because the long microwave wavelengths penetrate
vegetation cover and are sensitive to wet soil and flooded conditions that may exist beneath
a canopy. An enhanced signature is often received from a canopy underlain by water due to
a double-bounce effect of the incoming radiation from the smooth water surface and vertical
stems of the canopy. The microwave scattering received by a SAR sensor from a wetland is
dependent upon the wavelength, polarization, and incidence angle at which the energy was
transmitted, the surface roughness, vegetative biomass, dielectric properties of the
vegetation and soils (moisture in the plant canopy and on the ground), and the presence or
absence of a flooded surface. Therefore, the SAR wavelength, polarization and incidence
angle need to be carefully chosen to maximize the scattering to distinguish wetlands from
uplands and to distinguish between wetland ecosystem types. A combination of
wavelengths, polarizations, and/or incidence angles provides the most information about
the various wetlands and thus the greatest capability to effectively map wetland ecosystem
types with SAR.

Current and recently orbiting SAR satellites available commercially are of three different
wavelengths; L-band (~23 cm wavelength); C-band (~5.7 cm wavelength), and X-band (~3.5
cm wavelength). Of these SAR satellites, many are of a fixed incidence angle, but some have
varying incidence angles. To detect flooding beneath a vegetation canopy, steep incidence
angles (<35 degrees) are generally best (Hess et al. 1990). For temperate, sub-tropical and
boreal regions, longer wavelengths such as L-band are more useful for mapping forested
and high biomass herbaceous wetlands than C-band or X-band. C-band or X-band data have
limited ability to map flooding beneath forest canopies. C-band data are most useful in
forests during leaf-off condition and for sparse canopies, and have been used to map extent
of inundation in floodplain swamps of Roanoke (Townsend 2001, 2002, Lang et al. 2008).

In Figure 1, theoretical scattering of a C-band sensor from forested versus herbaceous
landscapes in various dry to flooded conditions is shown. Here it is demonstrated how the
degree of inundation affects the scattering from the herbaceous canopy. In the case of wet
soils and low inundation in an herbaceous canopy, enhanced backscatter is often observed
at C-band, with some double-bounce effects. However, as the water levels increase the
backscatter can first get stronger and then lessen until it reaches a low specular reflection
case (where scattering is away from the sensor) from the water surface in the highly
inundated situation (Kasischke and Bourgeau-Chavez 1997, Kasischke et al. 2003, Bourgeau-
Chavez et al. 2005). Figure 1 also shows the typical scattering from a closed versus open
canopy forest at C-band. With most scattering from the branches and leaves at C-band in the
closed canopy case, and little to no penetration to the ground surface. However, the longer
wavelength L-band generally penetrates a closed canopy forest and has been found to be
best for discriminating flooded from non-flooded forests (Hess et al. 1990, Ramsey 1998,
Bourgeau-Chavez et al. 2001). C-band is best for discriminating emergent wetlands from
agriculture and herbaceous uplands (Bourgeau-Chavez et al. 2001).

SAR polarization is also important, and horizontal send and receive (HH) polarization has

been found to be most useful for detecting wetlands. While, the cross-polarizations
(Horizontal send and Vertical receive HV) are necessary for discrimination of woody versus
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herbaceous vegetation types due to their sensitivity to biomass (Ramsey 1998). VV
polarization is also sensitive to soil moisture and flood condition (Bourgeau-Chavez et al.
2001).

THEQRETICAL SCATTERING OF C-BAND ENERGY
e FROM VEGETATED LANDSCAPES
! Floaded v&. Nen Floodad Condilions

Fig. 1. Diagram showing theoretical scattering of C-band energy from forested and
herbaceous ecosystems in dry, wet and flooded conditions, with open and closed forest
canopies.

One primary advantage of using SAR over visible data is the detection of forested wetlands
and the ability for SAR data to be collected irrespective of cloud cover or solar illumination
because it is an active sensor. It is very difficult to detect flooding beneath a forested canopy
with Optical/IR, unless there are large gaps in the canopy. Many researchers have found
significant improvement in distinguishing swamp from other wetland classes and uplands
with SAR (Lang et al. 2008, Grenier et al. 2007, Baghdadi et al. 2001, Hess et al. 1990,
Bourgeau-Chavez et al. 2004).

Several researchers have evaluated the utility of SAR for wetland mapping using single and
multi-date single channel SAR data (Costa et al. 1998, Whitcomb et al. 2009, Arzandeh and
Wang 2002, Rao et al. 1999) and others have evaluated polarimetric SAR (Hess et al. 1990,
1995, Bourgeau-Chavez et al. 2001, Pope et al. 1994, 1997, Crawford et al. 1999, Wang and
Davis 1997, Touzi et al. 2007). See Henderson and Lewis (2008) and Ramsey (1998) for a
more thorough review of past research on wetland ecosystem analysis with SAR. Many
early studies conducted to determine the utility of multi-polarization/ multi-frequency data,
focused on NASA’s Shuttle Imaging Radar - C (SIR-C) which was fully polarimetric at L-
and C-bands (L-HH, L-HV, L-VH, L-VV, C-HH, C-HV, C-VH, C-VV and X-VV) and fully
polarimetric AirSAR (P-band (72 ¢cm), L-band, C-band) for wetland classification in tropical
and temperate landscapes (Hess et al. 1995, Pope et al. 1994, 1997, Bourgeau-Chavez et al.
2001). These studies demonstrated the utility of multi-band data and early polarimetric
analyses (e.g. HH-VV phase difference) for mapping forested and herbaceous wetlands
(Pope et al. 1997).
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While several researchers have evaluated the use of SAR alone for mapping wetlands, until
more recently, few have evaluated SAR and Optical/IR fusion for wetland mapping
(Lozano-Garcia and Hoffer 1993, Augustein and Warrender, 1998, Toyra et al. 2001, Rio and
Lozano-Garcia 2000, Bourgeau-Chavez et al. 2004, 2008, 2009, Li and Chen 2005, Grenier et al.
2007). Since the SAR and Optical/IR data measure different features of wetlands, it is logical
that a synergistic approach between the two sensor types would increase wetland mapping
accuracy. Further since the presence of standing water causes the SAR energy to interact
differently depending on the dominant vegetation type, it would be advantageous to
combine SAR with optical and infrared data for mapping purposes.

4. SAR and Optical Data Fusion

Of the few broad-scale SAR wetland mapping efforts that have been undertaken, , Canada is
incorporating Radarsat-1 and Radarsat-2 data with Landsat mosaics (100m resolution) and
SPOT data in the development of the Canadian Wetland Inventory (Grenier et al. 2007,
Fournier et al. 2005, pers. comm. Grenier 2009) which will cover the entire country. There is
also an effort underway to use the JERS mosaics (100 m resolution summer and winter
products) of Boreal North America alone to map wetlands across Canada, as has already
been done for Alaska (Whitcomb et al. 2009).

In this chapter, we review case study of multi-sensor, multi-date, SAR-optical /IR fusion
methods and results for mapping wetlands in two main study areas, the Great Lakes and a
Boreal peatland region in Alberta, Canada. The techniques are developed with broad scale
mapping in mind, but are demonstrated on local to regional wetland areas. In all but one of
these case studies, satellite SAR data are used in conjunction with Landsat TM, and in most
cases SAR data from multiple sensors are fused. The exception, is the case studies on
mapping the invasive plant species Phragmites australis on Lake St. Clair, where PALSAR
data are used alone and compared to hyperspectral AVIRIS.

4.1 Case Study: Lakes Ontario and St. Clair Coastal Wetland Mapping

The Great Lakes Coastal Wetlands Consortium (GLCWC) was mandated to develop a
monitoring plan for assessing the health of the coastal wetlands which are vital to the
overall health and maintenance of the Great Lakes ecosystem (Bourgeau-Chavez et al. 2004,
8). The only way to monitor an ecosystem the scale of the Great Lakes basin is through
integrated remote sensing and field observations in a GIS. Landscape indicators in need of
monitoring through remote sensing include wetland type and extent, adjacent land cover,
adjacent land use, intensity of land use, and invasive plant species. The GLCWC sought
implementable, cost-effective yet robust methods with a minimum mapping unit of 5 acres.
To meet these needs a few pilot studies were conducted to demonstrate various monitoring
methods. A hybrid SAR Optical/IR methodology that used satellite sensor data of 30 m
resolution and would allow for detection of areas as small as 1 hectare was found to be the
most promising. This methodology would be cost-effective and data management for the
entire Great Lakes Basin would be reasonable compared to higher resolution, smaller
footprint imagery. And the use of two complementary data types in the mapping was
expected to reduce omission and comission errors.
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Two study sites were selected for demonstration of this hybrid SAR-optical data fusion,
coastal areas of Lakes St. Clair and Ontario (Figure 2). Coastal Lake St. Clair was chosen
because it has a diversity of land cover and land use including a large amount of urban and
suburban areas, rural farm fields, and a large amount of wetlands (various species) that
occur at the delta as the river enters the lake. The Lake Ontario study area was chosen
because it is mainly rural, with many agricultural fields, has isolated patches of herbaceous
wetlands, and a relatively large amount of potentially forested wetlands. These two areas
provide different sets of land cover and land use classes and thus an opportunity to test the
hybrid-sensor methodology in diverse settings.

4.1.1 Remote Sensing Data

The data used in this case study were archival SAR and Landsat data from multiple dates,
and multiple sensors (Table 1). For the Landsat images, each containing 7 bands, the blue
and thermal IR bands for each date were removed from the analysis. The blue channel is
generally quite noisy and the thermal band is of coarser resolution than 30 m. The JERS (L-
band) sensor used for this project had horizontal send and receive polarization (L-HH) and
was operational from 1992-8. This sensor has a resolution of 30 m, incidence angle of 35°,
and a footprint of 80 km x 80 km. To complement these data, we also acquired C-band (5.7
cm wavelength) SAR data from the European ERS-1 and Canadian Radarsat-1 (R-1)
satellites. The ERS-1 sensor has vertical send and receive polarization (C-VV) and is
collected at a central incidence angle of 23°. The Radarsat sensor has horizontal send and
receive polarizations (C-HH). It also has pointing capabilities and can be collected in various
modes and incidence angles. The R-1 data used were of standard beam 7 mode, which has
an incidence angle of 47°. Both C-band sensors have 30 m resolution and 100 km x 100 km
footprints.

" I. F,
¥ oy
=
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Fig. 2. Great Lakes pilot study areas for hybrid SAR-Optical/IR mapping for the Great Lakes
Coastal Wetlands Consortium project.
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Site Sensor Spring Summer Fall

Lake St. Clair Landsat 23 March 2001 | 30 August 30 October 2000
™ 2001

Lake St. Clair JERS 28 March 1995 | 10 August

1998

Lake St. Clair Radarsat-1 3 & 27 October 1998

Lake Ontario Landsat 24 June 1993 12 August 18 December 2002
™ 2002

Lake Ontario JERS 11 April 1993 | 8 July 1993 17 October 1993

Lake Ontario ERS-1 17 April 1993 | 7 June 1993 25 October 1993

Table 1. Data used in the Great Lakes Hybrid SAR-Optical/IR wetland and landscape
indicator mapping.

Since this was a demonstration project with minimal funding, data sets chosen were not
optimal but were chosen based on cost and ease of availability (Table 1). At both sites three
dates of Landsat data were used. There were a total of four radar scenes for Lake St. Clair
and 6 radar scenes for Lake Ontario. There are as many as 6 years between the JERS and
Landsat collections for Lake St. Clair and 10 years between data collections for Lake Ontario,
but analysis of the imagery indicated that few major changes in land use have occurred in
these areas during that time period. Also, it was not as much of an issue due to the
methodology; a site would first be checked for vegetation cover in the more recent Landsat
and then checked for flooding in the older SAR. However, it is realized that using data with
such a wide time span will introduce errors. The optimal data set would be from the same
year, with SAR and TM from the same months. However, the datasets met the needs of this
investigation, which was simply to demonstrate a methodology.

4.1.2 Image Interpretation

For the Lake St. Clair site, the imagery and products were evaluated by comparison to the
NWI, land cover/land use maps, field checks (October 2003) and expert field knowledge
(Field ecologist/botanist Dennis Albert of Michigan Natural Features Inventory).

Although the ancillary maps and field work showed many forested wetlands within our
study area, the dates of JERS imagery show all of the forests the same, very bright in the
spring (March 1995) and all are gray in the summer scene (August 1998). It is likely that all
of the forests have a wet ground cover in the spring scene, there may even be wet, melting
snow on the forest floor causing the enhanced signature from all of the forests, and in
August all of the forests are dry with full foliage. However, the differences in backscatter in
the herbaceous vegetation are apparent on these two dates, as well as in the October
Radarsat scenes.

Figure 3 shows a red-green-blue false color composite of the 3 October 1998 R-1 scene, 10
August 1998 JERS scene, and 28 March 1995 JERS scene, respectively. In this composite, the
orange areas were dominated by cattail (Typha spp.), and the green by Phragmites
(Phragmites australis). Phragmites tends to be taller/denser and occurs in less wet locations
than cattail. The red areas of the image are shorter and sparser vegetation, thus they do not

cause enhanced backscatter at L-band, only at C-band. The red areas along the fingers of the
delta are cattail and bulrush (Scirpus spp.) beds and the red area within Dickinson Island is a
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flood channel with wild rice (Zizania aquatica), open submergent and emergent vegetation
(Dennis Albert). The dark area in the center of Dickinson island to the west of the kidney
shaped light blue forest area is a wet meadow and appears to be dry in our October 1998 C-
band scene, it has strongest backscatter in the L-band spring scene (blue channel), but not
enhanced backscatter. This combination of R-1 and JERS allows for a good interpretation of
this scene, discerning tall dense herbaceous vegetation from short sparse herbaceous
vegetation, and different hydrological and biophysical properties.

. , =

Radarsat Oct 98 JERS Mar 95

Upland

Cattail/Scirpus

Wet mead

wy 222

Phragmites

Cattail dominant

©CSA 1998 ©ONASDA 1995-8

Fig. 3. Three dates, two sensor false color composites from Radarsat-1 and JERS satellites
over the Lake St. Clair Delta. This Figure clearly defines Typha (cattail), and the invasive
species Phragmites australis from other upland and wetland ecosystems.

At the Lake Ontario test site, we had an ideal seasonal data set with three images each of
JERS and ERS from spring, summer and fall of 1993. Figure 4 presents false color composites
of the two sensor datasets. Both datasets highlight non-forested wetlands (based on NWI) as
green and red shades. In the JERS data, these sites were dark from specular reflection in the
April scene (blue), then some sites were bright in July (green in the composite) while other
sites remained dark in July (red locations in the composite) and all sites were gray in
October (Table 2). In November of 2003, we conducted a field check to determine any
vegetation difference between the red and green areas. The red areas visited were
dominated by mixed grasses. It is likely that in the spring imagery the vegetation is fallen
over or decomposed, with a high water level leading to specular reflection. The water level
must still be high enough to cover much of the grasses and cause specular reflection again in
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the July scene, but when the lake water level drops to 74.58 m in October (70 cm drop), this
site has more vegetation exposed and stronger backscatter. In comparison, the green areas
visited in the field contained a mixture of grasses, cattail and shrubs (mainly Cornus
stolonifera). These sites were bright in the summer and gray in the fall in the JERS imagery.
The water level in comparison to the vegetation was likely lower than at the other sites,
causing the enhanced backscatter in July, but with lower soil moisture in the fall the site was
gray. For the same two sites in the ERS, the grass site was dark in the spring but the mixed
shrub/herbaceous site was gray. In the summer the mixed shrub site was bright while the
grass site remained dark. In the fall all sites were gray. While similar patterns emerged for
both sites, the contrast between the non-flooded adjacent forests and the wetlands is
stronger with the JERS, making it easier to map the boundaries of the sites.

Three date ERS false color composite

Fig. 4. Three date ERS false color composite of 25 October, 7 June and 17 April 1993 ERS
imagery over eastern Lake Ontario compared to a 17 October, 8 July and 11 April 1993 JERS
composite.

Spring Summer
Site Sensor Brightness Brightness Fall Brightness
Grass ERS-1 C-VV | dark dark gray
Shrub/herbaceous | ERS-1 C-VV | gray bright gray
Grass JERSL-HH | dark dark gray
Shrub/herbaceous | JERS L-HH | dark bright gray

Table 2. Appearance of “grass” versus “shrub/herbaceous” sites in coastal Lake Ontario in
spring, summer and fall of 1993. Grasses are red areas in JERS composite of Figure 3 and
Shrub/herbaceous are green areas.

There are some forested wetlands within the Lake Ontario scene and they appear to be most
notable in the April scene when the lake water level is the highest (note that coastal
wetlands are hydrologically connected to the Great Lakes), and spring thaw has occurred
and thus flooding is most likely. A comparison was made between assumed flooded forest
and non-flooded forest for each JERS scene/date. The April scene had a 2.3 dB difference
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between flooded and non-flooded forest while the July date had only a 0.5 dB difference and
the October date had a 1.7 dB difference. The April scene was then thresholded to values
greater than that of the non-flooded forest. After median filtering the scene with a 5x5
window to remove speckle, the scene was overlaid on a 5, 4, 3 Landsat composite (Figure 5).
The white areas of Figure 5 show the SAR-derived potentially flooded forests. The
backscatter from urban areas is also enhanced and has not been filtered from this scene.
There are also white areas that are likely row plantings of trees. The row structure produces
an enhanced return. The urban areas can be removed by using either the Landsat scene to
mask forest from non-forest or by using the ERS C-band data. The C-band data will have
enhanced backscatter for the urban area but not for the flooded forests. The extent of some
of the enhanced signatures appears to be slightly greater than what is seen in the NWI for
some of the sites (Figure 5) and in other cases it is less.
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Fig. 5. Landsat 5, 4, 3 composite with SAR-derived potentially flooded forests (white areas)
overlaid 9 (left). The NWI is presented for comparison (right) with forested wetlands
colored green. Note that the NWI is not the exact area of the Landsat scene.

One technique that has been used somewhat operationally for detecting forested wetlands,
is to map forest cover with Optical/IR and then create either a single-date thresholded
image, as is presented here, or a multi-date SAR image to determine inundation and thus,
forested wetland. Using remote sensing to detect flooding beneath a canopy is limited by the
timing of the data acquisitions. Therefore, only the forests that were inundated on the date
of image acquisition will be mapped as forested wetland. The multi-season data helps
reduce this limitation, but relying on species type and other ancillary data such as hydric
soils, as well as enhanced SAR backscatter to determine wetland status would be more
reliable, hence hybrid approaches are recommended. One useful parameter the SAR can be
used for is to monitor changes in extent of inundation from one date to the next (Bourgeau-
Chavez et al. 2005, Lang et al. 2008, Townsend 2001, Wang et al. 2004).
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4.1.3 Mapping Methodology

Several techniques were considered and evaluated for merging the multi-sensor, multi-date
Great Lakes datasets and producing a land cover land use map, but the best method
appeared to be the simplest, which involved creating separate SAR and Landsat land
cover/land use products and then fusing the products in a GIS. This method preserved the
unique characteristics of each sensor, while taking advantage of their complementary nature.

4.1.3.1 Lake St. Clair Study Site

The two-step methodology was first applied to the Lake St. Clair study site where the 15-
band Landsat layer was classified into 12 different land cover features using the maximum
likelihood classification algorithm. The training sites for this supervised classification were
collected from the reference field data and existing maps. The 12 classes created were:
Water, High Density Urban, Low Density Urban, Forest, Emergent Wetland, Wetland
Shrub, Wetland-permanent, Forage Crops, Cropland 1, Cropland 2, Cropland 3, Cropland
4. The second step of the process involved the classification of the 4-band radar image into 9
different classes. These classes were different than that of the Landsat imagery because the
sensors are able to distinguish different phenomena. The classes for the radar classification
were: Forest/Urban, Phragmites, Scirpus/ open submergent and emergent, Cattails, Wet
Meadow, Forage Crops, Cropland1, Cropland2, and Cropland3

The individual classification results were then fused into a single classification. This was
performed by recoding the 12-class Landsat classification into values of 10s (10, 20, 30...120)
and recoding the radar classification into values 1-9. Then the values were added together
on a pixel-by-pixel basis, producing possible values between 11-129. These recombined
classes were then interpreted, by comparison to the reference data, and assigned into a final
11-class file. This final class identification relied on only the Landsat for some classes (such
as water, forest, low density urban), only the radar for others (Phragmites and Scirpus), and
a combination of both for the majority of the classes. The final classes are described below in
Table 3 and the final map is in Figure 6.

Due to limited funding and the archival nature of the dataset, an accuracy assessment was
conducted based on existing maps. The NWI, which is the basemap for the GLCWC, was
first used as a reference. Then IFMAP (Integrated Forest Monitoring, Assessment and
Prescription), which relies on NWI to some extent, was used because it includes upland
classes that NWI does not. IFMAP was produced by the Michigan Department of Natural
Resources. It is mainly based on the analysis of seasonal Landsat imagery (collected between
1997-2001), but is supplemented with selected high resolution images, existing land cover
maps, and large amounts of field work. IFMAP provides a very detailed description of land
cover, but is only available for the Michigan portion of the study area and accuracy could
therefore only be assessed on the U.S. side of the map. NWI and IFMAP have only broad
wetland categories (e.g. palustrine emergent, scrub-shrub, etc).
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Class Description
Water Identified through the Landsat, regardless of the radar results
Identified by an urban class in the Landsat imagery and a
urban_forest (bright) from the radar class

High Density Urban

Low Density Urban Identified through the Landsat, regardless of the radar results
Identified through the radar classification and reinforced by
Scirpus being classified as a wetland/vegetative class in the Landsat
imagery
Identified through the radar classification and reinforced by
Phragmites being classified as a wetland/vegetative class in the Landsat
imagery
Identified through the radar classification and reinforced by
Cattail being classified as a wetland/vegetative class in the Landsat
imagery

Identified as wetlands in the landsat imagery but is different
than Scirpus, Phragmites, and cattail

Identified through a Landsat class of shrubland and forest and
has a radar classification of wet meadow or shrubland

Identified by the four cropland classes from the Landsat imagery
and the three cropland classes from the radar classification.
Identified by landsat imagery (forage, row crop) and radar
imagery (forage)

Identified through a Landsat imagery forest class (Note: if the
radar were from a time when forested wetlands could be
identified, this landsat class would be combined with a radar
class)

Table 3. Combined Landsat and radar landcover results for the Lake St. Clair study site.

Wetlands_other

Shrubland (shrub wetland)

Cropland

Forage Crops/Low Herbaceous

Forest

Using over 3000 randomly selected validation points, comparison to the NWI as reference,
resulted in 94% overall accuracy of our wetlands map. Comparison to IFMAP resulted in
72% overall accuracy when areas of wetland that IFMAP called “open water”were
eliminated. Analysis of the imagery revealed that the timing of data collections and the lake
levels can have a large effect on the boundaries mapped for emergents along the water’s
edge. A SAR comparison of 2 image dates with a change of 19 cm in lake level showed a
huge change in visibility of wetlands on the fingers of the St. Clair river delta (Figure 7). In
this figure, lake water level is 19 cm higher on the first date, causing specular reflection (low
return-dark). A decrease in inundation on the second date reveals the vegetation causing
double bounce scattering (bright return-red). This exemplifies the need for multi-date data
to “see” the wetlands that may be nearly completely inundated by water on a particular
date in both SAR and optical/IR.

In comparison to IFMAP, the hybrid SAR-Optical classification did well with low density
urban, Typha, Phragmites, low herbaceous, Scirpus and cropland (all above 60% user’s
accuracy, Typha above 86%). There were some issues with wet meadow (42.25% user’s
accuracy) where there is confusion in IFMAP with tree species, row crop and herbaceous
upland. Further investigation of this type is needed. The classes were quite different for
IFMAP, but for lowland deciduous, the SAR-Optical map had 81% producer’s accuracy, 65%
and 77% producer’s accuracy for emergent and non-forested wetland and 78% producer’s
accuracy for low density urban.
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A visual comparison was also made between our classification of the Canadian side of the
study area using maps produced by Arzandeh and Wang (2002 & 2003) of Walpole Island,
Ontario. In 2002 Arzandeh and Wang used a single Radarsat scene (1997) and Landsat data
(1997), separately, to create two classification maps with eight categories including forest,
urban, swamp, tall grass, water, agriculture, cattail and Phragmites. Their areas of emergent
wetland (cattail and Phragmites) correspond well with the areas that we have mapped as
emergent. However, their maps lack the detail that we gained by combining multiple dates
and two bands of SAR imagery with the Landsat. Their goal was to use texture analysis of a
single date of SAR imagery to improve classification accuracy with a single date of SAR.
Generally, more than one date of imagery is available, but for those cases when only one
date of imagery exists or can be acquired their techniques would be useful.

Landsat TM and Radar Combined
Classification

[ catails

- Croplanc

I:l Forage _LowwHehaceous
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classification results I Lo Dereity Urtar
for the Lake St. Clair study site I Ptreomities
- Scirpus
. B =hubland
[ ] unciassifed
w c 0 25 s 1 B ster
) Kilometers I etiands_other
g

Figure 6. Landsat and SAR fused land cover classification results for the Lake St. Clair study
area.
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Two date false color composite of Radarsat Imagery Lake St. Clair
3 October 1998 . 27 October 1998

Fig. 7. Two date false color composite of Radarsat imagery. Cyan is the 3 October 1998

image and red is the 27 October 1998 image. Water level dropped by 19 cm between the first
and second date.

4.1.3.2 Lake Ontario Study Site

The same techniques used for Lake St. Clair were applied to the datasets for Lake Ontario,
however the classes were slightly different. First, Landsat imagery was classified into 13
different landcover classes; Water, High Density Urban, Low Density Urban, Deciduous
Forest,Coniferous Forest, Mixed Forest, Row Crops, Low Herbaceous, Bare Soil, Emergent
Wetlands, Shrubland, Fields-Hay, Wetlands-other. The radar imagery was classified into 9
classes; Water, Urban/Flooded Forest, Flooded Shrubland/ Wet Meadow, Emergent
Wetland, Forestl, Forest2, Row Crop 1, Row Crop 2, and Herbaceous Field. These
individual Landsat and SAR classes were then fused into a single product, just as they were
for Lake St. Clair. The 12 final combined classes are described in Table 4. The final map is
presented in Figure 8.

A comparison was made between the SAR-Optical map and the NWI with 5000 random
points Note that the NWI has more generalized classes so the comparison is not straight
forward, and there are over 2 decades between the NWI creation and the SAR-Optical /IR
map, so some differences may be due to changes in the wetland, either succession or loss.
The results in comparison to the NWI showed 94% overall accuracy, with all classes greater
than 89% user’s accuracy, except shrubby wetland for which we only had 13 points, none of
which were correctly classed. The producer’s accuracy in the wetlands was 34% for woody
wetland and 66% for emergent. For the NWI woody wetlands, we labeled 127 out of 208 as
deciduous forest. The problem likely lies in what areas were in fact inundated during the
radar satellite collections. A wet, normal or dry year will provide different wetland extents,
66% agreement for emergent wetlands is quite good considering the likely turnover of some
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areas to agriculture and the likely succession of some of the wetlands labeled as emergent in
the 1970s NWI to wetland shrub, as indicated by the field visits and point source field data
from a biocomplexity study conducted by Cornell University (Mark Bain).

Class Description
Water Areas identified as water in the Landsat imagery, regardless of the radar classification
High Density| Areas dominated by manmade materials, these areas were identified by high radar
Urban returns that were not forested areas in Landsat

Low Density Urban| Areas with a mixture of manmade features and landscape vegetation, these areas were
mainly identified by the Landsat classification

Deciduous Forest Areas of forest that lose their leaves throughout the season, identified through a
combination of the Landsat and radar classifications

Coniferous Forest | Areas of evergreen forest, identified through the combination of classifications

Mixed Forest Areas that are a mixture of coniferous forest and deciduous forest, identified through a
combination of classifications

Forested Wetland Areas are forest but have standing water on the ground throughout much of the year,
identified as forest in the Landsat imagery and as urban/flooded forest in the radar
imagery

Emergent Wetland | Areas of herbaceous vegetation that are wet at some times of the year, identified
through the combination of radar classification and Landsat classification
Wetland-shrub Areas of short woody vegetation that are wet at some points throughout the year, these
are identified through the combination of sensor classification results.

Crop/pasture Areas of herbaceous vegetation that are not plowed throughout the year, mainly
identified through the Landsat classification

Bare Soil Areas of exposed soil, sand, and/or rock, these areas were mainly identified through
the radar and were confirmed by the Landsat classification

Row Crop Areas that have herbaceous vegetation growing which is plowed at some point during
the season. These areas were identified through a combination of the classification
results.

Table 4. Classes for the combined Landsat and radar classification at the Lake Ontario study
site.

The state of New York did not have a land cover/land use map comparable to IFMAP, and
many errors were found in the National Land Cover Dataset (NLCD). However, field data
collected in the largest coastal wetland complex in the image were available with GPS
locations. The Biocomplexity study of Cornell University allowed for comparison of the
SAR-Optical/IR hybrid map to 55 study points which represented cattail dominated, shrub,
forested, and mixed emergent wetlands. The overall accuracy of this comparison was 89%,
with 91% user’s accuracy for wetland shrub, 89% user’s for emergent wetland, and 67% for
forested wetland. This assessment is quite good considering the likelihood of error in the
geolocation of the study points due to the small plot size in reference to the 30 m pixels.
Some of the points did fall on boundaries of open water/wetland or upland/wetland
causing errors. The producer’s accuracy ranged from 25 to 75% in the reference categories of
specific species types that we did not map. The cattail field points corresponded to the
wetland shrub (dark pink) areas in the Landsat-SAR fused classification. Therefore, the pink
areas of our Landsat-SAR map should be labelled as shrub/high biomass herbaceous
wetlands.
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Fig. 8. Landsat and SAR fused land cover classification of the Lake Ontario study area.

4.1.4 Summary

These two study areas demonstrated the utility of a fusion of SAR and Optical/IR data for
mapping landscape indicators of wetland health (wetland extent, adjacent land use
intensity, etc.) in a region surrounded by high intensity urban versus a more rural area. In
one case mapping of forested wetlands was possible and in the other, timing of data
collections did not allow evaluation of forested wetland mapping. However, a simple
approach to the mapping provided desirable results with the archival data, showing the
complementary nature of the two types of sensors. Although the reference data and remote
sensing data were not optimal [there are discrepancies in years of data collection (Landsat
versus SAR (1990s-2001) and years of validation maps (1970s, 2000) and levels of vegetation
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classes between the SAR-Optical map and validation maps (fine scale species versus broad
emergent classes)], these case studies demonstrated the added benefits of fusing Optical/IR
data with another complementary sensor such as radar and resulted in a recommendation
by the Great Lakes Coastal Wetlands Consortium for monitoring landscape indicators
(Bourgeau-Chavez et al. 2008). In the next case study, current data are used and ongoing
validation is being conducted for the specific species class levels. This case study is a
continuing investigation and only preliminary results are shown here, however it provides a
better validation of the results through field methods, further exemplifying the utility of
SAR in wetland mapping.

4.2 Case Study: Invasive Phragmites australis Species Mapping on Lake St. Clair

One of the main wetland stressors in the Great Lakes is invasion by the problematic species
Phragmites (Phragmites australis). This species invades native habitat creating dense thickets
and deep detritus that virtually eliminates ecological function. A predicted drop in Great
Lakes water levels due to global climate change is anticipated to increase the spread of the
invasive Phragmites in the Great Lakes coastal zone, and a method to map this species and
its spread would be of great assistance to land managers for control.

Several studies have focused on detecting and mapping invasive species in small
catchments of the Great Lakes with high resolution hyperspectral and/or lidar (e.g. Lopez et
al. 2006, Wilcox et al. 2003). However, such high-resolution mapping of the entire Great
Lakes coastline or comprehensive field studies would be very costly. Others have found 30
m satellite imagery including Landsat, SPOT and Hyperion to be useful for mapping
invasives (Arzandeh and Wang 2003, Pengra et al. 2007), however Landsat has spectral
limitations and Hyperion is no longer operational.

Using a variation of the satellite SAR techniques described in the last section, which
included a delineation of this invasive species using archival multi-date JERS and Radarsat-
I, we are currently evaluating dual polarization PALSAR data, and have plans to
incorporate Radarsat-2 data once it becomes available to distinguish a wider range of
species.

4.2.1 Remote Sensing Data

ALOS PALSAR is the follow-on to JERS which showed the greatest potential in previous
studies for mapping Phragmites (Bourgeau-Chavez et al. 2004, 2008). PALSAR was launched
in 2006, and is available in three modes with various imaging parameters. Here we evaluate
the dual-polarization product which has 20 m resolution, two channels (L-HH, L-HV), 70 x
70 km footprint, and is collected at an incidence angle of 34°. Up until recently, most satellite
SAR systems were of a single channel, however with the recent launch of ALOS PALSAR
and Radarsat-2, the utility of multi-channel SAR and polarimetric data are beginning to be
more broadly evaluated for a variety of applications, demonstrating further mapping
capabilities beyond that of single and multi-channel data.
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Coincident to this evaluation is an investigation of an airborne hyperspectral NASA AVIRIS
collection from July 2008 over the St. Clair delta. The AVIRIS sensor has 224 bands (400-2500
nm) and was collected with 17 m resolution.

HH/HV PALSAR Band Ratio
14
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Phrag 1 Phrag Cattail Wet Scirpus- Scirpus
Dickinson Harsens meadow St.Johns beds

Fig. 9. Plot of backscatter from PALSAR (L-HH to L-HV ratio in dB) in Phragmites, Cattail,
wet meadow and Scirpus beds of the Lake St. Clair delta.

4.2.2 Image Interpretation

Initial observations of an October 2007 dual polarization PALSAR image over Lake St. Clair
revealed that the ratio of the L-HV and L-HH bands shows a 4-5 dB difference between
Phragmites dominated wetlands and other non-forested native wetland types (Figure 9).
The reason for this great divergence is the large difference in vegetation height, density and
biomass of invasive Phragmites versus any other native herbaceous vegetation in the Great
Lakes (Figure 10). Typha generally ranges in height from 1 to 3 m, while Phragmites can
reach heights of more than 3.5 meters. Further, Phragmites forms tall, dense rather
impenetrable stands. It is the sensitivity of L-band SAR to these differences in biomass and
hydrology that allows the distinction between stands dominated by these two species.

Multi-date composites of PALSAR imagery from 2006-8 show the dynamic changes in the
various vegetation cover-types over the growing season (Figure 11). In the top composite of
Figure 11, which is a false color multi-date L-HH representation, the Typha are yellow to
orange, indicating there is a strong return signal in July and October, but low response in
the spring (Table 5). In contrast, most of the Phragmites shows a high response in the spring
and lower in the summer and fall with shades of blue, and purple. In comparison, in the
lower image of the L-HV multi-date false color composite (L-HV is sensitive to biomass),
the Phragmites is cyan, indicating a strong return in the spring, April and May images,
while the Typha is dark in these months, and bright (red) in the fall image.
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Phragmites

Fig. 10. Photos of Phragmites: tall scale in winter (left), high density in summer (middle),
and typical Typha (right).

While either L-HH or L-HV multi-date imagery appear to be useful for distinguishing
Phragmites from Typha, there are some stands that would be confused with the L-HV alone
(see arrows with Phragmites label on Figure 11); these are areas of Phragmites that are red in
the lower image and green in the upper image. The different signatures in the PALSAR
imagery from Phragmites-dominated stands is likely due to differences in water levels in the
various seasons. “Phragmites 2” stands are located in diked areas, and may be wetter and
sparser than “Phragmites 1” stands (Table 5).

PALSAR Image Date Phragmites 1| Phragmites 2 Typha
Band appearance | appearance appearance
L-HH 28 July 2006 dark dark bright
L-HH 09 October 2007 | dark bright bright
L-HH 17 April 2008 bright dark dark
L-HV 09 October 2007 | dark bright bright
L-HV 26 May 2008 bright dark dark
L-HV 17 April 2008 bright dark dark

Table 5. Appearance of two different Phragmites dominated stands versus Typha stands in
the L-HH and L-HV imagery on the various dates.

4.2.3 Mapping Phragmites with SAR

A simple unsupervised maximum likelihood classification of the four dates of PALSAR data
resulted in four classes of potential Phragmites and two potential classes of Typha spp. Note
that the July 2006 image was from the single channel mode of ALOS PALSAR and thus had
only the L-HH channel, analysis was therefore conducted on an input of 7 channels. Field
observations using a GPS positioning system, in situ photos, and field notes were used to
assess the preliminary “potential Phragmites” map. Using these field data for validation (29
points), the PALSAR multi-date preliminary map had 92% overall accuracy, with 100%
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Fig. 11. False color composites of PALSAR imagery over Lake St. Clair delta. Top is L-HH
from 28 July 2006 in red, 09 October 2007 in green and 17 April 2008 in blue. Bottom is L-HV
composite with 09 October 2007 image in red, 26 May 2008 in green and 17 April 2008 in blue.

user’s and 80% producer’s accuracy for Typha, and 82% producer’s and 100% user’s
accuracy for Phragmites. Note that the misclassified pixels for Phragmites were small areas
of shrub or Typha within a larger Phragmites dominated area, thus the error is likely due to
resolution (20 m in this case). The utility of the 10 m resolution PALSAR product (although
only L-HH) may resolve this error and is being investigated.

4.2.4 Mapping Phragmites with AVIRIS

A comparison of the Optical/IR spectral signatures of Typha latifolia and Phragmites australis
are shown in Figure 12. These signatures were collected in the field using a
spectroradiometer (FieldSpec 3 JR). The vast differences in these signatures indicate that
separation using Optical/IR remote sensing should be fairly easy, however, using the
spectral angle mapper technique the results were poorer than the SAR methods.
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Fig. 12. Spectral signature comparison of Typha latifolia (black) versus Phragmites australis

(red).

Spectral angle mapping is a physically-based spectral classification that uses n-dimensional
(n = number of bands) angles to match pixels to reference spectra. It was run in ENVI, and
determines similarity between the two spectra by calculating the angle and treating them as
vectors in n-dimensional space. Smaller angles represent closer matches to the reference
spectrum. The endmember spectra for Phragmites australis and Typha spp. used by the
classifier were derived from field truth data provided by Michigan Natural Features
Inventory.

Using methods similar to Lopez (2006), the spectral angle mapping of the 224 band (400-
2500 nm), 17 m resolution AVIRIS data using field training data, resulted in 82 % overall
accuracy with 83% user’s and 77% producer’s accuracy for Typha, but only 57% user’s and
67% producer’s accuracy for Phragmites. Note that the validation is based on only 17 points,
because many of the points were used in the training

These are preliminary results and the investigation is ongoing. Methods are being
investigated to determine the best bands from AVIRIS to combine with the L-band SAR for a
data fusion approach. Evaluations will reveal the utility of SAR alone and in combination
with hyperspectral, but the goal is to also determine if any of the bands of existing satellite
Optical/IR systems could be used in lieu of hyperspectral data.

4.3 Case Study: Peatland mapping in Alberta

The last case study is based on the need to understand carbon storage (peat accumulation)
and loss (mainly through fire) in boreal peatlands, which are widely recognized as being
one of the largest terrestrial reservoirs for carbon (C) in the Northern Hemisphere.
Estimating carbon storage and release requires an accurate mapping of peatland type.
Peatlands are defined as wetlands with well developed peat (partially decayed plant matter)
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accumulation, generally more than 30 cm deep (Charman 2002). Peatlands actually
represent diverse ecosystem types that differ in hydrology and vegetation, from forested
rain-fed bogs to grass-dominated, saturated, or near-saturated stream-fed fens.

Early research on the ability to map boreal peatlands at a regional scale demonstrated the
utility of merging SAR and Optical/IR data. Early observations included JERS, R-1, and
Landsat imagery. Figure 13 presents Landsat and JERS images in comparison to a detailed
peatland map (based on air photo interpretation and intensive field truth circa 1970-80s)
with open, forested, and wooded categories of bogs, fens and swamps delineated. This
preliminary analysis showed that Landsat would be useful for finding many of the open
fens (see linear features circled in yellow; Figure 13). Whereas wooded fens do not look
different from bogs in the Landsat image, they can be distinguished in the JERS SAR multi-
date imagery (see features circled in pink; Figure 13). Note that the majority of peatlands in
this study region are wooded bogs (salmon color in the peatland map). The linear open fens
are dark in the SAR similar to the open swamps and marshes. Here, C-band Radarsat
should prove useful in distinguishing types of open peatlands. The complementary
information obtained from the spectral reflectance properties of the vegetation combined
with the structural and moisture information from SAR should allow the mapping of both
peatland type (bog, fen, swamp) and level of biomass (open, sparse tree cover, forested).

4.3.1 Remote Sensing Data

Two dates of PALSAR imagery were obtained over the local Alberta study area from July
and August of 2007. The dual-polarization PALSAR data included two channels, L-HH and
L-HV. To complement this, a spring and summer data set of Landsat TM imagery were also
obtained from April and August of 2001. Lastly we obtained two R-I images from July 1997
and 2005. These areas are so remote and vegetation growth is slow enough, that a 6-10 year
difference in data collection is not problematic. The only large changes between the years
would be wildfires, but we obtained all data on location and extent of wildfire from the
Canada Forest Service for the time period of study and no fires occurred within the study
area during that time.

4.3.2 Image Interpretation

Figure 14 shows two false color composites, one from the two dates of L-HV data from
PALSAR and the other from two dates of L-HH data, with the first date as red and the
second as cyan. These composites show how the cyan colored areas help distinguish fen
from bog in the L-HH composite (bottom figure) , since fens are characterized by fluctuating
water levels and flowing water, whereas bogs tend to have water levels that remain below
the moss covered surface with small changes in the short time period of the two image dates
(July and August 2007). The L-HV cross polarized data provide information on the level of
biomass which is essential in discrimination of low herbaceous open fens versus fen
woodlands and open, wooded and forested bogs. This channel also clearly distinguishes the
high biomass upland areas from the lowlands (Figure 14). Further, by using multi-date data,
the seasonal changes in moisture and water levels are useful for discrimination of wetlands
that generally have large changes in moisture/flood conditions (stream-fed fens) versus
those that have smaller changes (rain-fed bogs).
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While most boreal peatlands in central Alberta are characterized by low canopy closure,
allowing C-band R-1 to be useful, evaluation of the L-band JERS and PALSAR data
demonstrate the additional definition of forests from ecosystems with low amounts of
aboveground biomass and varying surface wetness conditions. While C-HH R-1 provides
information on low aboveground biomass wetland types, JERS L-HH and PALSAR more
clearly define the differences between forested wetland types, as well as distinguishing high
and low aboveground biomass areas. The R-1 data were included in the mapping methods

for distinguishing swamps since Grenier et al. (2007) found R-1 useful for such purposes.
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Fig. 13. Comparison of how different wetland types (bottom left, wetland map based on air
photo and field truth) appear in 3 date JERS L-band imagery (1995-7, top left) versus
Landsat imagery (Sept 88, top right). The pink circled areas are wooded fens and the yellow
circled features are open fens. Most of the area in these scenes is wooded bog.
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Fig. 14. Two date false color composites of PALSAR L-HV (top) and PALSAR L-HH
(bottom) from July (red) and August (cyan) of 2007.

4.3.3 Mapping Methodology

Unlike the methodology used in the Great Lakes case study, here all data (SAR and
Optical/IR) were fused in an object-based GIS analysis, using Definiens Professional
software. Note, however, that Definiens Professional allows the user to choose which bands
are used for each category being mapped. Thus, only Landsat may be used for one category,
while only SAR is used for a second, and all data are used for a third, etc.

Object-based classification methods involve two phases: 1) spatial objects are formed using a
region-growing segmentation algorithm to merge homogeneous pixels; and then 2) image
classification techniques are applied. The segmentation phase provides additional attributes
describing the spatial context and morphology of features which can inform the
classification beyond spectral values alone. Segmentation can also be reiterated at various
scales to capture the range of features contained in the image. This allows heterogeneous
cover types (i.e., wetlands containing some open water pixels for example mixed with
denser canopy) to be grouped depending on the segmentation scale chosen by the operator,
and can significantly improve map accuracy (Grenier et al. 2007).

We first created segmentation regions defined by the Landsat and SAR. Then using data
from April and August Landsat, two dates of PALSAR L-HV and L-HH and two dates of R-
1 C-HH, we developed a top-down classification approach in Definiens. The methodology
relied on a combination of thresholds and nearest neighbor classifiers in a decision tree.

Using decision rules, we first distinguished land from open water using PALSAR L-HH and
TM band 5 thresholds to map open water, with all non-water pixels being classified as land
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(Figure 15). Next the land was divided into burn and non-burn categories using a nearest
neighbor classification of the Landsat data. Note that these burns occurred after the detailed
Airphoto peatland map of Figure 13 was created, which we rely on as reference in our
validation. Non-burned areas were then divided into upland versus wetland, with upland
forest classified using PALSAR L-HV and TM band 3 from August 2001. Next the wetland
classes were mapped. First open fen was mapped using L-HV and Landsat TM. Finally, a
nearest neighbor classification was conducted on the remaining classes: Woodland Bog,
Wooded Fen, and Swamp using April TM 3, 4, 5 and two dates of PALSAR HH, and two
dates of R-1. Figure 15 shows the process, with the final map in Figure 16.

The final peatland map had 80% (Table 5) overall accuracy compared to the air-photo based
map (circa 1970-80s photos), which was created from pre-burn photos (Bourgeau-Chavez et
al., in prep.). The bog had 77 % user’s and 91 % producer’s accuracy, fen had 60% user’s and
producer’s accuracy, upland had 88% user’s and 76% producer’s accuracy. Note that in the
air photo-based reference map, both upland forest and open water were mapped as a
merged class, and this is likely causing some error. Also, the time difference between the
reference 70-80’s air photo map and the SAR-optical map of 2000’s likely resulted in changes
to the landscape, notably the fires that occurred in 1988 and 1998. Also, fens are very
difficult to map on air photos and there may be errors in the reference maps. We did find
errors in some areas mapped as Marsh in the air photo-based map.

4.3.4 Summary

This initial research demonstrates the strong potential of a SAR-Optical/IR approach for
application to large areas for a better understanding of the spatial variation in peatland
types across the boreal landscape. Similar data fusion methods have been (Li and Chen
2005) or are being used (Fournier et al. 2007, Grenier et al. 2007) for mapping peatlands of
Canada. The CWI methods were described earlier (Grenier et al. 2007), but are much coarser
classes. Li and Chen (2005) mapped peatlands of eastern Canada into open versus treed bog,
marsh, swamp and open fen with high accuracy. Their methods involved the use of several
dates of R-1 data (45° incidence), Landsat and a DEM. While we found R-1 to be of limited
use (as did Grenier et al. 2007) in western Canada, it should be noted that eastern Canadian
peatlands are quite different than western peatlands, and the various methods will need to
be assessed for transferability.

We are currently processing imagery to increase the Alberta study area to include a three
scene mosaic of PALSAR from the two dates, using current Landsat from spring, summer,
and fall, and ERS data. ERS data are being used over Radarsat, because of coverage of the
larger area. Field visits are planned to areas in disagreement between the air photo map and
SAR-Optical/IR map for validation and improvement of the mapping approach. Additional
peatland study sites will also be evaluated in eastern Canada, and Alaska, as well as the
Upper Peninsula of Michigan.
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Process Tree Level 2

Brown = burn, Green = upland, Cyan = wetland, blue = water, white = open fen

Figure 15. Process Tree images from the top down approach used for mapping Peatlands in
the Central Alberta study area using Definiens.
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Figure 16. Hybrid SAR-optical derived map of Peatland types in central Alberta.
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Reference AirPhoto Map
user's
Bog | Fen | Swamp | Marsh | Upland totals |accuracy
ol Bog 50 1 1 0 13 65 0.77
'2“ Fen 3 6 1 10 0.60
= | Swamp 1 2 7 1 11 0.64
-2 | Marsh 0 1 1 0.00
& [ Water 26 26 | 1.00
& | Upland 1 [ 1 1 21 24 | 088
&
Totals 55 | 10 9 1 62
producer's 091]060] 078 0.00 0.76

Table 5. Accuracy assessment of SAR-Optical Map on vertical axis and Airphoto map as
reference (top). Note that Upland on the airphoto map was labeled “Z” and represented
open water and upland forest.

5. Discussion and conclusions

Many techniques focus on using multispectral data, such as Landsat or Aster, alone or in
combination with ancillary data sets such as soils and topography for wetland mapping.
However, research has shown how SAR and multispectral sensors complement each other
in the classification and monitoring of wetland ecosystems and that SAR represents one of
the most promising sensor types for improving wetland mapping capability (Bourgeau-
Chavez 2004, 2008, Grenier 2007, etc). While multispectral data measure spectral reflectance
and emittance characteristics of various cover types and wetness in open canopied
ecosystems, SAR is sensitive to variations in biomass, structure and soil moisture and flood
condition of landscapes including forests and other closed canopy ecosystems. Forested
wetlands are the most difficult to identify remotely because of the inability of traditional
multispectral sensors to detect moisture beneath the canopy. Radar can not only penetrate a
closed canopy to detect flooding, but since radars are active systems, can acquire data
independently of solar illumination and cloud cover conditions. Thus, data can be collected
during specific conditions relevant to finding seasonally flooded wetlands or seiche-
influenced wetlands. These SAR data can be used not only to detect and define wetlands,
but also to monitor extent of inundation and in some cases level of inundation (Bourgeau-
Chavez et al. 2005, Lang et al. 2008).

The case studies shown here demonstrate the improved mapping capabilities by including
SAR in the traditional Optical/IR methods of mapping. It is important to note that the
timing of the acquisitions can be very important for detection of flooding beneath a canopy,
as was seen in the two JERS dates of imagery over Lake. St. Clair, where neither image date
was able to be used from mapping the flood condition. Further, the importance of multi-
temporal data was demonstrated in the image interpretation for all study sites, but
particularly for the Canadian peatland study in which the subtle changes in backscatter due
to changes in moisture levels allowed the distinction of wooded fens from bogs. Using
knowledge of the phenological changes which occur in one wetland over another, as long as
they are changes that can be detected by a particular sensor, can be key in distinguishing
otherwise similar appearing ecosystems in the mapping process.
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While the results shown here focus on amplitude data from SAR, the new era of SAR
sensors have full polarimetric capability and as such, polarimetric decomposition can be
used to understand the type of scattering occurring from a particular ecosystem.
Decomposition variables can be used alone, or as additional bands in the more typical multi-
band classifiers. Variables such as phase difference, which were used in the past have been
further developed to include complex analysis of the full scattering matrix. Decomposition
methods are being developed to use Radsarsat-2 for peatland discrimination using a single
date of imagery (Touzi et al. 2007). These new techniques are in the early stages of
development and have not been tested on a variety of sites yet. But there is great potential
for these new polarimetric satellite sensors, which are just beginning to be explored.
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