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Abstract

In this work, we consider the problem of generating practically implementable path plan for
flying unmanned aerial vehicles in 3D Complex environments. This problem is complicated
by the fact that, generation of the dynamically and geometrically feasible flight trajectories
for agile maneuver profiles requires search of nonlinear state space of the aircraft dynamics.
This work suggests a two step feasible trajectory generating approach. In the first step, the
planner explores the environment through a randomized reachability tree search using an
approximate line segment model. The resulting connecting path is converted into flight way
points through a line-of-sight segmentation.

After this first step we explain two different methods to create Dynamically Feasible Path,
first one that we called Modal-Maneuver Based PRM Planner is suitable for agile unmanned
aerial vehicles that their maneuvers can be define with distinct modes. This allows significant
decreases in control input space and thus search dimensions, resulting in a natural way to
design controllers and implement trajectory planning using the closed-form flight modes. In
this approach the resulting connectivity path and the corresponding milestones are refined
with a single query Probabilistic Road Map (PRM) implementation that creates dynamically
feasible flight paths with distinct flight mode selections and their modal control inputs. In our
second approach that we called Probabilistic B-Spline Planner, every consecutive way points
are connected with B-Spline curves and these curves are repaired probabilistically to obtain a
geometrically and dynamically feasible path. This generated feasible path is turned in to time
depended trajectory with using time scale factor considering the velocity and acceleration
limits of the aircrafts.

1. Introduction

Practical usage of Unmanned Air Vehicles has underlined two distinct concepts at which these
vehicles are instrumental. First are the routine operations such as border or pipeline monitor-
ing for which manned systems are expensive and inefficient. Second are scenarios such as
an armed conflict reconnaissance or nuclear spill monitoring, in which there is a high risk for
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human life loss as the proximity to the scenario increases. In this work, we consider a spe-
cific case of the second type of scenarios which involves flying through a complex and dense
city-like environment rather this be for reconnaissance or monitoring.

When the path planning problem is complicated with dynamic constraints on vehicle along
with geometrical constraints, problem becomes challenging due to complexity of dimension.
Therefore one cannot simply generate a trajectory that is dynamically feasible (feasible in the
sense that it would be trackable by a control system in the flight envelope and actuator lim-
its), relying on the path planning. If the flight trajectory is generated without checking the
velocity and acceleration bounds, lower level layers will have hard time searching for angular
velocities and angle of attack history that are in the feasible set. Therefore by sharing the dy-
namic feasibility checks between path planner and lower level layers, these layers covers their
disadvantages and provides both dynamically and geometrically feasible flight trajectories for
complex environments. Although many kinodynamic motion planning methods that declares
generating dynamically feasible path have been developed, they rarely can be used in practice
especially for the aerial vehicles because of computational complexities. General kinodynamic
motion planners require at least exponential time in that dimension of the state space of dy-
namical systems which is usually at least twice the dimension of the underlying configuration
space (Frazzoli et al., 2002). In practice, kinodynamic planners are implementable only for
systems that have small state-space dimensions. For example, the work presented in (Frazzoli
et al., 2002) suggests a path-planning relaxation which defines a class of maneuvers from a
finite state machine, and uses a trajectory based controller to regulate the unmanned vehicle
dynamics into these feasible trajectories. However, the trajectories to be controlled are lim-
ited to the trajectories generated by the finite state machine and the computational challenges
of generating real-time implementable flight trajectories in 3D complex environments still re-
mains as a challenge. Demonstration of path planner solution for flight in the 3D crowded
MelCity model and landing to base is seen in Fig. 1.

In our approach, we suggest a real-time implementable two-step path planner strategy. As the
first step, 3D environment and the passages are rapidly explored using an RRT based plan-
ner. From this geometrically feasible but not dynamically feasible path, line-of-sight critical
milestones are extracted. Although these milestones allow point-to-point flyable flight path
segmentation, it does not necessarily correspond to a fast agile and continuous motion plan.
To address this, as a second step, we will explain two different methods to create Dynamically
Feasible Path. First one that we called Modal-Maneuver Based PRM Planner is developed for
agile unmanned aerial vehicles that their maneuvers can be define with distinct modes. This
allows significant decreases in control input space and thus search dimensions, resulting in
a natural way to design controllers and implement trajectory planning using the closed-form
flight modes. In this approach the resulting connectivity path and the corresponding mile-
stones are refined with a single query Probabilistic Road Map (PRM) implementation that
creates dynamically feasible flight paths with distinct flight mode selections and their modal
control inputs. In our second approach, Probabilistic B-Spline Path Planner, every consecutive
way points are connected with C? continuous B-Spline curve. In face of geometrically and dy-
namically unfeasibility, generated path is probabilistically reshaped to eliminate the collisions
and dynamically unfeasibility thanks to local support property of the B-Spline curves and at
the end the time scale is adjusted to allow dynamic achievability considering the velocity and
acceleration limits of the aircrafts.

Rest of this chapter is organized as follows. In Section 2, framework of the dynamically feasi-
ble path planning and literature survey is given. In section 3, first step, finding geometrically
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Fig. 1. UCAV flight demonstration in the 3D complex city-like environment and landing to its
base

connectivity path method is explained and in Section 4, details of the following step that two
generating dynamically feasible trajectory methods is explained. In Section 5, system architec-
ture of the ITU CAL mobile robotic testbed is presented and its experiments are demonstrated
in Section 6. Simulation results and its computational time tables are also given in Section 6.
The conclusions are discussed in Section 7.

2. Framework of the Dynamically Feasible Path Planning Algorithms

For developing a real-time implementable planner, motion planning researches have been fo-
cused on sampling based approaches that rapidly search either the configuration or the state
space of the vehicle. In the last few decades, sampling-based motion planning algorithms have
shown success in solving challenging motion planning problems in complex geometries while
using a much simpler underlying dynamic model in comparison to an air vehicle. Roadmap-
based planners, like well-known Probabilistic Road Mapping (PRM) method as mentioned
in (Kavraki et al., 1996), are typically used as multi-query planners (i.e. simultaneous search
of the environment from different points) that connect these multiple queries using a local
planning algorithm. PRM planners converge quickly toward a solution path, if one exists, as
the number of milestones increases. This convergence is much slower when the paths must
go through narrow passages. For complex environments, some extended algorithms are sug-
gested for PRM like planners in (Hsu et al., 2003) and (Boor et al., 1999). Tree-based planners
build a new roadmap for each query and the newly produced samples are connected to the
samples that are already exists in the tree as in (Hsu et al., 1999), (Hsu, 2000), and (LaValle &
Kuffner, 1999). Rapidly-Exploring Random Tree (RRT) is the most popular representative of
tree-based planners that is an exploration algorithm for quickly searching high-dimensional
spaces that have both global and differential constraints. Sampling-based planners, especially
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tree-based planners (RRT and single-query PRM variants), have been adapted to solve dy-
namically feasible paths that accommodate kinodynamic constraints. Kinodynamic planning
refers to problems in which the motion must satisfy nonholonomic and/or dynamic con-
straints . The main philosophy behind kinodynamic planning is searching a higher dimen-
sional state space that captures the dynamics of the system (LaValle & Kuffner, 1999), (Hsu
et al., 2002).

Gradual motion planning methods -our approach can be represented in this class- are recently
proposed to solve complex path planning problem in cluttered environments. These methods
first solve a relaxed form of the problem and then the approximate solution is refined to solve
the original problem with a repairing method. In (Hsu et al., 1998), a roadmap is initially
generated by allowing some penetration into the collision workspace. Later, milestones are
carried to collision-free space. In Iterative Relaxation of Constraints (IRC) method (Bayazit
et al., 2005), first a relaxed version of problem is solved and then this coarse solution is used
as a guide to solve original problem iteratively. The strategy of using an approximate solution
to obtain a collision-free path is also used in Lazy PRM (Bohlin & Kavraki, 2001) and C-PRM
(Song & Amato, 2001).

In comparison, our method utilizes both the probabilistic and the deterministic aspects to
obtain a real-time implementable planner strategy. In the first step, the algorithm rapidly ex-
plores the complex environment and the passages using an RRT planner because of its well
quick spreading ability. In this part, our strategy focuses only finding an obstacle-free path
that can be tracked from the initial point to the goal point with line segments in the configu-
ration space. Dynamic constraints of the vehicle are completely disregarded to decrease the
computational time. This coarse obstacle-free path will be called as connectivity path. After
finding the connectivity path, this path is filtered with the line-of-sight implementation to
eliminate the points that cause long detours. Remained points that we call as way points natu-
rally appear in entering and exiting regions of the narrow passages that are formed between
the obstacles. An advantage of this refinement is that we can use these way points as guider-
milestones that point out hard regions and directions of the next coming hard regions in the
environment.

In explained first method, Modal-Maneuvering PRM planner, milestones are created for each
flight segment using randomized flight mode selection. This exploits all the full flight-
envelope and capability of the vehicle, and once the planner samples enough number of
milestones near one of the way-points, it continues with these milestones to reach other way
points. One distinct feature of this planner in comparison with other probabilistic planning
methods is the reduced input space selection. Specifically, in each query, instead of choosing
all input variables randomly, our planner chooses maneuver mode and its parameters that are
constrained by vehicle dynamics. In addition, the size of the search is limited to only partial
flight segments. Both of these factors contribute significantly in reduced computation time.
In explained second strategy that we will call Probabilistic B-Spline Path Planner, every way
point is connected with a B-Spline curve, then collisions and dynamic feasibility cases are
checked on curve. These forth-order B-spline curve presents C? continuous flight path. If the
generated curve is not feasible, probabilistic repairing methods are achieved by randomized
waypoint expansion on the connecting line path and the unit flight time is expanded within
controllable regime considering to feasible velocity and acceleration interval. Since B-Spline
curves have local support property, these repairing processes can be made on local path seg-
ments of interest.
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B-Spline curves have been used in many dynamic path planning and control problem imple-
mentations. In (Komoriya & Tanie, 1989) , dynamic trajectory is generated with the minimum
travel time for two-wheeled-driven type mobile robot. In (Munoz et al., 1994) visibility-based
path is modified to continuous feasible path via B-Spline curves. Using the well known local
support property of B-Spline curves, real-time path modification methods are proposed for
multiple mobile robots in (Paulos, 1998) and robot manipulators in (Dyllong & Visioli, 2003).
Constant acceleration time-scalable path generation method for the unmanned helicopters fly-
ing in the urban environments is used in our earlier work in (Koyuncu & Inalhan, 2008) that
we will use similar method but this time for the unmanned combat aerial vehicles.

3. Finding Geometrically Connectivity Path: First Step

In real-time applications, planners should be able give a reliable answer in minimal permit-
ted time slot. In motion planning problem, especially in complex environments, it is hard to
say when planners should stop searching or change the searching strategy (i.e. switching to
a more complex planner etc.). Moreover, finding an obstacle free geometrical path does not
necessarily mean that a dynamically feasible path can be implemented by the vehicle exists.
Although geometrical paths can be implemented via point to point navigation by the heli-
copter like vehicles with a inefficient manner but this flight strategy is not applicable for agile
combat vehicle operations in under-threat environments. For the vehicles that have complex
dynamics like combat aerial vehicles, directly searching in high dimensional state-space -as
kinodynamic planners do- consumes long computational time to find a feasible path. Specifi-
cally, we observed that before the major feasible path planning phase, defining the geometrical
obstacle free path and trackable way points significantly accelerates the searching ability and
decreases the total computational time of planner.

For finding connectivity path, RRT algorithm is used because of its rapid spreading ability.
RRT is a considered as being an efficient algorithm to search even high dimensional spaces.
However, one of the important drawbacks of using RRT as a stand-alone planner is biasing of
the distribution of milestones towards the obstacle regions if the configuration space has large
obstacles. Bi-directional RRT method shows performance more than single tree approach but
it has also discontinuity problem on the connection points of the paths. Therefore, we choose
to use single Goal-Biased RRT (LaValle & Kuffner, 1999) approach that converges to goal con-
figuration rapidly. We tested performance of the algorithm in different complex environments
and to conserve both rapid converging to solution and spreading abilities of the RRT, we chose
the 50% percent goal biasing value. In this phase, we are only motivated by good property of
the RRT algorithm to obtain connectivity path. Our strategy does not focus on dynamically
feasibility in this part of the path planner. Therefore, RRT algorithm is only used for searching
configuration-space of the vehicle with primitive maneuvers that includes level and climb-
ing flight and changing instantaneous heading direction. Construction of connectivity path
algorithm is given as Goal Biased RRT Algorithm.

In Algorithm I, to find the connectivity path, Goal Biased RRT method is used that one single
tree is extended from the initial point. Each loop attempts to extend the T tree first toward
the random selected point m,,,;, and second toward the goal point by adding new points.
To expand the tree, nearest point already within the 7 tree to the sampled random point (in
Line 3) and the nearest point to the goal point is selected (in Line 9) respectively in every one
loop. Generate function generates new points 1., on the direction of the selected nearest
points m1;¢,, at random selected distances as shown in Line 4 and 10. If direction angles ex-
ceed predefined limits, max direction angles are selected. These boundaries should be chosen

www.intechopen.com



326 Robotics 2010: Current and Future Challenges

Algorithm 1: Goal Biased RRT Algorithm

input :initial configuration g;,,;; and goal configuration g goal
output: connectivity path
1 T4 qipipandi <1

2 repeat
3 Select random point m,,,; in C and its neighbor point 11,4y in T
4 Generate 11,y is gone with trajectory e, from myeqr toward m, ;4
5 if eyo isin C Free then
6 T 4 Myew and i + 1
7 if Myeq 1s in end region then
8 | break with success
9 Select neighbor point ,ear 0f Ggoa in T
10 Generate 111, is gone with trajectory eyep from 4, toward Agoal
11 if eyo isin C free then
12 T 4 Myew and i + 1
13 if myey is in end region then
14 L break with success
15 if i = N max iteration number then

16 L break with fail

17 until end region is reached with success
18 Select connectivity path can be gone back from end region to initial point in T

according to vehicle’s kinematic boundaries. If new generated point and trajectory is within
obstacle-free configuration (checked in Line 5 and 11) then m,,.;, is added T tree as shown in
Line 6 and 12. If 7 tree reaches end region anytime, algorithm returns connectivity path. End
region can be obtained within a tolerable capture region as explained in (Kindel et al., 2000). A
solution of the algorithm in a complex city-like environment is illustrated in Fig. 2.

Because of the RRT’s extending strategy and our simplifications, undesirable detours are fre-
quently seen in obtained connectivity path. Since we only consider finding the obstacle-free
region; we can simply remove the points that cause these detours. In this phase of our strat-
egy, connectivity path is refined by Line-of-Sight Filter algorithm that erases points that result
in useless fluctuations with using a line-of-sight arguments. As can be seen in Fig.3, remain-
ing points generally appear in nearby entering and exiting field of the narrow passages and
inherently hard regions. Hence, these guard points also indicate where hard regions are be-
ginning, what the direction of the next-coming hard region. These points also give a sense of
agile maneuvering that are needed to fly over these points.

In this part of algorithm, a simple iteration checks if the selected point my;g, can connect
with the previous points in connectivity path with a line segment without colliding with any
obstacle. If the line segment collides with an obstacle, in other words, if the current point
cannot be connected to the selected point, last connectible point is added to the way point
sequence and the subsequent search continues from this point. This algorithm runs until the
last point of connectivity path is reached with a line segment. A solution is illustrated in Fig.3.
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Fig. 2. Demonstration of the RRT based Finding Connectivity Path Algorithm

Fig. 3. Demonstration of the refining Connectivity Path with the Line-of-Sight Filter Algorithm

4. Generating Dynamically Feasible Trajectory: Second Step

In the first step, generated connectivity path with straight line segments result in a simple and
implementable piecewise flight plan. However, this flight plan is not a fast agile and continu-
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Algorithm 2: Line-of-Sight Filtering

input : connectivity path
output: way point set WP
Myisip <— M1 and m; < myp
repeat
Generate line /,;;;, from m,;;; to m;
if 0, 1s collide with C,pe; then
| WP < m;_4
else
| i+1

until last point of connectivity path is reached

@ NS Ul e WN -

ous motion plan - a desirable feature in many complex unmanned aerial vehicles applications.
After obtaining the way points - we will call remaining points as way point set - on the envi-
ronment, many deterministic and sampling based path planner methods can be used to find
the dynamically feasible path between the way points.

On this point, we suggest two methods to create Dynamically Feasible Path, first one that we
called Mode Based PRM Planner is suitable for agile unmanned vehicles that their maneuvers
can be define with distinct modes.This mode-based structure is also well suited designing a
systematic hybrid flight control system. Our second path planner method is called Probabilistic
B-Spline Planner. This algorithm generates continuous flight paths using B-Spline fitting strat-
egy. In our earlier work, we used this strategy to generate constant acceleration time-scalable
path for the unmanned helicopters (have hovering and instantaneously changing heading an-
gle etc. abilities) flying in the urban environments in (Koyuncu & Inalhan, 2008). We will
explain the similar method that generates C> continuous flight path but this time it will also
be suitable for the agile aircrafts (unmanned combat aerial vehicles).

4.1 Modal-Maneuver Based Probabilistic Road Mapping Method

Our Mode-Based PRM approach (Koyuncu et al., 2008) is based on the simple idea of exploit-
ing the full flight envelope of the air vehicle through distinct flight modes from which almost
any maneuver can be created. This mode-based structure is especially well suited both creat-
ing flight paths and also designing a systematic flight control system. However, this structure
does not necessarily solve the critical problem of finding a) the possible fly-through passages
and b) the necessary mode selections to utilize these passages. These two points and the cor-
responding solution method are the main focus of this work.

One distinct feature of this planner in comparison with other probabilistic planning meth-
ods is the reduced input space selection. Specifically, in each query, instead of choosing all
input variables randomly, our planner chooses maneuver mode and its parameters that are
constrained by vehicle dynamics. In addition, the size of the search is limited to only partial
flight segments. Both of these factors contribute significantly in reduced computation time. It
is noted by (Frazzoli et al., 2002) that, in general kinodynamic motion planners require at least
exponential time in that dimension of the state space of dynamical systems which is usually at
least twice the dimension of the underlying configuration space. Because of this consideration,
in practice kinodynamic planners are implementable only for systems that have small state-
space dimensions. Thus, for the air vehicles that we focus on, it is hard and time-consuming
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to obtain a feasible path using a standard kinodynamic planner. We address this problem by
directing the search not to the expensive state-space, but to only a subset of the input space as
required by the flight modes (and their resulting controlled state-space selections). Thus, for
almost every flight mode, the input space is either two or three dimensional, with the most
complex mode 3D spin, being four dimensional.

Connectivity
RRT Path Line-of-Sight
E g Planner | > Filter
Line

Segments

Dynamically
Feasible Path Mode Based Way Points
- — PRM ————i Re-Gridding

Fig. 4. Dynamically Feasible Path Generating Process with Mode Based PRM Planner

Motion planning of agile vehicles from a control perspective has been mainly studied under
the topic of hierarchical hybrid systems. Basically, the flight path of an aircraft can be divided
into modes, and these modes serve as reference blocks to a control system, and the control
system regulates these modes with given specifications by possibly using nonlinear control
laws (Ghosh & Tomlin, 2000). Note that this modal approach can also be used for trajectory
optimization for multiple vehicles (Inalhan et al., 2002). (Frazzoli et al., 2002) suggested a
path-planning system which defines a class of maneuvers from a finite state machine, and
uses a trajectory based controller to regulate the agile vehicle dynamics into these feasible
trajectories. This approach has got the advantage of generating both feasible and optimal
trajectories in an environment with an obstacle while ensuring robust tracking of these trajec-
tories. However, the trajectories to be controlled are limited to the trajectories generated by
the finite state machine. Similar approaches have also been developed in (Schouwenaars et al.,
2004). Although these works provide asymptotic tracking, the modes as governed by the state-
machines do not exploit the full flight envelope and the generated maneuvers are not really
tailored toward an environment, which demand tactical advantage through exploitation of
the vehicle’s full capability - a feature that exists in sample based motion planning algorithms
and we exploit this feature while creating dynamically feasible paths using the probabilistic
roadmap approach over flight modes. We illustrate the control of a complex agile maneuver
over such modes in Fig. 5.

Multi Modal control framework consists of decomposition of the arbitrary maneuvers into set
of maneuver modes and associated maneuver parameters. The main aim of the work was the
help to reduce complexity of the both planning and control part. Complexity of maneuver
planning part has been reduced by reducing the dimension of the problem (modal sequence
has strictly lower dimension than state space description) and control part was relaxed by de-
signing specific controllers for each mode and switch between them in order track maneuver
mode sequence instead of designing a single controller for maneuver tracking over full flight
envelope. In this work we shall only focus on side of the path planning, discussion of the
switched control layer can be found on (Ure & Inalhan, 2009) and (Ure & Inalhan, 2008)
Basically, main idea is to divide an arbitrary flight maneuver into smaller maneuver segments
(called maneuver modes) and associated maneuver parameters (called modal inputs). If the
maneuver modes are found properly, one can describe any maneuver by giving the maneuver
mode sequence. This idea makes use of the fact that, 12 states of the conventional aircraft are
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Fig. 5. Flight Modes of an Aggressive Maneuver of F-16 over Flight Using the Full-Envelope
Dynamic Model

not independent during all maneuvers and one does not need to give all the state trajectory
of the aircraft to define a maneuver. Demonstration of those modes table (Table 1) is seen in
below and these modes and their generations are explained in (Ure & Inalhan, 2008) and one
of applications is demonstrated in (Koyuncu et al., 2009). These same modes table approach
will be used during design of the algorithms.

Mode State Constraints | Modal Inputs
q0 Level Flight h=0(¢06¢) = | Vra
0
7 Climb/Descent (¢,6,9) = Vr, (h,6w)
9 Roll 6,9) =0 Vr, | Pydt
73 Longitudinal (¢, ) =0 (VT/ rloop) 0
placeLoop
g4 Lateral placeLoop | 1 =0, (¢,0) =0 (VT, Vloop) il
VT/ PI Q/ R/
3D Mod
15 — {} V1, 9w, 0w, Pw
96 Safety {1 {0,1}

Table 1. Flight Modes and Modal Inputs

Previous step provided us to obtain a flight path with way-points that generally appear as
long straight flight segments that occasionally enter and exit passages. As a result of the
underlying randomized exploration toward the goal region, the tendency of the path is toward
larger passages and toward direct paths that lead to the goal region. Although this provides a
reasonably good approximation, it does not necessarily correspond to a flyable trajectory as it
is based on a simple point mass model with velocity and heading.

This part of our planning strategy is an extension of single-query PRM algorithm. It iteratively
builds a tree-shaped roadmap to connect the way-points one-by-one. In every inner loop, it
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Algorithm 3: Mode-Based PRM Planner

input : way point vector
output: dynamically feasible path

1 repeat
2 Tree < reached points
3 goal points < other way points
4 repeat
5 Select a milestone m1,,,,; from Tree probabilistically
6 Select a maneuver mode uniformly at random
7 Select modal inputs according to selected milestone
8 Create a trajectory segment e, with selected modal inputs and maneuver mode
9 Extend m,,;,,; with ey to myen
10 if epew is in Cgpe, then
11 if Myew is in approaching field of any goal points then
12 Compute weight value w
13 reached points < (Myeq, W)
14 if size(reached points) is enough then
15 | exit with success
16 else
17 L Tree < Myey and i + 1
18 if i = N max iteration number then
19 | exit with failure and f + 1
20 until success or failure
21 if f = M max failure number then
22 | Erase prior path segment and go back prior interest region to recalculate
23 else
24 | f+0

25 until last way point is reached

first selects at random a milestone as in Line 5, maneuver-mode and its modal inputs from
Table 1 as seen in Line 6 and 7 and then generates a trajectory with selected maneuver mode
and modal inputs from selected milestone as shown in Line 8. If this trajectory does not collide
with any obstacle (checked in Line 10), its end point is added to tree as a new milestone as
shown in Line 17 and its modal inputs are stored. If newly generated milestones fall in nearby
region of any goal points, the planner assigns a weight value to these milestones according to
their approaching angles as depicted in Line 12.

Milestone Selection; The planner selects an existing milestone in the Tree at random accord-
ing to direct proportion to their values. A milestone which has higher weight value has a
greater chance of being selected by planner, in the other words; milestones which can be prop-
agated with more smooth trajectories have greater chance to continue. These weight values
are assigned by approaching field. This milestone selection technique pushes our planners to
side of kinodynamic planners that use single-query PRM method. Differently, RRT based
kinodynamic planners select existing milestones which are nearest (metrically) to randomly-
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selected states (within all space). PRM like kinodynamic planners can select a milestone in
tree according to their values that are charged by planners before. Hence, planner can make
decision about which milestones should be chosen more densely. Therefore, our planner uses
alike method to select milestones.

Fig. 6. 2D Demonstration of Mode-Based PRM Searching

Modal-Input selection; Our planner only chooses modal inputs of the distinct maneuver
modes instead of choosing control inputs from high dimensional control-input space. These
distinct modes can exploit the full flight envelope and almost every flight paths can be created
with their combinations. In every loop of algorithm, after the milestone selection, planner first
chooses flight maneuver-mode and then chooses its modal inputs according to weight value of
the selected milestone. For example, considering to selecting level-flight mode, the milestones
which have close angles with line-of-sight to next-coming goal in a small interval (therefore,
it is assigned with higher weight values by approaching field) can be propagated with longer
straight flight paths. Hence, if this milestone is selected by planner, higher velocity rates (in
constant time, longer distance rates) are mostly preferred as modal input and then more agility
is obtained.

Computing Weight Values; If new generated collision-free milestone falls in nearby of any
way points in distinct distance metric, according to its angles and distance, it is assigned with
the specific weight value. For deciding these values, every way points are enclosed with
approaching fields includes distinct regions. If the angles of the milestone (felt in the region) are
within specific rate interval of the region, it is enumerated with the respective weight value.
Thus, it is aimed that; to charge the milestones which have angles closer to angle rates that
can carry it easily (i.e. with smoother curve) to next-coming way point with higher values.
The planner more densely selects the milestones are charged with higher value. Hence, it is
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Fig. 7. Complete Solution of Mode Based PRM Planner

intended to create more smooth flight segments. This tunneling effect provides a straight-
forward solution to the classical narrow passage effect seen in standard PRM methods.

In the main loop, the inner PRM path segment loops try to connect the way-points one-by-
one until the ultimate goal region is attained. During this iteration, if the inner loop returns
an increased number of failures, prior path segment is erased as depicted in Line 22 and PRM
searching is run from prior interest region. Snap-shots from the evolving PRM iterations and
the completed solution are given in Fig. 6.

4.2 Probabilistic B-Spline Planning Method

In our second way, we still desire that generated path must be continuous on the way points.
During the path generation phase, trajectory generation method should allow reshaping to
supply collision avoidance and dynamic feasibility. Therefore, local support is also a desirable
property on the path generation method. Local support means that the paths only influence
a region of the local interest. Thus, obstacle avoidance and dynamic-feasibility repairing can
be achieved without changing the whole shape of the generated path. B-Spline approach can
supply these main requirements. An overview of B-Spline can be found in (Piegl & Tiller,
1997) .

Basically, output C (1) can be defined in terms an k order B-Spline curve;

n
C(u) = ZPiNi,k (u) 0 <u < Upax (1)
i=0
The coefficients P; in Eq. 1 are called control points that will represent way points and pseudo

way points in our approach.
The B-Spline basis functions N; ; are given by the Cox De Boor recursion;
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Fig. 8. Dynamically Feasible Trajectory generating using Probabilistic B-Spline Planner
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A B-Spline curve can be constructed from Bezier curves joined together with a prescribed
level of continuity between them. A nondecreasing sequence of real numbers U =
[ Uy ...  Umax ] is called the knot vector. Frequently, the knot points are referred to as
the break points on curve (Piegl & Tiller, 1997). B-Spline basis function Njy is zero outside the
interval [u;, u;, ] and non-negative for all values of k, i and u.

Derivatives of B-Spline curve exist on the knot vector span. Since, the kth-order B-spline is
actually a degree (k — 1) polynomial, produced curve can be differentiated k — 1 times.

. n i
Cw)" =Y PNY) ()0 < 1t < ttyax (4)
i=0

A valuable characteristic of the B-Spline curves is that the curve is tangential to the control
polygon (formed by the control points) at the starting and ending point if some modifications
are supplied. This characteristic can be used in order to define the starting, ending and tran-
sition directions of the curve by inserting an extra pseudo control points in directions which
are defined according to way points” orientations assigned in the first step as explained in
(Nikolos et al., 2003).

In this strategy, we choose generate forth-order path B-Spline (cubic polynomials) to obtain
continuous inertial velocity and acceleration. All dynamically feasible trajectory planning
process illustrated in Fig. 8. In our earlier work (Koyuncu & Inalhan, 2008), we used con-
stant acceleration time-scalable path generation method for the unmanned helicopters(have
hovering and instantaneously change-heading abilities) flying in the urban environments that
we used to generate third-order segmented (between the way point) B-Spline curves. It was
good approximation to obtain rapid path planner algorithm that generates continuous iner-
tial velocity and constant acceleration. In this approach, we will generate single cubic B-Spline
curve. Complete process of that method seen in Fig. 8.

For generating B-Spline trajectory pass through way points, two pseudo control points are in-
serted after and before the every waypoint(except initial and last way point) in direction of
the their tangent vector that these tangent directions are assigned during the path planning
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step. Note that; for the first way point, only further pseudo way point and for the last way
point, only back pseudo way point should be added to way point set. The distance value be-
tween the way-point and the added pseudo-way points will define the transition velocity and
acceleration on the way points of the path. Hence, C? continuity, in other words, continuous
velocity and acceleration transition is naturally achieved on the way points.

For generate cubic B-Spline curves, we use specific nonuniform knot vector form U =
[ 00 00 Uy 1 1 1 1 ]toobtainthecoincidencebetween the firstand last
control points and the first and the last ends of the generated B-Spline curve respectively. De-
tailed information about this effect can be found in (Piegl & Tiller, 1997) as open uniform knot
vector effect. Upq is represents middle knot vector that is initially uniformly distributed in
(0,1) interval -number of points depends on the number of control points- and algorithm can
add new knot points to the vector without preventing its uniform form. We choose using
arbitrary [0, 1] interval for parameter u such that it represents unit-time scale (Vazquez et al.,
1994). This property is later used to allow dynamic feasibility via time scaling (i.e. expanding
the time horizon of the maneuver). Overall B-Spline path planning algorithm can be demon-
strated in Algorithm 3.

This algorithm tries to find dynamically feasible B-Spline curve passes through on the way
points with their heading angles and runs until the last way point is connected with a feasible
path. Initially, m number way points - generated in the first step- are added in control point set
P as seen in Line 2. Then, for every way point, except first and last way point, back pseudo
way point gp;j, and further pseudo way point gp; ¢ is located on random selected distance
d from way points on their heading tangent directions and these pseudo way point set gp is
also added in control point set P that is demonstrated in Line 3 to 6 . Different from other
way points, for the first way point, only further pseudo way point gp, r is located and for the
last way point, only back pseudo way point gp,, p, is located. Thus, algorithm initially begins
with 3m — 2 control points where m indicates that number of way points but note that the
algorithm can add new control points during to implementation to repair the B-Spline. As
initial form, open uniform knot vector form that is chosen in unit interval [0,1] is used in our
implementation as shown in Line 8. As depicted in Line 9, in a loop, B-Spline basis function
is generated via u parameter and then collision and dynamic feasibility is checked on every
discrete point of the curve as shown in Line 10. Since velocity and acceleration on the path is a
function of time, for each point of the trajectory we have to check if the instantaneous velocity
and acceleration is within the limits of the flight envelope. This Dynamic feasibility check
is done by checking the first and the second derivatives of the B-Spline curve which gives
the velocities and accelerations of the aircraft respectively. If these velocity and acceleration
values are within the limitations of the aircraft ( flight envelope) using chosen unit time scale,
generated path segment is accepted as dynamically feasible. One of the most critical step
in the path planning layer is to determine the velocity and accelerations on the trajectory; if
the aircrafts Velocity constraints are not taken into account, lower layers(maneuver planners,
low-level control layers etc. ) would not be able to find feasible references from this generated
trajectory. This concept is used for giving a sense on Dynamic Feasibility as Path Planners do.
If feasibility cannot be obtained during the path planning, repairing methods are implemented
hierarchically. Firstly, location pseudo control points are slid on the same tangent directions as
shown in Line 12 and the algorithm decreases the u value from current interest curve segment
—k/2 curve segment where k is represents order that is four in this implementation. Note
that, local support property of the B-Splines allows local control over the generated spline.
Specifically, this control is over the curve segments with £k/2 polygon spans around the

www.intechopen.com



336 Robotics 2010: Current and Future Challenges

Algorithm 4: Dynamically Feasible Trajectory Generating with B-Spline

input : way point set g = [g1 ... gm]

output: dynamically feasible path

TimeScale <— unit-time scale

P < g = [g1 ... gm] as control point set

foreach element g; of the g do
Insert back pseudo way point gp; |, to the random selected distance d from g; on its
negative heading direction
Insert further pseudo way point gp; ¢ to the random selected distance d from g; on
its positive heading direction

6 P < gp = [gp1,r 8P2,b §P2f -+ 8Pm—1b §Pm—1,f §Pm,p] as control point set
7 U< [0000Up;q1111]
8 foru<+0to1ldo

= WN =

)]

9 Evaluate B-Spline basis function
10 Check collision and dynamic feasibility
11 if collision occurs or point of the spline is not dynamically feasible then
12 Change locations of the pseudo way-points gp; ;,gp; s of the interest curve
segment according to u
13 Set u value as indicates that local interest curve segment —k /2 segment
14 my + +
15 if my > M, then
16 Change locations of the way points g; and its pseudo way-points gp; ;,8pi
of the interest curve segment according to u in its small region
17 Set u value as indicates that local interest curve segment —k/2 segment
18 my++and my; =0
19 if my > M, then
20 P < Pyew as new control point around unfeasibility and update knot
vector
21 Set u value as indicates that local interest curve segment —k/2 segment
22 mz + + and mq,my =0
23 if mz > M3 then
24 Change TimeScale to insert min/max values of velocity and
acceleration in dynamically feasible region
25 Set u value as 0
26 my + + and mq,my, mz =0
27 if my > M, then
28 | break with fail

29 Set TimeScale as generated path can be implemented as possible as in optimal time
30 return B-SplineTrajectory

displaced or newly added point. Therefore, when any changes is made on spline, instead of
evaluate all spline over and over again, u value is decreased by value interval that spans local
interest. Note that, all the repairing steps are tried with predefined threshold iteration times
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Fig. 9. Feasible Velocity - Acceleration Search on Flight Envelope

illustrated as M;s in the algorithm. After predefined number of trials, if the spline cannot be
repaired, the way point and its pseudo way points within local interest are carried to a new
collision-free locations and these locations are chosen as small random-selected distance away
from the prior locations as seen in Line 16.

If the B-Spline still cannot be repaired, new control point Py is added in control point vector
P around the region in which collision or infeasibility has occurred(Line 20). Since we know
the infeasible knot value and its interval in the knot vector, new knot point is added to the
midpoint of the infeasible knot interval. Hence, only a limited interval of the knot vector U is
updated. Reader should remember, only +k/2 polygon spans around the displaced or newly
added point will be effected with this change.

If all these processes can not repair the path, the time scale value is scaled in Line 24 to real-
locate the min-max velocity and acceleration interval of the trajectory(time depended path)
within the dynamically feasible interval that can be achieved by the aircraft (falls into limits
of flight envelope). For example in Fig. 9, search begins in a point outside the flight envelope
and in two steps it is moved into limits of flight envelope by time scaling. Finding the feasible
velocity-acceleration by this method is similar to what authors had done for finding the feasi-
ble modal inputs in the (Koyuncu et al., 2008). Note that other than flight envelope check there
is not any dynamic model involved in path planning layer. All the other feasibility problems
(actuator saturation, attitude discontinuity etc.) are left to low-level layers.

The end result is a time expanded or shortened flight path. Dynamic feasibility of the all
generated spline should be checked from the beginning considering to newly changed time
scale. After the generating B-Spline, TimeScale is also set again to fly over the all path in
optimal time interval. Dynamically Feasible Path solution of the B-Spline Planner Algorithm
in the MelCity model for a UCAV is demonstrated in Fig. 10

In (Koyuncu et al., 2009), one of application of this approach is demonstrated. In this work
(Koyuncu et al., 2009), with adding one more interval maneuver planning layer, generated
dynamically feasible trajectory is refined with modal-maneuvers that are briefly explained in
previous section. This additional step gave a change to use advantages of the multi modal
maneuvering approach.
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Fig. 10. Dynamically Feasible Path solution of the B-Spline Planner Algorithm in the complex
3D environment for UCAV

5. Mobil Robot Testbed for Algorithm Verification Tests

For 2D workspace verification tests of the algorithms, we set up a mobile robotic testbed in
Controls and Avionics Lab (CAL) at the Istanbul Technical University. On this testbed, we
implemented simplified 2D versions of the our algorithms to observe the practical imple-
mentability. 2D verification is good implementation method for such that 3D algorithms since
its have rapid prototyping property. Similar approach is seen in (Clark et al., 2003), that such
3D Multi-robot space system tests have been implemented in 2D MARS test-platform.

F R |

Fig. 11. ITUCAL Robotic Testbed

5.1 Mobile Robot Platform
The robotic testbed platform consists of a 4m x 3m movement platform with autonomous mo-
bile robots. The testbed robots build in CAL are circular shaped and have two independently
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driven wheels which allows the robots to rotate on its center points. The robots are equipped
with a 400 MHz Linux computer (Gumstix) and 8-bit microcontroller (Robostix) to perform
own tracking controllers and communication.
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Fig. 12. System architecture of ITUCAL Robotic Testbed

5.2 Visual Positioning

The configurations and color-ids(for multi-robot applications) of the robots are detected by an
overhead vision positioning system that is mounted on top of the platform. Every robot have
two spots on its top side and one of them takes place center of the robot while other one takes
place on heading of the robot with its own id color. Configurations of the robot consists of
position and heading direction is tracked thanks to these center and heading spots. General
appearance of the testbed can be seen in Fig. 11.

Visual positioning application runs on a centralized PC and uses two CCTV camera to cover
the platform. Taken images are processed to detect both configurations of the robots and the
obstacles. Processed images are turned in to point-cloud matrix to perform in the path planner
computer. All visual positioning application is coded on MATLAB and visual positioning unit
can give us configurations of the robot and obstacles in 15 Hz while path planning unit gives
solution in > 3 Hz on this application specifications. Example processed images can be seen
in Fig. 13

Fig. 13. Example processed environment image, detection obstacles and robots
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5.3 Network Communication

Two centralized computers (visual positioning and path planner) and robots” computers runs
on the system at the same time. These all computers are connected through a LAN network.
Communication among the centralized PCs is performed with the physical ethernet cable
while Centralized PCs and robots are connected with wireless network. Data communication
between the units are demonstrated in Fig. 12.

Testbed Network is based on a publish/subscribe architecture. To broadcast messages, sender
publishes a message to all subscribers and receivers accepts only messages belongs to them
according to head-tags of the messages.

5.4 Performing Low-Level Control

Every robots have ability to run own low-level control algorithms. Outer loop control al-
gorithm, a nonlinear trajectory controller, runs on robots” own embedded Linux computers
(Gumstix). To perform this algorithm, reference path is received from Path Planner PC while
current configurations is received from Visual Positioning PC via wireless network. Accord-
ing to position and orientation errors, trajectory controller evaluates the angular velocities of
both two motors that leads the robot to track reference path. Evaluated angular velocities are
sent to microcontroller (Robostix) as reference control variables through UART port. Robostix
also counts the pulses of the optic encoders of the motors to evaluate current angular veloc-
ities. Received reference angular velocities and current angular velocities are compared and
PWM signals are generated via PID controllers (as inner control loop) and then these PWM
signals are sent to motor drivers. These both application is coded in C performs on Gumstix
and Robostix. All these control architecture demonstrated in Fig. 14.
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Fig. 14. Control Architecture of the ITUCAL Robotic Testbed

6. Experiments and Simulation Results

6.1 Physical Hardware Demonstrations

To demonstrate the applicability of the algorithms on physical systems, robot experiments
have been implemented. In first group experiments on the ITU CAL Robotic Testbed, simpli-
fied version of the Modal-Maneuver Based PRM is used. On this application, two indepen-
dently controlled primitive maneuver modes -straight forward mode and turning mode- are
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used on robots. Example tunnel problem solving tests can be seen in Fig. 15. On this experi-
ment, the path planner evaluated its solution in 357 ms. Visual positioning system published
current configurations in 7 Hz and motor controllers run at 60 Hz. Robot completed its all
motion in 57 s.

In the second group experiments in the ITU CAL Robotic-Testbed, Probabilistic B-Spline Based
Trajectory Planner is implemented. A capture seen in Figure 16 is taken from one of the exper-
iments of the Probabilistic B-Spline Planner in robotic testbed. Evaluated path is tracked by a
nonlinear control algorithm runs on robots computer. This experiment took 29 s and the path
planner evaluated its solution in 278 ms while visual positioning system published current
configurations in 15 Hz and motor controllers run at 60 Hz.

Fig. 16. Probabilistic B-Spline Trajectory Planner experiments on Robotic Testbed

6.2 Simulations of 3D Environments

To illustrate the applicability the algorithms on 3D complex environments in varying ratio of
obstacle-space, performance of the algorithms is tested for 3D single-narrow-passage problem,
city-like environment, mostly-blocked environment and MelCity model environment that has
volume 23 times greater than the others. All the experiments were conducted on a 3.00 GHz
Intel Pentium(R) 4 processor and the average results are obtained over 50 runs.

In the first group simulations, Modal-Maneuver Based PRM algorithm for aerial vehicles is
tested and computational times of the all phases of the algorithm are illustrated in Table 2

As can be seen in results, total times mostly based on Mode-Based Planner phase. As antic-
ipated, increasing blocked space also increases the solution time as seen in Mostly-Blocked
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Fig. 17. Simulation example; Modal-Maneuver Based PRM Path Planer Construction Steps for
City-Like Environment

Connectivity Path  Filtering Mode-Based Total

Planner Phase Planner Time

Single-Narrow time 0.350 s 0.032s 32706 s  33.089s
Passage std 0.231s 0.008 s 17.699s  17.732s
City-Like time 0.712's 0.036 s 42.397 s 43.145 s
Environment std 0.942 s 0.008 s 24478 s 24.639 s
Mostly-Blocked || time 1.376 s 0.042 s 222.229s 223.648 s
Environment std 1.132s 0.011s 273451s 273.134s

Table 2. Modal-Based PRM Path Planer Construction Times (Seconds)

environment test. However, this increasing rate does not grow exponentially according to
percentage of obstacle space. Note that in this approach, modal inputs of the independently
controlled modes directly obtained that can be used by low level control layers. Therefore,
this approach may be seen slower than other path planner methods, but this method signifi-
cantly decrease task-load of the low-level layers and should be compared with kinodynamic
approaches.

In the second group simulations, we tested the performance of Probabilistic B-Spline Tra-
jectory Planning method on 3D environments. The computational times of steps of the al-
gorithm are illustrated in Table 3 for 3D single-narrow-passage problem, city-like environ-
ment, mostly-blocked environment and MelCity model environment that has volume 23 times
greater than the others.

Fig. 18. Simulation example; Probabilistic B-Spline Path Planer Construction Steps for MelCity
Model Environment

On this approach, increasing complexity of the environment, as shown in Table 2, mainly in-
creases computational time of the connectivity path that is implemented with a simplified ver-
sion of RRT. Since repairing part of the algorithm is visited much more in planning complex
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Connectivity Path  B-Spline-Based Total

Planner & Filtering Planner Time

Single-Passage avr 0.440 s 0.206s 0.646 s
Problem std 0.287 s 0.011s 0.293s
City-Like avr 0977 s 0.326s 1.303s
Environment std 0.935s 0.254s 0.930s
Mostly-Blocked || avr 3.930 s 2.182s 5.837s
Environment std 2.504 s 3.347s 3912s
MelCity Model || avr 3.306 s 0.538s 3.844s
Volume; 23x std 1.528 s 0.650s 1.212s

Table 3. Mode-Based Path Planer Construction Times (Seconds)

environments, computational time of the B-Spline based planner phase is also rises. How-
ever, this rising rate does not grow exponentially and computational times mostly based on
Finding Connectivity Path phase. The complete solution times suggest that our method will
be applicable for real-time implementations as the solution time is favorably comparable to
implementation times.

7. Conclusion

Trajectory design of an air vehicle in dense and complex environments, while pushing the
limits of the vehicle to full performance is a challenging problem in two facets. The first facet
is the control system design over the full flight envelope and the second is the trajectory plan-
ning utilizing the full performance of the aircraft. In this work, we try to address the mostly
second facet via the generating dynamically feasible trajectory planning. Hence, a real-time
implementable two step planner strategy is implemented for obtaining 3D flight-path genera-
tion for an Unmanned Aerial Vehicles in 3D Complex environments. Thus simplifications on
the problem improved the real time implement ability.

In our approach, initially, simplified version of the RRT planner is used for rapidly explor-
ing the environment with an approximate line segments. The resulting connecting path is
converted into flight way points through a line-of-sight segmentation.

In second step, we explained two different methods to generate dynamically feasible trajec-
tory. First one that we called Modal-Maneuver Based PRM Planner is developed for agile un-
manned aerial vehicles that their maneuvers can be define with distinct modes. This allows
significant decreases in control input space and thus search dimensions. In this approach
the resulting connectivity path and the corresponding milestones are refined with a single
query Probabilistic Road Map (PRM) implementation that creates dynamically feasible flight
paths with distinct flight mode selections and their modal control inputs. In our second ap-
proach, remaining way points are connected with cubic (C? continuous) B-Spline curve and
this curve is repaired probabilistically to obtain a geometrically (prevents collisions) and dy-
namically feasible (considers velocity and acceleration constraints) path. At the end, the time
scaling approach allow dynamic achievability considering the velocity and acceleration lim-
its of the aircrafts. Resulting strategy is tested on real-time physical hardware system using
ITU CAL mobile robot testbed for 2D environments and simulations for 3D complex environ-
ments. Computational times showed satisfactory results to used for real time implementation
for UAVs operations in challenging urban environments.
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One of the limitations of the algortihm is on very narrow passages, which require aircraft
to tilt considerably to avoid collision. In the problems we have examined distance between
obstacles are far wider compared to wing span of the aircraft so we didn’t include this case.
One of the possible future works is to handle these extreme cases. Moreover, extension of the
algorithms presented to UAV fleets is another natural application of this work.
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