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Modeling and Control of Mechanical Systems

in Terms of Quasi-Velocities

Farhad Aghili
Canadian Space Agency, Department of Space Technologies, Saint-Hubert, Quebec

Canada

1. Introduction

Multi-body systems’ (MBS) dynamics are often described by the second-order nonlinear equa-
tions parameterized by a configuration-dependent inertia matrix and the nonlinear vector
containing the Coriolis and centrifugal terms. Since these equations are the cornerstone for
simulation and control of robotic manipulators, many researchers have attempted to develop
efficient modelling techniques to derive the equations of motion of multi-body systems in
novel forms. A unifying idea for most modeling techniques is to describe the equations of
motion in terms of general coordinates and their time–derivatives. In classical mechanics of
constrained systems, a generalized velocity is taken to be an element of tangential space of
configuration manifold, and a generalized force is taken to be the cotangent space. However,
neither does space possess a natural metric as the generalized coordinates or the constrains
may have a combination of rotational and translational components. As a result, the cor-
responding dynamic formulation in not invariant and a solution depends on measure units
or a weighting matrix selected Aghili (2005); Angeles (2003); Lipkin and Duffy (1988); Luca
and Manes (1994); Manes (1992). There also exist other techniques to describe the equations
of motion in terms of quasi–velocities, i.e., a vector whose Euclidean norm is proportional to
the square root of the system’s kinetic energy, which can lead to simplification of these equa-
tions Aghili (2008; 2007); Bedrossian (1992); Gu (2000); Gu and Loh (1987); Herman (2005);
Herman and Kozlowski (2006); Jain and Rodriguez (1995); Junkins and Schaub (1997); Kodis-
check (1985); Kozlowski (1998); Loduha and Ravani (1995); Papastavridis (1998); Rodriguez
and Kertutz-Delgado (1992); Sinclair et al. (2006); Spong (1992). A recent survey on some of
these techniques can be found in Herman and Kozlowski (2006). In short, the square–root fac-
torization of mass matrix is used as a transformation to obtain the quasi–velocities, which are
a linear combination of the velocity and the generalized coordinates Herman and Kozlowski
(2006); Papastavridis (1998).
It was shown by Kodistchek Kodischeck (1985) that if the square–root factorization of the in-
ertia matrix is integrable, then the robot dynamics can be significantly simplified. In such a
case, transforming the generalized coordinates to quasi–coordinates by making use of the in-
tegrable factorization modifies the robot dynamics to a system of double integrator. Then, the
cumbersome derivation of the Coriolis and centrifugal terms is not required. It was later real-
ized by Gu et al. Gu and Loh (1987) that such a transformation is a canonical transformation
because it satisfies Hamilton’s equations. Rather than deriving the mass matrix of MBS first
and then obtaining its factorization, Rodriguez et al. Rodriguez and Kertutz-Delgado (1992)
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derived the closed–form expressions of the mass matrix factorization of an MBS and its in-
verse directly from the link geometric and inertial parameters. This eliminates the need for
the matrix inversion required to compute the forward dynamics.
The interesting question of when the factorization of the inertia matrix is integrable, i.e., the
factorization being the Jacobian of some quasi–coordinates, was addressed independently in
Spong (1992) and Bedrossian (1992). Using the notion that the inertia matrix defines a met-
ric tensor on the configuration manifold, Spong Spong (1992) showed that the necessary and
sufficient condition for the existence of an integrable factorization of the inertia matrix is that
the metric tensor is a Euclidean metric tensor.1 It turned out that for most of the practical
robot systems, the condition is not satisfied meaning that integration of the quasi–velocities
does not produce any quasi–coordinates. Jain and Rodriguez Jain and Rodriguez (1995) de-
scribed quasi–velocities are obtained as a result of diagonalizing the inertia matrix. Instead of
diagonalizing globally in configuration space, they look at a diagonalizing transformation in
the velocity space. The transformation replaces generalized velocity with the quasi–velocities,
without replacing the configuration variables. The concept of quasi–velocities has also been
used for the set-point control of manipulators Herman (2005); Herman and Kozlowski (2001);
Jain and Rodriguez (1995); Kozlowski (1998); Kozolowski and Herman (2000). However, the
problem of the tracking control of manipulators using quasi–velocities feedback still remains
unsolved owing to unintegrability of the quasi–velocities.
The goal of this chapter is to extend the concept of quasi–velocities for an gauge-invariant
formulation of constrained MBS that can be used for simulation, analysis, and control pur-
poses Aghili (2009). The main focus of previous works on modeling of constrained or un-
constrained mechanical systems using the notion of quasi–velocities, e.g., Junkins and Schaub
(1997); Loduha and Ravani (1995), has been decoupling of the equations of motion, which
yields a dynamical system with an identity mass matrix. Analysis of constraint force has not
been considered in the previous works. In this paper, we took advantages of the fact that
quasi–velocities are not unique but they are related by unitary transformations and found a
particular transformation which allows to decouple the equations of motions and the equa-
tion of constraints in such a way that separate control inputs are associated to each set of
equations. This facilitates motion/force control of constrained systems such as robotic ma-
nipulators. Moreover, unlike other approaches Aghili (2005); Doty et al. (1993a); Luca and
Manes (1994); Schutter and Bruyuinckx (1996), this formulation does not require any weight-
ing matrix to achieve gauge-invariance when both translational and rotational components
are involved in the generalized coordinates or in the constraint equations. Some properties of
the quasi–velocities dynamic formulation are presented that could be useful for control pur-
poses. Finally, the dynamic model is used for developing tracking control of constrained MBS
based on a combination of feedbacks on the vector of reduced quasi–velocities and the vectors
of configuration-variables Aghili (2009).

1 A manifold with a Euclidean metric is said to be "flat" and the curvature associated with it is identically
zero Jain and Rodriguez (1995).
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2. Quasi-Variables Transformation

2.1 Square-Root Factorization of the Mass Matrix

Dynamics of MBS with kinetic energy, T, and potential energy, P, obey the standard Euler–
Lagrange (EL) equations, which are given as

d

dt

(

∂T

∂q̇

)

− ∂T

∂q
= f , (1)

where q ∈ R
n is the vector of configuration-variables2 used to define the configuration of

the system, and f is the generalized forces acting on the system. The generalized forces f =
fp + fa contain all possible external forces including the conservative forces fp = −∂P/∂q
owing to gravitational energy plus all active and dissipative forces represented by fa. The
system kinetic energy is in the following quadratic form:

T(q, q̇) =
1

2
q̇TM (q)q̇, (2)

where the generalized inertia matrix M (q) is symmetric and positive definite for all q. It is well
known that any symmetric positive-definite matrix M can be decomposed as

M = WW T , (3)

where W is the square root factorization of M , e.g. the Cholesky decomposition; see Ap-
pendix A.
Considering the transformation

W̄ = WV ,

where V is an orthogonal matrix, i.e., V V T = V TV = I , one can trivially verify that
W̄W̄ T = M . Thus, we get the following remark

Remark 1. The square–root factorization (3) is not unique, rather they are related by unitary trans-
formations.

Now, substituting (3) into (2) and then applying the EL formulation yields

f =
d

dt

(

WW T q̇
)

− 1

2

( ∂

∂q
‖W T(q)q̇‖2

)T

= W
d

dt

(

W T q̇
)

+
(

Ẇ − ∂
(

W T(q)q̇
)T

∂q

)

W T q̇ (4)

Note that (4) is obtained using the property that for any vector field a(q), we have

∂

∂q
‖a(q)‖2 = 2aT ∂a

∂q
. (5)

Define

v � W T(q)q̇ (6a)

u � W−1(q)f , (6b)

2 also known as generalized coordinates
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which are called here as the vectors of quasi–velocities and quasi–forces, respectively. It should
be pointed out that in analytical dynamics, quasi-velocities are broadly defined as any linear
combination of velocities Baruh (1999); Corben and Stehle (1960); Meirovitch (1970). Since
detW =

√
detM �= 0, W−1 is well–defined and hence the reciprocals of relations (6) always

exist. Pre-multiplying (4) by W−1 and the substituting (6) into the resultant equation, we
arrive at the equations of mechanical systems expressed by the quasi–variables:

v̇ + Γv = u, (7a)

where

Γ � W−1
(

Ẇ − ∂vT

∂q

)

(7b)

is the Coriolis term associated with the quasi–velocities. Note that the quasi–velocities is fac-
tored out in the derivation of the Coriolis term (7b) that is different from the previous deriva-
tion Jain and Rodriguez (1995). As will be seen in the following section, this representation is
useful when the formulation is extended for constrained MBS.

2.2 Changing Coordinates by Unitary Transformations

Remark 1 states that the quasi–velocities (and also quasi–forces) can not be uniquely deter-
mined. Rather, the following variables:

v̄ = V Tv and ū = V Tu, (8)

obtained by any unitary transformation V , are also valid choices for the new quasi–velocities
and quasi–forces. Now we are interested to derive the equations of motion expressed by the
new quasi–variables v̄. To this end, using the reciprocal of (8), i.e., v = V v̄ and f = V f̄ , into
(7a) and then multiplying the resultant equation by V , we arrive at

˙̄v +V TV̇ v̄ +V T
ΓV v̄ = ū (9)

Analogous to the rotation transformation in the three-dimensional Euclidean space, consider
matrix V as a transformation in the n-dimensional space. Then, it is known that the time–
derivative of a differentiable orthogonal matrix V satisfies a differential equation of this form
Schaub et al. (1995)

V̇ = −ΩV , (10)

where Ω is a skew symmetric matrix representing the angular rates in n − D space Bar-Itzhack
(1989). The elements of Ω can be interpreted as a generalized eigenvector axis angular velocity
Junkins and Schaub (1997). It is worth noting that in the three-dimensional space, the angular
rate matrix can be obtained from the vector of angular velocity by Ω = [ω×]. For the n–
dimensional case, the method for computing the elements of matrix Ω can be found in Junkins
and Schaub (1997); Oshman and Bar-Itzhack (1985); Schaub et al. (1995). Finally, by replacing
(10) in (9), we can show that the latter equation is equivalent to

˙̄v+ Γ̄v̄ = ū,

where
Γ̄ = V T

(

Γ − Ω
)

V . (11)
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2.3 Conservation of Kinetic Energy

The kinetic energy expressed by the quasi–velocities is trivially

T =
1

2
‖v‖2. (12)

Note that in the following, ‖ · ‖ denotes either the matrix 2-norm or the Euclidean vector norm.
In the absence of any external force, the principle of conservation of kinetic energy dictates that
the kinetic energy of mechanical system is bound to be constant, i.e., u = 0 =⇒ Ṫ = 0. On
the other hand, the zero-input response of a mechanical system is v̇ = −Γv. Substituting the
latter equation in the time-derivative of (12) gives

vT
Γv = 0, (13)

which is consistent with the earlier result reported by Jain et al. Jain and Rodriguez (1995) that
the Coriolis term associated with quasi–velocities does no mechanical work. Note that (13) is
a necessary but not a sufficient condition for Γ to be a skew-symmetric matrix.

2.4 State-Space Model

It should be pointed out that despite of the one-to-one correspondence between velocity coor-
dinate q̇ and the quasi–velocity v, they are not synonymous. This is because the integration of
the former variable leads to the generalized coordinate, while that of the latter variable does
not always lead to a meaningful vector describing the configuration of the mechanical system.
Defining a matrix R = W Γ, we can calculate its ijth element from (7b) through the following
equations

Rij = ∑
k

( ∂Wij

∂qk
−

∂Wkj

∂qi

)

q̇k. (14)

Here Wij and q̇k are the (i, j)th entry of matrix W and the kth element of vector q̇, respec-

tively. Now let us assume that ξ̇ = v, where ξ is called quasi–coordinates. For ξ to be an
explicit function of q, i.e., ξ = ξ(q), it must be the gradient of a scalar function meaning that
ξ is a conservative vector field. In that case, (6a) implies that W T(q) is actually a Jacobian as
Wij = ∂ξ j/∂qi. Since the Jacobian is an invertible matrix, ξ(q) must be an invertible function
meaning that there is a one-to-one correspondence between ξ and q. Under this circumstance,
ξ and v are indeed alternative possibilities for generalized coordinates and generalized veloc-
ities and that can fundamentally simplify the equations of motion Bedrossian (1992); Gu and
Loh (1987); Kodischeck (1985); Spong (1992). It can be also seen from (7b) that if ξ(q) exists
and it is a smooth function, then the expression in the parenthesis of the right-hand side of
(14) vanishes, i.e.,

∂Wij

∂qk
−

∂Wkj

∂qi
=

∂2ξ j

∂qi∂qk
−

∂2ξ j

∂qk∂qi
= 0,

because of the equality of mixed partials. Thus, Γ ≡ 0 and the equations of motion become a
simple integrator system.
Technically speaking, a necessary and sufficient condition for the existence of the quasi–
coordinates, ξ, is that the Riemannian manifold defined by the robot inertia matrix M (q)
be locally flat3. However, that has been proved to be a very stringent condition Bedrossian

3 By definition, a Riemannian manifold that is locally isometric to Euclidean manifold is called a locally
flat manifold Spong (1992).
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(1992). Nevertheless, vector xT =
[

qT vT
]

is sufficient to describe completely the states
of MBS. Hence, similar to Jain and Rodriguez (1995), we look at the transformation only in
the velocity space. That is, only the velocity coordinate is replaced with the quasi–velocity
whereas the generalized coordinate remains. Setting (6a) and (7a) in state space form gives

d

dt

[

q

v

]

=

[

W−T

−Γ

]

v +

[

0

I

]

u. (15)

It is interesting to note that dynamics system (15) is in the form of the so-called second-order
kinematic model of constrained mechanism, which appears in kinematics of nonholonomic sys-
tems. This is the manifestation of the fact that the integration of quasi–velocities, in general,
does not lead to quasi–coordinates.

3. Constrained Mechanical Systems

3.1 Equations of Motion

In this section, we extend the notion of the quasi–velocity for modeling of constrained me-
chanical systems where the coordinates are related by a set of m algebraic equations Φ(q) = 0.
The constraints can be written in the Pfaffian form as

A(q)q̇ = 0 (16)

where Jacobian A = ∂Φ/∂q ∈ R
m×n is not necessarily a full-rank matrix because of the

possible redundant constraints. The EL equations of the constrained MBS with kinetic energy
T are

d

dt

(

∂T

∂q̇

)

− ∂T

∂q
= f −ATλ, (17)

where λ ∈ R
m are the generalized Lagrangian multipliers.

Using any form of the square–root factorizations in a development similar to (6)-(7), we can
show that (17) is equivalent to

v̇ + Γv = u− Λ
Tλ, (18)

where
Λ � AW−T . (19)

It can be verified that the quasi–velocities satisfy the following Paraffin constraint equation:

Λv = 0. (20)

Also, (20) may suggest that Λ be taken as the Jacobian of the constraint with respect to the
quasi–coordinates. However, this is true only if the quasi–coordinates ever exist. This means
that, in general, system (18) together with (20) most likely constitutes a non-holonomic system
even though the configuration–variables q satisfies a holonomic constraint equation.
Since W is a full-rank matrix, we can say rank(Λ) = rank(A) = r, where r ≤ m is the
number of independent constraints. Then, according to the singular value decomposition (SVD)
there exist unitary (orthogonal) matrices U = [U1 U2] ∈ R

m×m and V = [V1 V2] ∈ R
n×n

(i.e., UTU = Im and V TV = In) such that

Λ = UΣV T where Σ =

[

S 0

0 0

]

(21)
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and S = diag(σ1, · · · , σr) with σ1 ≥ · · · ≥ σr > 0 being the singular values Klema and Laub
(1980); Press et al. (1988). The unitary matrices are partitioned so that the dimensions of the
submatrices U1 and V1 are consistent with those of S. That is the columns of U1 and V2 are
the corresponding sets of orthonormal eigenvalues which span the range space and the null
space of Λ, respectively Golub and Loan (1996). As will be seen in the following, derivation
of the equations of motion hinges on computing a basis for the kernel of matrix Λ, which
constitute the columns of V2. Fortunately, there are many powerful symbolic algorithms and
even commercial softwares to do that Anton (2003).
Now, we take advantage of the arbitration in choosing the square–root factorization to find a
particular one that leads to decoupling of the equations of motion and those of constrained
force. Consider the unitary transformation (8) where the orthogonal matrix V corresponds
to decomposition (21). Then, the equations of motion expressed in terms of the new quasi–
variables become

˙̄v+ Γ̄v̄ = ū− Λ̄
T
λ, (22)

where Λ̄ � ΛV and Γ̄ has been already defined in (11). Again, it can be easily verified that
the new quasi–velocities satisfy the following Pfaffian constraints:

Λ̄v̄ = 0. (23)

At the first glance, the transformed system (22)–(23) reassembles (18)–(20) without gaining
any simplification. However, it is the structure of Λ̄ that will result in further simplification.
Using (21) in the definition of Λ̄ gives

Λ̄ =
[

Λr 0m×(n−r)

]

where Λr � U1S. (24)

Since Λr ∈ R
m×r is a full-rank matrix, it can be inferred from (23) that the first rth elements of

the transformed quasi–velocity v̄ must be zero. That is,

v̄ =

[

0r×1

vr

]

, (25)

where vr ∈ R
n−r represents a set of reduced quasi–velocities– in the following, the subscript r

denotes variables associated with the reduced-order variables. Clearly, the zero components
of the transformed quasi–velocities are due to the r–independent constraints. It can be verified
that (25) is equivalent to

V T
2 v = vr. (26)

Now, by using (26) in the reciprocal of relation (6a), we can show that there is a one-to-one
correspondence between v and q̇ as

q̇ = W−TV2vr, and vr = V T
2 W Tq̇. (27)

Moreover, by virtue of (25), we partition the quasi–forces accordingly as

ū =

[

uo

ur

]

, where
uo � V T

1 W−1f

ur � V T
2 W−1f

. (28)

In addition, we assume that matrix Γ̄ is divided into four block matrices

Γ̄ij = V T
i

(

Γ − Ω
)

Vj, i, j = 1, 2, (29)
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and then define
Γr � Γ̄22, and Γo � Γ̄12. (30)

Now, substituting (25) into (22) and then using definitions (28) and (29), we arrive at

v̇r + Γrvr = ur, (31a)

and
Λ

T
r λ+ Γovr = uo (31b)

Apparently, (31a) and (31b) represent the equations of motion and those of constraint force
which are completely decoupled from each other. Note that the partitioned components of the
quasi–forces, i.e., ūr and ūo, contribute exclusively to the motion system and the constraint
force system, respectively. Now, we are ready to combine (31a) and (27) into the state–space
form:

d

dt

[

q

vr

]

=

[

W−TV2

−Γr

]

vr +

[

0

I

]

ur. (32)

The above equation can be viewed as the special case of Kane’s equations Kane (1961); Kane
and Levinson (1985) where all particles have unit mass.
The Lagrangian multipliers can be uniquely obtained from (31b) through matrix inversion
only if r = m, i.e., in the presence of no redundant constraints. Otherwise, there are fewer
equations than unknowns, and hence there is no unique solution to (31b). Nevertheless, the
minimum norm solution can be found by

min ‖λ‖ ← λ = U1S
−1

(

uo − Γovr
)

. (33)

3.2 Calculating the Coriolis Term

The Coriolis force term Γr itself characterized completely the motion dynamics of a con-
strained mechanical system expressed by reduced quasi–velocities. In this section, we de-
scribe Γr expressed in terms of vr that appears to be simpler than (30). First, in view of (5) and
the facts that v = V2vr and ‖vr‖ = ‖v‖, one can verify that

∂vr

∂q
=

∂v

∂q
V2. (34)

Now, consider the relation between vr and q̇ as

vr = W T
r (q)q̇,

where Wr = WV2. Then, from (7b), (10), (30), and (35) we obtain

Γr = V T
2 W−1

(

Ẇ − ∂vT

∂q

)

V2 +V2V̇2

= V T
2 W−1

(

Ẇr −WV̇2 −
∂vT

∂q
V2

)

+V T
2 V̇2

= V T
2 W−1

(

Ẇr −
∂vT

r

∂q

)

. (35)

Finally, by noting that V T
2 W−1 = W+

r is a left inverse of Wr, that is, W+
r Wr = I , we can

express (35) by

Γr = W+
r

(

Ẇr −
∂vT

r

∂q

)

, (36)
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which closely resembles the Coriolis term of unconstrained mechanical systems in (7b). It is

interesting to note that Wr ∈ R
n×(n−r) can be thought of as the factorization of the semi-

positive "mass matrix" Mr = WrW
T
r = WPW T , where P = V2V

T
2 is a projection ma-

trix which projects vectors from R
n to the null space of system (20). A comparison between

systems (31a)–(36) and (7) reveals that the formulation of constrained mechanical systems re-
mains essentially similar to that of unconstrained mechanical systems if the quasi–velocity is
simply replaced by a reduced quasi–velocity.
Finally, a development similar to (35) shows that

Γo = W−
r

(

Ẇr −
∂vT

r

∂q

)

,

where W−
r = V T

1 W−1 is an annihilator for Wr, i.e., W−
r Wr = 0.

4. Force/Motion Control

In general, it should be always possible to choose a minimal set of independent velocity co-
ordinate, equal in number of the degrees-of-freedom (DOF) exhibited by the mechanical sys-
tem. However, a minimal set of independent generalized coordinates may not exist; a well-
known example is the orientation configuration of a rigid-body that can not be expressed
by a three-dimensional vector. However, the conventional control of constrained mechanical
system relies on the existence of a minimal set of parameters defining the configuration of a
constrained MBS. In this section, we provide velocity and position feedbacks from (reduced)
quasi–velocities and (dependent) configuration variables, respectively, for tracking control
and regulating a constrained MBS. Interestingly enough, the control challenge, then, becomes
similar to that of non-holonomic systems, as the configuration of MBS can not be represented
by any quasi–coordinates.

4.1 Properties

First, we explore some properties of system (31) that will be useful in control design purposes.

Remark 2. Using (13) and the fact that Ω is a skew-symmetric matrix in definition (29), we can say

vT
r Γrvr = 0.

4.2 Tracking Control

Due to presence of only r independent constraints, the actual number of degrees of freedom of
the system is reduced to n − r. Thus, in principle, there must be n − r independent variables
θ(q) ∈ R

n−r, which is also called a minimal set of generalized coordinates. In view of the time-

derivative of the minimal set of generalized coordinates, d
dtθ(q), and (27), we get

θ̇ = B(θ)vr, where B �
∂θ

∂q
W−T(q)V2. (37)

Since both velocities variables vr and θ̇ are with the same dimension, the reciprocal of map-
ping (37) must uniquely exist, i.e., vr = B−1(θ)θ̇.
We adopt a Lyapunov-based control scheme (Canudas de Wit et al., 1996, p. 74) for designing
a feedback control in terms of quasi–velocities. Define the composite error

ǫ � ṽr +B−1(θ)Kpθ̃, (38)
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where Kp > 0, ṽr = vr − vrd
, and θ̃ = θ − θd. Also, define the new variable as s = vrd

−
B−1Kpθ̃, which is used in the following control law:

ur = ṡ+ Γrs−Kdǫ, (39)

where Kd > 0. Applying control law (39) to system (31a) gives the dynamics of the error ǫ in
terms of the first-order differential equation:

ǫ̇ = −
(

Γr +Kd

)

ǫ. (40)

As shown in Appendix B, the solution of (40) is bounded by

‖ǫ‖ ≤ ‖ǫ(0)‖e−η1t, (41)

where η1 = 2λmin(Kd), and hence the composite error ǫ is exponentially stable.
Pre-multiplying both sides of (38) by B(θ), the resultant equation can be rearranged to the
following differential equation

˙̃θ = −Kpθ̃+
(

B(θ)−B(θd)
)

vd +B(θ)ǫ. (42)

Now, it remains to show that the solution of the above non-autonomous system converges to
zero. We assume that the matrix function B(θ) is bounded and sufficiently smooth so that it
satisfies the Lipschitz condition, i.e., there exists a finite scalar cl > 0 such that

‖B(θ)−B(θ∗)‖ ≤ cl‖θ− θ∗‖ ∀θ,θ∗ ∈ R
n−r. (43)

Furthermore, there exists scalar cb > 0 such that

B(θ) ≤ cbI . (44)

Assuming that the command velocity is bounded, i.e., ‖vrd
‖ ≤ cv, we can show that the

solution of the above differential equation satisfies

‖θ̃‖ ≤ ‖θ̃(0)‖e−η2t +
cb

clcv
‖ǫ(0)‖

(

e−η1t − e−η2t
)

, (45)

where η2 = λmin(Kp)− clcv; see Appendix C for details. Equation (45) implies exponential

stability of error ‖θ̃‖ provided that η2 > 0, i.e.,

λmin(Kp) > clcv. (46)

The above development can be summarized in the following theorem.

Theorem 1. Assume that the mass matrix factorization is a smooth function satisfying the Lipschitz
condition and that ‖vd‖ is bounded. Then, for a sufficiently large position gain, i.e., (46) is satisfied,
the error trajectories of the configuration-variables and quasi–velocities of a constrained MBS under
control law (38)–(39) exponentially converge to zero.

Tracking of the desired constraint force λd can be achieved simply by compensating for the
velocity perturbation term in (31b), i.e.,

uo = Λ
T
r λd + Γovr. (47)

It is worth noting that in view of the norm identity ‖u‖2 = ‖ur‖2 + ‖uo‖2, we cay say that
‖u‖ is minimum if u0 ≡ 0. That is tantamount to minimization of weighted norm of the
generalized forces where the weight matrix is the inertia matrix because ‖u‖2 = fTM (q)f.
Interestingly enough, not additional weighing matrix is required even if the elements of the
generalized contains both force and torque components.
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Fig. 1. A constrained 3-PRR manipulator.

4.3 Gauge Invariant

A problem that often arises in robotics, namely hybrid control or minimum solution to joint
rate or force, is that generalized coordinate q may have a combination of rotational and trans-
lational components that can be even compounded by having combination of rotational and
translational constraints Doty et al. (1993b). This may lead to inconsistent results, i.e., results
that are invariant with respect to changes in dimensional units unless adequate weighting ma-
trixes are used Aghili (2005); Doty et al. (1993b); Featherstone and Fijany (1999); Featherstone
et al. (1999); Manes (1992). For example, the minimum joint rate rates, min ‖q̇‖, or minimum
norm force, min ‖f‖, are not meaningful quantities if the robot has both revolute and pris-
matic joints Doty et al. (1993b).
An important property of the reduced quasi–velocities and quasi–forces is that they always
have homogenous units. As a matter of fact, since

‖vr‖ = ‖v‖ =
√

2T,

we can say that all elements of the vector of quasi–velocity v or vr must have a homogenous
unit [

√

kgm/s]. This is true even if the vector of the generalized coordinate or the constraints
have combinations of rotational and translational components. Similarly, one can argue that
the elements of the quasi–forces have always identical unit [

√

kgm/s2], regardless of the units
of the generalized force of the constraint wrench. Therefore, minimization of ‖v‖ or min ‖u‖ is
legitimate because the latter vectors have always homogeneous units. Moreover, the selection
matrices which are often needed in hybrid position-force control of manipulators when both
translational and rotational constraints are involved between its end effector and its environ-
ment Featherstone et al. (1999)—and that yields a problem with gauge invariance—becomes a
non-issue here.

5. Analytical Example

Fig. 1 illustrates a PRR manipulator, with one prismatic and two revolute joints. The vertical
motion of the manipulator tip-point is constrained by a solid surface. The prismatic joint
provides the vertical motion of the robot base, which is with mass of m. Clearly, the vectors of
generalized coordinates, q, and generalized force, f , have inhomogeneous components. We
assume that each link is uniform with length of l and mass of m. Then, the constraint Jacobian
can be expressed by

A(q) =
[

1 l(c23 + c2) lc23

]

,
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Fig. 2. Simulated motion tracking.
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Fig. 3. Simulated constrained force.
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Fig. 4. Trajectories of the quasi–forces.
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where c23 = cos(q2 + q3) and c2 = cos(q2).
Let us define the minimal set generalized coordinates as θ = [θ1 θ2]

T with θ1 and θ2 being
the horizontal location of the tip and the angle of the last link with respect to the vertical line,
respectively; see Fig. 1. Then from the kinematics, we get

θ(q) =

[

lc23 + lc2

q2 + q3 − 3π
2

]

Now assume that the control objective is to track the following desired trajectories

θ1d
(t) = 0.3 sin(0.6πt) + 0.5 (m)

θ2d
(t) =

π

6
sin(πt) +

π

12
(rad)

Figs. 2A and 2B show the actual and desired trajectories of the position and quasi-velocities
when the quasi-velocity feedback (38)-(39) is applied for the following parameters: m = 5 kg,
l = 1 m, Kp = 3I , and Kd = 5I . The time-history of the composite error, ǫ, shown in Fig. 2C
demonstrates tracking of the reference motion trajectory. Fig.3 illustrates trajectories of the
constraint force, λ, for two cases: i) no force control is applies, ii) the force control law (47) is
applied to achieve

λd = 50 (N).

Trajectories of the corresponding motion input, ur, and force input, uo, components of the
quasi–forces are shown in Fig. 4A. Trajectories of the Euclidean norm the quasi–forces with
and without force control are illustrated in the bottom of Fig. 4B. Clearly, the quasi–forces
norm is automatically minimized norm if the force control input, uo is set to zero. It is worth
noting that the norm of quasi-forces is an invariant quantity even though the vector of gener-
alized force has both force and torque components.

Appendix A

According to the Cholesky decomposition, a symmetric and positive-definite matrix M can be
decomposed efficiently into M = LLT , where L is a lower–triangular matrix with strictly
positive–diagonal elements; L is also called the Cholesky triangle. The Cholesky decomposition
is a particular case of the well–known LU decomposition for symmetric matrices. Neverthe-
less, the Cholesky decomposition is twice as efficient as the LU decomposition. The following
formula can be used to obtain the Cholesky triangle through some elementary operations

lii =
(

mii −
i−1

∑
k=1

l2
ik

)1/2 ∀i = 1, · · · , n (48)

lji =
(

mji −
i−1

∑
k=1

ljklik
)

/lii ∀j = i + 1, · · · , n

Since L is a lower-triangular matrix, its inverse can be simply computed by the back substitu-
tion technique.
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Appendix B

Consider the following positive–definite function:

V =
1

2
‖ǫ‖2

In view of Remark 2, the time-derivative of the above function along the error trajectory (40)
is obtained as

V̇ = −ǫT
Γrǫ− ǫTKdǫ

= −ǫTKdǫ

which gives
V̇ ≤ −2λmin(Kd)V.

Thus
V ≤ V(0)e−2λmin(Kd)t,

which is equivalent to (41).

Appendix C

Consider the following positive–definite function

V =
1

2
‖θ̃‖2, (49)

whose time–derivative along (42) gives

V̇ = −θ̃TKpθ̃+ θ̃TB(θ)ǫ+ θ̃T
(

B(θ)−B(θd)
)

vd.

From (44) and (43), we can find a bound on V̇ as

V̇ ≤ −λmin(Kp)‖θ̃‖2 + cb‖θ̃‖‖ǫ‖+ clcv‖θ̃‖2 (50)

≤ −2η2V + cb

√
2V‖ǫ‖,

which is in the form of a Bernoulli differential inequality. The above nonlinear inequality can

be linearized by the following change of variable U =
√

V, i.e.,

U̇ ≤ −η2U +
cb√

2
‖ǫ(0)‖e−η1t (51)

In view of the comparison lemma (Khalil, 1992, p. 222) and (41), one can show that the solution
of (51) must satisfy

U ≤ U(0)e−η2t +
cb‖ǫ(0)‖√

2

∫ t

0
e−η2(t−τ)−η1τdτ,

which is equivalent to (45).
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