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Processing surface electromyographical
signals for myoelectric control

Sorin Herle and Sergiu Man
Technical University of Cluj Napoca
Romania

1. Introduction

Myoelectric control is the most widely used approach for the control of upper limb
prostheses (Ping et al., 2006); (Light et al., 2002); (Chan & Englehart, 2005). When used as
control input, the myoelectric signal has dominated because it has several advantages over
other input types. Among these advantages are the detection of the signal on the skin
surface without any injury for the patient, the small magnitude of the muscle activity
required to provide control signals, which resemble the effort required of an intact limb, and
the possibility to use the signal for proportional control with relative ease (Parker et al.,
2006).

The functionality requirement of the prosthesis increases with the level of amputation, and
this demands more effort to control the device. To compensate for the burden, the challenge
is to develop control systems that are able to assist the patient in using the prosthesis. As the
myoelectric prostheses use biological signals to control their movements, it is expected that
they should be much easier to be used by a patient. Contrary to this idea, as Soares et al.
(2003) mention, the prosthesis control is very unnatural and requires a great mental effort,
especially during the first months after fitting.

Various factors such as the anatomical and physiological properties of muscles, the
characteristics of the instrumentation used for detection and processing, the position were
the sensor is applied, the surface of the skin and the tissues between de skin and the muscle
(Soares et al., 2003) determine the complexity of the surface electromyographical (SEMG)
signal. Therefore, a precise detection of the SEMG signal is an important issue. Due to the
small amplitude of the SEMG signal, the accuracy of the acquired signal is affected by noise.
Several methods have been developed to process the surface electromyographical signals
used in myoelectric control. In this chapter few of them will be described and some results
will be presented. The remainder of this chapter is organized as follows. Section 2 is
dedicated to pattern-recognition based methods, different approaches are presented and
two examples are given. Section 3, reviews few non-pattern recognition based methods. The
chapter concludes with a comparison of the methods presented and with an outline of
promising directions for future research.
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224 Rehabilitation Engineering

2. Processing of surface electromiographical signal based on pattern
recognition

2.1 Short description

The surface myoelectric signals provide rich information about the neuromuscular activity
from which they originate and, as a consequence, about the intention to achieve a certain
movement. The analysis of myoelectric signals has generated useful information used in
clinical diagnosis, as well as in control systems for assistive devices.

The objective of SEMG analysis is to extract meaningful features from the SEMG signals,
which can find their use in myoelectric control systems for rehabilitation devices or assistive
robots.

The first investigator to study electromyographical (EMG) signals is considered H. Piper
using a string galvanometer. The EMG signal began to be used in clinical diagnosis since
1928 and it was in the 1960s when a team of experts presented the first myoelectric
prosthesis. Myoelectric control has seen an incremental evolution since then. Still, the
complexity of the EMG signal represents the greatest challenge in its application.

There are two different classes of myoelectric control systems: pattern recognition based and
non-pattern recognition based. In the former, classifiers are used for discriminating the
desired classes from signal patterns. Non-pattern recognition based controllers are mainly
constructed on finite state machines or threshold control. Over the last years, as
classification algorithms have become more and more complex, the greatest success in
myoelectric control has been realized by pattern recognition based control systems. The idea
is to associate the different patterns found repeatedly in the EMG signal with the
corresponding member movements.

2.2 Segmentation of data

As myoelectric based control systems must meet certain real-time requirements, segments
are usually used in EMG analysis. A segment is a time section considered for analysis and
feature extraction. Various windowing techniques can be used for these tasks, but all should
respect the assumption that, considering real-time constraints, the response time of the
control system should be equal or less than 300 ms (Oskoei & Hu, 2007)

There are two basic major windowing techniques used in data segmentation, the adjacent
windowing and the overlapped windowing. The adjacent windowing technique uses
custom length adjacent segments for analysis and feature extraction, as shown in Fig. 1.
Because of high-speed processors, usually, the processing time is less than the duration of
each time segment, so, for each segment, there remains a certain amount of idle time. In the
overlapping windowing technique, this idle time of the processor is used for acquiring more
data to be processed. The technique is making full use of the processor, and each time
segment slides over the one before, as Fig. 2 illustrates. The technique, applied by Englehart
and Hudgins (2003) achieves the best performance using continuous segmentation and a
segment length of 32 ms. Majority voting was also used as a post-processing method. For a
given point majority voting includes a number of k last and next decisions to generate a new
one based on the greatest number of occurrences. The computing time for making each
decision should not be greater than the acceptable delay of the system.

www.intechopen.com



Processing surface electromyographical signals for myoelectric control 225

b J | ‘lu.l H‘“ | l “ | .| I||‘ Jlll"l' |l||'|Fl l'| Wl ||q|| rl " r"l” “ ||-
; 3 ,
@% - 5 5 : -
<>
S Z R
T S e
N e
S e
R R S T B~ -
0 128 256 384 512
Tirne(rms)
Fig. 1. Adjacent windowing technique
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Fig. 2. Overlapped windowing technique

2.3 Feature extraction

The use of row myoelectric signal in a control system is impractical, especially due to the
large number of inputs. Noise, randomness of the signal, and the large dimension of the
input vector all become real problems in an EMG control system, especially when using
embedded systems with limited resources. Moreover, if the final goal is to use this signal to
control a prosthetic device, it is absolutely mandatory to reduce as much as possible the
length of the input vector. That is because their controllers must meet very strict real time
constraints and the classifiers they implement perform much faster when handling small
input vectors. Transformation of the initial input space into a more adequate one, by
mapping each input vector into a smaller dimension feature vector, is called feature
extraction. Over the years, feature extraction has been used in pattern recognition and image
processing. Oskoei and Hu (2007) review various feature extraction methods used over the
time in myoelectric control systems. Based on their classification time domain, frequency
domain and time-scale domain features will be analyzed and compared in next section, with
focus on using the results for creating a robust control scheme for myoelectric control.
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2.3.1 Time domain features

The accessibility and the computational simplicity make time domain features the most
popular tools for generating outputs for the myoelectric control system. They are based on
time-amplitude representation of the signal, and can indicate measures like signal energy
force and duration. Hudgins et al. (1993) and Herle et al. (2008) studied a set of five features
and used the results for generating inputs for an neural network based classifier, to achieve
a classification rate between 90 and 96.67%. The set they used contains five representative
features for time domain representation:

MAV represents the mean absolute value of the segment analyzed. Eq. 1 is used to compute
this value:

Y=o 2 i (1)
m=1

where: i = 1...] is the segment number; S is the number of samples for a segment and x,, is
the mt sample in the segment i. MAV usually provides a maximum estimation of amplitude
when the signal is modeled as a Laplacian process, the alternative being Root Mean Square
(RMS) (witch better estimates Gaussian processes). Farina and Merletti (2000) provided a
comparative review of the two.

The Mean Absolute Value Slope is the difference between the Mean Absolute Values
computed for two adjacent segments:

Axj = xj+] —Xj 2

where i and i+1 are two adjacent segments and i = 1...I-1.

Zero Crossings is a measure of frequency which can be obtained by counting the number of
times the waveform crosses zero. A threshold was included in order to reduce the noise-
induced zero crossings. The zero crossing counter is incremented if the condition described
by Eq. 3 is satisfied for two consecutive samples x;, and xy+1.

{xm >0 and x,,,1 < 0} or {xm <0and x,,,1 > 0}
and |xm —xm+1| >¢&

€)

The Slope Sign Changes counts the number of times the slope changes sign. The same
threshold as for the zero crossings was used. The SSC counter is incremented if the
condition (4) is true for three consecutive samples, X1, X, Xi+1:

{xm >x, , and x, > xm+1}or
} and 4)

{xm <x,,and x, <X,

|xm —xm+1| =& or |xm —xm_1| =&

Eq. 5 indicates a measure of the waveform amplitude, frequency and duration in a single
parameter called waveform length:

S
[=)|4x, )
m=1

where:

Ax =x —x 6)
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Time domain features are also used in combination with other techniques to produce a high
classification rate. Chan and Englehart (2005) used the combination of autoregressive
coefficients and RMS and obtained a classification rate about 94.6 %.

2.3.2 Frequency domain features

Up until now, we have discussed features extracted from time domain representation of
signal. Another class of features, mostly used in fatigue study, are frequency domain
features. The power spectrum of a signal represents the contribution of every frequency of
the spectrum to the power of the overall signal. It is useful because many signal processing
applications, such as noise cancellation and system identification, are based on frequency-
specific modifications of signals. The frequency content of a stationary signal is derived
from the Fourier transform of the signal, defined by

FT,(f) = I x(t)e=2mift g @)

x(t) = [Fr(p)eihag ®)

Spectral analysis is the process of identifying component frequencies in data. Power spectral
density (PSD) is a positive real function of a frequency variable associated with a stationary
stochastic process, or a deterministic function of time and plays a major role in spectral
analysis. PSD describes how the power of a signal or time series is distributed with
frequency and is defined as the Fourier transform of the autocorrelation function of a signal.
The mean frequency and the median frequency are characteristic variables of PSD
intensively used in EMG signal analysis, especially in fatigue, force and angle or torque
studies (Gerdle & Karlsson, 1994). Peak frequency, mean power and total power are also
spectral parameters used in EMG analysis. PSD estimation techniques can involve
parametric or non-parametric approaches, and may be based on time-domain or frequency-
domain analysis. For example, a common parametric technique involves fitting the
observations to an autoregressive model. A common non-parametric technique is the
periodogram. In the autoregressive method, the main problem is the determination of the
model order. With the periodogram, other problems, such as large estimation variance and
small frequency resolution, still remain a challenge. Also, with all PDS estimation methods
we lose the information regarding the time at which each event took place.

2.3.3 Time-frequency features

The coefficients X(f) from the Fourier Transform denote the frequency domain distribution
of a signal with no temporal resolution and, as a consequence, they do not reflect the
transient proprieties of a signal. Time frequency representations (TFR) preserve information
regarding both the time structure and frequency structure of a signal. They combine the
above-mentioned methods of analysis to yield a clearer picture of a signal’s spectral
characteristics at very precise temporal localizations. Image processing, speech recognition
or geo-acoustic applications, all found the utility of TFR representations. TFR are divided in
two groups: linear TFRs (Fourier and wavelet transform) and quadratic TFRs (Wigner-Ville
distribution). As the extracted features are usually used in real time applications and the

www.intechopen.com



228 Rehabilitation Engineering

quadratic methods are based on complex, time consuming algorithms, in the next section we
will concentrate on the former. The central concept of linear methods is that of decomposing
a signal into time frequency atoms (Eq. 9):

N

x(H) = ) ciBi(t) 9)

i=1
where fi(t) are the so called basis functions and ¢; the corresponding coefficients. The basis
function must offer good time frequency localization and also, be computationally efficient.
In the following section we will discuss three TFRs: the short time Fourier transform, the
wavelet transform and the wavelet packet transform.

2.3.3.1 The Short Time Fourier Transform

The short time Fourier transform (STFT) is a two dimensional function of time and
frequency. The central idea of STFT is to partition the time axis through a limited window,
and assume that the signal is stationary over short periods of time. If w(r-t) is the
windowing function, the STFT equation is:

STFT(t, f) = J'x(r Y (1 — e 2 g (10)

It is important to observe that the information provided by STFT is limited by the size of the
analysis window. The choice of w(t) is the main factor on which the time frequency
resolution depends. It is important to know that the product between time and frequency
resolution must be lower bounded by 1/4r according to the time-bandwidth uncertainty
principle.

2.3.3.2 The Wavelet Transform

Wavelet theory was first described in the early 20th century. It occurred as the next logical
step: a windowing technique with variable-sized regions. Wavelet analysis allows the use of
long time intervals where we want more precise low-frequency information, and shorter
regions where we want high-frequency information. Wavelet analysis reveal particularities
of data that other signal analysis techniques miss, like discontinuities in higher derivatives,
trends and breakdown points. Wavelet analysis can also compress or de-noise a signal
without appreciable degradation.

The continuous wavelet transformation (WT) can be defined as:

— L (1)

CVT(a,t) = % j W' (

and determines the correlation of the signal with a shifted and scaled mother wavelet. The
term scale is preferred to the term frequency when using WT because time-scale view is a
very natural way to view data deriving from a great number of natural phenomena. A high
scale shows slowly changing features, with low frequency, and a low scale illustrates the
high frequency details of a signal.
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2.3.3.3 The Wavelet Packet Transform

The wavelet packet transformation (WPT) is a generalization of wavelet decomposition that
offers a richer range of possibilities for adapted signal analysis. It uses a configurable tiling
of the time-frequency space, so the partitioning of the axis may take many forms to suit the
application. The main difference between STFT, WT and WPT is the manner in which they
partition the time frequency or the time scale plane. A STFT use a plane composed of cells
with identical aspect ratio in time and in frequency. A WT offers a variable tiling of time
scale plane, as frequency resolution is proportional with the center frequency, allowing
greater frequency resolution at lower frequencies and better time resolution at high
frequencies.
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Fig. 3. Four partition methods: (a) Time domain (Shannon), (b) Frequency, Domain
(Fourier), (c) STFT (Gabor), (d) Wavelet analysis

The arbitrary segmentation of the frequency axis is provided by WPT. This allows a
selection procedure for providing the best set partition for a specific application.
Fig. 3 illustrates the way each technique partitions the corresponding representation plane.

2.3.4 Dimensionality reduction

The methods mentioned above transform the initial input space in a more adequate one, but
not necessary in a smaller dimension. The dimensionality reduction’s role is to retain the
most important information for class discrimination and discard what is irrelevant for the
purpose of classification. It is easier to analyze and build a classifier with fewer inputs. This
information selection can be achieved by selecting an optimal feature set. Feature selection
and feature projection are two fundamentally different approaches to determining the beast
feature set.
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Feature selection, also known as variable subset selection, is the technique of selecting a
subset of relevant features according to some criterion. It requires a search strategy such as
sequential forward or backward selection, simulated annealing or Genetic algorithms.
Feature projection methods try to achieve minimal loss of information while describing the
data as concisely as possible. Principal component analysis (PCA) and linear discriminate
analysis techniques are two of the mapping functions used for feature projection. For
instance, PCA will generate components ranked according to the information they
contribute to the data, in a mean square error sense. Different feature projection techniques
can also be used together for obtaining better results. K. Englehart et al. (1999), investigated
feature projection techniques in time-frequency features and achieved the highest
classification rate using the WTP/PCA/LDA combination. Also a self-organizing feature
map was used in addition to PCA by Chu et al. (2005), leading to significant improvements.

2.4 Classification

As Fig. 4 illustrates, the classification of EMG signal is a multi stage process, and the actual
classification algorithm is only the last of the stages. As already seen, signal representation,
achieved by feature extraction, and dimensionality reduction, are vital for obtaining
meaningful information for classification. The classifier’s role is to use this information and
generate distinctive classes corresponding to the desired motions.

Raw Feature Dimensionality Classificati Class
EMG > extraction > reduction > assication  =—1he]s

Fig. 4. The stages of the classification problem

The recognition of the signal characteristics has been performed using a number of soft-
computing approaches, such as neural networks (NN), fuzzy logic or neuro-fuzzy.

2.4.1 Neural networks based classifiers

Neural networks are structures composed of elements inspired by biological nervous
systems. As in nature, the connections between elements largely determine the network
function. In the last decade, NNs have been intensively used for modelling linear and non
linear relationships from a finite number of samples. Once the model is obtained from the
training data, it can be used to predict the output values corresponding to the input vector.
One of the main advantages in using NNs is that they require no a prior information about
the process, and still yield high classification rates.

For example, Soares et al. (2003), have used a multi-layer perceptron (MLP) in combination
with an AR technique for feature extraction, and have obtained a very high rate of success.
Kuruganti et al. (1995) used two channels with five time domain features per channel to
classify four functions with an NN classifier and 90% classification. Chaiyaratana et al.
(1996) have used two different types of radial basis function NN. Also, Englehart et al.
(1999) used a combination of time scale features, principal component analysis and a MLP
classifier to obtain a high rate of success (over 90%). Also time-delayed artificial neural
network had been used by Au and Kirsch (2000) in combination with time domain features.
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2.4.1.1 Multi-layer perceptron

Multi-layer perceptron is the most commonly used NN architecture for pattern
classification.

MLP is composed of neurons or nodes, which usually employ a sigmoid nonlinearity or a
linear function. Fig. 5 illustrates the architecture of a typical MLP network:

Input layer Hidden layers Output layer

Fig. 5. MLP network architecture

Its fundamental computational unit is the perceptron. Its role is to form a weighted sum of
the components of the input vector and to add a bias value. The result is then passed
through nonlinearity as logistic sigmoid or hyperbolic tangent sigmoid.

In the training process, the network weights are adapted so as to provide suitable mapping
of input vectors in a set of desired responses. The most used training algorithm for MLP is
the backpropagation algorithm. It is a stochastic approximation of the steepest descent
algorithm, in which the network weights are moved along the negative of the gradient of the
performance function. The process of computing the gradient and adjusting the weights is
usually stopped when a certain stopping criteria is achieved. A minimum value of the
magnitude of the gradient, or of the sum squared error is common stopping criterions.

The input vector feeds into the first layer and each node of the output layer corresponds to a
class in a pattern recognition problem The MLP architecture may contain multiple hidden
layers, but according to Haykin (1998), given sufficient neurons, a single hidden layer is
enough to approximate arbitrary functions.

Karlik et al. (1994), Ito et al. (1991) and Kelly et al. (1990) published early studies on using
MLP as a myoelectric classifier. Recently, Zhao et al. obtained an accuracy of 95% by
applying MLP to recognize six motion patterns.

2.4.2 Fuzzy classifiers

Fuzzy logic approaches exploit the partial truth and uncertainty, which make them popular
in bio-signal classification and processing. Fuzzy logic systems can discover patterns
difficult to detect, and can tolerate contradictions in data. One can also create a fuzzy system
to match any set of input-output data. The values detected by the EMG sensors are
transformed by the fuzzyfier into linguistic variables, that is, variables whose values are
words rather than numbers.

In (Micera et al., 2000) authors evaluated the performance of a variety of neural and fuzzy
classifiers: self-organizing maps (SOM), fuzzy c-means (FCM), multi-layer perceptrons
(MLP), and Abe-Lan fuzzy network (ALFN) using small-sized training sets. The reported
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results were: 50% for SOM, 53.33% for FCM, 86.66% for MLP, and 93.33% for ALFN. Also,
in (Leowinata et al.,1998) a fuzzy logic classifier was used on data collected from an array of
electrodes, and in (Weir et al., 2003), authors also proposed a fuzzy logic based prosthesis
controller.

2.4.3 Neuro-fuzzy classifiers

Neuro-fuzzy is a way to exploit the advantages of both techniques by combining fuzzy logic
and neural networks. Neuro-fuzzy techniques have been widely used for data analysis and
decision-making (Nauck & Kruse, 1997). A neuro-fuzzy system can be viewed as a feed
forward neural network where the first layer represents input variables, the middle (hidden)
layer represents fuzzy rules and the third layer represents output variables (Nauck et al.,
1997). Neuro-adaptive learning techniques provide a method for the fuzzy modeling
procedure to learn information about a data set. Fig. 6 presents a typical structure of a
neuro-fuzzy system.

Input

v

Fuzzyfier Layer

v

Rule Layer

v

Defuzzyfier Layer

Fig. 6. Structure of a neuro-fuzzy system

(Hussein & Granat., 2002) uses a neuro-fuzzy inference system (ANFIS) on atoms obtained
with the Gabor matching pursuit algorithm. He used a generalized bell function (Eq. 12) as
the membership function for the Sugeno type fuzzy classifier and the least-squares error Eq.
13 as a cost function for adjusting the coefficients.

W(x) = ————¢ L

N
e(n) = %Z‘ ei(n)?, ei(n) = di(n) - y;(n) 13)

1=
Where d;(n) is the desired output and yi(n) is the actual output of the network. He obtained a
95% rate of classification.
In (Karlik et al., 2003), authors presented a comparative study of the classification accuracy
of myoelectric signals using three classifiers: MLP NN, conic section function NN and fuzzy
clustering NN. They obtained the highest classification rate (98.3%) with the fuzzy
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clustering NN. A 6 class motion recognition system was proposed in (Kiguchi et al., 2003),
applied on time features extracted from 11 channels data, based on a neuro-fuzzy classifier.

2.5 Examples
The next section will present the development of two multifunction myoelectric classifiers.
Different types of features and different classifier schemes will be used.

2.5.1 Example 1

The first example will describe a myoelectric classifier based on a multi-layer perceptron.
The inputs provided to the network are the autoregressive coefficients. The classification
performance of the feature sets was investigated for four classes of movement. The system
architecture is presented in Fig. 7.

Matlals
SeNSors Ammplifiers A Dy conversion

Filters

¥

Featurs

exiraciion-
AR maosciod
¥
ML NN

e——

Fig. 7. System architecture based on neural network classifier

Bagnoli 4 system from Delsys Inc. was used for data acquisition, in combination with NI
USB-6009 AD card from NATIONAL INSTRUMENTS, The system offers a gain factor
between 0 and 10000 and a bandwidth of 20-450 Hz +10%.

The signals were acquired from the biceps ant the triceps muscles using two differential
sensors and a amplification of 1000. Adjacent segments with lengths of 256 samples each
were processed. The forearm movements were detected using a goniometer, like the one in
Fig. 8 and each class of movement have been associated with a correspondent segment of
the myoelectric signal.

Fig. 8. The goniometer
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As the power spectrum of the signal is concentrated in the 20-500Hz range (Soares et al.
2003), first step in signal processing is applying a Butterworth band-pass filter with cut-off
frequencies of 20 Hz (low) and 450 Hz (high).

Soares et al. (2003) had shown the fact that AR modeling of the EMG signal offers very good
performance in MES classification. It also leads to a small dimension feature vector and
therefore to a reduced processing time.

Autoregressive model is commonly used to parameterize linear systems. AR model attempt

to predict an output X(7) of a system based on the previous outputs ( x(n-1), x(n-2),...). AR
model is based on the Eq. 14:
M
x(n)=Zaix(n—i)+e(n),n=0..N—1 (14)
i=1

where a; are the AR coefficients, M is the model order and N, the size of the segment

considered for analysis, x(1) are the samples of the actual signal and X(1), the samples of
the modeled signal. AR methods are widely used for spectral estimation, as they are
determined by considering x(n) as the output of a system characterized by the transfer
function Eq. 15:

1

G(f) = —
1+ Z aje 2t (15)
i=1
with Gaussian noise used as input.
The power spectral density of x(n) can, therefore, be expressed as Eq. 16 illustrates. The

estimation of power spectrum consists of the AR parameters determination according to a
proper algorithm.

Pyy = Gsz(f)z (16)

Studies have shown that an AR model of a sufficiently large, but finite order M, might
approximate, with a specified degree of accuracy, any model (Hefftner et al., 1988). In
calculating the AR coefficients we followed the steps suggested in (Akay, 1996) :

- initialize the filter coefficients.

- calculate the predicted value of the input signal

M
x(n) = Y ap(n i) (17)
i=1
estimate the prediction error
e(n) = x(n) = x(n) (18)

update the AR-coefficients using the constant of convergence y

aj(n+1) = aj(n) — 2pe(n)x(n —1i) (19)
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An ideal value for the constant of convergence cannot be found, and it is not practical to
look for a specific value of y for every single EMG signal to be processed. Based on multiple
tries, we used p=0.01, as it provided the best approximation for most of the signals used.
Farina and Merletti (2000) showed that a model of order 10 works appropriately for any
segment length. Soares et al. (2003), concluded that a fourth order model can adequately
represent the EMG signal. We searched a best approximation in models with orders
between 4 and 10. As the results didn’t show improvements when using a higher model
order, order 4 was the choice for calculating the AR coefficients.

A three-layered feed-forward neural network was used in the next step for classifying the
obtained AR coefficients into the four classes of motion.

There were recorded a set of 200 patterns for each of four classes of motion for training the
network. Also, typically, the backpropagation algorithm had been used in the training
process. The number of epochs set for the training stage was 200. This value had been
chosen considering the use of Levenberg-Marquardt method for backpropagation
algorithm, which appears to be the fastest method for training moderate-sized feed-forward
neural networks.

After trained, the neural network was presented with a new set of EMG pattern. The test set
was represented by 200 patterns for each of four classes of motions. A 91.50% classification
rate was achieved. The recognition rates varied between 90% and 92.50% as follows: 90% for
flexion, 92.50 for extension, 92% for pronation and 91.50 for supination.

2.5.2 Example 2

Herle et al. (2008) presented the architecture of a rehabilitation system able to assist the
patient. They used a neural network classifier to classify time domain features. Four motions
of the forearm: extension, flexion, pronation and supination were controlled using a feed-
forward neural network (FFNN) based classifier.

Feeding the SEMG signal as a time sequence, directly into the classifier, is not a feasible
approach, because of the complexity of SEMG signal, the large number of inputs and
randomness of the signal. Moreover, if the final goal is to use this signal to control a
prosthetic device, it is absolutely mandatory to reduce as much as possible the length of the
input in order to reduce the delay between signal detection moment and the effective
actuation of the device. One solution is to map the initial sequence into a smaller dimension
vector, called the feature vector.

Over the years many features were suggested for myoelectric classification. The amplitude
of a SEMG signal and its related features are often investigated in time-domain analysis.
Time-domain features are the most popular in myoelectric classification due to their
computational simplicity.

Features were extracted from a window of two hundred samples (200 ms) of the SEMG
signal, even if the length of the recorded signal was one second. The 200 ms window was
empirically selected. It is better to use, however, first 200 ms after onset moment. The two
hundred samples were divided into five segments, each one having a length of 40, as Figure
9 show. For each segment five features have been computed: Mean Absolute Value (MAV),
Mean Absolute Value Slope (MAVS), Zero Crossing (ZC), Slope Sign Changes (SSC), and
Waveform Length (WL) (Hudgins et al., 1993).
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Fig. 9. Waveform segmentation. a) The SEMG signal from biceps (up) and triceps (down)
during 1 second. b) Five segments of 40 ms used for feature extraction (Herle et al., 2008)

Subasi et al. (2006) used an extra segment beside the five segments. The features for the sixth
segment were calculated as the arithmetic mean of the values computed for the first five
segments.

A set of 60 features (5 features/segment x 6 segments x 2 channels) were computed for each
movement (Herle et al.,, 2008). Using the 60 features as inputs for the neural network
classifier conducted to a rate of discrimination around 90%. Previous studies showed that by
reducing the set of features and choosing the best features according to some criteria, the
classifier performance can be improved. The classifier architecture was modified using a
neural network with ten neurons on the input layer, two hidden layers each one having ten
neurons, and one output layer with four neurons. The transfer function of the hidden layers
was a sigmoid and that of the output layer was linear. After the training session, the
classifier was tested with features extracted from signals that never been used. The meaning
of the outputs’ values, used to discriminate among the four motions is presented in Table 1.
Figure 10 illustrate the classifier performances.

Network’s Forearm movements
outputs Extension Flexion Pronation | Supinatio
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

Table 1. Codification of the four movements
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Fig. 10. Classifier responses to 60 test movements (Herle et al., 2008)

The rate of recognition increased from about 90%, when 60 inputs were used, to 96.67%
when 10 inputs were used.

This example show that a satisfactory rate of discrimination can be achieved using an easy
to implement classifier. The main disadvantage of this approach is the computational time
required by the classifier.

Actually there is a trade between the computational time and the performance of the
classifier.

3. Processing of surface electromyographical signals using non-pattern
recognition based methods

Non-pattern recognition-based methods can be applied in myoelectric control. These
methods are used in rehabilitation field for specific applications like wheelchair control
(Moon et al., 2005); (Felzer & Freisleben, 2002), upper and lower limb prosthesis control, etc.
Different types of control systems can be implemented based on these methods. Thus
proportional control, threshold control, onset analysis and finite state machines are
approaches included in the category of non-pattern recognition based methods. These
approaches will be presented in the remaining of this section. The main drawback of these
methods is the limited number of functions that can be implemented, comparing with the
pattern-recognition based methods. In some cases non-pattern recognition based methods
are combined with pattern-recognition based methods, resulting in a more efficient method
in terms of computational power and time required.

3.1 Proportional control

In proportional control, the level of contraction of a muscle is used to control the speed or
force of a prosthetic limb. Due to the complexity of SEMG signal it is mandatory to
preprocess the signal acquired by sensors before using it as input for the proportional
controller. Proportional control is usually used in conjunction with other non-pattern
recognition-based method or pattern recognition-based method. This combination will
increase the accuracy of positioning and force level.
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3.2 Threshold control

Like proportional control, threshold control can be used in conjunction with other pattern
recognition-based methods. In threshold control a signal level is used to discriminate
between two states. For example if the amplitude of the EMG signal is over a threshold, a
given action will take place, based on the command generated. Figure 11 illustrates this
mechanism. This type of control is suitable only for discrete actions like “open hand” or “close
hand”.
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Fig. 11. Threshold control command generated

3.3 Onset analysis

Due to the complexity of the SEMG signal, it is better to use some characteristics of it. Using
temporal characteristics like onset time and offset time, muscle activation and deactivation can
be detected. A controller structure based on onset analysis is illustrated in Figure 12. Onset
detection can be obtained using different methods. The performance of these methods is
evaluated in terms of bias and variance of estimated onset time. Also, the sensitivity to the
signal-to-noise ratio (SNR) is a measure of detection quality.

' Mot Data
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Onset Control
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Fig. 12. Onset analysis based myoelectric control system
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Single-threshold and double-threshold are the most used methods. In single-threshold
method rectified raw signals are compared with some thresholds. These thresholds are
obtained based on the mean power of background noise. This method is simple and very
fast, but its main drawback is related to the excessive sensitivity to the SNR. In order to
overcome this disadvantage the following improvement is possible.

Instead of using instant values of the SEMG signal, a time enveloped signal is used. This
improved single-threshold method can be implemented using the Marpel-Hovart and
Gilbey algorithm (Sun et al., 2005). In this algorithm two adjacent windows called leading
and trailing windows are used to slide over a sequence of data. The lengths of the two
windows are the same. For the leading window, the mean absolute value of the signal is
computed and compared with the signal in the trial window. Accordingly with the
hypothesis that the maximum differences of the two mean absolute value, computed for
leading and trailing window, occur when one window contains a muscle contraction and
the other doesn’t, onset and offset time can be determined.

Another approach was presented by Sun et al. (2005). They use a maximum value detection
algorithm, assuming that a muscle is in contraction if the signal acquired show a peak value
greater than a given threshold, within a segment of acquired signal. The segment length
depends on the EMG sensors and on the tissue. Even this improved method has some
disadvantages. It is possible that noise signals to be interpreted as correct signals.

Bonato et al. (1998) reported an improved method used for gait analysis. The double-
threshold method based detector operates directly on the raw myoelectric signal. Its
performances are fixed by the values of 3 parameters, namely, false-alarm probability,
detection probability, and time resolution. The false alarm probability represents the
probability that a noise sample to be wrong interpreted as a signal. The detection
probability represents the probability that a noises affected signals to be correctly
recognized. The time resolution parameter characterizes the length of the observation
window. The improvement of this double-threshold method is represented by the
possibility to independently adjust the three above parameters.

Another way to improve onset time detection is to use sensor fusion as in section 2 was
presented. We used a goniometer mounted at the elbow joint and synchronized the signal
detected by this with the signal detected by the EMG sensors mounted on the biceps and
triceps in a flexion extension movement. Thus onset time can be detected with very little
computation and very fast.

3.4 Finite state machine based control

In finite state machine based control, finite number of states, transition between them, and
commands describe the control. The states, state transition roles and the output commands
have to be defined. In the case of upper limb prosthesis, the states often represent
predefined motion commands like open, close, rotate inside, and rotate outside. Transition roles
are usually associated with the signal features. The block diagram of a myoelectric controller
based on finite state machines is shown in Figure 13.
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Fig. 13. Finite state machine based control architecture

Finite state machine based myoelectric control was applied by many researchers to drive
rehabilitation devices like wheelchair (Felzer & Freisleben, 2002); (Moon et al., 2005), upper
and lower limb prosthesis, assistance robots (Zhang et al., 2008), etc. The results reported
by Felzer and Freisleben (2002), Moon et al. (2005) show that this method is still limited for
wheelchair control. They reported an increase of necessary time to control the wheelchair by
50%, comparing with the case when a joystick was used to drive.

Based on the idea proposed by Moon et al., we developed a myoelectrical control system
used to control for motions of a prosthetic hand. The motions controlled are: open hand, close
hand, rotate inside, and rotate outside. Two EMG sensors, placed over the biceps and triceps
are used to detect the intention of movement. The biceps sensor commands two motions
close hand and rotate inside, and the triceps sensor commands open hand and rotate outside
motions. Because each sensor commands two movements, it is necessary to discriminate
between these movements. Therefore two modes are used. In mode 1 open and close motion
are executed. In mode 2, rotate inside and rotate outside motions are executed. In order to
switch between the two modes, both sensors have to be activated simultaneously, which
correspond to a simultaneous contraction of biceps and triceps.

Figure 14 illustrate the state transition diagram that describes the controller functions, where
b stands for biceps and ¢ for triceps.

The indicator 1 codes the presence of a contraction, and 0 its absence.
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Fig. 14. Finite state machine control architecture for a prosthetic hand

4. Conclusions

As has been mentioned SEMG signals can not be used directly as inputs for a controller.
Therefore pre-processing techniques are required to extract meaningful information from
the raw signal. This information is used by the classifiers that provide input signals to the
controller. The performance of the control system is highly dependent on the processing
methods used. Unfortunately there is always a trade-off between the performance of the
classifier, as interface between the EMG sensors and the controller, and the computational
power required. Better results can be obtained if proper features extraction methods and
suitable classifiers are used. For example, time-frequency features yield better results when
using a linear discriminant analysis classifier, and time-domain features lead to better
results when using neural network based classifiers.

Even a lot of work has been done on this challenging field, still remains problems that must
be overcome.

One drawback of myoelectric control is related to its open loop architecture. It is known that
open-loop control systems are not so reliable, comparing with close-loop ones. More over
open loop myoelectrical control systems requires a great mental effort, especially during the
first months after fitting.

In order to reduce this effort hybrid controllers are more suitable. These types of controllers
combine myoelectrical control with classical closed loop control. In this case, the wearer’s
effort is reduced because he should only initiate the action which is finalized by the
controller using information from sensors mounted into the prosthesis. Combining
information from different type of sensors like SEMG sensors, force sensors, goniometers,
pressure sensors, or other feedback elements, better closed loop controllers could be
implemented.
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