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1. Introduction

Glossary

S: Parametric Surface. S: Rz — R 3.is an (infinite)
2-manifold without border.

F H: Faces. Connected subsets of a parametric surface
(F,H CS).

st (F): Pre-image of F in parametric space U — V.

Tp: Triangulation of face F in Euclidean space.

Tyv: A triangulation in parametric space U - V.

T=S5(Ty): Triangulation in R ? as a mapping, via S, of the triangulation T};, in U —
V parametric space.

0X: Boundary of the set X.

L;: Aloop (L; € 0F ), is a 1-manifold without border.
It is a connected subset of the boundary of F.

E, Anedge (E; < L)), is a1-manifold with border.

t: A triangle of the triangulation T.

p.q: Points in Euclidean space. p,q € R *

u,0,w: Real parameters of a curve C(w) or a surface S(u, v).

cl(A): Closure of the set A. cl(A) = A UJA.

int(A): Interior of the set A. int(A) = A —-dA.

B (p.q,7): Gabriel Ball in R* Spherical point set whose center is contained in the plane
pgr, passing through the points p,,r € R*

Bs(p9): Gabriel Ball in R* Spherical point set whose center is contained in the
edge pq, passing through the points p,q € R*

e: Edge of a triang]le.
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Boundary Representations, B-Reps, are the computer formalization of the boundary of a
body (M = dBODY). Shortly, M is a collection of SHELLs, which in turn are collections
of FACEs. For convenience, we will assume that the SHELLs are 2- manifolds without

border in R* Each SHELL is decomposed into FACEs, which must have boundary. It is
customary in geometric modeling to make a FACE F a connected proper subset of one

parametric surface S(u,v) C R* In this article we consider the b-reps as closed 2-manifolds
with continuity C? inside each face and C” among them.

The border of F is dF, which is the collection of LOOPs L; embedded in S. The LOOP L;
can be thought of as a 1-manifold without border, with C= continuity except in a finite
number of points, where it is C%-continuous. In such locations L; is split into EDGEs Ej,
each one being a C> 1-manifold with border. The problem of surface triangulation takes
place in one of such FACEs F. A PL approximation Tr of face F is required which: (a) is
formed by triangles, (b) departs from F in less than a distance & (c) has triangles as
equilateral as possible, (d) has as few triangles as possible, and, (e) each edge ¢j of the

triangle set has exactly two incident triangles. Property (e) is a consequence of the fact that a
B-Rep is a 2-manifold without boundary. The triangulation T is also a 2-manifold (of the C 0
class) without boundary. Condition (e) also holds for edges ej whose extremes lie on any
loop L;. This means, this edge ej receives a triangle from the

triangulation T, (face F) and another from the triangulation T}, (face H).

An important aspect to control in triangulating a face F is that having a triangulation T,

correctly covering s (F ) in parametric space U — V is not a guarantee for the triangulation
T = S(T,,) in R’ to be correct. Several problems may arise: (i) Fig. 1 illustrates that a
completely internal triangle [4,}, c] in parametric space U — V may not be mapped by S to an
internal triangle [S(a), S (), S (c)] in R* (ii) roughly equilateral triangles tin U - V space may
map to extremely deformed triangles S(f) in R’ because of sharp warping caused by S, (iii)
neighboring triangles t;, ¢, £, ,...in U = V space mapped via 5() may form a fish scale effect in

R3 because of the same warping in S.

o y
S:R? - R?
o b
¢ )}cl\s
(b (a) .
0 4 R \ ==
Fo ?’f

Fig. 1. Triangle abc is internal in parameter space. Triangle S(2)S(b)S(c) is external to the
surface S(r, 8) = (r cos(8),rsin(8),0)
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2. Related Work

2.1 Fundamental definitions
As discussed in [1] a smooth 2-manifold with boundary (face) F is a sub-manifold of a

smooth 2-manifold S without boundary. If the neighborhood of a point p € F is
homeomorphic to a 2 dimensional euclidean space, then we say that the p is in the interior
of F (int(F)). If the neighborhood of a point pin F is homeomorphic to a half euclidean space
then we say that the point is in the boundary of F (dF). The exterior of the submanifold F
is composed by the points p € S and not in the closure of F (p & cI(F)). It includes all the
points neither in the interior nor the boundary of F but still in S. The boundary is a closed
set and the interior and exterior are open sets. In Fig. 4 the interior, boundary and exterior
are shown ( A — B denotes the difference between sets A and B).

Fig. 2 displays the general situation in which a face F is carried by a parametric surface S in R*
F is a connected subset of S, with the boundary of F, dF = {L(),.., L3; } being the set of loops

Li which limit F on S. If the function S(u, v) is 1-1 (which can be guaranteed by a
convenient decomposition of the overall B-Rep) then there exists

Fl =8%F) 2-Manifold Su.v)

S7,v) =
[T,
Yo v),
Zinvy]

2 []

1z

Fig. 2. Pre-image F =g (F) of the face F by the parametric surface S.

a pre-image of F in parametric space U x V, that we call F ! Such a region can be
calculated as F ' = S ' (F). To do so, a point sample of dF formed by points p; € R? is

tracked back to their pre-images (u7,vi) € (U x V) therefore rendering a connected region

F'c (U x V), most likely with holes, bounded by a set of planar Jordan curves

OF ' ={I0,..Tn}.
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o, -
—

Delaunay Tetrahedron Gabriel 2 -siggylex
a-b-c-d in R’ a-b-¢ in

Gabriel 1-simplex a=b Gabriel 1-simplex a=b
in R’ in R?

Fig. 3. Delaunay tetrahedron for points a,b, ¢ d € R® Gabriel 2-simplex for 4 bc€eR?,
Gabriel 1-simplex for a,b € R3, Gabriel 1-simplex for 4,b € R2.

Fig. 3 displays a short collection of Delaunay and Gabriel complexes. A Delaunay
tetrahedron in a set of points in 3D is a tetrahedron (3-simplex) formed by four points whose
circumscribed sphere contains no other point of the set. Given vertices v;v; v, in the point
set, they form a Gabriel triangle (2-simplex) if the smallest sphere through them contains no
other point of the set. The triangle v;v;v, is embedded in the equatorial

plane of such a sphere. A Gabriel edge vjvj (1-simplex) is one with v; and v; in the point
set, such that the sphere centered in (v; + vj)/2 with radius r = d(vi,vj )/2 contains no
point of the sample other than v; and vj Such a sphere is the smallest one containing vi
and vj, Each Gabriel 1-simplex makes part of at least one Gabriel 2-simplex, and each
Gabriel 2-simplex makes part of at least one Delaunay tetrahedra.

The present article applies the Gabriel variant (1- and 2- simplices) to Delaunay connectivity
to calculate a triangulation for a point sample Vr (sensitive to curvature and independent
of the parameterization) on the face F, carried by a parametric surface S. Section 2 reviews
theoretical and algorithmic knowledge related to triangulations and surface curvatures.
Section 3 discusses the algorithms devised and implemented to triangulate Boundary
Representations. Section 4 presents five complex Boundary Representations with
manufacturing and organic surfaces and high genii triangulated by the implemented
algorithm. Section 5 concludes this article and sketches directions for future work.

2.2 Curvature Measurement in Parametric Surfaces

A parametric surface is a function S : R? — R3?, which we assume to be twice derivable in
every point. The derivatives are named in the following manner ([10], [20],):
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oS oS 0’S 0’S
S, =35, =S, 5% =5’
Ou Oov ou’ o’
0’S S x§
Suv = Svu = ; n = - -
Oudv |S. xS, |

with n being the unit vector normal to the surface S at S(u, v). The Gaussian and Mean
curvatures are given by:

LN - MM LG - 2MF + NE
K=———H= ;

EG - FF 2(EG - FF)

where the coefficients E, F, G, L, M, N are:

E=S5y oSy, F=S5y S5 =5 ¢Sy, 3)
G=Sv oSz),‘ L=Suu o 1,
M=Suvoi’l,’ N=va o 1

Minimal, Maximal, Gaussian, Mean Curvatures from the Weingarten Application The
Weingarten Application ([10]), W is an alternative way to calculate the Gaussian and Mean
curvatures.

with a,;,a,,,a,,,a,, being:

_ MF-LG _ NF-MG
"MTEeop T ™ EGop
_ LF-ME _ MF-NE

T TGP

The following facts allow to calculate the curvature measures for S from the Weingarten
Application: (i) The eigenvalues k7 y k2 of W are called Principal Curvatures, with k1 being
the maximal curvature and k2 being the minimal curvature (assume that |k1 | = [k2 |). (ii)) K
= det(W) is the Gaussian Curvature, with K = k1 * k2. (iii) 2H = trace(W) is twice the
k, +k
Mean Curvature, with H=-1-—2

k,=H+~H?*-K and k,=H-+vH*-K .

Wxv=k*v is the eigenpair equation for the W matrix. The solutions for such an
equation are the eigenpairs (k1 , v1 ) and (k2 , v2 ). Therefore, W+*v, =k, *v, and

(iv) The maximal and minimal curvatures are:
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W#*v,=k,*v,. The directions of principal curvature in U x V space are vi and

vy (v = (w11, w12) and v, = (wz;,w,2)). The directions of maximal and minimal curvatures

3
in R are u; =w;; *S, +W;, *S, and u, =w,, *S, + w,, *S,_, respectively.

2.3 Previous Work
[12] implements an algorithm which starts with an already valid triangulation on a

trimmed surface S(u, v) and originates a new triangular mesh. It proposes a surface

triangulation with a Delaunay method given 3 points in R’ which determine a sphere
whose equatorial plane is defined by the 3 given points. The algorithm creates a point set
which may be more dense as needed by a particular criterion (e.g. curvature). This algorithm
uses expensive operations (e.g. surface-line intersection). The boundary of the triangulated
trimmed and meshed face is expressed and calculated in handled in parametric space. Since
the algorithm in [12] starts with a given triangulation and modifies it, if such triangulation
is not correct, or it does not respect the boundary of the trimmed surface, the triangulations
following keep such characteristic. According to [16], the restricted Delaunay triangulation
of general topological spaces is defined.

The restricted Delaunay triangulation in the case of trimmed surface in R’ is the dual of the
Voronoi diagram intersected with the surface. Therefore, a triangle is created in each
intersection of 3 voronoi cells with the surface. A contribution of the paper is to show that
Chew’s algorithm is a restricted Delaunay triangulation.

In the problem of the triangulation of manifolds with boundary the theoretical guaranties
that serve for surface reconstruction do not apply. For example e-samples ([4],[3]) which use
the smallest distance of a sample point to the medial axis of the solid (i.e. the €). Since a
trimmed surface may be close or far from the medial axis, such criteria do not apply for
surface triangulations.

In [7], The ball pivoting algorithm, (BPA), is presented. It computes a triangle mesh

interpolating a given point cloud: 3 points form a triangle if a ball of radius smaller than p
(a user specified radius) touches them without containing any other point. This triangle is a

Gabriel 2-simplex in R® The algorithm makes a region of triangles grow by adding a
triangle to one of the boundary edges of the triangle mesh.
The reconstruction algorithm needs a very uniform sample.
In [19] the intrinsic Delaunay triangulation of a Riemannian manifold is shown to be well

defined in terms of geodesics. A smooth surface embedded in R’ can define a Riemannian
manifold. The Riemannian manifolds have the property that if all the calculations and
definitions are done in a small subset of the manifold, (as they can be done with a good
sampling condition), the Delaunay triangulation and the Voronoi diagram are defined exactly
as with the euclidean metric and are dual. Although defining triangulations with geodesics is
theoretically sound, it has a prohibitively high complexity because it implies the solution of
simultaneous algebraic systems.

In [2] the Gabriel complex is defined for Rn. For a set of points in Rs the Gabriel complex is
composed of triangles whose smallest defined circumsphere is free of points in the set. The
advantage with respect to [12] is that it does not need information about the surface. The
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Umbrella filter algorithm described produces topologically correct triangulations. Our
article takes advantage of such a definition, along with a curvature - sensitive point sample.
[5] gives lower bounds for densities of well distributed points in surfaces, based on Delaunay
triangulations. [11] presents an algorithm to sample and triangulate a surface, but it uses
computer expensive and not common operations. In [8] the concept of loose e-sample is
developed but the operations which implement it are computationally expensive.

[9] presents the Lipschitz-samples, analogous to e-samples, but applied to piecewise
smooth (Lipschitz) surfaces. Such a distance permits to sample a Lipschitz surface and to
define a mesh on it. However, [9] does not present actual examples of the performance of
the algorithm (as we do here). We do also address the sampling of edges which bound two
incoming smooth surfaces by using the most larger of the two involved curvatures.

In [13], the greedy Delaunay - based surface reconstruction algorithm from a point sample is
presented. The algorithm uses the fact that the Gabriel graph is a subset of the Delaunay
triangulation (DT). From a starting triangle, it grows matching each of the edges in the
boundary with a triangle in the DT that has the minimum radius. As disadvantages, we may
note that the algorithm: (i) requires the usual distance for Delaunay triangulations, (ii) needs
a very uniform sampling in the loops and (ii) does not provide guarantee in the
reconstruction.

[1] is focused in the notion of envelope that is the covering of a 3-manifold created with
spheres of A size and centered in the points of the surface. From the envelope a surface
with boundaries can be reconstructed, but this approach does not conserve the original
points sampled in the boundary, and parameters are needed. In practice the envelope
approach does not seem to produce topologically correct results. We dispose of information
about the surface and boundaries and use another approach to the problem.

In [14] an advancing front method to triangulate parametric surfaces is presented. The
method triangulates a B-Rep by discretizing edges and surfaces. The number of triangles
generated can be adapted to any density function in the surface. The correctness of the
solution depends on the density function provided for the edges and for the surface. In [6] a
parameterization-independent algorithm is proposed to triangulate a surface. In the
algorithm, a circle in the normal plane of a point p in the surface S, Tp(S,p), is chosen. A
polygon of n sides, (with n > 4), and defined by vertices {p1,p2,.,p#1 }, is inscribed in the
circle. Rays from the vertices and perpendicular to Tp (S, p), intersect the surface and
generate new vertices for the triangulation. The algorithm has the advantage that the
connectivity of the triangles is present through the algorithm. In the other side, the paper
handles the boundary in the parameter domain and reports a non-uniform sample near to
this. The paper reports problems are in regions of high curvature. Also in [21], the
algorithm described in this paper is implemented and problems are reported near the
boundaries. The generalization of their algorithm to closed surfaces needs a sewing
procedure that creates additional borders. In [23], an algorihtm that triangulates parametric
surfaces is presented. The algorithm uses an advancing front method. The loops aren’t
taken into account. This algorithm generates two fronts of triangles that advance one
towards the other. The two fronts are in oposite sides of the parameter space. The main
drawback in this algorithm is that: only a squared parameter space is considered. No holes
or complex features are reported in the paper. In [22] an algorithm to triangulate b-reps is
presented. In the algorithm all the triangulation occurs in parametric space and is mapped to
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R3. In [21] two sampling methods and a triangulation algorithm are proposed. In the
algorithm the boundaries are isosampled, i.e not sensitive to the curvature or any other
parameter. In the triangulation algorithm, a parametric information is needed, so it can fix
problems, and the boundaries are not handled well in all the situations.

/\ infinite 2-manifold
Exterior of F ) T g— carrier surface S(iy)

ha

of manifold S,

Boundary of F: «, P,
IF =closure(F) - F

Fig. 4. Interior, boundary and exterior of a submanifold F with respect to a manifold S.

Gabriel |-simplex
Face F /\ '“\\x on oF

Y \ / Center of Gabriel
/ 1-si 1
Gabriel 2-simplex W, simplex

onint( F) Center of Gabriel
2-simplex

Fig. 5. Gabriel 1- and 2-simplices on face F

3. Methodology

The implemented algorithm to triangulate a face F mounted onto a parametric surface S (Fig.
4) has the following layout, whose details will be discussed later: (1) Calculate the pre-image
F 1 of the face F through the function S (Fig. 2). (2) Initialize the vertex set VT with a
curvature-sensitive sample of the loops L(,.,Ln of the face boundary JdF.(3) Introduce
points in the sampled loops L(Q,.., Lrn; such that, all the segments in JF are Gabriel 1-
simplex. (4) Sprinkle the face F with vertices vj achieving a vertex density proportional to

www.intechopen.com



Gabriel-constrained Parametric Surface Triangulation 523

the local curvature of F, Kmax, inserting those vertices in set VT, Segments in dF remain

Gabriel 1-simplex during this stage. (5) Calculate a Gabriel connectivity T for the vertex set
VT.

3.1 Edge Sampling

Algorithm 1 is used to produce a curvature - sensitive sample of an Edge E. Unlike
previous approaches ([22]) such a sample is not an iso-distance one. Instead, the sampling
interval at point p on the underlying curve C is sensitive to the largest of the maximal
curvatures of S and S2 in such a point p (line 6). Notice that the curvature of the curve C
at p needs not to be considered in addition to the surface curvatures because it will be
always less than or equal to the surface maximal curvatures (Kmax (51 ,p), Kmax (52 ,p)).

Algorithm 1 Sample of the Edge E between Faces F1 and F2
51 (u,v),S2 (u,v): Underlying surfaces for Faces F1 and F2.

C(A): Underlying Curve for E.
AQ,Af: Parameters of the extremes of E in curve C.

VE = {p1,p2,-,pn }: Output. Sequence of point sample of E.
Kinax (S, p)): Maximal curvature of Surface S at point p.
Nsides: Number of sides of a regular polygon.

LVE=1{}

2: A= AQ

3: while A<Af do

4: p=CQH)

5: VE=VE U{p}

6: k= max(Kymax (51 ,p), Kinax (52 ,p))
7: r=1/k

8: 0 = polygon determined_arc(r,Nsides)
9: AN = dist_to_param(5)

10: A=A+ AL

11: end while

Fig. 6 displays the geometrical idea behind lines 7 and 8 of the algorithm: the radius of
curvature r is the inverse of the curvature k. A circle tangent to a curve with such a
curvature may be approximated by a regular polygon of Ngides sides. The arc 0

determined by such a polygon is considered as a good euclidean sampling distance
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S(u,v) Polygon side &

p=S(u,v)

Pe=ClW) +ron Regular tangent Direction of maximal
polygon atp=S(u,y) Curvature Wpm

Fig. 6. Locally planar curve and local curvature. Approximation by regular polygon of N
sides.

for the curve C at p (line 8). Such an euclidean distance must be transformed to a local
parameter distance 6\ at C(A) (line 9).

3.2 Loop Resampling. Ensuring that each edge of each loop is a

Gabriel 1-simplex

Algorithm 2 creates new vertices in the loops sampled by algorithm 1, in such a way that
each segment in the new sample is a Gabriel 1-simplex. Between lines 4 and 16, each
loop V,, is traversed as a circular linked list. Each segment vcy77vnext is tested to be a

Gabriel 1-simplex in line 7. If it is not a Gabriel 1-simplex, a new point, returned by
function point_middle_of arc (lines 8 and 9), is inserted to the circular linked list after
vcury and previous to viext (lines 10 and 11). Let Cz () be a curve parameterized by

arc length. Let px and py be two points in Cz (A). Let Ax and Ay be the parameters of px
and py respectively with Ax < Ay, Function point_middle_of_arc(Cz (A) ,px,py) performs the
following procedure:

1. Finds the arc length § between px and py in curve Cz (4).
2. Returns a point pyzewr = C (Ax + g) .

If any segment vcy 77 Vext is not Gabriel 1-simplex, the variable finished is set to false

(line 12). In line 21 the variable finished is tested true, to ensure that this procedure is
repeated until all segments are Gabriel 1-simplex.

Fig. 7 shows the behavior of algorithm 2. In Fig. 7(a), point vx € VI,j is inside BG
(veurr , vnext ) and segment vcy -y UVnext is not Gabriel 1-simplex. After vye is
inserted to VI i, the new segments are (vcy 77, Vrzew ) and (Vizew , Vnext). As shown in
Fig. 7(b), BG (vcurr,vnew) and BG (vizew, vnext) are empty of other points in VOF ;
and segments (Vcy77,V1ew) and (Vizew,Vnext) are Gabriel 1-simplex.

Sometimes, B-rep models are not well stitched ([24]), and that creates extremely narrow
faces. Every time the loop between lines 1 and 21 is executed, at least 2 segments become
shorter. In line 18, function is_any_segment_too_short (V,r) evaluates this case and returns

failure when an edge is too short (i.e the loop is being repeated too many times). This adds
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robustness to algorithm 2. Otherwise, if two lines of a b- rep are geometrically equal, but
have not been merged in the model, algorithm 2 would never stop.

Algorithm 2 Insert vertices in the sampled loops until all the segments are Gabriel
1-simplex.
Vor=1V.;, V., V., }: is the set of vertices that sample the boundary of the face F.

Vi i=AVe1, Ve Vg, )i isacircular linked list that contains all the points sampled in the loop
with algorithm 1 and Vy; is the ordered sample of edge E;,
Vor = AV11, V12, V,,, }. Output. The set of vertices that sample the boundary of face

F.
1: repeat
2: finished = true
3: for all V., EVyp do
4: Vesrr = head (v, )
5: vngxt = next(VLI’vcurr)
6: repeat
7 if Ivx € (V,; ~{ YeurrVpext s

such that: vx € BG (v,,,,.7,,.,,) then
8: Gj (A) is the curve, of an edge Ej, that contains { v ,,,.,.,,,,., }-
9: Voo =

point_middle_of”_arc(Cj (N) Ueyyppr0yr)-

10: next of (V, 1 0yrr) = Vsiewo
11: next of (Vu’vnew) = U, 0xt
12: finished = false
13: end if
14: Ucurr = vnext
15: Vyort — next(vu,vnext)
16: untilv,,,,, =head(y, )
17 end for
18: if is_any_segment_too_short(Vsr) then
19: return FAILURE
20: end if

21: until finished = true
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(a) First a sampled vertex vx is inside of
Bc (chrr; Vnext)- Segment (chrr/ Vnext) is
not Gabriel 1-simplex.

(b) When algorithm 2 inserts vpew, segment

Veurr Vnext 15 replaced by segments veur vhew

and View Vnext. NO point sampled is inside balls

BG (Veurr, Vnew) and B (View, Vnext).  Segments

Veurr Vnew and View Vnext are Gabriel 1-simplex.
Fig. 7. The two basic steps of algorithm 2.

3.3 Face Sampling. Vertex Sprinkle on Face F
Algorithm 3 constructs the vertex set Vi of the triangulation sought for face F. The

initialization of Vi (line 1) is done with the vertices sampled on the boundary loops of F,
d0F = {L,,., L.} as per algorithm 1. Such vertices correctly sample JF. However, the
interior int(F ) needs to be sampled. To do so, trial vertices are generated inside the pre-
image F Tinuxv space (line 4) and their image via S is calculated (line 7). Such a trial
vertex p is rejected if (a) it is too close to other vertices already accepted in V. (line 11) or (b) if
it is contained in the smallest ball defined by a pair of vertices consecutive on a loop L; The
closeness criteria is dictated by the maximal curvature Kz;ax (S(4, v)) at p=S(u,v) (line 5).
In case (a) each already accepted vertex in V; is tested for inclusion inside a ball B (p, R)
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centered at p with radius R = polygon_side (r,Nsides) (line 9). In case (b) each segment v,7;
in the sample of the border is tested as a Gabriel segment (1-simplex) with respect to the
candidate p. If every segment of the border is Gabriel with respect to p, we assume that p is
not too close to the border (line 10).

Algorithm 3 Sprinkle triangulation vertices on Face F

F: Input. Face to triangulate.

F pre-image of Face F in space U x V
S(u,v): Underlying surface for Face F.
doF = {L(,..,Ls; }: Loops Bounding the Face F.

N ¢ Number of tolerated failures.

Vi : Output. Vertex set sampled on Face F.
1: Vi = sampling of boundary dF
2: fails= 0
3: while fails<N, do

4: generate parameter pair (1,v) € F -
5: k= Kmax(S(M, U))
6: r=1/k
7 p=S(u,v)
8: R = polygon side(r,Nsides)
9: if 4y € VE such that g € B(p,R) then
10: if F; vj, a segment of the boundary,
such that: p € BG (vi,v]') then
11: fail = fail + 1
12: else
13: Ve=Ve Ulp}
14: fail =0
15: end if
16: else
17: fail = fail + 1
18: end if

19: end while
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high curvature
region

loswr curvature:
region

Fig. 8. Goal Point Population on face F

high curvarme f
reion —
i sharp sprinkle)

lorw cureaiure
re=iTe 11
(avicde speinkle )

Fig. 9. Curvature-sensitive Sprinkle Airbrush F

A segment is said to be sampled in the boundary, if its two end vertices are consecutive in a
loop L; € OF. If tests (a) and (b) are passed, p is accepted in V. (line 13). Fig. 6 depicts that
the value for R is computed as the cord of the Ngjdes -regular polygon inscribed in the

circle with radius 1/k. Function polygon_side(t, Nsides) equals to 2r sin(’31/Nsides). Fig. 5 displays
the two tests mentioned in items (a) and (b) above.

3.4 Face Triangulation. Gabriel Connectivity on Vertex Set V.
Algorithm 4 builds the connectivity inside the vertex set V. The algorithm seeks to

complete edges (v,, v; ) already known to belong to the triangulation T (line 6) with an

additional vertex v,,,, to build a Gabriel Triangle (v,,v,,v,,,,,) (line9).

Any internal Gabriel triangle is the first formed triangle (lines 1,4). It is also a seed to initialize
the Queue of edges potentially able to span Gabriel triangles.

If the edge extracted from the Queue is part of the boundary, it is not expanded any more
(line 7). All the edges which are part of the boundary will be found because they are Gabriel

1-simplex and make part of a Gabriel 2-simplex. If a Gabriel triangle (v,, v;,v,,.,,) can be

built, it is added to the triangulation T (line 10). If a Gabriel triangle can be built using
only an existing edge (v,,v;) and a new vertex v the general situation is that the new

and (v,,,,,,v;) should be queued to be eventually expanded (line 20).

new’
Edges (UO ’ vncw)

However, this is not always the case, since such a triangle may use 1 or 2 additional edges
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Algorithm 4 Triangle Connectivity in the set V.

Vi : Input. Vertex set sampled on Face F

Queue: List of triangle edges to expand.
dF = {L0,.., Ly }: Loops Bounding the Face F.

T: Output. Triangulation.

1: seed = triangle_in_interior(F)

2: {(vy,v1), (v1,9v,),(v,,v,)} = edges_of__triang(seed)

3: Queue = {(v,,v4), (v1,0,),(V;,v,)}

4: T = { seed}

5: while (Queue = ®) do

6: edge_to_expand = extract(Queue)

7 if edge_to_expand is not part of the sample of the boundary then
8: (v0,v1) = vertices(edge to expand)

9: Ve = vert_for_Gabriel_2_Simplex(Vy,v,,v;)

10: T=T U{(v0,v1,9,,00)}

11: if ((v0,7,,.,,) €Queue) A ((vVizew,v;) €Queue) then
12: Queue = Queue — {( vy, v12ew ), (Virew,v1)}
13: else if ((v,,7v,,.,,) € Queue) then

14: Queue = Queue - {( U0, V56w )}
15: Queue = Queue U{(v7,7,,,)}

16: else if ((vyzew,v;) € Queue) then

17: Queue = Queue = {( v,,.,,, V1) }

18: Queue = Queue U{(0,,0,,00)}

19: else

20: Queue = Queue U{(V1,7,100 ) (Vs Vo) }
21: end if

22: end if

23: end while

already in the queue. In the first case, the triangle is filling a corner (lines 13-18). In the
second case, the triangle is filling a triangular hole (lines 11,12). In such special cases
additional edges (1 or 2 besides the expanded one) should be taken away from the queue.

4. Complexities of the algorithms

Time and space complexities of all the algorithms were found. They are all output sensitive;
that is, their complexities depends on the size of the output given by them. The first 3
algorithms depend on the number of nodes generated by them. The last algorithm depends
on the number of nodes in the input and in the number of triangles generated.
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4.1 Edge Sampling

The time and space complexities of algorithm 1, have been found in the following manner.
1. Time complexity. The operations with the curve and the operations to find the
curvatures are dependent upon the parameterization and not in the number of points
generated. Because of this, the time complexities of all the operations within the loop, (lines

3 to 11), can be assumed as O (1). The loop is repeated N times. N; is the number Of
points generated to sample the edge Ej The time complexity of algorithm 1 is O (Np)- 2.

Space complexity. As the algorithm only stores the points generated, the space complexity
is O (NEgj).

4.2 Loop Resampling
The time and space complexities of algorithm 2, have been found in the following manner:
1. Time complexity. Let N, be the number of vertices in V,. , at the end of
algorithm 2. For algorithm 2 the following facts hold:
(@) N, changes. In the worst case it grows as an arithmetic progression with
difference 1. That is why in this paper the calculations are simplified by
considering, at any step, N, as the number of verticesin V.,
(b) The number of segments in V. is the same as the number of points.

(c) Each time a segment v ,,0.¢ 15 tested to be Gabriel 1-simplex, (line 7),

algorithm 2 tests all the points in V., This takes time O (N,).

(d) The number of segments tested will be O (N, ), no matter the number of
points added to the sample in the previous step.

(e) The worst case scenario occurs when only one point is added at the time.

This is because of fact (d). In that case, the loop from lines 1 to 21 is repeated
NoF times.

(f) The worst case escenario occurs when only 3 vertices have been generated by
algorithm 1. This is the worst case because it means that all but 3 of the points in Var
are generated by algorithm 2. The number of times that the loop between lines 1 to
21 is repeated is O (N, ).

Combining facts (c), (d) and (e) the worst case time complexity of the algorithm
2isO (N2,)-

2. Space complexity. Only Var is stored by the algorithm. The space complexity of
algorithm 2 is O (Nar ).

4.3 Face Sampling
The time and space complexities of algorithm 3, have been found in the following
manner:

1. Time complexity. The algorithm terminates if variable fails > N/ ; so for each new

point, the algorithm tries at most N times. The number of times that the loop between
lines 3 and 19 is O (N,* N), being N the number of points generated in the interior of
the face. In the loop, for a new generated point p two tests are performed:
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(@) Inline 9, every q € V. is tested for inclusionin B (p,R). R is as described in line 8.
This operation can be performed in O (N + N,p).

(b) In line 10, p is tested for inclusion in every Bs (vi, vj ), where vj, vj are two
consecutive points in the sample of the boundary of F. This operation can be
performed in O (N, ).

The worst complexity is that of test (a).

Combining test (a) with the number of times the loop between lines 3 and 9 is re-
peated, we have that the complexity of the algorithmis: O (Nz* Ny (N + Nyp)).

2. Space complexity. The algorithm only stores the points that are accepted. The space
complexity of the sampling algorithmis O (N ).

4.4 Face Triangulation

The time and space complexities of the algorithm 4, have been found in the following

manner.

1. Time complexity. For algorithm 4, the following facts hold:

(@) Each time that the loop (lines 5 to 23) is repeated, this algorithm checks a
different edge that belongs to the triangulation. The number of edges that belong
to the triangulation is a linear function of the number of triangles (i.e each new
triangle adds a maximum of 3 edges). The number of triangles generated will be
denoted as: Nr.
(b) The operation vert_for_Gabriel_2_Simplex (line 9), is the one that has the highest
complexity within the loop (lines 5 to 23). The rest of the operations have O (1)
complexity.
(c) For the vert_for_Gabriel_2_Simplex (line 9) operation, firsta candidate vertex (r) is
chosen. This vertex can complete a Gabriel simplex given the edge v, v, All the

points in V., except for v,v,and r are tested for inclusion in B (v,v, r). Using a

naive approach, the time complexity of this operation would be O (NZ), where N is
the number of verticesin V.,

Combining facts (a), (b) and (c), the complexity of algorithm 4 is O (NT x Nz).

2. Space complexity. The algorithm stores a set of edges in Queue. As a topological
constrain, Queue can only contain the same edge twice. The number of edges stored is, in
the worst case, a linear function of the number of triangles stored. The space complexity
is O(NT ).

5..Results

Several Boundary Representations B-Reps were used to test the implemented algorithm,
proposed in this article. Such B-reps have genera 3 or superior, and present faces F whose

underlying surfaces S are parametric ones of the NURBS or Spline types. An N = 1000
maximal number of failed trials was used to stop the sprinkle of vertices on F (generation of
the set V). The number of sides for the approximating polygon was Ns;des = 30. Figs. 10,
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11 and 13 show complex B-Reps. Other examples of B-reps triangulated include a model of a
pre-columbian fish in Fig. 14, a support of an axle in Fig. 15, and a stub axle in Fig. 16.

The attention of the reader is called to the fact that the connectivity construction is a process
completely independent of the vertex generation process. Since the vertex generation
algorithm (Sprinkle) is the most critical one, the execution time was recorded for such an
aspect.

For the models Pump and Hands, Figs. 12(a) and 12(b) show execution times, corresponding
to the vertex generation process. Fig. 12(c) shows the comparison of vertex generation
times for such runs.

Fig. 10. Pump carter [17]. Colormap according to quality of triangles.

Fig. 11. 2 hands with 3 genus, scanned and reconstructed using RainDrop Geomagic.
Colormap according to the size of the triangles
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Fig. 13. Other view of the 2 hands with 3 genus. Colormap according to the quality of the
triangles.

www.intechopen.com



534 Recent Advances in Technologies

Fig. 14. Artificial replica of a pre-columbian gold fish [15]. Colormap according to size of the
triangles

Fig. 15. Support of an axle. Colormap according to size of the triangles

Fig. 16. Stub axle [18]. Colormap according to the quality of the triangles
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6. Conclusions and future work

The proposed algorithm for generating triangulation vertex sets and for calculating the
connectivity among them proved to function correctly, even for very extreme geometries
and topologies. Several aspects of the algorithm must be addressed: the continuity of triangle
sizes at the Face Edges, the possibility of undertaking re-meshing of already existing
triangulations and its related endeavor, namely the level of detail, necessary for Finite
Element Analysis applications. Additional research is needed in algorithms that (i) take
advantage of the concepts presented in the heuristic algorithm proposed here, but (ii) can be
proved correct.
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