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1. Introduction

Roads are important man-made infrastructures that exhibit distresses due to their constant
usage, its maintenance being an essential task to ensure a correct pavement performance. To
this end, good road maintenance policies are required, relying on adequate rehabilitation
management procedures. Periodic road pavement surveys provide the necessary collection
of data about pavement surface condition, an essential tool to decide on the appropriate
maintenance techniques to be applied in pavement rehabilitation (restoration and repairs).
During periodic road pavement surveys, human visual inspection aims to provide a good
structural and functional quality evaluation. This type of inspection is traditionally done by
skilled technicians (inspectors) that travel along the surveyed road, acquiring images (the
most important source of information for quantitative and qualitative distresses evaluation)
and annotating them about pavement surface distresses types (cracks and other
degradations) and their location.

The analysis of distresses relies on the inspector’s experience on pavement surface
observation. Some major drawbacks of this procedure are (Meignen et al., 1997; Chen &
Miyojim, 1998): it is labor-intensive, since usually less than 10km per day can be surveyed
and a considerable effort is required from those skilled technicians to manually analyze the
full set of acquired images; it is prone to subjectivity, since two inspectors can produce
different analysis results over similar distress situations. An automatic crack detection
system based on the analysis of road pavement surface images, as proposed here, can
significantly speed up the process and reduce results” subjectivity.

The methodologies reported so far, mainly deal with automatic crack detection and
classification using techniques such as neural networks, including fuzzy sets and the
computation of moment invariants, Markov random fields and edge detectors, among
others, as discussed in Section 2. This text explores a novel approach for automatic crack
distresses detection and classification in images taken over road pavement flexible surfaces,
relying on image processing and pattern recognition techniques, envisaging a simple
framework based on local statistics computed over non-overlapping image regions.

For the automatic detection of crack distresses (the first task of the proposed system), this
chapter describes supervised classification strategies, composed of two main steps: training
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and testing. To supply adequate input data to these steps, the entire image database is split
into two subsets, resorting to an automatic selection of training images. The training image
subset is used for classifier training, in which a human expert manually selects image
regions containing crack pixels. The test image subset is composed by images to be
automatically classified, here used also for crack detection evaluation.

All the images are pre-processed using normalization techniques to reduce the effects of
non-uniform illumination and to mitigate the influence of noise and some irrelevant
properties of pavement upper layer aggregates. In training and test steps, six supervised
classification strategies, three parametric and three non-parametric, are confronted to infer
about their crack detection suitability (Oliveira & Correia, 2008). These classification
strategies explore a 2D feature space, relying on the mean value of pixel intensities in non-
overlapping image regions, together with the corresponding standard deviations. The 2D
feature space is subsequently normalized to reduce feature value scattering among database
images, leading to a better classifier performance.

The results obtained in the crack detection task are subsequently used as input for a crack
type classification task, where images are labeled as containing longitudinal, transversal and
miscellaneous or no cracks, a subset of the crack distress types identified in the Portuguese
Distress Catalogue (JAE, 1997). This second task explores another 2D feature space,
computed for this purpose.

The proposed automatic system is evaluated over an image database composed by real
flexible pavement surface images, acquired during a survey over a Portuguese road
(following the visual inspection method), using a set of well-know metrics and exploiting
the availability of ground truth data manually provided (human labeling) for the entire
image database. Promising results are obtained in both crack detection and classification
tasks.

This chapter is structured as follows. Section 2 reviews the most relevant literature
addressing automatic crack detection and classification systems. Section 3 discusses image
acquisition, the automatic selection of training images, image normalization and saturation,
followed by feature extraction and normalization. Section 4 describes the classification
strategies used for crack detection and the associated parameters while Section 5 presents
the approach for crack distress type classification. Section 6 discusses the experimental
results. Conclusions and some hints for future work are addressed in Section 7.

2. Literature Review

In the scientific literature, not so many papers dealing with the automatic detection of
pavement surface distresses are available. A good starting point can be found in (Chen &
Miyojim, 1998), which reviews the techniques applied for the development of automatic
pavement distress detection and classification systems. They also propose a novel approach
according to the following major steps: region based image enhancement, to correct
nonuniform background illumination and a skeleton analysis algorithm to classify
pavement surface distress types. Experimental results for forty two crack samples are
analyzed, corresponding to six different distress types, notably transversal, diagonal,
longitudinal, block, combination and alligator pattern cracks. They claim 100% accuracy in
the distress type classification results, but no evaluation of the crack detection step is
included.
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(Chou et al., 1994) proposed the use of moment invariant features and trained neural
networks, again focusing on crack type classification. The same crack distress types of (Chen
& Miyojim, 1998) are considered plus right diagonal, left diagonal non-distress types. The
authors claim 100% accuracy for crack distress type classification, but crack detection results
are not reported.

A multi-scale approach using Markov Random Fields for crack detection is presented in
(Chambon et al., 2009). Cracks are enhanced using a Gaussian function and then processed
by a 2D matched filter to detect cracks. Another approach, based on a nonsubsampled
contourlet transform for pavement distress crack detection, is proposed in (Ma et al., 2008)
but very few experimental results are provided.

An artificial living system is proposed in (Zhang & Wang, 2004). This work includes a pre-
processing step to exclude bright points in images and enhance the contrast between crack
and non-crack pixels (based on top-hat and bottom-hat procedures). No ground truth
information is provided here and experimental results are mainly qualitative.

The use of edge detectors for pavement distress evaluation is proposed in (Li et al., 1991),
while a pavement image segmentation technique is presented in (Qingquan & Xianglong,
2008) to identify image cracks. A novel thresholding technique is used, the authors claiming
to achieve better experimental results than with well-known thresholding methods. Another
thresholding-based technique is presented in (Liu et al., 2008), where the resulting binary
images are processed by a connected domain algorithm to find cracks. No information about
the use of ground truth information is provided.

Also the problem of pavement image acquisition and the related hardware is discussed in
some papers. (Wang, 2000) describes new hardware acquisition systems as well as their
applicability to the automation of pavement distress evaluation. Also (Huang & Xu, 2006)
describes a system where images are acquired using a time delay integration line-scan
camera.

3. Crack Detection Supervised Strategies

The proposed system architecture for automatic crack detection and classification is shown
in Fig. 1. The first step aims to split the image database into two subsets: the Training Image
Set (TIS), used to train classifiers with manually labeled samples (image regions) containing
crack pixels; the Testing Image Set (TTIS), the remaining images to be automatically
processed by the system for crack detection and crack types classification. A set of
procedures (image normalization and saturation and feature normalization) are
implemented to ensure the computation of adequate decision boundaries, aiming better
crack detection performance.

Two main tasks are identified: detection, where image regions are labeled as containing
crack pixels or not; and crack type classification, where ‘longitudinal’, ‘transversal’,
‘miscellaneous’ or ‘no cracks’ labels are assigned to each detected crack.

Detailed discussion on training images selection, feature extraction, normalization (for both
image and feature space data) and saturation procedures is given in the following sub-
sections.
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Fig. 1. System architecture.

3.1 Image Acquisition

The image database considered in this research work is composed by grayscale images,
acquired during a pavement surface visual survey over a Portuguese road. A digital camera
was manually positioned by the inspector with its optical axis perpendicular to the road
surface, at a distance of approximately 1.2 m. Images with different sizes are obtained
(2048%x1536 pixels and 1858x1384 pixels), according to different camera setup procedures.
The digital camera is oriented in such a way that the images only contain areas belonging to
the road pavement surface. Moreover, the database includes images with several types of
cracks (longitudinal, transversal and miscellaneous), as well as images without any cracks.
Instead of processing the images at a pixel level in all the steps of the proposed system, each
image is divided into a set of non-overlapping regions of size 75x75 pixels. These
dimensions were empirically chosen, leading to a faster processing time and lower memory
storage requirements, while providing a good compromise between complexity and
accuracy. Database images can then be represented by smaller matrices, where each of their
values corresponds to the computation of region local statistics, as described next.
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3.2 Selection of Training Images
Dealing with supervised classification strategies, training data (images for the envisaged
application) is necessary for classifiers learning. This section describes a technique for the
automatic selection of images, to be included in TIS, from the entire image database
acquired during the visual road pavement survey.
To allow a correct learning stage, training images should contain road pavement cracks.
Therefore, in a preliminary classification phase, all images are pre-processed in order to
detect the regions with most evident crack pixels, by exploiting the knowledge that regions
with crack pixels are supposed to have lower average intensities, when compared to regions
without crack pixels. The images are then sorted, starting from those where the longest
cracks were detected, the TIS being chosen from the top of this sorted list. The number of
images to be included in TIS is an option controlled by the system operator. Moreover, the
operator can edit the TIS, i.e., he can manually reject images automatically labeled by the
system as ‘training image’ or add additional ones. Images definitely labeled as ‘training
images’ are finally presented to the system operator, for manual identification of regions
containing crack pixels.
In this preliminary classification phase, image regions revealing evident crack pixels are
automatically labeled ‘1", or ‘0" otherwise. The result is a binary matrix (Mp,) with
dimensions nly, and ncy,, given by:
nl, nc, .
nl,, =ﬁx(ﬂ) and nc,, =ﬁx[&] (1)

nl ne

where nl;yg and ncimg stand for the number of lines and columns of an image, respectively; nl,
and nc, are the number of lines and columns of regions (here square regions of 75x75 are
used, as referred in Section 3.1), and fix is an operator which rounds a number towards zero.
Automatic image region labeling, in the preliminary classification phase, starts with the
computation of a regions” mean values matrix - M,,, with dimensions nly, * ncpy,, each of its
elements representing the region’s pixel intensities average. This matrix is vertically and
horizontally scanned to find regions with evident crack pixels, by analyzing the variation of
the average region values when compared to those of the nearest neighbors, also taking into
account all the values along the line or column under analysis.

Starting with the vertical scanning of M,,, a region is considered a candidate of containing
cracks when the following logical decision, Id(V), holds true:

1d") = [std(Av®) > k, x std(Bv) + k, x mean(Bv')| a [[Av#I[1] - Avé9[2]) > 0] @)
with
< )l (5
Mg, jy + 1T, Std(AV(zlj)) ,
AvD) = 2 ,Bv = : (3)
T std(AV("l’”” 1) )

0

where rmj corresponds to the average pixel intensity of a region at position (i,j), k; and k>
are parameters controlled by the system operator (set by default to an empirically chosen
value) and Av() and Bvi are column vectors with dimensions 2x1 and nlbmx1, respectively.
Elements of Bvi represent the standard deviation between region average intensities along
row i and column j (i.e. rm(ij)) and the corresponding values of its nearest vertical
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neighboring regions ([rm 1 + rm+1,]/2). Bvi is used to gather some knowledge about the
expected variations along the columns of M,,, highlighting the presence of relevant dark
pixels in regions, to be accounted for in equation (2). Regions with relevant crack pixels have
higher std(Bvi) values, due to higher Av(j values when compared to regions without crack
pixels. Additionally, the values of Av(i) and Av"~?, ie. the extreme regions of each
column (top and bottom edges), take value zero. After the vertical scanning of M,,, a binary
matrix, Mp,(V), is build with the computed Id(V) values; it has the same dimensions of M.
Fig. 2 is used to illustrate the behavior of std(Bvi) in the presence of cracks. It shows a
sample column of Mrm matrix (12th column) in two road pavement surface images. The
std(Bvi) value computed for the regions of the left image is lower (0.5696) than the
corresponding value for the right image (1.1895), due to the existence of an higher
std(Av(112)) value when compared to std(Av(12) for the remaining regions. The same
tendency is observed for mean(Bvi), presenting a lower value for the left image (0.9405) than
for the right image (1.3788).

Fig. 2. Two sample images, with 1536x2048 pixels, from the pavement survey database. The
left image shows a pavement surface without cracks, while the right image includes a
transversal crack. Processed 75x75 pixel regions are marked with squares.

After the vertical scan, a horizontal scan proceeds in a similar way, acquainting for
longitudinal cracks, which would be difficult to detect in a vertical scan. Expressions (4) and
(5), for the horizontal scan, are similar to (2) and (3), with Av and Bv being replaced by Ah
and Bh, respectively:

1" =[std(Ah) > k, xstd(Bh') + k, x mean(Bh')| A [[Ah®)[1]— AR®I[2])> 0] 4)

Ah@ﬂ{rm("j‘l);rmﬁ'j“>; rm(i,j)}, Bh' =[0; std(Ah®?) .. std(aht==D) o] (5

with Ah@) and Bh! being vectors with dimensions 2x1 and ncbmx1, respectively, and the

values for Ah() and Ah®"), i.e. the extreme regions of each row (left and right edges),
taking value zero. After the horizontal scanning of M,,, a new binary matrix with the
computed /d®) values is build, My, (with the same dimensions of M,,).
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Fig. 3. Two sample images, with 1536x2048 pixels, from the pavement survey database. The
left image shows a pavement surface without cracks, while the right image includes a
longitudinal crack. Processed 75x75 pixel regions are marked with squares.

As an example, a horizontal scanning for the Mrm matrix 9th row of the images in Fig. 3 is
considered. Lower values for std(Bhi) and mean(Bhi) are obtain for the left image (0.6002
and 1.0681, respectively) than for the right image (0.9298 and 1.2171, respectively), due to
the existence of an higher std(Ah(19) value when compared to std(Ah®)) of the remaining
regions.

The next step of the preliminary detection of regions containing cracks is to merge the two
binary matrices My,,(V) and My,,(H) into a new binary matrix, My, to retain the results of both
the horizontal and vertical scans. The connected components of My, are identified,
considering a 8-neighbourhood, and only those containing more than one region are kept as
crack region candidates; isolated crack region candidates are discarded (relabeled to ‘0’), as
they are likely to correspond to oil spots or other types of noise.

Finally, the length of each retained connect component is computed and, for each image, the
length of longest connected component (llcc) is stored. The selection of a given number of
training images (controlled by the system operator) is achieved by sorting the entire image
database in descending order of the computed llcc values - the TIS is chosen from the top of
this sorted list. This procedure ensures that the images selected for training the classifiers
effectively contain cracks.

Sample results of the binary matrices corresponding to images selected for the training step
are shown in Fig. 4, using k; and k; values equal to 0.4 and 2.0 respectively (empirically
chosen by the system operator). More detailed results and the corresponding analysis are
included in Section 6.1.
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Fig. 4. Binary matrices showing the results of the preliminary crack region detection, for the
right images of Fig. 2 and Fig. 3, respectively. Regions in white are those preliminary
classified as containing relevant crack pixels.

3.3 Image Normalization and Saturation
As stated in Section 3.1, pavement surface images were acquired during a survey over a
Portuguese road using a digital camera. These images are free from shadows or other kind
of occlusions, caused for instance by trees near road footpaths, but they present a non-
uniform background illumination due to the type of sensor used, causing slight variations
on the regions’ pixel intensities average even in images without cracks.
To reduce this effect, an image normalization procedure is proposed. It consists in
computing a base intensity level value (bil;g) for each image, equal to the average of the
elements of M,, corresponding to regions preliminary classified as not containing crack
pixels, i.e., those labeled with value ‘0" in matrix My,,. The need to use My, values for image
normalization is the reason why this step is performed after the selection of training images.
Based on the bil;, value, a normalization constants matrix M, (with the same dimension of
M,;) is computed for each image, its elements being real values lower or higher than 1.0.
The computation of M, elements is different depending if the corresponding label in My, is
‘0" or 1.
For regions previously labeled with ‘0’, i.e. regions preliminary classified as not containing
cracks, the corresponding M, elements are computed using the expression in (6):

Mnc (l’ j)’o‘ = LIX’O' (6)

Mrm (1’ ])

where M,(i,j)" stands for the normalization constant to be applied to region (i,j), which has
a My, label ‘0" and M,,(i,j)’7 is the corresponding element in M.
As an example, for a region with average pixel intensity of 163 and a M, value of 0.92, all
that region’s original pixel values are affected by this normalization constant. The resulting
region average intensity will be 163%0.92=150.
For regions previously labelled with “1’, i.e. regions preliminary classified as containing
relevant cracks, the corresponding M, elements are computed using the expression in (7):
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M = .
o 22 M, (i+p,j+q)

where kO is the number of regions with label ‘0" in a neighbourhood around the (i j) region
under analysis and the double sum accounts for all the corresponding M,,, elements. The
search for regions with label ‘0" starts in 3%3 neighborhood (corresponding to a=b=1 in (7)).
A larger neighborhood is adopted (e.g., 5%5 which corresponds to a=b=2 in (7)) only if no
regions labeled ‘0" are found in the previous one. For instance, a region with label ‘1" and
average pixel intensity of 152, with four neighbors labeled ‘0" and region averages of 148,
159, 140 and 153, has its original pixel intensities changed by a normalization constant of
152/150.
Expression (7) only considers regions with label ‘0" for the computation of M,.(i,j)". This is
done to prevent strong changes in pixel intensities of normalized regions with label ‘1,
preventing dark pixels to become brighter than expected during the normalization step,
thus avoiding to loose the information that this region is likely to contain a crack.
Sample results using the proposed normalization procedure are shown in Fig. 5. The graph
on the left shows M, original values, for the regions of the row considered in the right side
of Fig. 3; the graph on the right of Fig. 5 shows the normalized average intensity levels. As
can be seen from Fig. 5, the normalization procedure tends to equalize the average
intensities for those regions preliminary classified as not containing cracks, while
maintaining the average intensity of regions expected to contain crack pixels below biljj,.
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Fig. 5. Region average intensity values along the row selected in the right side of Fig. 3
before (left) and after (right) normalization.

Besides non-uniform background illumination, pavements surface images also frequently
reveal the presence of white pixels due to specular reflectance of some surface materials.
These pixels do not correspond to cracks but lead to higher intensity standard deviation
values, even for regions without cracks. Higher standard deviation of region intensities are
expected to be found in regions containing cracks (now due to higher differences between
dark crack pixels and the corresponding average computed for the entire region). Therefore,
white pixels may hinder detection performance, as different types of regions would present
similar local statistics.
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In order to eliminate the undesired influence of white pixels, a region saturation algorithm
is proposed. For this purpose, the average of all pixel intensities of each normalized image is
computed (api) and all image pixels having intensities higher than api assume that value.
The pixel intensity saturation function is illustrated in Fig. 6. The effect of applying the pixel
intensity saturation algorithm to a normalized image is illustrated in Fig. 7.

A

Saturated pixel
intensity values

api  pe-===--

N

api Original pixel
intensity values

Fig. 6. Pixel intensity saturation function.

Fig. 7. Normalized image containing a longitudinal crack before (left) and after (right)
applying the intensity saturation algorithm.

The proposed saturation function efficiently simplifies normalized images, reducing noise
and also the standard deviation of regions without crack pixels, while keeping all relevant
crack information.

To clarify the effect of applying the pixel saturation algorithm, which slightly changes the
regions” average intensities, an example is shown in Fig. 8 for the row considered in the
right image of Fig. 3. At a first glance, comparing the right graph of Fig. 5 with the one on
top of Fig. 8, the region average intensities are globally lower for the second case. Moreover,
the corresponding standard deviations are also lower after applying the saturation
algorithm as seen in the bottom graphs of Fig. 8. In fact, the average standard deviation
value for the image regions preliminary classified as not containing cracks (26 out of the 27
regions in the example of Fig. 8) is 26.8, while after applying the saturation algorithm it is
reduced by approximately 54%, to 12.4. Still, for the region likely to contain cracks, the
reduction is only 29% (31.5 against 44.1 in the non-saturated case).

Thus, the saturation algorithm achieves a strong standard deviation reduction for regions
without cracks, creating a good separation to the standard deviation values of crack regions,
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and allowing to consider it, together with the region average intensities, as the features to be
exploited by the classifier used for crack regions detection, as discussed in the next section.

150
145} -
140 b -
®©
186} Reoi limi ]
gion preliminary
E 130t classified as containing ]
2 crack pixels
B 125 -
=
5]
E q20]
=
=]
‘B 115} ]
©
o
11of -
106 -
100
12846678 0101112181416161715182021 222524262627
Column index
I e T ggf -
40t 268 / A . 40t y
. mplitude
441 P
a5} 5 - ast ]
o)
30+ o] ¢ oo o 4 30 4
r=-- "'551"3" """"""'0'5' /1 .
T @ @ b 25} 12.4 315 Amplitude -

o
=1
T

Region intensities std
@

Region intensities std

n
(=1
T

a
T

o
1
=1

[l
1
m

i

12346678 0101112131416161718102021 222324262627 1 6 7 B 9101112131415161718192021 222324262627
Column index GColumn index

Fig. 8. Region average intensity values along the row selected in the right side of Fig. 3 after
normalization and saturation (top) and standard deviation of region intensities for the
normalized images before (bottom left) and after applying the saturation algorithm (bottom

right).

3.4 Feature Extraction and Normalization

To automatically label regions as containing cracks or not, a pattern recognition system
operating over a simple feature space is proposed. The feature space is two dimensional,
being constructed using regions’ local statistics, computed for normalized and saturated
images. The first feature is the mean value of all pixel intensities in a region; the second is
the standard deviation of the region’s pixel intensities. Images can then be represented in
the feature space - see example in Fig. 9, where each point identifies a region of an image.
Since different images present different average values, as can be observed by the scattering
of points in Fig. 9 top-right and bottom-left images, a further normalization step is needed to
allow a better classifier performance.

This additional feature space normalization starts with the computation of each image’s two
dimensional feature space centroid, together with a global centroid computed for all the
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database images. Then, for each individual image, the two dimensional feature space points
are translated to align the respective centroid with the global one. The corresponding result
is illustrated in the bottom-right image of Fig. 9. Table 1 complements these results with the
values of the intraclass and interclass distances (Heijden et al., 2004), computed for a TIS

image set composed of five images, as discussed in Section 6.
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Fig. 9. Feature space representation, using a TIS composed of five images, for the original
image (top-left), after image normalization (top-right), after normalization and saturation
(bottom-left) and after the additional feature space normalization (bottom-right).

Crack
Intraclass | Intraclass region’s No crack
Implementations distance distance Interclass intra/ region’s
(crack (no crack distance interclass intra/interclas
regions) regions) ratio s ratio (%)
(%)
Original 147.9 145.0 395.8 37.4 36.6
images
Norm. 150.4 59.1 371.4 40.5 15.9
Norm. + Satur. 138.7 45.5 423.9 32.7 10.7
Norm. * Satur. | g7, 8.7 4024 21.7 22
+ Trans.

Table 1: Interclass and intraclass distances computed using TIS set.
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As can be seen in the first line of Table 1, high intraclass and interclass distance values are
obtained for the original images, denoting a very scattered feature space where class
separation would be a difficult task, as illustrated by the top-right graph of Fig. 9.

After region normalization (top-right graph of Fig. 9), non crack regions points become
aligned along vertical lines (each vertical alignment corresponding to an image), with very
little variation along the horizontal axis. For these points, the values of the second line of
Table 1 show a better class compactness. The distribution of crack region’s points is not
significantly affected by this task.

Applying the saturation algorithm to the normalized images (see bottom-left graph in Fig. 9)
a reduction of the intraclass to interclass distance ratio is obtained for both classes.

With feature space normalization a further improvement is observed in the results. The
intraclass to interclass distance ratios is the best (21.7% and 2.2%), revealing a more
separable feature space and more compact point distributions.

4. Training and Classification

This section describes the classification strategies being evaluated, which are based on two
supervised learning approaches: parametric (Section 4.1) and nonparametric (Section 4.2).
Parametric approaches are based on a bivariate class-conditional normal density, as it
provides a good data description (Oliveira & Correia, 2007).

4.1 Parametric Learning and Classification
Points obtained by applying the described feature extraction and normalization procedures
to the training image set (TIS) are manually labeled by a skilled system operator, providing
a training data set for which the labels are a priori known.
From a fully automatic application point-of-view this is a drawback, as a human operator is
required to manually label image regions. However, since the aim here is to develop
parametric supervised strategies for crack region detection, the manual labeling is required
to create the training data to be used by the classifiers” parameter learning step.
All TIS feature points compose a pattern vector x, representing a sample of the random
variable X, taking values on a sample space X. For each element x; of pattern vector x, one
possible class y; is assigned, where Y is the class set, .i.e. y;€Y. Thus, the training set is:
Tz{(xl’yl)"'(xn’yn):xiemz;yie{CUCZ}} )
where 7 is the number of points of the pattern vector x. Only two classes are used: regions
with crack pixels, labeled as class c;, and regions without crack pixels, labeled as class c.
Assigning a loss penalty to misclassified measurements, the minimal expectation of the
resulting cost is taken as an acceptable optimization criterion for the Bayesian classifier
presented here (Heijden et al., 2004):

i =arg maxn (p(x| y, Jp(y,)) )

where p(y;) are the class priors, computed by:
# points labeledinto classc,

~ total number of points for all classes

ply, =c,) (10)
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with k being the class index. A loss function L(s,a) : SXA — R is constructed to quantify the
cost of each classification action, where S is the state space, s is the true state of nature, A is
the action space and a is the action (classification) taken by the classifier (Figueiredo, 2004).
The decision rule is to take the action that minimizes the associated risk, i.e., take action a; if
R(a1 | x) is lower than R(az|x), where a; means classifying measurement x; into class cx with
ke{1,2}, symbolically represented by (Duda et al., 2004):

G
>(L,, - L
p(xl% :Cl)P(yi :C1)<(Ll2 _Ln]p(x|yi :C2)p(yi :C2) (11)
21 1
)

where Ly is the loss resulting from classifying a measurement into class c,, while the true
state of nature is class ¢, i.e. L@i =c, |y, = C,,)' Since a uniform loss function is used here,

ie. Li1= L»=1 and L= L»1=0, the expression in (10) identifies a maximum a posteriori
probability classifier. Ground truth for the training set is known, thus the parameters for
both classes are learned from TIS feature points, X~N(u,Xx), with (Bishop, 2006):
11 - 1 & N N
i, :lek,. and 2 = 12(7% _,kaxki _,Uk)T (12)

nk i=1 kL=l

A

where /&k is the sample unbiased vector mean, > ;. is the sample unbiased covariance matrix,

k is the class index and ny is the total number of k class points.

Three ways to compute the decision boundaries are considered. The first one, denoted as
linear, assumes a joint sample covariance matrix (X), with the boundary being computed by
a weighted average (according to the class prior probabilities) of each class’ covariance
matrix, which results in a linear decision boundary (Duda et al., 2004; Heijden et al., 2004)
given by:

a+x'f=0 (13)

Py, = T - TS -
a=21n%_,uzzlﬂz+#1 DI (14)
ﬁzzzil(ﬂz_:’vﬁ) (15)

The second way to compute the decision boundary, denoted as quadratic, assumes a general
covariance matrix resulting in the quadratic boundary (Heijden et al., 2004) defined by:

a+x B+x'px=0 (16)
_ _ P(]/izcz)_ T -1 T -1
a=+InY| 1dzz\+21np(y o)t 2o ot 2y by (17)
=G
1522(251 Hy =2 ﬂl) and (0:_2514'2;] (18)
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The third decision boundary, denoted as independent, is computed assuming independent
features, i.e. the covariance matrices in (12) are now diagonal matrices computed as:

21(,,, = E[(Xk, — Hy, Xxk, — Ky, )] (19)

and 2 K, takes value zero whenever [ # m; E stands for the expected value and ! and m are

feature identifiers, taking value 1 or 2 for class regions without or with crack pixels,
respectively. Using these new covariance matrices, equations from (16) to (18) are used to
compute the target decision boundary.

A sample result using the three types of decision boundaries, computed for the TIS, is
illustrated in Fig. 10.

* *
25k *x cracks |
¥ op* +  no cracks

20 k.o ¥

Quadratic

oL

Feature two: Std

124 126 128 130 132
Feature one: Mean
Fig. 10. Three parametric decision boundaries computed for the TIS.

4.2 Non-parametric Learning and Classification

This subsection deals with classifiers that operate when both conditional probability
distributions are unavailable. This is different from the parametric case, where the only
unknowns were the probability density parameters modeling the data.

In general, one advantage of non-parametric learning, when compared with parametric
learning, is that not so much prior knowledge about the data to be processed is required,
but, on the other hand, a large amount of data is needed to compensate the lack of
knowledge about probability density functions, although it can be reduced when certain
computational constrains of the classifiers apply (for example, the use of a linear boundary
decision instead of a non-linear one) and they match the inherent distributions (Heihjen et
al., 2004; Webb, 2002).

Here, three non-parametric techniques are considered: Parzen windows, k-Nearest
Neighbor and Fisher's Least Square Linear classifiers.
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The implemented Parzen algorithm for learning and classification follows the descriptions
in (Heijden et al., 2004). Considering a labeled training vector x according to (8) and an
unlabelled test set, the probability density estimation for an arbitrary test vector z is
achieved by:

18 1 2,
_Z _

PR (20)

ﬁ(zll/i :Ck)_

n, S 2xx fs’

A
where A is a kernel that represents the knowledge about the distance between a test
measurement z and the training measurement x,, corresponding to a Gaussian interpolation
distance function, ny is the total number of measurements for class k and fs is a constant that
controls the size of the kernel influence zone, computed such that it maximizes:

Ziln(ﬁ(xw ly; = Ck)) (21)

k=1 g=1
where x;, is the sample g of the class k which is left out by the leave-one-out method when
computing the estimation of the posterior probability density. A measurement is classified
into class cx with the maximum posterior probability:
i~ argmaxfle1y, =)y, =c. ) @
=1,2

where 13(% =c k) represents class priors according to (10).

For k-Nearest Neighbors classification (k-nn), the estimated posterior probability density may
have different resolutions when the training data is not homogeneous, i.e., it's resolution is
higher when the training data is more dense. The posterior probability density for an arbitrary
test vector z is computed by (Duda et al., 2001; Theodoridis & Foutroumbas, 2003):

plely =)= s @)

where Nj is the number of samples inside the volume V(z)—which represents a sphere
centered in z—belonging to class k and 7 is the total number of training samples belonging
to class k. Thus, a measurement is classified into the class (c; or ¢;) that contains more
training measurements in the Ny neighborhood of z:

A

k= ar% max{ﬁ(z |y, =c, )ﬁ(yi =c, )}: ar% max{Nk} (24)
=1,2 =1,2
where P(y, = ¢, ) again represents the class priors according to (10).

The aim of the Fischer’s linear classification strategy is to find the linear discriminant
function between both classes, which corresponds to the projection that maximizes the class
separability (Bishop, 2006, Duda et. al., 2001). Class separability in a direction de R"is
defined by:
T
Ry =4
aJ,d
which is also denoted as the ratio of the between-class covariance matrix (/) to the within-
class covariance matrix (Jx), defined as:

T = (et = 1, Nty — 11, ' (26)

(25)
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Tw=Tw, *Tw, » Jw, =3 (%~ )%, — 1) (27)

where 14 denotes the vector mean for class k, computed according to (12) and x; is class k
measurements vector data. An estimate of d is obtained maximizing (25) according to:

T

d= argmax(idT Jsd J (28)
d a J,d

Thus, a measurement from a vector z is classified into class ¢; when y(x;)2yo for yo=K.z (z is

classified into class c, otherwise).

A sample result using the three types of decision boundaries, computed using the TIS, is

illustrated in Fig. 11.

* #  cracks
L #* % J
B e . +  nocracks
* *
+¢+*+ #
20F *
=
n
o
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& 15t
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k-nn” R
5 T

124 126 128 130 132
Feature one: Mean
Fig. 11. Three non-parametric decision boundaries computed for the TIS. For k-nn, the

boundary shown corresponds to a neighborhood of 1 point.

5. Crack Type Classification

Detection results are stored in binary matrices (one for each TTIS image) with the same
dimensions as (1), where ‘1" means regions labeled as containing crack pixels and ‘0" the
opposite case. All binary matrices are then processed to identify connect components and
the resulting connected crack regions are finally classified into one of the crack types
considered in the scope of this research work, following the specifications of the Portuguese
Distress Catalog (JAE, 1997): longitudinal (cr), transversal (cr) or miscellaneous (cwm).

Crack type classification uses another pattern classification system exploiting a new 2D
feature space. A crack type label is assigned to each connected crack region and
cumulatively added to each TTIS image.

The 2D feature space used for crack type classification is composed by the standard
deviations of the column (feature one) and row (feature two) coordinates of connected crack
regions. A sample representation of this feature space is given in Fig. 12.
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Fig. 12. 2D feature space used for crack type classification. Point L; represents a connected
crack region classified as a ‘longitudinal crack’.

The bisectrix sectioning the 2D feature space into two zones, ‘Z1” and ‘Z2’, represents the
points where connected components have equal column and row standard deviation values,
identifying perfect miscellaneous cracks. Points positioned over the horizontal or vertical
axes correspond to perfect transversal or longitudinal cracks, respectively.

Crack type classification is performed by computing two distances for each connected crack
region point representation in the 2D feature space: di and da, where dy. is the distance from
the point to the bisectrix axis and da corresponds to the distance to nearest axis (horizontal
or vertical). The example in Fig. 12 shows the classification of one connected crack region
(point L) as a ‘longitudinal crack” (di> da). This crack type classification is fully automatic
and unsupervised, no training stage being required.

The probability of a crack belonging to class cr. or cr is computed, according to:

d,
Ply, = )=1-—"4
(v, =c. I7) Tad (29)

while the probability of a crack belonging to the miscellaneous cracks class (cyv) is computed
according to:

dy
P(yi:CMM):l_ﬁLdLi (30)

where the index  is one of the class indexes T or L, da; is the distance from point i to the
nearest axis, dy; is the distance from point i to the bisectrix and #; is the observation (region i).
Thus, a connected crack region is classified into the class presenting a probability above 0.5:
e acrack is classified as ‘longitudinal” (class cr) if di > da and the nearest axis is the
vertical one;
e acrack is classified as ‘transversal” (class cr) if di > da and the nearest axis is the
horizontal one;
e a crack is classified as ‘miscellaneous’ (class cv) if da > di, independently of the
nearest axis.
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6. Experimental Results and Performance Evaluation

The proposed classification strategies are evaluated over the TTIS, which is composed by
real flexible pavement surface images, eventually containing cracks with linear
development. These images were acquired during a survey over a Portuguese road and
ground truth data has been manually constructed. Part of the algorithmic development was
supported by the PRtools toolbox (Duin et al.,, 2004). Experimental results are firstly
presented for crack regions detection (Section 6.1) and then for crack type classification
(Section 6.2).

6.1 Crack Regions Detection Results and Evaluation

Sample results for one TTIS image using the available classifiers are shown in Fig. 13. For
the k-nn strategy, one nearest neighbor (1-nn) is considered, as this is the neighborhood that
optimizes the leave-one-out error for the target image.

An evaluation of the different strategies, by comparison with the ground truth data, is
included in Table 2. A global Error-rate is computed (e-rc being the classification error for
classes c; and c;), as well as some metrics related only to regions with crack pixels: Crack
Error-rate (e-rc;), Precision (pr), Recall (re) as well as a Performance Criterion (pc) reflecting
the overall classifier performance, according to (Tax, 2006):

_ Number of regions wrongly classified for classes ¢, and c,

e—1g =
© Total number of regions (1)
Number of regions wrongly classified for class ¢,
e—71., = . =l-re (32)
Total number of crack regions (ground truth)

_ Number of regions correctly classified for class c, -
Total number of crack regions detected (33)

o Number of regions correctly classified for class c, "
Total number of crack regions (ground truth) (34)

2xprxre
pe=—"—- (35)
pr+re
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Fig. 13. Experimental results for a test image: original (top left), ground truth classification
(top right). Parametric classification results (2nd line): linear classifier (left), quadratic
classifier (middle), classifier with independent features (right). Non-parametric results (3rd
line): Parzen windows (left), 1-nn nearest neighbors (middle) and Fischer’s linear classifier
(right).

Strategy Global Error-rate | Crack Error-rate Precision Recall -
(e-7c) (e-rcr) (pr) (re)

Linear 0.68% 8.90% 97.1% 91.2% 94.0%
Quadratic 0.64% 2.96% 92.5% 97.0% 94.7%
Independ. 0.85% 6.87% 92.4% 93.1% 92.7%

Parzen 0.73% 10.79% 98.2% 89.2% 93.3%

k-nn 0.78% 5.38% 92.5% 94.6% 93.5%

Fischer 1.00% 15.45% 98.1% 84.6% 90.7%

Table 2. Detection results for regions with crack pixels case. Best results for each metric are
underlined.

The best overall classifier performance is achieved by the quadratic classifier, according to pc
values and confirmed by the best Recall value, meaning that this classifier produces the best
true positive detection performance.

An interesting observation is that the features used seem to have some degree of
dependence, which can be seen by comparing the quadratic and the independent parametric
classifier results, but a worst classification performance is achieved when a diagonal
covariance matrix is assumed. The use of parametric classifiers seems to be a good strategy,

www.intechopen.com



Supervised Crack Detection and Classification in Images of Road Pavement Flexible Surfaces 179

producing better pc values and taking into account that Recall is more important than
Precision for this type of application.

It is important to note that although the use of k-nn classifier produces good results (see pc
and Recall), it may be difficult to obtain a fixed neighborhood size. For different training
images, values between 1 and 10 were observed as the best, with an average of 4. Using a
small neighborhood may produce some over fitting problems, with the decision boundary
adapted to the training set, thus leading to a poor generalization of the classifier
performance.

Additionally, all classifiers seem to perform very well according to false positives detection
(i.e., regions without crack pixels being classified as containing cracks), with the
corresponding computed errors always below 1%.

Looking in more detail to the quadratic classifier results, some samples computed for TTIS
images and the respective ground truths are shown in Fig. 14, emphasizing the good
performance of the classifier.

It is also interesting to compare these results with those obtained in the preliminary
classification stage for selecting images for the TIS (see Section 3.2). The corresponding
results for the same metrics reported in Table 2 are included in Table 3.

Comparing the values reported in Table 2 and Table 3, it can be noticed that at the
preliminary classification strategy achieves very good precision results (95.7%). This means
that the great majority of crack regions preliminary detected do correspond to image regions
containing crack pixels, which is important at that stage as it effectively finds good images
for the training set.

Apart from that, crack detection using a Normal based density quadratic classifier
significantly raises the system performance (from 66.1% to 97.0% for recall), although more
false positives are detected in this case (precision drops from 95.7% to 92.5%).

Global Error-rate | Crack Error-rate Precision Recall c
(e-rc) (e-rcr) (v7) (re) P

1.7% 33.9% 95.7% 66.1% 76.7%

Table 3. Results for crack regions preliminary classification.
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Fig. 14. imégeé on left column céfreépbnd to detection results using the quadratic classifier.
The right column includes the corresponding ground truth.
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Fig. 15 shows ground truth, preliminary classification and crack detection results (first,
second and third column respectively) for the same images presented in Fig. 14.

Fig. 15. Results of the preliminary crack regions detection (left), crack detection using a
quadratic classifier (middle) and the corresponding ground truth (right).

6.2 Crack Type Classification Results and Evaluation

Crack type classification is performed on the resulting binary images produced by the crack
detection task. Crack type classification labels are used to annotate database images and can
later be used by a search engine to retrieve images containing a given type of crack. Fig. 16
shows crack classification results for the sample images shown in Fig. 14.

www.intechopen.com



182 Recent Advances in Signal Processing

ft
al
¥
B
=
L
at
ar
3l
i
ok
0 2 3 4 a ] L) ¥ L]
5t cokarn
1
Crack bype 02
N
Bt
Bt
g .
=
L]
H
3%
14
ok "
L] 1 ] 3 ¢ 8.8 I 81
B o
w0
Corncke Typ 12
9t

N coburmn

F] 3 + ] 7 8 8 0

Fig. 16. Clra.c.k.type classification results: original images (left), crack detection results
(middle) and the corresponding crack type classification feature space (right).
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From top to bottom, the first line shows an image containing a transversal crack and a short
longitudinal crack. The second contains a miscellaneous crack. The third and fourth lines
show images containing longitudinal cracks. The column on the right shows the crack’s
representation in the 2D feature space used for crack type classification. Regions with length
equal to ‘1" (isolated regions) are not considered in the classification process, as they are
likely to correspond to oil spots or similar occurrences in pavement surface images.

Using the crack type classification ground truth constructed for the TTIS, 100% recall and
precision are obtained for all the cracks, emphasizing a very good classifier performance.

7. Conclusions and Future Work

This chapter proposes a supervised system for crack regions detection and classification.
The proposed system automates the selection of training images, splitting the image
database into training and test sets.

Six supervised classification strategies (three parametric and three non-parametric) were
tested and analyzed. All six obtain an acceptable performance, with parametric classifiers,
and especially the quadratic one, achieving the best classification results.

All detected cracks were correctly classified into types, considering a set of crack types listed
in the Portuguese Distress Catalogue (JAE, 1997).

In terms of future developments, filtering techniques may be introduced to preprocess
images before the classification stage, notably for reducing falloff and specular reflection
problems. Also unsupervised approaches may be developed and confronted with those
presented in this chapter, notably investigating the use of one class classifiers, as regions
with crack pixels may be seen it as outliers of a well defined cluster of points in the feature
space.

Additionally, a reject-option for the Bayesian approach and a non uniform loss function will
be explored, since false positive detections have less impact than false negatives detection.
Also a deeper study of windows size, to maximize class separability, will be performed.
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