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3-D MRI and DT-MRI Content-adaptive Finite
Element Head Model Generation for
Bioelectomagnetic Imaging

Tae-Seong Kim and Won Hee Lee
Kyung Hee University, Department of Biomedical Engineering
Republic of Korea

1. Introduction

One of the challenges of the 21st century is to understand the functions and mechanisms of
the human brain. Although the complexity of deciphering how the brain works is so
overwhelming, the electromagnetic phenomenon happening in the brain is one aspect we
can study and investigate. In general, this phenomenon of electromagnetism is described as
the electrical current produced by action potentials from neurons which are reflected as the
changes in electrical potential and magnetic fields (Baillet et al., 2001). These electromagnetic
fields of the brain are generally measured with electroencephalogrm (EEG) and
magnetoencephalogram (MEG) that are actively used for bioelectromagnetic imaging of the
human brain (a.k.a., inverse solutions of EEG and MEG).

In order to investigate the electromagnetic phenomenon of the brain, the human head is
generally modelled as an electrically conducting medium and various numerical approaches
are utilized such as boundary element method (He et al., 1987; Hamalainen & Sarvas, 1989;
Meijs et al., 1989), finite difference method (Neilson et al., 2005; Hallez et al., 2008), and finite
element method (Buchner et al., 1997; Marin et al., 1998; Kim et al., 2002; Lee et al., 2006;
Wolters et al., 2006; Zhang et al., 2006; Wendel et al., 2008), to solve the bioelectromagnetic
problems (a.k.a., forward solutions of EEG and MEG). Among these approaches, the finite
element method (FEM) or analysis (FEA) is known as the most powerful and realistic
method with increasing popularity due to (i) readily available computed tomography (CT)
or magnetic resonance (MR) images where geometrical shape information can be derived,
(ii) recent developments in imaging physical properties of biological tissue such as electrical
(Kim et al., 2009) or thermal conductivity, which can be incorporated in to the FE models,
(iii) numerical and analytical power that allow truly volumetric analysis, and (iv) much
improved computing and graphic power of modern computers.

In applying FEA to the bioelectromagnetic problems, one critical and challenging
requirement is the representation of the biological domain (in this case, the human head) as
discrete meshes. Although there are some general packages available through which the
mesh representation of simple objects is possible, their capability of generating adequate
mesh models of biological organs, especially the human head, requires substantial efforts
since (i) most mesh generators have some limitations of handling arbitrary geometry of
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complex biological shapes, requiring simplification of complex boundaries, (ii) most mesh
generation schemes use a mesh refinement technique to represent fine structures with much
smaller elements. This tends to increase number of nodes and elements beyond the
computational limit, thus demanding overwhelming computation time, (iii) most mesh
generation techniques require careful supervision of users, and (iv) there is a lack of
automatic mesh generation techniques for generating FE mesh models for individual heads.
Therefore, there is a strong need for fully automatic mesh generation techniques.

In this chapter, we present two novel techniques that automatically generate FE meshes
adaptive to the anatomical contents of MR images (we name it as cMesh) and adaptive to the
contents of anisotropy measured through diffusion tensor magnetic resonance imaging (DT-
MRI) (we name it as wMesh). The cMeshing technique generates the meshes according to the
structural contents of MR images, offering advantages in automaticity and reduction of
computational loads with one limitation: its coarse mesh representation of white matter
(WM) regions, making it less suitable for the incorporation of the WM tissue anisotropy. The
wMeshing technique overcomes this limitation by generating the meshes in the WM region
according to the WM anisotropy derived from DT-MRIs. By combining these two
techniques, one can generate high-resolution FE head models and optimally incorporate the
anisotropic electrical conductivities within the FE head models.

This chapter introduces the cMesh and wMesh methodologies and their evaluations in their
effectiveness by comparing the mesh characteristics including geometry, morphology,
anisotropy adaptiveness, and the quality of anisotropic tensor mapping into the meshes to
those of the conventional FE head models. The presented methodologies offer an automatic
high-resolution FE head model generation scheme that is suitable for realistic, individual,
and anisotropy-incorporated high-resolution bioelectromagnetic imaging.

2. Previous Approaches in Finite Element Head Modelling

Although the classical modelling of the head as a single or multiple spheres (thus called
spherical head models) dates back much further than realistic boundary element and finite
element head models, the early finite element head modelling was attempted by Yan et al.
(1991). Then the later attempts are well summarized in a review paper by Voo et al. (1996).
Medical image-based realistic finite element head modelling was introduced a year later by
Awada et al. (1997) in 2-D and by Kim et al. (2002) in 3-D. Other than these works,
numerous literatures have shown their own approaches of finite element head modelling.
Lately, anisotropic properties of brain tissues including white matter and skull have been
incorporated into the FE head models and their effects on the forward and inverse solutions
have been investigated (Kim et al., 2003; Wolters et al., 2006). Recent studies focus on
adaptive mesh modelling, high-resolution mesh generation, and influence of tissue
anisotropies. More details can be found in (Lee et al., 2006, 2008; Wolters et al., 2006, 2007).

3. MRI Content-adaptive Finite Element Head Model Generation

The procedures of the content-adaptive finite element mesh (cMesh) generation are
summarized as follows: namely, (i) MRI content-preserving anisotropic diffusion filtering
for noise reduction and feature enhancement, (ii) structural and geometrical feature map
generation from the filtered image, (iii) node sampling based on the spatial density of the
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feature maps via a digital halftoning technique, and (iv) mesh generation. The cMesh
generation depends on the performance of two key techniques: the quality of feature maps
and the accuracy of content-adaptive node sampling. In this study, we focus on the former
and its application to MR imagery to build more accurate and efficient cMesh head models
for bioelectromagnetic imaging.

3.1 Gradient Vector Flow (GVF) Nonlinear Anisotropic Diffusion

To generate an effective and efficient cMesh head model, it is important to remove
unnecessary properties of given images such as artifacts and noises. The content-preserving
anisotropic diffusion offers pre-segmentation of sub-volumes to simplify the structures of
the image and improvement of feature maps where mesh nodes are automatically sampled.
In this study, the 3-D Gradient Vector Flow (GVF) anisotropic diffusion algorithm was used
(Kim et al.,, 2003; Kim et al., 2004). The GVF nonlinear diffusion technique, which was
successfully applied to regularize diffusion tensor MR images in a previous study (Kim et
al., 2004), was proven to be much more robust in comparison to the conventional Structure
tensor-based anisotropic diffusion algorithm (Weickert, 1997) and can be summarized as
follows.

The GVF as a 3-D vector field can be defined as:

V@, j. k) = (@, j, k), v, j, k), w(i, j, k). 1)

The field can be obtained by minimizing the energy functional:

&= Ijj}/(?]u +1y + Ny )+ |Vf|2|V - Vf|26x6yaz

2 2 2
My =Uy+uj +u;

2,2 .2 @
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where fis an image edge map and y is a noise control parameter.
For 3-D anisotropic smoothing, the Structure tensor S is formed with the components of V

S=v(v)’. (3)

The 3-D anisotropic regularization is governed using the GVF diffusion tensor Dgyr which
is computed with eigen components of S.

0l = di{DypV.J] 4)

where | is an image volume in 3-D. The regularization behavior of Eq. (4) is controlled with
the eigenvalue analysis of the GVF Structure tensor (Ardizzone & Rirrone, 2003, Kim et al.,
2003).
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3.2 MRI Feature Map Generations

To generate better feature maps from the filtered images, tensor-driven feature extractors
using Hessian tensor (Carmona & Zhong, 1998; Yang et al., 2003), Structure tensor (Abd-
Elmoniem et al., 2002), and principal curvature methods such as Mean and Gaussian
curvature (Gray, 1997; Yezzi, 1998) are utilized. The conventional feature maps proposed by
Yang et al. (2003) showed the adequate procedures for the purpose of image representation
that meshes are adaptive to the contents of an image where the extraction of image feature
information from given image was performed using the Hessian tensor approach.

In the work of Yang et al. (2003), two approaches to generate the feature maps were
proposed from the Hessian tensor of each pixel, H:

I(lj .])XX 1(19 ])xy
H= A, =1, 5
L(i,j)yx 1<i,j)yj > = ®)

where [ is an image, i and j are image indices, x and y indicate partial derivates in space. One
feature map was derived from the maximum of the Hessian tensor components:

Jmax (4. 7) = x| L (0, 1) |, Ly, (8 ) | Ly (55 ) 13- (6)
Another proposed feature map was derived from the eigenvalues, y’s, of the tensor:
meaX(iaj)zmaX{llul (iaj)lalluz(iaj)“" (7)

The two eigenvalues of the Hessian tensor matrix, denoted by y; and p2 are given by

1
H :5|:(]xx+]yy)+\/(]xx_[yy)2+4])%y:|/ (8)

/12=%|:([xx+[yy)_\/(1xx_[yy)2+4I§y}' (9)

The Hessian tensor approach extracts image feature information from the given MR image
using the second-order directional derivatives, and its critical attribute is high sensitivity
toward feature orientations. However it is known to be highly sensitive toward noise as
well.

Currently, advanced differential geometry measures provide better options and choices in
deriving feature maps with more effective and accurate properties. In this study, we derived
advanced feature maps based on the Hessian and Structure tensor as alternative ways (Lee
et al., 2006).

The Hessian tensor-driven feature maps are derived using the eigenvalues of the Hessian
tensor in the following way:

e ) =P G+ 1)) (10)
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fuli )=\ (i) (11)
G ) = G ) - i G ) (12)

where y’s are the positive eigenvalues of the tensor matrix.
Another approach is the use of the the Structure tensor due to robustness in detecting
fundamental feature of objects. The Structure tensor S can be expressed as follows:

2 I
s=| 0. (13)
yox y

We next derive the Structure tensor-driven feature maps with the eigenvalues of the
Structure tensor as the same ways of the Hessian tensor:

oo D) =S o)+ 15 1), (14)
Foli ) =10, 7) (15)
s (i ) =S o) - 15 G ) - (16)

The above feature map reflects the edges and corners of image structures for the plus sign.
By taking the maximum eigenvalue, new feature map can be derived which is a natural
extension of the scalar gradient viewed as the value of maximum variations. The other
feature map represents the local coherence or anisotropy for the minus sign (Tschumperle &
Deriche, 2002).

In addition, we generate new feature maps via the principal curvature. There are geometric
meanings with respect to the eigenvalues and eigenvectors of the tensor matrix. The first
eigenvector (corresponding eigenvalue represents the largest absolute value) is the direction
of the greatest curvature. Conversely, the second eigenvector is the direction of least
curvature. Also its eigenvalue has the smallest absolute value. The consistent eigenvalues
are the respective amounts of these curvatures. The eigenvalues of tensor matrix with real
values indicate principal curvatures, and are invariant under rotation.

The Mean curvature can be obtained from the Hessian tensor matrix (Gray, 1997; Yezzi,
1998). It is equal to the half of the trace of H which is invariant to the selection of x and y as
well. The new feature map fu using the Mean curvature can be expressed as follows:

Lo (413 =200 1 +1,,(1+17)

2(1+1§+1§)3/2
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From the Hessian tensor again, we also derive another feature map f; using the Gaussian
curvature as shown below:

2
foli, =

v (18)
(A+12+1})°

3.3 Node Sampling via Digital Halftoning

In order to produce content-adaptive mesh nodes based on the spatial information of the
feature map, we utilize the following popular digital halftoning algorithm. The Floyd-
Steinberg error diffusion technique with the serpentine scanning is applied to create
content-adaptive nodes in accordance with the spatial density of image feature maps (Floyd
& Steinberg, 1975). This algorithm produces more nodes in the high frequency regions of the
image. The sensitivity of feature map is controlled by regenerating a new feature map with
the parameter, x as shown below. In this way, the total number of content-adaptive nodes
generated by the halftoning algorithm can be adjusted.

A EN (N N (19)

where f 1S a feature map and « is a control parameter for the number of content-adaptive
nodes.

3.4 FE Mesh Generation

Once cMesh nodes are generated from the procedures described above, FE mesh generation
using triangular elements in 2-D and tetrahedral elements in 3-D is performed using the
Delaunay tessellation algorithm (Watson, 1981).

3.5 Isotropic Electrical Conductivity in cMesh

In order to assign electrical properties to the tissues of the head, we segment the MR images
into five sub-regions including white matter, gray matter, CSF, skull, and scalp. BrainSuite2
(Shattuck & Leahy, 2002) is used for the segmentation of the different tissues within the
head. The first step is to extract the brain tissues from MR images other than the skull, scalp,
and undesirable structures. Then, the brain images are classified into each tissue region
including white mater, gray matter, and CSF using a maximum a posterior classifier
(Shattuck & Leahy, 2002). The skull and scalp compartments are segmented using the skull
and scalp extraction technique based on a combination of thresholding and morphological
operations such as erosion and dilation (Dogdas et al., 2005).

The following isotropic electrical conductivity values according to each tissue type are used:
white matter=0.14 S/m, gray matter=0.33 S/m, CSF=1.79 S/m, scalp=0.35 S/m, and
skull=0.0132 S/ m respectively (Kim et al., 2002; Wolters et al., 2006).
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3.6 Analysis on the MRI Content-adaptive Meshes

3.6.1 Numerical Evaluation of cMeshes: Feature Maps and Mesh Quality

In order to investigate the effects of the feature maps on cMeshes, we used the following five
indices as the goodness measures of content-adaptiveness: (i) correlation coefficient (CC) of
the feature map to the original MR], (ii) root mean squared error (RMSE), (iii) relative error
(RE) between the original MRI and the reconstructed MRI based on the nodal MR intensity
values (Lee et al., 2006), (iv) number of nodes, and (v) number of elements. For fair
comparison of the content-adaptiveness of cMeshes, almost same number of meshes were
generated by adjusting the mesh parameter x as in Eq. (19). To test the content information
of the non-uniformly placed nodes, the MR images were reconstructed using the MR spatial
intensity values at the sampled nodes via the cubic interpolation method. Then the RMSE
and RE values were calculated between the original and reconstructed MR images.

We next performed the numerical evaluations of cMesh quality, since the mesh quality
highly affects computational analysis in terms of numerical accuracy on the solution on FEA.
The evaluation of mesh quality is critical, since it provides some indications and insights of
how appropriate a particular discretization is for the numerical accuracy on FEA. For
example, as the shapes of elements become irregular (i.e, the angles of elements are highly
distorted), the error of the discretization in the solutions of FEA is increased and as angles in
an element become too small, the condition number of the element matrix is increased, thus
the numerical solutions of FEA are less accurate. The geometric quality indicators were used
for the investigation of cMesh quality as the mesh quality measures (Field, 2000). For a
triangle element in 2-D, the mesh quality measure can be expressed as

g4
IE+13+13

(20)

where A represents the area of the triangle, and 1, I, and 5 are the edge lengths of the
triangle element, and « =443 is a normalizing coefficient justifying the quality of an
equilateral triangle to 1 (i.e., g=1, when I = I = [5. If 4>0.6, the triangle possesses acceptable

mesh quality). The overall mesh quality was evaluated for triangle elements in terms of the
arithmetic mean by

1
Q=D 4 @1

where N indicates the number of elements.

Additionally, we counted the elements with the poor quality (i.e., <0.6) as an indicator of
the poor elements that affect the overall mesh quality. Certainly, other measures are
available using other geometric quality indicators (Berzins, 1999).

Fig. 1 shows a set of results from 2-D cMesh generation obtained using the conventional
techniques by Yang et al. (2003). Fig. 1(a) is a MR image, (b) conventional feature map
obtained using fmax, and (c) another suggested feature map using famax. Fig. 1(d) shows
content-adaptive nodes from Fig. 1(c). Figs. 1(e) and (f) show content-adaptive meshes in 2-
D from Figs. 1(b) and (c) respectively. There are 2327 nodes and 4562 triangular elements in
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Fig. 1(e) and 2326 nodes and 4560 elements in Fig. 1(f). The triangle with different sizes
indicates adaptive characteristics of mesh generation in accordance with the two different
feature maps.

(d)
Fig. 1. Feature maps and cMeshes of a MR image: (a) a MR image, (b) feature map from (a)
using fmax, (C) using fumax (d) content-adaptive nodes from (c), (e) cMeshes from (b) with

2327 nodes and 4562 elements, and (f) cMeshes from (c) with 2326 nodes and 4560 elements.

We also generated the cMeshes of the given MRI using the advanced feature maps. Figs.
2(a)-(c) display the feature maps obtained using fu+, fu, and fu. derived from the Hessian
approach. Their corresponding cMeshes are shown in Figs. 2 (d)-(f) respectively. There are
2326 nodes and 4560 elements in Fig. 2(d), 2324 nodes and 4556 elements in Fig. 2(e), and
2329 nodes and 4566 elements in Fig. 2(f). The high sensitivity of Hessian tensor to the
structures of MRl is clearly visualized.

Fig. 3 shows a set of demonstrative results from the Structure tensor approaches. Figs. 3 (a)-
(c) show the improved feature maps acquired using fs+, fs, and fs. respectively. The
corresponding cMeshs are shown in Figs. 3 (d)-(f). There are 2323 nodes and 4554 elements
in Fig. 3(d), 2325 nodes and 4558 elements in Fig. 3(e), and 2323 nodes and 4554 elements in
Fig. 3(f) respectively. Based on these results, it indicates that the Structure tensor-driven
feature extractor yields optimal information on image features and their resultant cMeshes
look most adaptive to the contents of the given MRI. That is larger elements are present in
the homogeneous regions and smaller elements in the high frequency regions with
reasonable numbers of nodes and elements. Content-adaptive nature is clearly visible in the
contents of the given cMeshes.
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Fig. 2. Hessian tensor-derived feature maps and cMeshes: (a) feature map using fu+, (b)
using fu, () using fu., (d) cMeshes from (a) with 2326 nodes and 4560 elements, () cMeshes
from (b) with 2324 nodes and 4556 elements, (f) cMeshes from (c) with 2329 nodes and 4566
elements.

®

Fig. 3. Structure tensor-derived feature maps and cMeshes: (a) feature map using fs+, (b)
using fs, (c) using fs., (d) cMeshes from (a) with 2323 nodes and 4554 elements, (e) cMeshes
from (b) with 2325 nodes and 4558 elements, (f) cMeshes from (c) with 2323 nodes and 4554
elements.
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In addition, by using the Mean and Gaussian curvature, the feature maps obtained using fum
and fc are shown in Figs. 4(a) and (b) respectively. The resultant cMeshes are shown in Figs.
4(c) and (d). The characteristics of curvatures to the image features are clearly noticeable too.

Fig. 4. Curvature-derived feature maps and cMeshes: (a) feature map using fv, (b) using fc,
(c) cMeshes from (a) with 2326 nodes and 4560 elements, (d) cMeshes from (b) with 2325
nodes and 4558 elements.

The CC values in Table 1 show strong correlation between the Structure tensor-driven
feature map and the original MRI, indicating the Structure-driven feature extractor
generates much better content-adaptive features. Although the CC value of Structure tensor-
driven approach is lower than the feature maps by fu+, fu, fm, and fc, it produced much
lower RMSE and RE values, indicating the reconstructed MRI is much closer to the original
MRI. As for the cMesh quality, the result by fc describes the highest value. Also, the
Structure tensor approach show greatly acceptable values with much lower number of poor
elements compared to other feature extractors, indicating the Structure tensor-driven
approach will offer numerically accurate and efficient computational accuracy in FEA.

3.6.2 Numerical Evaluation of cMeshes: Regular Mesh vs. cMesh

To evaluate numerical accuracy of the cMesh head model on FEA in 3-D against the
conventional regular FE model commonly used in E/MEG forward or inverse problems,
two 3-D cMesh models of the whole head (matrix size: 128x128x77, spatial resolution: 1x1x1
mm?3) differing in their mesh resolution were built using the Structure tensor-based (i.e., fs+)
cMesh generation technique as described earlier. For the reference model, the regular mesh
head model was generated as the gold standard using fine and equidistant tetrahedral
elements with inner-node spacing of 2 mm, since analytical solutions cannot be obtained for
an arbitrary geometry of the real head.
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The numerical quality of the cMesh head models were evaluated by comparing the scalp
forward potentials computed from the cMesh models against those of the regular mesh
model. To solve EEG forward problems governed by the Poisson’s equation under the
quasistatic approximation of the Maxwell’s equation (Sarvas, 1987), the FE head models
along with isotropic electrical conductivity information were imported into a software
ANSYS (ANSYS, Inc., PA, USA). The forward potential solutions due to the identical current
generator (Yan et al., 1991; Schimpf et al.,, 2002) were obtained using the preconditioned
conjugate gradient solver of ANSYS. Then the scalp potential values from the cMesh head
models were compared to those from the reference FE head model. As evaluation measures,
both CC and RE were used along with the forward computation time (CT) as a numerical
efficiency measure.

Fig. 5 shows a set of results from the 3-D regular and cMesh models of the whole head with
isotropic electrical conductivities. In Figs. 5(a)-(c), there are 159,513 nodes and 945,881
tetrahedral elements in the regular FE head model. The cMesh model of the entire head with
109,628 nodes and 694,588 tetrahedral elements is given in Figs. 5(d)-(f). The mesh
generation time for the 3-D regular and cMesh head models was 169.5 sec and 68.1 sec
respectively on a PC with Pentium-IV CPU 3.0 GHz and 2GB RAM. In comparison to the
regular mesh model in Figs. 5(a)-(c), the content-adaptive meshes are clearly visible
according to MR structural information in Figs. 5(d)-(f). Various mesh sizes indicate the
adaptive characteristics of meshes based on given MR anatomical contents as shown in Figs.
5(d)-(f).

MRI vs. MRI vs. No. of Poor
No. of | No. of Feature cMesh
Method Reconstructed MRI , Elements:
Nodes |Elements Map Quality <06
CC RMSE RE 4=
fox | 2327 | 4562 0.45 4011 0.21 8?2 * 503
foamax | 2326 4560 0.49 46.98 0.25 8;2 * 617
fu+ 2326 4560 0.68 34.94 0.18 8&132 * 418
fu 2324 4556 0.50 46.38 0.24 812 * 649
fu- 2329 4566 0.62 34.94 0.18 82132 a 224
foo | 223 | 4554 0.60 396 | 017 | o0y T 284
fs 2325 4558 0.61 31.93 0.17 821331 * 243
0.82 =+
fs- 2323 4554 0.61 32.96 0.17 014 254
fm 2326 4560 0.68 34.94 0.18 8?? * 418
fc 2325 4558 0.70 28.96 0.14 8?; * 166

Table 1. Numerical evaluations of the content-adaptiveness of cMeshes.
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(d)

Fig. 5. Comparison of geometrical mesh morphology of the 3-D FE models of the whole
head. Top row shows (a) a transaxial slice, (b) sagittal cutplane, and (c) coronal view from
the regular mesh head model with 159,513 nodes and 945,881 tetrahedral elements through
the five sub-regions segmented. Bottom row displays (d) a tranaxial slice, (e) sagittal
cutplane, and (f) coronal view from the cMesh head model with 109,628 nodes and 694,588
elements. (cyan: scalp, red: skull, green: white matter, purple: gray matter, and deepskyblue:
CSEF).

Figs. 6(a) and (b) display the sagittal cutplanes of the 3-D forward potential maps from the
regular FE (i.e., reference) and cMesh head model of the whole head respectively. The minor
differences of the EEG electrical potential distribution between the regular vs. cMesh head
models are directly noticeable in Figs. 6(a) and (b). In Table 2, the CC values show strong
correlation of the scalp electrical potentials between the cMesh head models and reference
model. The results from cMesh-2 show CC=0.999 and RE=0.037, indicating there is only
minor difference in the scalp electrical potentials but significant gain in CT of 55% (5.47 to
3.02 min) with significantly reduced nodes and elements.

FE model | No. of Nodes | No. of Elements CC RE CT (min)
Reference 159,513 945,881 1 0 1(5.47)

cMesh-1 148,852 943,072 0.999 | 0.031 0.60 (3.28)
cMesh-2 109,628 694,588 0.999 | 0.037 0.55 (3.02)

Table 2. Numerical quality of the scalp electrical potentials in the cMesh head models.
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4
\

(b)
Fig. 6. Sagittal view of the 3-D forward potential maps from (a) the reference FE head model
and (b) the cMesh-1 head model. The resultant EEG forward potentials are normalized by
the maximum value of the EEG potential for isopotential visualization.

4. DT-MRI Content-adaptive Finite Element Head Model Generation

Fig. 7 describes the schematic steps of building wMesh head models along with the
generation of the cMesh head model. The detailed technical steps are explained in the
subsequent sections.

Jp- [t"j n’r] IB:.\

Ny =€y LI, - 11)

Fig. 7. Schematic diagram of generating a cMesh and wMesh head model.

4.1 DT-MRI Feature Map Generation

From DT-MRI data, the symmetric DT matrix is obtained: namely, the diffusion components
along the x-y direction, the x-z direction, and the y-z direction (i.e., Dy, D.;, and D) in
addition to the traditional measurements of diffusivities along the x-, y-, and z-axes (i.e., Dy,
Dy, and D.;) (Bihan et al., 2001). The mathematical representation of the DT matrix is shown
in Fig. 7.
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For the wMesh head modeling, fractional anisotropy (FA) as an anisotropy feature map is
used. The FA map is calculated using the eigenvalues of the DT matrix as follows:

A= 40y =2 + (3 -2

V2 VB + 2+ 23

where 4;,4,,and A; are three eigenvalues and A is the average of the eigenvalues.

FA , 0<FA<1 (22)

The FA measures the ratio of the anisotropic part of the DT over the total magnitude of the
tensor (Bihan et al., 2001). The minimum value of FA can occur only in a perfectly isotropic
medium. The maximum value arises only when 4; >> 4, =4;. The FA is widely used to

represent the anisotropy of the DT due to its robustness against to noise.

4.2 wMesh Generation

To build the wMesh head model, the first step is to co-register a set of T;-weigthed MRIs to
DT-MRIs using a voxel similarity-based affine registration technique (Maes et al., 1997).
Then to generate the WM anisotropy-adaptive nodes, the head FA maps are derived from
the measured DT matrix using Eq. (22). The WM FA maps are extracted from the head FA
maps using the information of the WM regions segmented from the structural MRIs. To
create the WM anisotropy-adaptive nodes based on the WM FA maps where the strong
anisotropy is present, the node sampling is performed according to the spatial anisotropic
density of the FA maps via the Floyd-Steinberg error diffusion algorithm technique (Floyd &
Steinberg, 1975). Basically more nodes are created in the high anisotropic density regions of
the FA maps.

In addition to the node generation in the WM regions based on the anisotropy feature maps,
the cMesh nodes are generated from the Ti-weighted MRIs using our cMesh node generator
as described in the previous sections. For the generation of the wMesh head models (see Fig.
7), the cMesh nodes Cr and WM nodes W, are used which are expressed as:

Cp (x,y,2)={k|1<k <N}, (23)

W,(x,y,z)={n|1<n< M}, (24)

where k and 7 are the nodal indices, x, y, and z the nodal coordinates in the Euclidean space,
and N and M the total number of nodes of cMesh nodes Cr and WM nodes W, respectively.
We find the intersectional node information (i.e., identical nodal positions, I;) of Cx and WV,
using Eq. (25), since they share the same position of FE nodes which are overlapped in both
the cMesh and WM node maps.
[S(xayaz):(ck ﬂVV}’[)/ (25)
]s(x:J/>Z)={S|Se(Ck mWn)}/ (26)

where s denotes the nodal indices intersected.
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Then we compute the wMesh nodes Nyin the following way:
Nf(x,y,z)z Ck(xayaz)U[Wn(x:yaz)_ls(x:yaz)] . (27)

The computed wMesh nodes N (i.e., the superfluous FE nodes I were removed) are used to
generate the wMesh head model. The dense nodes in the WM regions are produced
according to the WM anisotropic density over the cMesh nodes Ci. Once the wMesh nodes
Ny are sampled from the procedures described above, the FE mesh generation using
tetrahedral elements in 3-D is done via the Delaunay tessellation algorithm (Watson, 1981)
to construct the wMesh head models. Fig. 7 shows the distinct mesh characteristics in the
WM regions between the cMesh and wMesh head models.

4.3 Anisotropic Electrical Conductivity in wMesh

To set up the anisotropic electrical conductivity tensors in the WM tissue, we first
hypothesize that the electrical conductivity tensors share the eigenvectors with the
measured diffusion tensors according to the work of Basser et al. (2004). Then, we have
adopted two different techniques of modeling WM anisotropy conductivity derived from
the measured diffusion tensors: (i) a fixed anisotropic ratio in each WM voxel (Wolters et al.,
2006) and (ii) a variable anisotropic ratio using a linear conductivity-to-diffusivity
relationship in combination with a constraint on the magnitude of the electrical conductivity
tensor (Hallez et al., 2008). Two different approaches of deriving the WM anisotropic
conductivity tensors are briefly described as below.

To derive the WM anisotropic conductivity tensor with a fixed anisotropic ratio, the
anisotropic conductivity tensor o of the WM compartments is expressed as:

. -1
o=8 dlag (O-long >Otrans » O trans )S (28)

where S is the orthogonal matrix of unit length eigenvectors of the measured DT at the
barycenter of the WM FEs. oy,,, and o,,,, denote the eigenvalues parallel (longitudinal)

and perpendicular (transverse) to the fiber directions, respectively, with 65,4 > G5 -

Then we computed the longitudinal and transverse eigenvalues (i.e., anisotropic ratio of
Olong and 0,4y, ) using the volume constraint (Wolters et al., 2006) retaining the geometric

mean of the eigenvalues. The volume of the conductivity tensor is calculated as follows:

4 3 4 2
gﬁo-iso :Eﬁalongo-trans : (29)

The anisotropic FE head models differing in the anisotropic ratio (i.e., 1:2, 1:5, 1:10, and
1:100) are generated using different conductivity tensor eigenvalues under the volume
constraint algorithm, Eq. (29).

To compute the WM anisotropic conductivity tensors with the variable (or proportional)
anisotropic ratios, a linear scaling approach of the diffusion tensor ellipsoids is used
according to the self-consistent effective medium approach (EMA) (Sen et al., 1989; Tuch et
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al., 1999; 2001). EMA states a linear relationship between the eigenvalues of the conductivity
tensor o and the eigenvalue of diffusion tensor d in the following way:

O,

o="cd (30)

e

where o, and d, represent the extracellular conductivity and diffusivity respectively (Tuch et

al., 2001). This approximated linear relationship assumes the intracellular conductivity to be
negligible (Tuch et al., 2001; Haueisen et al., 2002). According to the proposition by Hallez et
al. (2008), the scaling factor o,/d, can be computed using the volume constraint in Eq. (29)

as shown below.
The linear relationship between the conductivity tensor eigenvalues and diffusion tensor
eigenvalues in the WM regions can be represented as

4 _d) _d3 (31)

0y 0Op O3

where d;, d;, and d; are the eigenvalues of the diffusion tensor at each WM voxel. 01, 02, and
03 are the unknown eigenvalues of the electrical conductivity tensor at the corresponding
voxel. Then the volume constraint algorithm as in Eq. (29) can be applied to compute the
anisotropic electrical conductivities. The volume constraint equation can be rewritten as
follows:

4 5 4
3 ks = 37010203 (32)

where 07 is the eigenvalues to the largest eigenvector. 0, and o3 represent the eigenvalues to
the perpendicular eigenvectors, respectively.

4.4 Analysis on DT-MRI Content-adaptive Meshes

4.4.1 Comparison of Anisotropy Adaptiveness and Anisotropy Tensor Mapping

To examine the effectiveness of the wMesh head model, we tested both anisotropy
adaptiveness and the quality of anisotropic mapping into the meshes by comparing to the
regular mesh and cMesh head models.

Fig. 8 shows a set of exemplary results from a regions of interest (ROI) to compare the
anisotropy adaptiveness of the FE head models to the given mesh morphology. Fig. 8(a)
shows a transaxial Ti-weighted MRI. The ROI, enclosing 38 x 38 voxels, is highlighted with
a box in red on the Ti-weighted MRI. The enlarged ROI of the Ti-weighted MRI and its
corresponding color-coded FA map derived from the DTs are given in Figs. 8(b) and (c)
respectively. In Fig. 8(c), the projections of the principal tensor directions on the ROI color-
coded FA map are visualized with white lines. Figs. 8(d)-(f) show the ROI regular meshes,
cMeshes, and wMeshes respectively. In contrast to the regular meshes in Fig. 8(d), the
anisotropy-adaptive characteristics of the wMeshes according to the WM anisotropy
information is clearly noticeable in Fig. 8(f). Moreover, it appears that there is higher mesh
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density in the WM regions where the degree of the anisotropy is strongly present. The
results from wMeshes demonstrate that mapping the WM electrical anisotropy into the
meshes could be performed more accurately. As mentioned previously, cMeshes in Fig. 8(e)
show too coarse mesh characteristics in the WM tissues, which seem be unsuitable for the
incorporation of the WM tensor anisotropy.

We next examined the quality of anisotropy mapping into the meshes which could be
important since the correct representation of anisotropy affects the accuracy of FEA. Fig. 9
illustrates the projection of the DT ellipsoids overlaid on the transaxial slice of a To-weighted
MRI. Fig. 9(a) displays the original DT ellipsoids in the WM tissues. In the corresponding
WM regions, the DT ellipsoids at the barycenters of the WM elements from the wMeshes are
shown in Fig. 9(b). The diameters in any directions of the DT ellipsoids reflect the
diffusivities in their corresponding directions, and their major principle axes are oriented in
the directions of maximum diffusivities. As observed in Fig. 9(d), the wMeshes are likely to
provide a better way of reflecting the details of the directionality and magnitude of the
anisotropic tensors due to the dense mesh features and anisotropy-adaptive characteristics
in the WM regions. In other words, the wMesh head model better incorporate the WM
anisotropic electrical conductivities and thereby the errors of the anisotropy modeling could
be reduced.

Fig. 8. Anisotropy adaptiveness of the FE head models. (a) a transaxial Ti-weighted MR slice
including the red box which indicates the regions of interest (ROI), (b) a ROI (38 x 38 voxels)
of the Ti-weighted MRI, (c) corresponding color-coded FA with the projections of the
principal tensor directions shown as white lines, (d) regular meshes overlaid on the FA map,
(e) cMeshes, and (f) wMeshes.
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(b)

Fig. 9. Mapping the DT ellipsoids of the WM regions onto a transaxial cut of the T>-weighted
MRI: (a) the original DT ellipsoids and (b) DT ellipsoids in the barycenters of the WM
elements from the wMesh head model. The color indicates the orientation of the principal
tensor eigenvector (red: mediolateral, green: anteroposterior, and blue: superoinferior
direction).

4.4.2 Effect of Anisotropic Electrical Conductivity

To study the effects of the WM anisotropic electrical conductivity on the EEG forward
solutions, we compared the EEG electrical potentials from the anisotropic wMesh head
models against those of the isotropic models. To obtain the EEG forward potentials, we
solved the Poisson’s equation (Sarvas, 1987) due to the following current sources (Yan et al.,
1991; Schimpf et al., 2002): as superficial sources, (i) an approximately tangentially oriented
source (the posterior-anterior direction) and (ii) a radially oriented source (the inferior-
superior direction) in the cortex; as a deep source (iii) an approximately radial source in the
thalamus. Each dipole was placed in the isotropic gray matter regions with careful attention,
since EEG fields are particularly sensitive to the conductivity changes of the brain tissue
next to the dipole (Haueisen et al., 1997; Gencer & Acar, 2004).

Fig. 10 visualizes the wMesh model of the whole head through the five sub-regions
segmented. There are 160,230 nodes and 1,009,440 tetrahedral elements in the wMesh head
model. The fully automatic generation of the wMeshes took 80.3 sec on a PC with Pentium-
IV CPU 3.0 GHz and 2GB RAM. Figs 10(a)-(c) display the transaxial, sagittal, and coronal
view of the head model respectively. The wMeshes in Fig. 10 show dense and adaptive
meshes in the WM regions generated based on the WM FA information. It is also seen that
compared to the regular FE head model in Fig. 5(a)-(c), there are much smoother boundaries
of the meshes at the skin, outer, and inner regions, thus possibly avoiding the stair-step
approximation of curved boundaries (e.g., Wolters et al., 2007) and reducing EEG forward
modeling errors. The WM anisotropy-adaptive meshing technique offers an optimal way of
incorporating the WM anisotropic conductivity tensors into the meshes.
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(b)
Fig. 10. Visualization of the 3-D wMesh model of the whole head with 160,230 nodes and
1,009,440 tetrahedral elements (color labeling as described in Fig. 5): (a) a transaxial slice, (b)
sagittal cutplane, and (c) coronal view.

Fig. 11 displays the results of the EEG forward potential maps from the wMesh models of
the whole head. According to the given source types, the resultant EEG forward
distributions of the sagittal and coronal views from the isotropic wMesh models are
visualized in Figs. 11(a)-(c) respectively. The EEG potential maps from the anisotropic
wMesh head models at the 1:10 fixed anisotropic ratio are shown in Figs. 11(d) and (e). Fig.
11(f) shows the EEG potential distributions from the wMesh model at the anisotropic ratio
of 1:100. Based on the observation in Fig. 11, the differences of the EEG electrical potential
distributions between the isotropic vs. anisotropic wMesh models are directly noticeable
through the altering directions and extension of the isopotential lines. In particular, the
isopotentials in Fig. 11(f) show the greater effects of the WM anisotropic conductivities due
to the strong anisotropy of 1:100.

To evaluate the numerical differences of the EEG forward solutions between the isotropic vs.
anisotropic wMesh models, the scalp potential values were quantitatively compared using
two similarity measures: relative difference measure (RDM) and magnification factor
(MAG). Meijs et al., (1999) introduced these metrics to quantify the topography and
magnitude errors. The quantitative results of the scalp electrical potentials according to
different anisotropy settings are given in Table 3.

The results from the wMesh head model with the 1:10 anisotropic ratio using the tangential
dipole show that the inclusion of the WM anisotropy resulted in the low RDM value of 0.037
and the MAG value of 0.959. On the other hand, a slightly larger influence (RDM=0.046 and
MAG=0.910) was found in the wMesh model with the 1:10 anisotropic ratio for the radial
dipole, thus indicating that the WM anisotropy led to the topography errors of the EEG and
weakened the EEG fields. Moreover, the strong effects by the 1:100 WM anisotropy ratio
were observed in the MAG value of 0427, describing the WM anisotropy strongly
weakened the EEG potential fields. The WM anisotropic conductivities around the deep
source have a greater influence on the EEG forward solutions. In the case of the anisotropic
models by the variable anisotropy setting, the results show smaller differences on the EEG
forward solutions due to much lower variable anisotropic ratios of the WM anisotropic
electrical conductivities.
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®
Fig. 11. EEG forward potential maps of the isotropic vs. anisotropic wMesh models of the
whole head: Top row from the isotropic models, (a) the sagittal cutplane with a tangentially
oriented dipole, (b) with a radially oriented dipole, and (c) coronal view with a deep source.
Bottom row from the anisotropic models, (d) sagittal cutplane with a tangentially oriented
dipole with the fixed anisotropic ratio of 1:10, (e) with a radially oriented dipole at the 1:10
fixed anisotropic ratio, and (f) coronal view with a deep source with the 1:100 fixed
anisotropic ratio. The resultant EEG forward potentials are normalized by the maximum
value of the EEG potential for isopotential visualization.

Anisotropy | Ratio Tangential Radial Deep
RDM MAG RDM MAG RDM MAG
1:2 0.010 0.998 0.012 0.992 0.012 0.988
1:5 0.024 0.983 0.030 0.957 0.053 0.924

Fixed 1:10 0037 | 0959 | 0046 | 0910 | o111 0.838

1:100 0.080 0.790 0.153 0.640 0.540 0.427
Variable 0.022 0.992 0.022 0.986 0.045 0.982

Table. 3. Numerical differences of the scalp electical potentials between the isotropic vs.
anisotorpic wMesh head models.

5. Conclusion

In this chapter, we have introduced how to generate MRI content-adaptive FE meshes (i.e.,
cMesh) and DT-MRI anisotropy-adaptive FE meshes (i.e., wMesh) of the human head in 3-D.
These cMesh and wMesh generation methodologies are fully automatic with the pre-
segmented boundary information of the sub-regions of the head (such as gray matter, white
matter, CSF, skull, and scalp), DT information, and conductivity values of the segmented
regions. Although the choice of using cMesh or wMesh depends on the aim of each FEA, the
combination of these meshes should allow high-resolution FE modelling of the head. Also
the presented technique should be extendable to other parts of the human body and their
FEA of bioelectromagnetic phenomenon thereof.
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