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1. Introduction

The problem of source separation is an inductive inference problem. There is not enough
information to deduce the solution, so one must use any available information to infer the
most probable solution. The aim is to process these observations in such a way that the
original source signals are extracted by the adaptive system. The problem of separating and
estimating the original source waveforms from the sensor array, without knowing the
transmission channel characteristics and the source can be briefly expressed as problems
related to blind source separation (BSS). Independent component analysis (ICA) is one of the
widely used BSS techniques for revealing hidden factors that underlie sets of random
variables, measurements, or signals. ICA is essentially a method for extracting individual
signals from mixtures of signals. Its power resides in the physical assumptions that the
different physical processes generate unrelated signals. The simple and generic nature of

this assumption ensures that ICA is being successfully applied in diverse range of research
fields.

Source separation and identification can be used in a variety of signal processing
applications, ranging from speech processing to medical image analysis. The separation of a
superposition of multiple signals is accomplished by taking into account the structure of the
mixing process and by making assumptions about the sources. When the information about
the mixing process and sources is limited, the problem is called “blind”. ICA is a technique
suitable for blind source separation - to separate signals from different sources from the
mixture. ICA is a method for finding underlying factors or components from
multidimensional (multivariate) statistical data or signals (Hyvarinen et al., 2001; Hyvarinen
and Oja, 2000).

ICA builds a generative model for the measured multivariate data, in which the data are
assumed to be linear or nonlinear mixtures of some unknown hidden variables (sources);
the mixing system is also unknown. In order to overcome the under determination of the
algorithm, it is assumed that the hidden sources have the properties of non-Gaussianity and
statistical independence. These sources are named Independent Components (ICs). ICA
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algorithms have been considered to be information theory based unsupervised learning
rules. Given a set of multidimensional observations, which are assumed to be linear
mixtures of unknown independent sources through an unknown mixing source, an ICA
algorithm performs a search of the unmixing matrix by which observations can be linearly
translated to form independent output components. When regarding ICA, the basic
framework for most researchers has been to assume that the mixing is instantaneous and
linear, as in Infomax. ICA is often described as an extension to Principal Component
Analysis (PCA) that uncorrelates the signals for higher order moments and produces a non-
orthogonal basis. More complex models assume for example, noisy mixtures (Hansen, 2000;
Mackay, 1996), nontrivial source distributions (Kaban, 2000; Sorenson, 2002), convolutive
mixtures (Attias and Schreiner, 1998; Lee, 1997), time dependency, underdetermined sources
(Hyvarinen et al., 1999; Lewicki and Sejnowski, 2000), mixture and classification of
independent component (Kolenda, 2000; Lee et al., 1999). A general introduction and
overview can be found in (Lee, 1998).

2. Challenges of source separation in Bio signal processing

In biomedical data processing, the aim is to extract clinically, biochemically or
pharmaceutically relevant information (e.g metabolite concentrations in the brain) in terms
of parameters out of low quality measurements in order to enable an improved medical
diagnosis (Niedermeyer and Da Silva, 1999; Rajapakse et al., 2002). Typically, biomedical
data are affected by large measurement errors, largely due to the noninvasive nature of the
measurement process or the severe constraints to keep the input signal as low as possible for
safety and bio-ethical reasons. Accurate and automated quantification of this information
requires an ingenious combination of the following four issues:

* Anadequate pre-treatment of the data,

* The design of an appropriate model and model validation,

* A fast and numerically robust model parameter quantification method and

* An extensive evaluation and performance study, using in-vivo and patient data, up
to the embedding of the advanced tools into user friendly user interfaces to be used
by clinicians

A great challenge in biomedical engineering is to non-invasively asses the physiological
changes occurring in different internal organs of the human body. These variations can be
modeled and measured often as biomedical source signals that indicate the function or
malfunction of various physiological systems. To extract the relevant information for
diagnosis and therapy, expert knowledge in medicine and engineering is also required.

Biomedical source signals are usually weak, geostationary signals and distorted by noise
and interference. Moreover, they are usually mutually superimposed. Besides classical
signal analysis tools (such as adaptive supervised filtering, parametric or non parametric
spectral estimation, time frequency analysis, and higher order statistics), Intelligent Blind
Signal Processing (IBSP) techniques can be used for pre-processing, noise and artefact
reduction, enhancement, detection and estimation of biomedical signals by taking into
account their spatio-temporal correlation and mutual statistical dependence.

www.intechopen.com



Source Separation and ldentification issues in bio signals:
A solution using Blind source separation 55

Exemplary ICA applications in biomedical problems include the following:

* Fetal Electrocardiogram  extraction, 1ie  removing/filtering  maternal
electrocardiogram signals and noise from fetal electrocardiogram signals
(Niedermeyer and Da Silva, 1999; Rajapakse et al., 2002).

* Enhancement of low level Electrocardiogram components (Niedermeyer and Da
Silva, 1999; Rajapakse et al., 2002)

* Separation of transplanted heart signals from residual original heart signals
(Wisbeck et al., 1998)

* Separation of low level myoelectric muscle activities to identify various gestures
(Calinon and Billard, 2005; Kato et al., 2006; Naik et al., 2006, 2007)

One successful and promising application domain of blind signal processing includes those
biomedical signals acquired using multi-electrode devices: Electrocardiography (ECG)
(Niedermeyer and Da Silva, 1999; Rajapakse et al., 2002; Scherg and Von Cramon, 1985;
Wisbeck et al., 1998), Electroencephalography (EEG)(Niedermeyer and Da Silva, 1999;
Rajapakse et al., 2002; Vig ario et al., 2000;Wisbeck et al., 1998), Magnetoencephalography
(MEG) (H'am™al ainen et al., 1993; Mosher et al., 1992; Parra et al., 2004; Petersen et al., 2000;
Tang and Pearlmutter, 2003; Vigario et al., 2000) and Surface Electromyography (sEMG).
sEMG is an indicator of muscle activity and related to body movement and posture. It has
major applications in biosignal processing; next section explains sSEMG and its applications.

3. BSS and Surface Electromyography

Surface EMG is the electrical recording of the spatial and temporal integration of the Motor
Unit Action Potential (MUAP) originating from different motor units. It can be recorded
non-invasively and used for dynamic measurement of muscular function. It is typically the
only in vivo functional examination of muscle activity used in the clinical environment. The
signal contains the information that is related to the anatomy and physiology of the muscle.
In clinical application, the signal is used for the diagnosis of neuro-muscular disease or
disorder. Another application of sSEMG is for device control application where the signal is
used for controlling devices such as prosthetic devices, robots, and human-machine
interface. sSEMG is a quick and easy process that facilitates sampling of a large number of
MUAPs (Basmajian and Deluca, 1985; Enderle et al., 2005). In sEMG recordings multiple
sensors are used to record some physiological phenomena. Often these sensors are located
close to each other, so that they simultaneously record signals that are highly correlated
with each other. Therefore, the sensors not only record the muscle activity transmitted by
volume conduction from a few dynamic muscles but also from artificial signals, such as
noise independent of muscle activities, that overlap with actual muscle activity which may

be present in all sensors. Extraction of the useful information from such kind of sEMG
becomes more difficult for low level of contraction mainly due to the low signal-to-noise
ratio. At low level of contraction, sSEMG activity is hardly discernible from the background
activity. Therefore to correctly identify the number of individual muscles (sources) sEMG
needs to be decomposed. There is little or no prior information of the muscle activity, and
the signals have temporal and spectral overlap, making the problem suitable for BSS (James
and Hesse, 2005;Jung et al., 2000). ICA is a statistical technique for obtaining independent
sources, s from their linear mixtures, x when neither the original sources nor the actual
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mixing matrix, A are unknown. This is achieved by exploiting higher order signal statistics
and optimization techniques.

For independent component analysis we assume that the observed signals x consists of n
underlying sources s=(sq,53,...,5,), that are unknown, but mutually statistically
independent and that these sources were mixed by an unknown (linear) mixing process A

x= As(t) 1)

with x=(x1,x2,...,xn), m>n where each component s; has zero mean. The crucial

assumption is statistical independence of these source components, which can be expressed
mathematically by the joint probability density function as

plstssasssy)=] | pils:) (2)
i=1

Given these assumptions it is possible to separate the recorded data x through the linear
transformation

u(t) = Wx(t) 3)

into independent components by applying statistical independence on the output u of this
un mixing process and recover the original sources from the observed mixtures. Here both
the mixing matrix A and the sources s are unknown, therefore these techniques are called
blind source separation (Hyvarinen et al., 2001; Hyvarinen and Oja, 2000). The block diagram
approach of ICA for source separation is shown in figure 1.

s X u
A w
ﬁ ﬁ
—_— —_—
Source Mixing Measured  Un-mixing  Separated
signals matrix signals matrix signals

Fig. 1. Flowchart of the Independent Component Analysis (ICA). Here s(t) are the sources.
x(t) are the mixtures, A is mixing matrix and Wis un-mixing matrix.
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As mentioned above, the signals that can be separated need to be non-Gaussian and
independent. For the purpose of applying ICA to sEMG recordings, signals can be
considered as independent and non-Gaussian and the mixing matrix can be considered to be
stationary and linear. Hence this paper analyses the conditions using a stationary mixing
matrix.

3.1 Source separation of sSEMG

MUAP separation is a new biomedical application of ICA. In previous applications of ICA
to sEMG, researchers have treated the sEMG activity from entire muscles as ICs. Each
muscle contains up to 100 individual motor units and the sEMG activity from an entire
muscle is the superposition of the activity from each motor unit within the muscle. It has
been shown that it is possible to apply ICA to isolate SEMG signals from individual muscles
(Azzerboni et al., 2002; Mckeown et al., 2002). Treating SEMG activity from entire muscles as
ICs is useful in some applications, especially when studying muscle activity in performing
movements. For example, ICA has been used to determine the exact sequence of muscle
contractions in swallowing by McKeown et al. (Mckeown et al., 2002) in order to diagnose
dysphagia (disorder of swallowing). The focus on treating sEMG activity from entire
muscles as ICs arises from a desire to analyse human movement. The most important
application of sEMG is as a clinical tool for neuromuscular disease diagnosis. In clinical
applications physicians seek to analyse individual motor units. BSS techniques such as ICA
is proposed as a novel approach for isolating individual MUAPs from sEMG interference
patterns by treating individual motor units as independent sources. This is relevant to
clinical sSEMG as motor unit crosstalk can make it difficult to study individual MUAPs
(Kimura, 2001).

During the sSEMG recordings of the digitas muscles to identify the hand gestures for human
computer interface, the cross talk due to the different muscles can result in unreliable
recordings. The simplest and most commonly used method to improve the quality of the
recording is rejection (Barlow, 1979). This is done by discarding a section of the recording
that has artefact exceeding a threshold. This method is simple, but causes a significant loss
of data and its reliability is questionable since it is predominantly based on visual
examination. There is little safeguard that prevents the removal of some small but important
features of the signal. It is also very dependent on the technician making it less dependable,
and very expensive.

The other commonly used techniques to improve the quality of bio signals recordings
include spectral filtering, gating and cross-correlation subtraction (Bartolo et al., 1996).
Spectral filtering is often not useful due to the overlap of the frequency spectrum of the
desired signals and the artefact component. On the other hand, gating and subtraction may
introduce discontinuity in the reconstructed signal. In the recent past, techniques such as
time domain (Hillyard and Galambos, 1970; Verleger et al., 1982), and frequency domain
regression (Whitton et al., 1978; Woestenburg et al., 1983), have been attempted. However,
simple regression in time domain can over-compensate the artefacts (Peters, 1967; Weerts

and Lang, 1973). The regression techniques depend on the availability of a good regressing
channel - a separate channel to record the corresponding artefact as a reference. This is often
not possible when recording sEMG. Therefore, better artefact removal techniques are
necessary to overcome the disadvantages of the previous methods. One property of the
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sEMG is that the signal originating from one muscle can generally be considered to be
independent of other bioelectric signals such as ECG, EOG, and signals from neighbouring
muscles. This opens an opportunity of the use of ICA for this application.

A number of researchers have reported the use of ICA for separating the desired sEMG
from the artefacts and from sEMG from other muscles. While details differ, the basic
technique is that different channels of SEMG recordings are the input of ICA algorithm. The
outputs of ICA are the ICs and the estimated unmixing matrix W. He et al. (He et al., 2006)
have used ICA to remove ECG artefact from sEMG data. A variation of the same has been
attempted by the Djuwari et al. (Djuwari et al., 2003), for removing ECG artefact from sEMG
of the lumbar muscles. They attempted to overcome the limitation of the number of signals
to be equal to the number of recordings and remove the ambiguity of the order. Their work
utilized ICA in two sequential steps. In the first step, ICA with multichannel sEMG
recordings that was corrupted with ECG artefact as the input gave one pure ECG signal in
one of its row. In the next step, vector z found by concatenating the row of the output matrix
u = Wx contained the ECG artefact and each single row of x in turn was used as its input.
The output of this step is a matrix y = Bz that contains ECG artefact in row and the “cleaned’
sEMG of corresponding channel in its other row. While in both cases, the visual inspection
suggested the successful removal of the artefact, and statistical analysis seem to suggest an
improvement compared to other techniques, because of the unknown properties of the
signal, the quality of the signal before and after could not be compared in a better way.
Similar work is also reported by Yong et al. (Hu et al., 2007) where ICA has been employed
to filter the sEMG of the lumbar muscles. Azzerboni et al. (Azzerboni et al., 2004)
demonstrated the artefacts removal in sSEMG using ICA and Discrete Wavelet Transform
(DWT). ICA has also been used by Nakamura et al. (Nakamura et al., 2004), to decompose
the sSEMG recordings in terms of the MUAPs. In their paper, they have acknowledged the
drawbacks and the necessary conditions required for the success of the ICA, but have not
demonstrated the suitability of their experimental data for ICA application. The earlier work
done by the researchers have mainly focused on sSEMG source separation and identification.
However further source separation issues need to be investigated.

3.2 Validity of the basic ICA model for sEMG applications

The application of ICA to the study of sSEMG and other bio signals assumes that several
conditions are verified, at least approximately: the existence of statistically independent
source signals, their instantaneous linear mixing at the sensors, and the stationarity of the
mixing and the ICs. The independence criterion considers solely the statistical relations
between the amplitude distributions of the signals involved, and not the morphology or
physiology of neural structures. Thus, its validity depends on the experimental situation,
and cannot be considered in general. There are however, two other practical issues that
must be considered:

1. Firstly, to ensure that the mixing matrix is constant the sources must be fixed in
space (this was an implied assumption as only the case of a constant mixing matrix
was considered). This is satisfied by sEMG as motor units are in fixed physical
locations within a muscle, and in this sense applying ICA to sEMG is much simpler
than in other biomedical signal processing applications such as EEG or fMRI in
which the sources can move (Jung et al., 2001).
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2. Secondly, in order to use ICA it is essential to assume that signal propagation time
is negligible. Signals from Gaussian sources cannot be separated from their
mixtures using ICA (Mckeown et al., 1999) because Gaussianity is a measure of
independence. Mathematical manipulation demonstrates that all matrices will
transform this kind of mixtures to another Gaussian data. However, a small
deviation of density function from Gaussian may make it suitable as it will provide
some possible maximization points on the ICA optimization landscape, making
Gaussianity based cost function suitable for iteration. If one of the sources has
density far from Gaussian, ICA will easily detect this source because it will have a
higher measure of non Gaussianity and the maximum point on the optimization
landscape will be higher. If more than one of the independent sources has non
Gaussian distribution, those with higher magnitude will have the highest
maximum point in the optimization landscape.

Given a few signals with distinctive density and significant magnitude difference, the
densities of their linear combinations will tend to follow the ones with higher amplitude.
Since ICA uses density estimation of a signal, the components with dominant density will be
found easily. The fundamental principle of ICA is to determine the unmixing matrix and use
that to separate the mixture into the ICs. The ICs are computed from the linear combination
of the recorded data. The success of ICA to separate the independent components from the
mixture depends on the properties of the recordings. However there are few issues involved
in ICA for sEMG applications. Three main problems that need to be addressed:

* issue related to identifying dependency and independency nature of the

* sources

* order of the separated signals and

* normalisation of the estimated ICs
This research proposes the imposition of sSEMG conditions on ICA to overcome these
limitations, resulting in semi-blind ICA. In order to validate the above mentioned theory
two types of sSEMG (bio signals) were analysed. First one is to identification of various
complex gestures based on decomposition of myo electric signal and the second one is to
identification of different vowel utterances based on facial SEMG signals. The experimental
methodology, results and discussion related to above mentioned experiments are explained
next.

4. Methodology

Experiments were conducted to evaluate the performance of the hand gesture recognition
and facial muscle activity using surface EMG. Experiments were performed to determine the
reliability of the use of facial SEMG to identify the unspoken vowel of an individual. The
study focused on inter-experimental variations, to determine whether the person repeated
the same set of muscle activation strategies for the same speech patterns. This was done with
the aim of determining the reliability of the use of facial SEMG for identifying unspoken
vowels, and for human computer interface. It was also done to establish whether normal
people speak with the same muscle activation strategy.
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4.1 Hand gesture sEMG and Facial sEMG recording procedure

For the hand gesture experiments five subjects whose ages ranging from 21 to 32 years (four
males and one female) were chosen. The experiments were conducted on two different days
on all five subjects. For the data acquisition a proprietary surface EMG acquisition system by
Delsys (Boston, MA, USA) was used. Four electrode channels were placed over four
different muscles as indicated in the table 1 and figure 2. A reference electrode was placed at
Epicondylus Medialis.

Channel | Muscle Function

1 Brachioradialis Flexion of forearm

2 Flexor Carpi radialis (FCR) | Abduction and flexion of wrist

3 Flexor Carpi Ulnaris (FCU) | Adduction and flexion of wrist

4 Flexor digitorum | Finger flexion while avoiding wrist
superficialis (FDS) flexion

Table 1. Placement of electrodes over the skin of the forearm

Before placing the electrodes subject's skin was prepared by lightly abrading with skin
exfoliate to remove dead skin that helps in reducing the skin impedance to less than 60 Kilo
Ohm. Skin was also cleaned with 70% v/v alcohol swab to remove any oil or dust on the
skin surface. The experiments were repeated on two different days. Subject was asked to
keep the forearm resting on the table with elbow at an angle of 90 degree in a comfortable
position. Three hand actions were performed and repeated 12 times at each instance. Each
time raw signal sampled at 1024 samples/second was recorded. A suitable resting time was
given between each experiment. There was no external load. The gesture used for the
experiments are listed below and details have been provided in table 1:

e  Wrist flexion (without flexing the fingers).

e Finger flexion (ring finger and the middle finger together without any wrist

flexion).

e Finger and wrist flexion together but normal along centre line
The hand actions and gestures represented low level of muscle activity. The hand actions
were selected based on small variations between the muscle activities of the different digitas
muscles situated in the forearm. The recordings were separated using ICA to separate
activity originating from different muscles and used to classify against the hand actions.
Experiments were conducted on the single subject on two different days to test the inter day
variations. A male subject is participated in the experiment. The experiment used 4 channel
EMG configurations as per the recommended recording guidelines (Fridlund and Cacioppo,
1986). A four channel, portable, continuous recording MEGAWIN equipment (from MEGA
Electronics, Finland) was used for this purpose. Raw signal sampled at 2000 samples/
second was recorded. Prior to the recording, the male participant was requested to shave his
facial hair. The target sites were cleaned with alcohol wet swabs. Ag/AgCl electrodes
(AMBU Blue sensors from MEDICOTEST, Denmark) were mounted on appropriate
locations close to the selected facial muscles: the right side Zygomaticus Major, Masseter &
Mentalis and left side Depressor anguli oris. The inter electrode distance was kept constant at
lcm for all the channels and the experiments.
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Wrist flexion Finger flexion

Finger and wrist together
Fig. 2. Three hand gestures during the hand gesture experiment

Fig. 3. Facial vowel utterance during the experiment
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Four Chammel ENIG Becordings st} Etimmsted sonrces s(3) ming ICA

Fig. 4. Estimated four channel source signals s(f) from a four channel Hand sEMG recording
x(f) for one of the hand gesture actions using fast ICA algorithm

Controlled experiments were conducted where the subject was asked to speak 5 English
vowels (/a/, /e/, /i, /o, /u/). Each vowel was spoken separately such that there was a
clear start and ends of the utterance. During this utterance, facial SEMG from the muscles
was recorded. sSEMG from four channels were recorded simultaneously. The recordings
were visually observed, and the recordings with any artifacts -typically due to loose
electrodes or movement, were discarded. The experiment was repeated for ten times. A
suitable resting time was given between each experiment.

4.2 Data Analysis

The aim of these experiments were to test the use of ICA along with known properties of the
muscles for separation of SEMG signals for the purpose of identifying hand gestures and to
test the use of ICA on the facial SEMG signals for identifying speakers. Similar data analysis
was performed to test the reliability of the ICA on facial SEMG and hand gesture sSEMG.

For hand gesture actions each experiment was repeated 12 times and each experiment lasted
approximately 2.5 seconds. The sampling rate was 1024 samples per second. There were
four channel (recordings) electrodes and four active muscles associated with the hand
gesture, forming a square 4 x4 mixing matrix. For facial muscle experiments, there were
approximately 5000 samples of the data for each utterance of vowels (a/e/i/0/u). 10 set of
these recording were considered. Since there were four channel recordings electrodes and
four active muscles associated with each utterance of vowel, this formed 4 x 4 mixing matrix

For both experimental datasets, the SEMG recordings were separated using fast ICA matlab
algorithm which has been developed and proposed by the team at the Helsinki University of
Technology (Hyvarinen and Oja 1997). The mixing matrix A was computed for the first set
of data only. The independent sources of motor unit action potentials that mix to make the
EMG recordings were computed using the following.
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Four Channel EMG Recordings (x) Estimated Sources (s) using ICA
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Fig. 5. Estimated four channel source signals s(t) from a four channel Facial SEMG recording
x(t) for one of the hand gesture actions using fast ICA algorithm

s(t)=Wx(t) 4)

where, IV is the inverse of the mixing matrix A. This process was repeated for each of the
three hand gesture experiments. Four sources were estimated for each experiment. Samples
of four channels of muscle activity for hand gesture and facial muscle activity, after source
separation using Fast ICA are shown in figures 4 and 5. After separating the four sources sa,
sb, sc and sd, each of these was segmented to sample length. Root Mean Squares (RMS) was
computed for each separated sources using the following.

1 n
Syms 1%2# ©)
=

where s is the source and N is the number of samples. This results in one number
representing the muscle activity for each channel for each hand action and muscle activity
for facial muscle. Our analysis demonstrates that this is a simple yet very efficient measure
of the muscle activity when the muscle activity for each of the muscles has been separated
from the sEMG recordings.

RMS value of muscle activity of each source represents the muscle activity of that muscle
and is indicative of the force of contraction generated by each muscle. Taking a ratio of these
activities gives a relative combination of the activity from each of these muscles responsible
for the muscle activity. A constant mixing matrix A and set of weight matrix for neural
networks was used for each subject making the system configured for each individual.

The above process was repeated for all three different hand actions 12 times and for each of
the participants. The process had been repeated for the facial muscle SEMG for the five
vowels (a/e/i/o/u). The outcome of this was 10 set of examples, each example pertaining to
speech of five vowels. These results were used further for neural network analysis.
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4.3 Neural Network analysis

As a first step, the networks were trained using the randomly chosen training data.
Performances were also monitored during the training phase in order to prevent
overtraining of the network. The similar ANN architecture was used to test the reliability of
Hand gesture sEMG and facial SEMG. The ANN consisted of two hidden layers with a total
of 20 nodes. Sigmoid function was the threshold function and the type of training algorithm
for the ANN was gradient descent and adaptive learning with momentum with a learning
rate of 0.05 to reduce chances of local minima.

The systems were tested using data that was not the training data. During testing, the ANN
with weight matrix generated during training was used to classify RMS of the muscle
activity separated using un-mixing matrix generated during training. The ability of the
network to correctly classify the inputs against known data’s was used to determine the
efficacy of the technique.

For hand gesture actions 12 sets of examples were used to train a back-propagation neural
network. The inputs to the network were the 4 RMS values for each gesture and the output
of the network were the three gestures. A back propagation neural network was then
trained with the RMS values as the inputs and the gesture numbers as the targets. This
network was then tested for the test data. For facial SEMG we used 10 sets with 4 inputs and
3 outputs by taking different combinations of vowels (a/i/u), (i/o/u), (a/o/u), (e/i/u) etc.
The inputs to the network were the 4 RMS values for each vowel utterance and the output of
the network were the three vowels. Similar to the hand gesture analysis, a back propagation
neural network was trained with the RMS values as the inputs and the vowel utterance
numbers as the targets. This network was then tested for the test data.

5. Results and observations

The aim of this research was to test the reliability and to determine the efficacy of the semi-
blind ICA technique to decompose sEMG into muscle activity from individual muscles and
classify the activity from these muscles to identify the hand gestures and speakers. The
ability of the system to accurately classify the decomposed sEMG against the known hand
gestures has been tabulated in table 2. For comparative purposes and to evaluate the ability
of the system, the classification of different vowels has been tabulated in table 3.

5.1 Hand gesture Identification using decomposed sEMG

This is the result of classification of RMS of the decomposed sEMG using ICA generated un-
mixing matrix from the training data and classified using a neural network trained with the
help of the training data. The accuracy was computed based on the percentage of correct
classified data points to the total number of data points. These results indicate an over all
classification accuracy of 100% for all the experiments. The results demonstrate that this
technique can be used for the classification of different hand gesture actions when the
muscle activity is low. The results also indicate that the system is resilient to differences in
subjects and inter-day variations.
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Wrist flexion Finger Flexion Finger flexion and

Nurp]?er of wrist flexion
participants Day one Day two Day one Day two | Day one | Day two
Subject 1 100% 100% 100% 100% 100% 100%
Subject 2 100% 100% 100% 100% 100% 100%
Subject 3 100% 100% 100% 100% 100% 100%
Subject 4 100% 100% 100% 100% 100% 100%
Subject 5 100% 100% 100% 100% 100% 100%

Table 2. Experimental results for Hand Gesture Identification using muscle activity
separated from sEMG using ICA

5.2 Vowel classification using decomposed sEMG
The result of the experiment demonstrates the performance of the subject for different days
in classifying the RMS values of the 3 vowels.

Correctly Classified Vowels Correctly Classified Vowels

Day 1 Day 2 Day 1 Day 2
/a/ (60%) (60%) /e/ (60%) (60%)
/o/ (55%) (65%) /i/ (55%) (65%)
/u/ (65%) (60%) /u/ (65%) (60%)

Table 3. Experimental results for vowel classification using muscle activity separated from
facial SEMG using ICA

The result of the use of these RMS values to train the ANN using data from individual
subjects showed easy convergence. The results of testing the ANN to correctly classify the
test data based on the weight matrix generated using the training data is tabulated in table 3
for two different set of vowels. The accuracy was computed based on the percentage of
correct classified data points to the total number of data points. The results indicate an
overall average accuracy of about 60%.

5.3 Comparative evaluation of hand sEMG with facial sSEMG applications

Independent Component Analysis with back propagation neural network was successfully
classified the hand gesture surface EMG signals. To measure the efficiency of ICA for source
separation, similar analysis was performed on facial sSEMG signals. In order to measure the
quality of the separation of hand gesture muscle activities in comparison to facial muscle
activities, we used the mixing matrix analysis. The surface EMG signals (wide-band source
signals) are a linear decomposition of several narrow-band sub components:
s(t) = s1(t) + sa(t) + s3(t) + ...+ s,(t) where si(t), sa(t),..., su(t) are 2500 samples in length each,
which are obtained from the recorded signals xi(t), xa(t),..., xu(t) by using ICA. Such
decomposition can be modeled in the time, frequency or time frequency domains using any
suitable linear transform. We obtain a set of un-mixing or separating matrices:

Wi1,Wy,...,W, where W, is the un-mixing matrix for sSEMG sensor data x; (t) and W, is the
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un-mixing matrix for sEMG sensor data x,, (t) If the specific sub-components of interest are

mutually independent for at least two sub-bands, or more generally two subsets of multi-
band, say for the sub band "p" and sub band "g", then the global matrix

_ -1 _
Gy =W, xW, ' =P (6)

will be a sparse generalized permutation matrix P with special structure and only one non-
zero (or strongly dominating) element in each row and each column (Cichocki and Amari,
2003). This follows from the simple mathematical observation that in such case both

matrices W, and W, represents pseudo-inverses (or true inverse in the case of square

matrix) of the same true mixing matrix A (ignoring non-essential and unavoidable arbitrary
scaling and permutation of the columns) and by making an assumption that sources for two
multi-frequency sub-bands are independent (Cichocki and Amari, 2003). The above
assumption is applied for different hand gestures, and some convincing results were
derived, which demonstrate that ICA is clearly able to isolate the four independent sources
from hand muscle sEMG recordings. The results of two un-mixing matrices which are
obtained from one of the hand gesture are given below, which satisfies the equation (6):

0.0800 -1.0094 0.0271 0.0927
0.0670 -0.0046 0.0307 -1.2610
0.0143 0.0295 0.8062 0.0273

2.1595 0.3787 -0.0729 0.0686
Determinant (G) = 2.2588

G=W*W," =

In this example the dominant values in each row (ICA does have order and sign ambiguity,
hence only absolute values will be taken into consideration) demonstrate that ICA is able to
isolate the four sources (s1, s2, s3 and s4) from four sEMG recordings (xI1, x2, x3 and x4)
successfully. To justify this hypothesis, the determinant of the matrix G was computed.
From the mathematical point of view, n vectors in R, are linearly dependent if and only if
the determinant of the matrix formed by the vectors is zero (Meyer, 2000). In each instance,
results which are higher than one were obtained. These results clearly justified that ICA is
able to isolate four independent sources from the four channel hand muscle recordings.

Similar analyses were performed on facial muscles: Four sources (s1, s2, s3 and s4) were
decomposed from four recordings (x1, x2, x3 and x4) using fastICA algorithm. In order to
check the quality of the source separation, the global matrices for each narrow-band
components was computed. The following results show one of the examples of facial SEMG
signals, which also satisfy the equation (6).
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0.0485 -1.1738 0.0891 -1.1105
-0.8019 1.0171 0.7873 0.1669
-0.8377 0.0142 1.1837 -1.0169

-1.4905 0.0192 -1.3557 0.4750
Determinant (G) = 0.0013 (Which is very close to Zero)

( G=W; *WZJ

By inspecting the above matrix we are certain that the values are dependent (sources are
dependent), cause in each row there are more than one dominant value. To clarify this we
computed the determinant of the global matrix G and the result are very close to zero which
from matrix theory explains that the sources are dependent (Meyer, 2000).

The above analysis demonstrates the importance of mixing matrix analysis for source
separation and identification of surface EMG signals. For the results it is evident that the
above analysis could be used as a pre-requisite tool to measure the reliability of SEMG-
based systems, especially those classifying recorded such bio-signals.

6. Discussion

The results demonstrated the applications and limitations of ICA for Hand gesture sEMG
and facial sEMG. Similar data analysis on both hand gesture sSEMG and Facial sSEMG has
helped to verify the reliability of ICA.

6.1 Applications

In this chapter, a new system to classify small level of muscle activity to identify hand
gesture using a combination of independent component analysis (ICA), known anatomy
and neural network configured for the individual has been proposed. It has been tested with
5 volunteer participants and the experiments were repeated on different days. The results
indicate the ability of the system to perfectly recognise the hand gesture even though the
muscle activity was very low and there were number of muscles simultaneously active for
each of the gesture.

There are number of researchers who have reported attempts to identify hand and body
gestures from sEMG recordings but with low reliability. This may be attributed to low
signal to noise ratio and large cross-talk between different simultaneously active muscles.
ICA is a recently developed signal processing and source separation tool and has been
employed to separate the muscle activity and remove artefacts to overcome this difficulty.
While ICA has been extremely useful for audio based source separation, its application for
sEMG is questionable due to the random order of the separated signals and magnitude
normalisation. This paper reports research that overcomes this shortcoming by using prior
knowledge of the anatomy of muscles along with blind source separation. Using a
combination of the model and ICA approaches with a neural network configured for the
individual overcomes the order and magnitude ambiguity. The results indicate that the
classification of the muscle activity estimated from sEMG using ICA gave 100% accuracy.
These results indicate that muscle activity separated from sEMG recordings using ICA is a
good measure of the subtle muscle activity that results in the hand gestures.
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6.2 Limitations

The results on facial sSEMG analysis demonstrated that, the proposed method provides
interesting result for inter experimental variations in facial muscle activity during different
vowel utterance. The accuracy of recognition is poor when the system is used for testing the
training network for all subjects. This shows large variations between subjects (inter-subject
variation) because of different style and speed of speaking. This method has only been
tested for limited vowels. This is because the muscle contraction during the utterance of
vowels is relatively stationary while during consonants there are greater temporal
variations.

The results demonstrate that for such a system to succeed, the system needs to be improved.
Some of the possible improvements that the authors suggest will include improved
electrodes, site preparation, electrode location, and signal segmentation. This current
method also has to be enhanced for large set of data with many subjects in future. The
authors would like to use this method for checking the inter day and inter experimental
variations of facial muscle activity for speech recognition in near future to test the reliability
of ICA for facial SEMG

7. Conclusions

BSS technique has been considered for decomposing sEMG to obtain the individual muscle
activities. This paper has proposed the applications and limitations of ICA on hand gesture
actions and vowel utterance.

A semi blind source separation using the prior knowledge of the biological model of SEMG
had been used to test the reliability of the system. The technique is based on separating the
muscle activity from sEMG recordings, saving the estimated mixing matrix, training the
neural network based classifier for the gestures based on the separated muscle activity, and
subsequently using the combination of the mixing matrix and network weights to classify
the sSEMG recordings in near real-time.

The results on hand gesture identification indicate that the system is able to perfectly (100%
accuracy) identify the set of selected complex hand gestures for each of the subjects. These
gestures represent a complex set of muscle activation and can be extrapolated for a larger
number of gestures. Nevertheless, it is important to test the technique for more actions and
gestures, and for a large group of people.

The results on vowel classification using facial SEMG indicate that while there is a similarity
between the muscle activities, there are inter-experimental variations. There are two
possible reasons; (i) people use different muscles even when they make the same sound and
(ii) cross talk due to different muscles makes the signal quality difficult to classify
Normalisation of the data reduced the variation of magnitude of facial SEMG between
different experiments. The work indicates that people use same set of muscles for same
utterances, but there is a variation in muscle activities. It can be used a preliminary analysis
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for using Facial SEMG based speech recognition in applications in Human Computer
Interface (HCI).
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